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Abstract

Xiao et al. [1] proposed an interesting hybrid
LES/RANS method in which they use two solvers and
solve the RANS and LES equations in the entire com-
putational domain. In the present work this method is
simplified and used as a hybrid RANS-LES method, a
wall-modeled LES. The two solvers are employed in the
entire domain. Near the walls, the flow is governed by the
steady RANS solver; drift terms are added to the DES
equations to ensure that the time-integrated DES fields
agree with the steady RANS field. Away from the walls,
the flow is governed by the DES solver; in this region,
the RANS field is set to the time-integrated LES field.
The disadvantage of traditional DES models is that the
RANS models in the near-wall region – which originally
were developed and tuned for steady RANS – are used
as URANS models where a large part of the turbulence
is resolved. In the present method – where steady RANS
is used in the near-wall region – the RANS turbulence
models are used in a context for which they were devel-
oped. In this method, it may be worth while to use an
accurate, advanced RANS model. The EARSM model
is used in the steady RANS solver in the present work.
The new method is called N-Z S-DES.

1 Introduction

DES (Detached-Eddy Simulation) uses unsteady RANS
near walls (URANS region) and LES further away from
walls (LES region). The resolved turbulence in the
URANS region is often larger than the modeled part.
But the RANS models used in the URANS region were
originally developed and tuned in steady RANS simula-
tions. Hence the accuracy and the validity of the RANS
models in the URANS region can be questioned. In the
present work, DES is coupled with steady RANS near
the walls. We denote the method N-Z S-DES (Non-Zonal
approach using Steady RANS coupled to DES).

Xiao et al. [1] proposed a new method in which they
solve both the LES and RANS equations in the entire
domain. The flow is in the near-wall region governed by
the RANS equations and in the outer region it is gov-
erned by the LES equations. This is achieved by adding
drift terms in the LES and RANS equations. In the in-
terface region(s), the drift terms are modified by a linear
ramp function. Drift terms are used in all equations in
the RANS equations (momentum equations, the pressure
equation (PISO is used)) and in the modelled turbulent
equations (k and ε). Two drift terms are added in the
LES momentum equations; one to ensure than the mean
velocity fields in the RANS and LES equations are the
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Figure 1: Grey color indicates the solver that drives the
flow. The interface, I, is shown in red.

same and one to ensure that the total turbulent kinetic
energies are the same.

In [2] they extended the method to account for non-
conformal meshes. They used a Cartesian mesh for the
LES equations and a body-fitted mesh for the RANS
equations. They applied the method to fully developed
channel flow and the flow over periodic hills. The paper
shows how an accurate academic solver – massively par-
allel – can be combined with industrial, flexible RANS
solvers.

Tunstall et al. [3] implement and use the method in
[1] and modify it (different ramp function, different con-
stants, reducing the number of case-specific constants
etc). They apply it to fully developed channel flow and
a rather complex flow consisting of a pipe junction in-
cluding heat transfer. Hence, they have to introduce
drift terms also in the energy equations.

Laage de Meux et al. [4] use forcing to achieve re-
solved Reynolds stress profiles equal to target modeled
RANS stress profiles. The resolved Reynolds stresses are
integrated in time in the same way as in [1, 3].

Breuer and Schmidt [5] use an advanced RANS tur-
bulence model – the Explicit Algebraic Reynolds Stress
Model, EARSM – in an hybrid LES-RANS methodology.
However, as mentioned above, the disadvantage is that
the RANS equations are solved in transient mode, where
a large part of the large-scale turbulence is resolved.

Davidson [6] use the same model as in the present
study. In [6], however, the interface is defined along a
pre-selected gridline and the grid in the hump flow sim-
ulations is much coarser upstream the hump and in the
outlet region. Moreover, the present work uses a different
timescale in the drift term as well as evaluates different
locations of the interface (see Eq. 6).

In the present study, the steady RANS equations are
solved. Here it makes sense to use advanced RANS tur-
bulence models, since these models were developed for
steady RANS. The EARSM [7] is used in the RANS
solver. The present method is in many aspects simi-
lar to that proposed in [1, 3] but it is simplified: the
RANS equations are used in steady mode, a more ad-
vanced RANS turbulence model is used and the present
method includes fewer drift terms and tuning constants.
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Figure 2: The domain of the hump. zmax = 0.3.

2 Numerical solvers

The momentum equations with an added turbulent vis-
cosity read

∂ūi

∂t
+

∂ūjūi

∂xj
= δ1i −

1

ρ

∂p̄

∂xi
+

∂

∂xj

(

(ν + νt)
∂ūi

∂xj

)

(1)

where the first term on the right side is the driving pres-
sure gradient in the streamwise direction, which is used
in the fully-developed channel flow simulations.

2.1 DES solver

An incompressible, finite volume code is used [8, 9].
The convective terms in the momentum equations are
discretized using central differencing. Hybrid cen-
tral/upwind is used for the k and ω equations. The
Crank-Nicolson scheme is used for time discretization
of all equations. The numerical procedure is based on
an implicit, fractional step technique with a multigrid
pressure Poisson solver [10] and a non-staggered grid ar-
rangement.

2.2 RANS solver

An incompressible, finite volume code – CALC-BFC [11]
– is used. The transient term in Eq. 1 (the first term
on the left side) is not included. The convective terms
in the momentum equations are discretized using the
second-order bounded scheme, MUSCL [12]. Hybrid cen-
tral/upwind is used for the k and ω equations. The nu-
merical procedure is based on SIMPLEC and a staggered
grid arrangement.

3 The N-Z S-DES methodology

Two sets of equations are solved (steady RANS solver,
see Fig. 1a and DES solver, see Fig. 1b) in the entire
domain on identical grids. The steady RANS solver may
be two dimensional (as in the present work). Drift terms
are added in the DES equations, SDES

i , in the wall re-
gion, see Fig. 1a. The drift terms in the DES velocity
equations read

SDES
i =

〈vRANS
i 〉T − 〈v̄DES

i 〉T

τr
(2)

where τr = max(0.1k/ε, ∆t) following [3]. No drift term
is used in the pressure equation. 〈·〉T indicates integra-
tion over time, T , i.e.

〈φ(t)〉T =
1

T

∫ t

−∞

φ(τ) exp(−(t − τ)/T )dτ ⇒

〈φ〉n+1

T ≡ 〈φ〉T = a〈φ〉n
T + (1 − a)φn,

(3)

where a = 1/(1+∆t/T ) and n denotes the timestep num-
ber. Note that although the flow cases in the present

work include homogeneous direction(s), no space aver-
aging is made in Eq. 3. It may be noted that although
the velocity field in the RANS solver is steady, it is time
integrated when used in Eqs. 2 and 4 because it varies
slightly in time. This time integration may not be nec-
essary.

In the LES region, the RANS velocities are prescribed
as vRANS

i = 〈vLES
i 〉T by adding a large source term, i.e.

SRANS
i =

〈vLES
i 〉T − 〈v̄RANS

i 〉T

ǫ
(4)

where ǫ = 10−10. The pressure is simply set as p̄RANS =
〈pLES〉T and the pressure correction is set to zero. This
means that, in reality, the steady RANS solver needs
to be solved only in the wall region. In the LES re-
gion the momentum equations in the RANS solver are
merely transporting the turbulence quantities, k and ω,
to ensure that correct values of k and ω are transported
into the RANS region through the LES-RANS interface
at y = δI , see Fig. 1. The pressure, 〈p̄LES

j+1 〉T , and the

streamwise velocity, 〈ūLES
j+1 〉T , at the LES-RANS inter-

face are used as a boundary condition for the RANS
equations in the wall region, see Fig. 3. The wall-normal
velocity, v̄RANS

j , is solved for using the pressure at node
j + 1.

3.1 The k − ω model

The Wilcox k − ω turbulence model reads

dk

dt
= P k −

k3/2

ℓt
+

∂

∂xj

[(

ν +
νt

σk

)

∂k

∂xj

]

dω

dt
= Cω1

ω

k
P k − Cω2ω2 +

∂

∂xj

[(

ν +
νt

σω

)

∂ω

∂xj

]
(5)

where d/dt = ∂/∂t + v̄j∂/∂xj (∂/∂t = 0 in the RANS
solver). The standard coefficients are used, i.e. Cω1 =
5/9, Cω2 = 3/40, σk = σω = 2 and Cµ = 0.09. The
location of the interface is defined as

CICDES∆max =
k1/2

Cµω
. (6)

CI = 1.0 is the standard DES value. Here we use two
different values, CI = 1.0 and CI = 1.4. The result of the
latter value is that the interface location is moved further
away from the wall compared with standard DES.

3.2 The k − ω model in the DES solver

The DES equations are solved in the entire region, but
they govern the flow only in the LES region, see Fig. 1. In
the RANS regions, the lengthscale in Eq. 5 is computed
as ℓt = k1/2/(Cµω) and in the LES region it is taken
from the standard DES model, i.e.

ℓt = CDES∆max, ∆max = max{∆x, ∆y, ∆z} (7)

with CDES = 0.67. The location of the interface in the
DES solver is defined in the same was as between the
RANS solver and the DES solver, i.e. by Eq. 6.

3.3 The k − ω EARSM model in the
RANS solver

The steady RANS equations are solved in the entire re-
gion, but they govern the flow only in the RANS region,
see Fig. 1. The Reynolds stresses, v′

iv
′

j , are computed
from the two-dimensional explicit algebraic Reynolds
stress model (EARSM) [7].
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Figure 3: Control volume, j, in the wall region (RANS
solver) adjacent to the interface, I (in red).
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ent integration time T compared
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7.8 [1 − exp (−y+/11) − (y+/11) exp (−y+/3)].
Vertical black lines show DES interface.

3.4 Initialization

The simulations are initialized as follows: first the 2D
RANS equations are solved. Anisotropic synthetic fluc-
tuations, (V ′

i)m, are then superimposed to the 2D RANS
field which gives the initial LES velocity field. The initial
time integrated fields, 〈vLES

i 〉T and 〈vRANS
i 〉T , are also

set from the 2D RANS field.
In order to compute (V ′

i)m, synthetic fluctuations,
v′

i,synt, are computed plane-by-plane (y − z) in the same
way as prescribing inlet boundary conditions. The syn-
thetic fluctuations in the y − z planes are coupled with
an asymmetric space filter

(V ′

i)m = a(V ′

i)m−1 + b(v′

synt,i)m (8)

where m denotes the index of the x1 location and a =
exp(−∆x1/Lint) and ∆x1 and Lint denote the grid size
and the integral length scale, respectively (Lint = 0.2).

4 Results

The first test case is fully developed channel flow with pe-
riodic boundary conditions in streamwise (x) and span-
wise (z) directions. The Reynolds number, Reτ =
uτ h/ν, is 8 000 where h denotes half-channel width.
The size of the domain is xmax = 3.2, ymax = 2 and
zmax = 1.6. The mesh has 32 × 96 × 32 (x, y, z) cells.
The interface between the wall region and LES is defined
by Eq. 6. Four different integration times, T (see Eq. 3),
are evaluated. It is important that the sampling time is
much larger than the integration time. If it is too small,
it often gives an asymmetric time-averaged flow field.
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(a) Turbulent viscosity. : DES solver; : RANS
solver.
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Figure 5: Viscosity and turbulence. Vertical black lines
show DES interface.
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Figure 7: Grid and grid spacing.

The time, T , to reach fully developed condition and sam-
pling time are both set to T̂ ≡ T Ub/h = 1000 except for

T̂ = 50 for which they are set to T̂ ≡ T Ub/h = 2000.
The switch is set to CI = 1.4 (Eq. 6) both for N-Z S-DES
and pure DES.

Figure 4 compares the velocity profiles obtained with
N-Z S-DES with that of pure DES. The velocity profiles
predicted with N-Z S-DES for T̂ = 1, 10 and 20 agree
all very well with Reichardt’s law but T̂ = 50 shows a
small log-layer mismatch. Pure DES exhibits the usual
log-layer mismatch (larger than that for T̂ = 50).

The turbulent viscosity and turbulent kinetic energies
are presented in Figure 5. Figure 5a confirms that steady
RANS gives a much larger turbulent viscosity than does
the DES, i.e. steady RANS give much larger turbulent
viscosity than URANS. The reason is that in DES, low
k is transported into the URANS region from the LES
region (the magnitudes of ω at the interface are similar
in steady RANS and DES). It can, however, be noted
that close to the wall (for y < 0.01, see zoom), steady
RANS and URANS give almost identical modeled kinetic
energy, see Fig. 5b.

Figure 6a shows the resolved shear stresses. It can be
seen that the peak of −〈ū′v̄′〉 decreases for large (T̂ = 50)

and small (T̂ = 1) integration time. In fully developed
channel flow, the total (resolved plus modeled) shear
stress is given by

τtot = τw

(

1 −
y

h

)

. (9)

Normally, τw = 1 because the driving pressure gradient
is equal to one (the first term on the right side of Eq. 1).
However, for small and large integration times, it turns
out that the drift term in the DES momentum equa-
tion increases (see Fig. 6b) because 〈vRANS

i 〉T is slightly
larger than 〈v̄DES

i 〉T . Hence, in this case the wall shear
stress, τw, balances not only the driving pressure gradi-
ent but also the drift term. As a result, τw increases.
Xiao et al. [2] also report that the drift term affects the
resolved shear stresses.

The second test case is the flow over a two-dimensional
hump, see Fig. 2. The Reynolds number of the hump flow
is Rec = 936 000, based on the hump length, c = 1, and
the inlet mean velocity at the centerline, Uin,c = 1. The
inlet is located at x = −2.1 and the outlet at x = 4.0, see
Fig. 2. The mesh has 650 × 110 × 66 cells (x, y, z) and it
is based on the mesh from the NASA workshop1 but it

1https://turbmodels.larc.nasa.gov/nasahump_val.html
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Figure 8: T = 10h/Uin. : N-Z S-DES, DES solver;
: N-Z S-DES, RANS solver; : pure DES.
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(d) x = 1.3

Figure 9: Velocities. T = 10h/Uin. : N-Z S-DES,
DES solver; : N-Z S-DES, RANS solver; : pure
DES; ◦: exp; +.

is refined upstream of the hump and in the outlet region,
see Fig. 7a. The spanwise extent of the domain is set to
0.3 so that ∆z = 0.3/64 = 0.0047. The required resolu-
tion for an LES away from the wall (in the log-region)
is ∆x/δ ≃ 10, ∆z/δ ≃ 20. The streamwise spacing,
∆x, near the wall is shown in Fig. 7b. The inlet bound-
ary layer thickness is δin = 0.08 which means that the
resolution in the inlet region reasonable (∆x/δin ≃ 10,
∆z/δin ≃ 17 ). The boundary layer thickness after the
recirculation bubble (x > 1.3) is δ ≃ 0.13 (see Fig. 9d) so
that ∆x/δ ≃ 3 which is somewhat too small; this region
is, however, believed to be less critical than the inlet and
hump region.

The inlet profiles are taken from a separate 2D RANS
simulation with the same momentum thickness as the ex-
perimental velocity profiles. Anisotropic synthetic fluc-
tuations are superimposed to the inlet velocity profile
(for more detail, see [14]). Periodic boundary conditions
are used in the spanwise direction (z). The interface be-
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(c) x = 1.1
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Figure 10: Turbulent viscosity. T = 10h/Uin. : DES
solver; : RANS solver
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(c) x = 1.0
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Figure 11: Shear stresses. T = 10h/Uin. : DES
solver, resolved; : RANS solver; : DES solver,
modeled; : DES solver, resolved.

tween the wall region and the LES domain as well at that
between the steady RANS solver and the DES solver is
defined by Eq. 6.

The pressure coefficient and skin friction are presented
in Fig. 8. As can be seen, the agreement with experi-
ments is good for both N-Z S-DES and pure DES except
that the pure DES predicts slightly too low a skinfric-
tion upstream of the hump. For the channel flow it was
found that for too large and too small T̂ , the drift term
in the DES equation was comparable to the driving pres-
sure gradient. Figure 8a shows no such problems for the
hump flow with T̂ = 10; the pressure from the RANS
and DES solvers are virtually identical (there are small
differences at x ≃ 0 and x ≃ 0.66).

Figure 9 compares the predicted velocity profiles with
experiments. The S-Z S-DES gives a better agreement
with experiments than pure DES; in particular, the latter
gives a worse velocity profile of the boundary layer at
x = 0.65. The velocity profiles of the RANS solver are
also included. The RANS solver velocity profiles in the
wall region match those of the DES solver as they should.
The locations of the interface is shown with a red plus
sign. It may be noted that the location of the interface
at x = 1.3 is not seen and it seems that it is located at
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Figure 12: N-Z S-DES, RANS solver. CI = 1.0.
: T = 10; : T = 20; : T = 5; : T = 40.
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(d) x = 1.3

Figure 13: Velocities. N-Z S-DES. CI = 1.0. : T =
10; : T = 20; : T = 5; : T = 40.

y > 0.2. This will be discussed below.
The turbulent viscosity is shown in Fig. 10. As for

the channel flow, the turbulent viscosity predicted by
the RANS solver is much larger than that predicted by
the DES solver, especially in the recirculation region.
Again, as was seen in Fig. 9d, is seems that the interface
is located at y > 0.2; this is also seen for the turbulent
shear stress in Fig. 11d.

Figure 11 presents the predicted and measured shear
stresses. The agreement between the resolved shear
stresses and the measured is good downstream of the
separation point. What is somewhat surprising is that at
x = 0.65 the N-Z S-DES models most of the turbulence
rather than resolving it (the magnitude of the modeled
shear is much larger than the resolved one). This should
probably be viewed as a drawback of the N-Z S-DES.

Figures 12 – 13 present simulations using four different
values T̂ = 5, T̂ = 10, T̂ = 20 and T̂ = 40. The time,
T , to reach fully developed condition and sampling time
are set to T̂ ≡ T Ub/h = 175 and 90, respectively, for all
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Figure 14: Location of interface. T̂ = 10. : CI =
1.0; : Ci = 1.4.

integration times, T̂ (h denotes hump height, see Fig. 2).
This is much smaller than for the channel flow. It is
believed that the channel flow is particularly sensitive
because of the streamwise periodic boundary conditions
which lacks a stabilizing inlet boundary condition. Fig-
ures 12 – 13 show that the flow is only weakly dependent
to the integration time, T̂ . The lowest value, T̂ = 5,
gives somewhat worse agreement than the other three.

The switch between RANS and DES (i.e. the inter-
face) is in Figs. 8 – 11 defined by CI = 1.4 (see Eq. 6).
In Figs. 12 – 13 the switch is defined by CI = 1.0, i.e.
the standard switch in pure DES. Figure 14 presents
the location of the interface for the hump simulations.
When the switch is defined as CI = 1.4 it is seen that
there are three regions where the interface is located at
y > 0.04: near the inlet (x < −1), at x ≃ 0.12 and at
1.26 < x < 1.8. The interface in these three regions is
actually located at the upper boundary, i.e. the entire
region is covered by the RANS solver. However, as seen
in Figs. 12 – 13, the influence of the location is not large
(compare the blue solid lines in Figs. 12 – 13 with Figs. 8
– 9). The largest differences are found in the skinfriction
at x ≃ 0.18 and as a result the velocity profile is less full
in Fig. 13a than in Fig. 9a.

5 Conclusions

A new non-zonal model based on a steady RANS solver
in the wall region coupled to a DES solver which covers
the entire region. The steady RANS solver is called very
10th timestep. The RANS solver dictates the flow in the
wall region. A drift term in the wall region in the DES
solver forces the time-integrated DES flow to match that
of the RANS flow. The steady RANS solver velocity field
is set to that of the time-integrated DES flow in the off-
wall region. The only object of the steady RANS field in
the off-wall region is to transport the modeled turbulent
quantities (k and ω) into the wall region. They – k and
ω – could instead be transported by the time-integrated
DES flow.

The new model is evaluated in fully developed chan-
nel flow and the hump flow. Very good agreement with
experiments is obtained. However, three issues are iden-
tified. First, the drift term in the DES solver in the
wall region – which is the ratio of the difference be-
tween the steady RANS velocity field and that of the
time-integrated DES to a turbulent relaxing timescale –
is non-zero which acts as an additional driving pressure
gradient. No such problem is seen in the hump flow. Sec-
ond, the time integration is chosen over a certain time,
T = T̂ h/Ub, where values of T̂ between one and 50 have
been evaluated. For the channel flow simulations, too
large ( T̂ = 50) or too small (T̂ = 1) values act as an
additional driving pressure gradient. For the hump flow,
the influence of T̂ is small. Third, in the attached bound-

ary layer over the hump, the modeled turbulence in the
DES solver is larger than the resolved one. In the near
future, the reason for this will be analyzed by making
simulations of developing flat-plate boundary layers.
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