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Abstract

A common theme of the thesis is the interplay of symmetry and rigidity, which is a gen-
eral phenomenon in mathematics. Symmetry is a notion related to the degree to which
an object remains unchanged under transformations, and rigidity is a notion that in
terms of physics can be thought of as a lack of freedom, which leads to stronger prop-
erties of an object than we normally expect. An object of higher symmetry often also
exhibits a higher extent of rigidity, and vice versa.

In the introduction of the thesis, we provide some background on modular forms,
number theory, and geometry in a way that does not require familiarity with these sub-
jects. The contributions of this thesis are presented in three articles.

In Article I, we establish the existence of rational geometric designs for rational
polytopes via the circle method and convex geometry, and discuss the existence of ratio-
nal spherical designs which relates to Lehmer’s conjecture on the Ramanujan tau func-
tion.

In Article II, we break the barrier of expressing weight-2 modular forms of higher
level whose central L-values vanish by products of at most two Eisenstein series. This
work shows the power of Rankin-Selberg method and also contributes to the computa-
tion of elliptic modular forms.

In Preprint III, we prove unconditionally some cases of Kudla’s conjecture on the
modularity of generating functions of special cycles on unitary Shimura varieties, for
norm-Euclidean imaginary quadratic fields. Our method is based on a result of Liu and
work of Bruinier-Raum, who confirmed the orthogonal Kudla conjecture over Q.

Key words and phrases: Kudla’s modularity conjecture, unitary Shimura varieties, spe-
cial cycles, Eisenstein series, theta series, Jacobi forms, generating functions, spherical
designs, rational points, central L-values, Rankin-Selberg method, the circle method.
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Chapter 1

Introduction






This dissertation is devoted to the study of modular forms, number theory,
and algebraic geometry in three interrelated problems of “symmetry-rigidity”
flavor, where theta series, a unifying object in modular forms, number theory,
geometry, representation theory, differential equations, and many other math-
ematical delights as well as string theory, play prominent roles. In this intro-
ductory chapter we provide some background, define key notions, and state the
main results of my thesis, first in their qualitative nature, and gradually towards
their quantitative forms.

This introductory chapter is organized as follows. In Section 1.1, we start
with an overview highlighting a central theme of all three papers and motivate
the notion of modular forms; we then proceed to define them in a quantita-
tive way in Section 1.2; however, the existence of them is yet to be studied, and
we construct Eisenstein series for this aim, and present our work on products
of Eisenstein series in Section 1.3; theta series were among the first examples
beyond Eisenstein series, and they have an interesting connection to spherical
designs, which we illustrate in Section 1.4; the theme of symmetry and rigidity is
prominent when it comes to the modularity of special cycles on unitary Shimura
varieties, and we first define the relevant geometric objects in Section 1.5; fi-
nally we state the unitary Kudla conjecture and announce our main result in
Section 1.6. Section 1.7 features a more formal statement of the main results in
each appended paper.

1.1 Symmetry and rigidity

The interplay between symmetry and rigidity is a characteristic feature in many
areas of mathematics. We discuss some well-known examples illustrating this
interplay:.

Polynomials in one variable are among functions of the simplest kind. The
first and foremost fact about polynomials is the fundamental theorem of alge-
bra, which asserts the existence of a zero point of any polynomial with complex
coefficients. One consequence of this fact is the polynomial interpolation in nu-
merical analysis, which features both symmetry and rigidity. From the perspec-
tive of rigidity, the polynomial interpolation claims that for any positive integer
n, given n+1 distinct points xg, X, ..., X, with corresponding values yy, y1,..., Yn,
there exists a unique polynomial in one variable of degree at most » that inter-
polates (x;,y;) for i =0,1,...,n. From the symmetry point of view, the way we
construct such a polynomial is via a linear combination of the Lagrange basis
functions which are symmetric when we permute the variables x; and y;, re-
spectively.



The next simplest kind of functions are holomorphic functions in one vari-
able, and one of the profound facts about them is the Riemann mapping theo-
rem, which asserts that any non-empty simply connected open proper subset of
the complex plane is biholomorphically isomorphic to the open unit disk.

First of all, this theorem can be viewed as a very strong rigidity statement,
that the seemingly weak topological assumption about the domain automati-
cally implies its holomorphic structure, which belongs to the strongest proper-
ties in function theory. Bearing in mind the fact that the boundaries of simply
connected open subsets of the complex plane can be nowhere-differentiable,
not even a Jordan curve, and highly intricate, we see how amazing (another way
of saying rigid) the Riemann mapping theorem is: it claims those very intricate
domains can always be mapped bijectively in an angle-preserving way to the
highly regular unit disk!

Secondly, from the symmetry perspective, the Riemann mapping theorem
says that symmetries on the complex plane behave very uniformly: that is, the
automorphism groups of these simply connected domains are all isomorphic
via conjugations by biholomorphic maps between these domains.

Moreover in this context, the symmetry and rigidity are deeply intertwined.
In fact, the abundance of biholomorphic maps that appear in the Riemann map-
ping theorem naturally arises from the lack of rigidity of the so-called Beltrami
equation in the 2-dimensional case, which is a type of differential equation his-
torically constructed as a tool in local differential geometry. By contrast, for
higher dimension this equation exhibits a high extent of rigidity, and conse-
quently we have a theorem of Liouville which states that any smooth conformal
mapping on a domain of R” for n > 2 is a Mdbius transformation. In other words,
conformal mappings of higher dimension are highly restrictive, as they can be
expressed as a composition of translations, similarities, orthogonal transforma-
tions and inversions, and thus most higher-dimensional analogues of Riemann
mapping theorem are far from true.

Last but not least, it is worth mentioning that Poincaré first proved that the
Riemann mapping is essentially unique. His idea is nowadays known as a con-
sequence of the Schwarz lemma, which follows from another wonder of rigidity:
the maximum modulus principle for holomorphic functions, or more generally
the maximum principle for harmonic functions.

This interplay goes on when arithmetic becomes part of the problem. For
the next example, let us consider holomorphic functions in one variable that are
periodic. From the symmetry point of view, they can be defined by means of
group theory and functional equations. For a positive real number T, consider
the functional equation f(x+ T) = f(x) for all x € C. A solution f to this equa-
tion can be viewed as an invariant in the space of all holomorphic functions un-



der the group action of Z via translation. From the rigidity perspective, if f has
an absolutely convergent Fourier series, then it is uniquely determined by the
Fourier coefficients. In order to keep track of such a nice periodic holomorphic
function, all we need to know is a sequence of countably many numbers!

What if we add more symmetries from arithmetic to the functional equation?
In other words, let I be a discrete group of rank higher than 1 acting on a certain
class of holomorphic functions (in one or several variables). The invariant func-
tions under the action of T" that at the same time behave regularly will be of most
interest to us. To begin with, let us note that they are also periodic functions, and
hence Fourier expansions are important tools to study them. Furthermore, the
rigidity side is so strong that these functions span a finite dimensional vector
space! It is therefore not surprising that these functions play important roles for
computational purposes. They are objects known as modular forms, which are
introduced in the next few sections.

1.2 Elliptic modular forms and Fourier expansions

In this thesis we discuss modular forms of integral weights for our aim. And in
this section we introduce elliptic modular forms for a congruence subgroup of
SLy(2).

Let $ denote the upper half plane, that is, the set of all complex numbers
with positive imaginary part. The special linear group SL» (R) acts on the upper
half plane §) via Mobius transformations: for y = (4 5) € SL,(R) and 7 € ), we
define

_ar+b
e ard
It is then clear to see, that for each k € Z we have a group action of the special
linear group SL»(R) on the space of holomorphic functions f : $§ — C, defined
as follows. For each y = (4 5) € SL,(R) and holomorphic function f : ) — C, we
define the weight-k slash action via the formula

Flen@ =t + D fym.
Let N be positive integer, and let

T(N):={y= (‘C‘ b) €SLy(2):a=d=1(modN), b=c=0(modN)}

d

denote the principal congruence subgroup of level N. A subgroup I' < SL,(Z) is
called a congruence subgroup if there is some positive integer N such that

') <rT.



We are now ready to define elliptic modular forms for a congruence sub-
group I' and weight k.

Definition 1.2.1. A modular form oflevel I' and weight k is a holomorphic func-
tion f: ) — C satisfying

1. (modular transformation property) invariance under the weight-k slash
action of I, thatis, flyy = fforally eI, and

2. (holomorphy at all cusps) that for every y’ € SL,(Z), the corresponding
cusp expansion (f|xy") (1) is holomorphic at infinity, that is, bounded as
Im(7) — o0.

In addition, a modular form f is called a cusp form of level I' and weight k if
it satisfies the cuspidal condition: for any y’ € SL,(Z), the corresponding cusp
expansion vanishes at infinity, that is, (f|xy’)(r) — 0 as Im(7) — oo.

Let My (') (resp. S (I')) denote the vector space spanned by modular forms (resp.
cusp forms) of level I and weight k. Note that from the definition of congruence
subgroups, for each congruence subgroup T', there is a minimal positive integer
w € 7>, called the fan width of the congruence subgroup, such that (§ ¥) € T.
Consequently, every modular form f of level I' and weight k is a holomorphic
function on the upper half plane §j satisfying the periodicity f (7 + w) = f(z) for
all T € 5. By the holomorphy of f at infinity, we can expand f(z) as a power
series in exp(%). In other words, f has a Fourier expansion at infinity

oo ,
£ = Z . (27” nt )
n=0 w
that features fractional exponents, where the denominator w depends on the
congruence subgroup I'.
For instance, the fan width of I' = I'(\V) is N, so that denominator we expect
is N. On the other hand, for the congruence subgroup

P=T1(N):={y= (”Cl Z) €S1,(Z):a=d=1(modN), c=0 (mod )},

its fan width is w = 1, so every modular form f € My (I';(N)) has a Fourier ex-
pansion at infinity with integral exponents.

We have seen that modular forms are a special kind of periodic functions, so
it is not surprising that Fourier expansions play an important role in the study
of modular forms. Moreover, Fourier expansions of modular forms are very ac-
cessible to computation. In fact, for a fixed congruence group I' and integer £k,



there is a uniform constant C € Z we can compute, such that every modular
form f € M (T) is determined by its first C Fourier coefficients. We look at the
computational aspect of modular forms in Article II.

In addition, what makes modular forms really interesting and connects them
to many other subjects is that Fourier coefficients themselves are often objects
of great interest in number theory, geometry, and many other areas of mathe-
matics. For instance, the well-known Fermat’s Last Theorem claims that there is
no non-zero integral solutions to the equation

xn + yl’l - Z}’l’
when 7 is an integer greater than 2. Part of the reason that this theorem became
so well known is the simple shape of this equation in sheer contrast to the 358
years of great effort by mathematicians. The final resolution of this problem by
Andrew Wiles, is based on the approach of relating a central object in mathe-
matics, called elliptic curves, to Fourier coefficients of modular forms.

In this thesis, we connect modular forms to geometric and combinatorial
objects of number-theoretic interests. Article I addresses questions motivated
by a specific relation of Fourier coefficients of modular forms with “spherical
designs”, a mathematical structure featuring a high degree of symmetry and
combinatorial flavor. Preprint III studies the modularity of “special cycles” on
unitary Shimura varieties, a family of algebro-geometric objects that arise from
group theory (representation theory) and can be defined in a purely number-
theoretic way. All of them are strongly influenced by the interplay of symmetry
of rigidity in mathematics.

1.3 Eisenstein series and their products

Like most subjects in mathematics, the very first question on modular forms we
want to ask is: are there any examples of nonzero modular forms?

A natural idea to construct functions that are invariant under the group ac-
tion of a congruence subgroup I' € SL,(Z) is to sum over the group action in
such a way that yields an absolute convergent series. It turns out we can do this
if we take care of certain quotient of the group I'. This construction defines an
Eisenstein series, which are among the simplest examples of modular forms.

Another natural question that follows the construction of Eisenstein series
is: are there any modular forms out there that are more “sophisticated” than
Eisenstein series? A short answer is: there are many, and historically theta se-
ries were among the first few examples (even though they are also connected to
Eisenstein series). In this dissertation, we use theta series to establish results of



arithmetic interest, which are introduced in the next few sections. On the other
hand, no matter how complicated modular forms may be, we show that they
can always be expressed via Eisenstein series. More precisely, we prove a rigidity
result expressing every modular form by a linear combination of products of at
most two Eisenstein series. In this section, we define Eisenstein series that we
need in this thesis, and explain the meaning of our main results in Article II.

1.3.1 Eisenstein series of level SL,(Z)

For simplicity, let us first define Eisenstein series for I' = SL,(Z). We start from
the constant function 1, and consider the infinite sum over the group action
of I on this function }.,cr 1lxy. However, such an infinite sum does not con-
verge. Fortunately, this is only caused by the action of the infinite subgroup
Teo = {+ (4 1) : n € Z}. After taking quotient by this subgroup, we can show that
the series

1 1
Ei(7) = Z lgy(@) == Z P
yeTo\l 2 a7z (cr+ad)¥
ged(c,d)=1

converges absolutely when k is greater than 2. Futhermore, note that this series
E} vanishes unless k is an even integer. There is a way to express this series

Ej in terms of a sum over a lattice, which is useful for computing its Fourier
coefficients. This normalization is usually denoted by

1 1
Ge()i=5 ) ———, (1.3.1)
2 caez €T+ d)
(c,d)#(0,0)

and is related to the group-theoretic series Ex(7) via the formula
Gi (1) = (k) Ex (1),

where { (k) =77, n~k is the value at k of the Riemman zeta function.

Next, we want to extend holomorphic Eisenstein series G (r) to an Eisen-
stein series of weight 2. Note that there is no non-zero holomorphic modular
forms of level I" = SL,(Z) and weight 2, so we expect a non-holomorphic Eisen-
stein series in this case. We construct such an extension in two steps.

First, although the sum (1.3.1) does not converge absolutely for k = 2, its
Fourier expansion at infinity

@ik ( B &

— + Z Oi-1(n)exprint)

GO =G\ Tt &




nevertheless converges so rapidly that it also defines a holomorphic function
Gz (1) for k = 2. Here By, is the k-th Bernoulli number defined via its generating
function 37 Bk% = ﬁ and o1 (M) =X 4n d*=1 denotes the (k — 1)st divisor
sum.

Then, we note that G, (7) transforms according to the law

mic
ct+d

(G2l27) (1) = Ga(7) =

foreveryy = (‘Cl Z) €I’ =SL(2). If we introduce a non-holomorphic “correction”
term and define g» (1) := Ga(1) — then we see that g, (7) transforms like a
modular form of weight 2.

This approach was systematically studied by Hecke, who introduced a method
known as “Hecke’s trick” to construct Eisenstein series of lower weight in a gen-
eral setting. Let s > 0 be a positive real number, and consider an infinite series

T
2Im(7)’

G (T)'—1 > .
asti cqer cr+dPcT+d|*s

(c,d)#(0,0)

(1.3.2)

This series converges absolutely and transforms via
(Ga,slay) (@) = €T +dI** Gy, 5 (1)
for every y = (% 5) € I = SL,(Z). Moreover, we can show that the limit
£E% Gy, (1)
exists, and is equal to the non-holomorphic Eisenstein series g»(7) constructed
above.

1.3.2 Products of Eisenstein series

This joint work with Martin Raum, aims to strengthen and apply our previous
work on vector-valued modular forms, and compute certain effective bounds for
the computation of modular forms. A novel method in our work is that we use
deeper results on non-vanishing of special L-values to refine previous results.

Pioneering work

Let us first recall the aim of this work. Eisenstein series provide us the simplest
examples of non-constant modular forms. The very basic idea of expressing
“more sophisticated” modular forms, for instance theta functions, by a linear



combination of products of at most two Eisenstein series, is both conceptu-
ally insightful and computationally fruitful. Historically this idea came from
the work of Kohnen-Zagier [KZ84] on periods of modular forms, where they
obtained the complete result in this respect for modular forms of level SL,(Z).
Their insight is to relate the expressions for cuspidal Hecke eigenforms with the
special values of the associated L-functions, which we further explore in our
work for elliptic modular forms of higher levels.

For higher levels however, the situation is more complicated. Borisov and
Gunnells [BG0la; BGO1b; BGO3] first studied modular forms associated with
toric varieties, and they wanted to understand what kind of modular forms can
occur in this setting. For weight greater than 2, they showed that modulo Eisen-
stein series, every toric modular form can be generated by products of two toric
Eisenstein series. However, it turns out that for the weight-2 modular forms,
those arising from toric varieties coincide exactly with the cusp eigenforms with
non-vanishing central L-values.

It is natural for us to turn around their question in the context of Kohnen-
Zagier, and ask what kind of products of Eisenstein series coincide with all mod-
ular forms, even those with vanishing central L-values? In other work generaliz-
ing Kohnen-Zagier’s results to higher levels, in particular the works of Kohnen-
Martin [KMO08] and Dickson-Neururer [DN18], the settings again restrict in anal-
ogy to the work of Borisov—Gunnells, to the cusp forms of weight 2 with non-
vanishing central L-values.

However, this restriction excludes an important class of modular forms in
light of Birch and Swinnerton-Dyer Conjecture (which by the conjecture should
correspond to elliptic curves over Q of rank at least 1), and the rank-distribution
prediction of (twists of) elliptic curves based on the work of Goldfeld and Katz—
Sarnak. If these predictions are true, this restriction may well exclude about half
of the most interesting cases. In our work, we break this barrier and for the first
time we use a method of Rankin-Selberg type to show that indeed all modular
forms, regardless the vanishing of their central L-values, can be expressed by
products of at most two Eisenstein series, if we consider slightly more general
Eisenstein series.

Eisenstein series of level I'; (N) and I'(N)

To state our results, we first define Eisenstein series of higher levels in this con-
text. Both the large weight and small weight cases are treated in a similar way
to the ones of level SL,(Z) which we have discussed in details. There are several
ways to do so, and we choose the classical approach for self-containment.

The most general approach to define the space of Eisenstein series for a con-
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gruence subgroup I' € S1,(Z) is via the Petersson inner product. Recall that the
cusp forms Si(I') of level I' and weight k is a subspace of the modular forms
M;.(I"), and we define the space of Eisenstein series &% (I') to be the orthogonal
complement of Si.(I") in M (T'). We refer the reader to [Miy89] for more details.

The other approaches essentially use Hecke’s trick. From the standpoint of
vector-valued modular forms, we can define the Eisenstein series & (I') to be
the space spanned by the components of vector-valued Eisenstein series. See
[Wes17] for more details.

Now we present a classical approach by constructing an explicit set of gen-
erators for & (N) := & (I'(N)). We can show that this space is also the space
of all cusp expansions of Eisenstein series of level I'; (N) and weight k. The
space of Eisenstein series of level I'y (V) is denoted by & (N)so := Ex(['1(N)) =
Er(N) N My (T'1(N)), as it corresponds to Fourier expansions at infinity.

For large weights k > 2, Eisenstein series can be defined via a double sum

similar to the sum (1.3.1) for those of level SL,(Z). For a pair of integers (¢/,d’)
such that ged(c’,d’, N) = 1, we define an Eisenstein series

1
Ginea®i= Y & ——
(C,d)€22 (CT + d)k
c=c' (mod N)
d=d' (mod N)

which is of level I'(IV) and weight k. We then define &;(I'(V)) to be the space
spanned by all these Eisenstein series G ¢/ 4’

For weight k = 2, we use Hecke’s trick to define non-holomorphic Eisen-
stein series Go N, ¢ (7,5) for s € R, similar to (1.3.2), and we can show that
Go,n,¢,a'(T,$) has a limit gy 4 (7) as s — 0. Although each g, 4 is non-
holomorphic, the pairwise differences of these functions are holomorphic and
satisfy the modular transformation property for I' = I'(NV). We define &, (I'(V)) to
be the space spanned by all these differences.

Finally for weight k = 1 and each (c¢’,d’), similar to the function G, defined
for level SL,(Z), we can either use the Fourier expansions or rearrange the dou-
ble sum to define a holomorphic function G y 4 (7). Then we correct these
functions by certain constant functions to obtain holomorphic Eisenstein series

=G ( )+2ni(c’ 1)
' 1\T) = r (T — ==,
81,N,¢,d 1,N,c,d N \N 2

and define &) (I'(N)) to be their linear span.

11



Our contribution

Given the importance of weight-2 modular forms of higher levels in number the-
ory and geometry, we manage to cover all cases in our results.

We prove that for every fixed positive integer N, there is a positive integer Ny
that is effective in principle, such that every weight-2 modular form of level ' (V)
can be written as a sum of an Eisenstein series in &, (IN) and a linear combination
of products of two Eisenstein series in &) (INp).

Another novel feature of our work is that we fix the weights of Eisenstein se-
ries which express all modular forms of a given weight, as opposed to earlier
results which require contribution from all possible weights. As a further refine-
ment, we show that every modular form of weight at least 3 can be expressed
by a linear combination of products of exactly two Eisenstein series of certain
specified levels.

Moreover, our work is accessible for computation of modular forms. As this
thesis is completed, Tobias Magnusson and Martin Raum have implemented a
large part of our work, and related research articles are in preparation.

Methods and further investigations

We work with the framework of vector-valued modular forms and view classical
modular forms as their components. This point of view helps us conceptualize,
organize, and simplify our work by means of representation theory.

We employ the Rankin-Selberg method to connect products of Eisenstein
series with special values of L-functions associated with twists of new forms,
and use results on non-vanishing of these values and the Shimura-Waldspurger
correspondence to reduce the problem to non-vanishing of Fourier coefficients
of certain half-integral weight modular forms. Note that the main tools that we
use are also available for more general types of automorphic forms. In particular,
we expect similar methods can be carried out for half-integral modular forms
and modular forms of higher degree.

Historically the Rankin-Selberg method dates back to Riemann, who con-
structed his Riemann zeta function as the Mellin transform of Jacobi’s theta se-
ries. It was the asymptotics and automorphy of theta series that allowed Rie-
mann to obtain the well-known analytic continuation and functional equation
of the zeta function, respectively. We introduce theta series and their central role
in the next few sections.

As a final remark about products of Eisenstein series, we may turn around
the question again, and ask what types of more general geometric objects are
such products associated with? They are more general than toric varieties, and
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we expect them to be twisted toric varieties.

1.4 Theta series and spherical designs

The history of theta series is almost as old as that of arithmetic. Euler studied
infinite products of arithmetic interest, and proved the formula

(o] o0

[Ta-gm'=Y pmq",

n=1 n=0
which relates the infinite product to the number p(n) of partitions of n. In the
quest for this type of identities, he discovered the celebrated pentagonal num-
ber theorem, which relates the infinite product representation and the series
representation of the Euler function ¢(q) by

o =T]a-g"=Y -D"qg" 7",
n=1 nez

where ?’"ZT_” is called the n-th pentagonal number because it counts the dots in
a certain diagram associated to a regular pentagon whose sides consist of 7 dots.

The Euler function ¢p(q) was later generalized to Jacobi’s theta functions. In
fact, another similar well-known example ) <7 q”2 had already appeared in the
work of Fourier, but it was not until the time of Jacobi and Abel, who systemati-
cally studied these functions by algebraic means, especially after Jacobi’s theory
of elliptic functions was born, that theta series finally became part of modern
number theory. The Jacobi theta functions also motivate the notion of Jacobi
forms of higher degrees considered in this dissertation, and serve as a bridge in
Article I and a powerful tool in Preprint III.

In modern times, Weil (1964) reformulated classical theta series from the
perspective of representation theory, which we adopt in Preprint III. The Weil
representation has a far-reaching generalization, namely the theta correspon-
dence (Howe correspondence), which relates representations of a reductive dual
pair, in both local and global versions. A special case of the theta correspon-
dence, known as the Shimura-Waldspurger correspondence, is used as a power-
ful tool in Article II.

Our quest in this dissertation starts from the Poisson summation formula.
Let f be a function defined and continuous on the reals, such that the series
Y nez f (n) of the Fourier coefficients f (n) converges absolutely, and on every
compact set, the series ),z ll flloo converges for f,,(x) = f(x+n) defined on the
compact set, then the Poisson summation formula asserts that for every x € R,
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we have

Y fx+m=) fmexpRrinx).
nez nez

This seemingly simple fact is nonetheless ubiquitous in modular forms and
number theory. For example in this dissertation, it gives rise to the modular-
ity of the theta functions considered in Article I and Preprint III; it is also a key
ingredient to prove the modularity of the generating functions of special cycles
considered in Preprint III. We motivate and present the main results in this re-
spect. A more formal summary of our results is presented in Section 1.7.

In this section, we introduce the notion of spherical designs, and their con-
nection to a well-known conjecture on the non-vanishing of Fourier coefficients
of certain theta series. This motivates us to ask a more general question regard-
ing the existence of rational geometric designs.

1.4.1 Spherical designs and Lehmer’s conjecture

Just like modular forms, spherical designs are a very rare object in mathematics,
and can be best illustrated from the interplay of symmetry and rigidity. Spheri-
cal designs are closely related to spherical codes, and both are finite subsets of
the unit sphere in a Euclidean space. Roughly speaking, the idea of spherical
designs is more based on the symmetry standpoint, which is to find such a finite
subset that “interpolates” (in a dual way) integrals of polynomial functions up to
a certain degree on the unit sphere; and the idea of spherical codes is more re-
lated to the rigidity point of view, which aims to find finitely many points whose
minimum pairwise distance is as large as possible. More generally, the theories
of designs and codes are unified under the framework of association schemes,
and the latter is a generalization of groups and the character theory of group
representations. We focus on spherical designs in this section.

Definition 1.4.1. Let ¢ be a natural number. A finite subset X < $"! c R" is
called a spherical ¢-design, also known as spherical design of strength z, if for all
polynomials f of degree at most ¢ on the unit sphere S"~!, we have

1
du=— ,
as ) Jy /U0 g & S

where p is the ordinary (Lebesgue) measure on the unit sphere.

Example 1.4.2. The following well-known examples are summarised in [BB09].

1. On S! € R?, the regular N-gon gives rise to a spherical (N — 1)-design.
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2. On S? C R3, the regular tetrahedron (resp. cube, regular octahedron, reg-
ular dodecahedron, regular icosahedron) gives rise to a spherical 2- (resp.
3-, 3-, 5-, 5-) design.

3. On S3 c R*, regular polytopes give rise to spherical designs of strength
t < 11. For every large n, regular polytopes give rise to spherical designs of
strength £ <3 on S""! cR",

4. The root system of type A, D4, D;, Eg, E7, and Ejg give rise to spherical
designs of strength 3, 5, 3, 5, 5, and 7, respectively.

5. The set of minimal vectors of the Leech lattice gives rise to a spherical 11-
design on $23 ¢ R?4,

We observe from these examples that spherical designs of smaller cardinality,
higher strength, and in higher dimensions are rarer to find. Similar to the Eisen-
stein series, there are two natural ways to construct spherical designs: via the
orbit of a point under the group action of a suitable finite subgroup of the real
orthogonal group O(n) on §"~1 < R” and via a shell of a lattice in R”, that is, a
set of points in a lattice with a fixed distance from the origin. We are interested
in taking shells of lattices, as it yields spherical designs of number-theoretic na-
ture. Let us look at two examples listed above more closely, which are discovered
by Venkov [Ven84]. A striking feature is that they consist solely of rational points,
and hence we call them rational spherical designs.

Example 1.4.3. For an integral lattice A and a natural number m, let A, := {x €
A x| = m} be the shell of lattice points of norm m.

1. Let A < %ZS be the Eg-lattice. For every m € Z5;, ﬁAzlmz is a rational
spherical 7-design on S’ (over Q).

2. LetAc LBZ24 be the Leech lattice. For every m e Z5,, ﬁ/\zmz is a ratio-

nal spherical 11-design on S$23 (over Q).

On the other hand, shells of lattices are only known to yield spherical de-
signs of strength ¢ at most 11. In fact, based on the work of Venkov [Ven84], de
la Harpe-Pache-Venkov [HPV06; Pac05] related spherical designs (of arithmetic
nature) to the well-known Lehmer conjecture, which asserts that the Ramanu-
jan t-function never vanishes, where 7(n) is the n-th Fourier coefficient of the
discriminant modular form A(z). The latter is related to the Euler function in
(1.4) via the formula

A@ =) tmq"=q[]a-qgM*,

n=1 n=1
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for g = exp(2mit) and 7 is in the upper half plane of the complex numbers.

Proposition 1.4.4 ([Pac05]). Let A< %ZB be the Eg-lattice. For any positive inte-
ger m, the following statements are equivalent:

(i) T(m)=0.

(i1) \/z;TnAz m 1S a spherical 8-design.

More generally, for any integral lattice A € R” and every polynomial function
P in n variables, we consider the theta series ©5 p associated to A weighted by
P with the m-th Fourier coefficient ¢, p for each m = 0. Then we can relate
spherical designs similarly to variations of Lehmer’s conjecture.

Proposition 1.4.5 ([Pac05]). For every positive integer m such that the shell of
lattice A, is nonempty, the following statements are equivalent:

(i) cm,p =0 for every harmonic polynomial P of even degree up to t.

(i) A, yields a spherical t-design.

Assuming that Lehmer’s conjecture and all of its variations for integral lattices
(for instance the Leech lattice) are true, “pure” shells of lattices cannot yield
spherical 12-designs in any dimension. A natural question of arithmetic nature
is then, can we mix shells of different integral lattices to find spherical designs
of higher strength ¢ = 12?

1.4.2 Rational geometric designs and our contribution

It turns out that the question raised here can be asked in a more general man-
ner. Instead of asking about the existence of rational spherical designs, we may
define geometric designs in analogy to spherical designs and many other com-
binatorial designs, and ask about the existence of rational geometric designs.

For a good space Z in our context, there is usually a natural measure pz and
a concept of polynomial functions on Z. A t-design X on Z is a finite subset
such that for every polynomial f on Z of degree at most ¢, the equation

1 1

x5 97 fzfd“z

holds for the total measure |Z| of the space Z. There is also a similar notion
about combinatorial designs when the space Z is discrete, which we omit here.
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The notion of geometric design is also known as the cubature formula [GS81;
Mo179] and averaging sets [SZ84], and was historically first introduced by Del-
sarte, Goethals and Seidel in [DGS77]. There is a large literature on geometric
designs, among which the most relevant to this dissertation are about interval
designs [RB91; Wag91], Euclidean designs [DS89; NS88], unitary designs [RS09],
and designs on homogeneous spaces, and most of them are closely related to
each other via certain mappings. We refer to the survey by Eiichi Bannai and
Etsuko Bannai [BB09] for further information.

For a good space Z in the context of geometric designs, we say that Z is ge-
ometrically designed over a field F = F(Z), if F is the smallest field such that for
every ¢ there is a £-design on Z consisting of F-rational points. So the aforemen-
tioned question can be formulated more strongly as: for a positive integer d, is
the unit sphere S¢ geometrically designed over a number field? And what kind
of geometric spaces Z are geometrically designed over a number field?

This project joint with Zhen Cui and Ziging Xiang, aims to attack such kind of
questions for the first time. Motivated by a question of Eiichi Bannai on the unit
interval, we showed in Article I that every rationally defined “ambient" space
is geometrically designed over Q. In particular, this is true for every open con-
nected subspace satisfying a certain rational condition and every rationally de-
fined convex polytope in the Euclidean spaces.

Consequently, we proved that for any positive integer d, the field F(S%) over
which ¢ is geometrically designed, satisfies

Qc F(Sd) cQU/p: pis aprime number}).

Note that from this result, the Galois theory, and the Kronecker-Weber theorem,
if F(S%) is a number field, then there is a minimal cyclotomic field Q({,) such
that F(S%) Q(C5). Furthermore, from standard constructions in design theory,
we know that such hypothetical » must be essentially independent of d; this
provides evidence that S¢ might be geometrically designed over Q for any d.

1.5 Special cycles on unitary Shimura varieties

Recall that modular forms can also be viewed as functions on the “moduli space”
of lattices in the complex plane, hence the word “modular”. The idea of a moduli
space is to identify a geometric space whose points represent algebro-geometric
objects of a fixed type. Historically, moduli spaces were viewed as spaces of
parameters in a classification problem. For instance, lines on a plane passing
through a fixed point can be classified by the angles between a fixed line and
them.
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If we want to classify these lattices up to homotheties, we can choose an
oriented basis (w1, w>) for each lattice A, such that the ratio Zf is in the upper
half plane ). However, there are different ways to choose such a basis, which
are transformed under the group action of SL,(Z). It turns out that the quo-
tient space Y (1) := SL(2)\$) is the desired moduli space. An amazing fact is that
although we start from the upper half plane $ which is of complex-analytic na-
ture, the moduli space Y (1) is an algebraic curve, and is moreover of arithmetic
nature. We may in general construct such a quotient space by a congruence
subgroup I € SL,(Z), and obtain a modular curve Y (I') :=T'\$).

Elliptic curves became a central object in modern mathematics, particularly
in geometry and number theory. Every elliptic curve defined over C can be rep-
resented by a quotient C/A for a lattice A < C. Therefore, the modular curve
Y (1) can also be viewed as the moduli space of the isomorphism classes of com-
plex elliptic curves. We can show that the endomorphisms of an elliptic curve
E = C/A, that is, morphisms from E to itself both as a group and as an algebraic
curve, correspond to complex numbers A such that AA € A. For a generic elliptic
curve, the only possible values of A satisfying this condition are the integers Z.
We say an elliptic curve admits complex multiplication if there are other values
of A than integers satisfying this condition, and the corresponding points on the
modular curve Y (1) are called CM-points.

The theory of complex multiplication was historically developed as a central
topic in number theory. Heegner applied CM-points on modular curves to study
the class number problem for imaginary quadratic fields. In their celebrated
work, Gross and Zagier used CM-points to construct a rational point of infinite
order on any modular elliptic curve of analytic rank 1. Hilbert first proposed to
extend this theory to higher dimension, and the Hilbert modular varieties was a
first step in his program.

The modern theory of complex multiplication was established in the study
of abelian varieties with complex multiplication, which are analogues of elliptic
curves in higher dimension, by Shimura, Taniyama and Weil. Shimura varieties
are generalizations of modular curves to higher dimension, which can also be
defined over a number field, and they were reformulated by Deligne as moduli
spaces of Hodge structures. In this thesis we work with certain unitary Shimura
varieties. In particular, the group SL, (R) (and its discrete subgroup SL(Z)) that
we see for the modular curve Y (1) is replaced by a unitary group of signature
(n—1,1) (and a discrete subgroup). And the upper half space §) is replaced by a
hermitian symmetric space defined below.

Since Grothendieck, the study of subvarieties plays a prominent role for un-
derstanding geometric problems. This modern point of view emphasizes the
idea that if we know enough information about subvarieties on some algebraic
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variety, then we should be able to understand this variety as well. Algebraic cy-
cles provide a way to linearize subvarieties, and can be naively viewed as linear
combinations of subvarieties of the same dimension modulo certain linear re-
lations. In light of the modern point of view in geometry, it is highly desirable
to construct as many algebraic cycles as possible on Shimura varieties. Special
cycles form an attractive family of algebraic cycles on unitary Shimura varieties,
and they are indexed by positive definite Hermitian matrices, which are ana-
logues of CM-points on modular curves in higher dimension. Just like Shimura
varieties, they also arise from representation theory of groups, and are linear
combinations of Shimura varieties themselves. They are geometric objects of
highly symmetric nature, and we expect that they also exhibit a high degree of
rigidity in the next section.

In the rest of this section, we introduce these special cycles quantitatively
based on lattices and group theory from a classical approach. To further simplify
the situation, we focus on open connected Shimura varieties. Let E/Q be an
imaginary quadratic field and fix a complex embedding E — C. Let n = 2 be
an integer. Let (V,Q) be an E-Hermitian space of signature (n —1,1) and write
(-,+) for the Hermitian form corresponding to the quadratic form Q, and H =
U(V) be the unitary group of V, which we view as a classical (matrix) group.
Let V(C) := V ® C be the complexification of V and P(V(C)) := (V(C) \ {0})/C*
the corresponding projective space. Let D be the Hermitian symmetric space
attached to the group H, which in a projective model consists of all negative
C-lines in V(C). In other words, this space can be realized as

D ={lz]l € P(V(C)): (z,2) <0},

which is isomorphic to the open unit ball in C"~ .
Let L < V be an even lattice, that is, the norm of every lattice point is an even
integer. In particular, L is an integral lattice. Let L" be the dual lattice, given by

LY={xeV:(x,y)eZforallye L}.

As L is an integral lattice, we have L < LY, and the quotient LY/L is a finite
abelian group, known as the discriminant group. Let I' € U(L) be a subgroup of
finite index which acts trivially on the discriminant group L" /L. Note that this is
an analogue of congruence subgroups of SL(Z). Similar to the construction of
modular curves we consider the quotient

Xr =T\D,

which has a structure as a quasi-projective algebraic variety of dimension (n —
1), by the work of Bailey-Borel, Shimura, Deligne and others. This is a unitary
Shimura variety that we work with.
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We then proceed to define special cycles. Let g be an integer such that
l1<g<n-1.Forag-tuple A = (1;); € V(E)§, we define V) :={v e V:Vi(v L A;)},
Hy :=U(Vy), and Dy :={w e D : Vi(w L A;)}. If the g x g Hermitian matrix
QW) := 3((A1,4))); ; is positive semidefinite and rk(Q(1)) = 1kiA; : 1 < i < g},
then this extra data allows us to define an analytic subvariety Z, (not necessar-
ily algebraic) in essentially the same way as the unitary Shimura variety Xr. For
each Hermitian positive semidefinite matrix T € Hermg(E)xo, and each “shift”
we LY/L, we define a “translated cycle”

Z(Tw:= ) Z.
Aep+L

Q=T
(modT)
Since T acts trivially on LY/L, by Chow’s lemma this cycle descends to an alge-
braic cycle on Xr.
Finally, for weight functions ¢ : LY /L — C, we form a family of special cycles
indexed by (T, ¢) via

Z(Tp):= Y. @WZ(T,w,
ueLY /L
which are I'-invariant and descend to an algebraic cycle on the unitary Shimura
variety Xr.

1.6 Kudla’s modularity conjecture

Our aim in this work is to show some cases of the unitary Kudla conjecture un-
conditionally.

1.6.1 Modularity of special cycles

In the last section, we see that special cycles are a family of weighted sums of
sub-Shimura varieties indexed by positive semidefinite Hermitian matrices, so
itis desirable to study their generating functions. Special cycles arise from group
theory, and carry a high degree of symmetry. For this reason, we expect them to
exhibit a certain level of rigidity. Recall from the beginning of this thesis that
modularity is a very strong type of rigidity, and mathematical objects having
modularity are automatically more accessible for computation. Given that re-
lations of algebraic cycles constitute a central theme in geometry while they are
at the same time hard to compute, it is desirable to establish modularity of a
suitable generating series of special cycles. This idea was formulated by Kudla
and others in a series of work in the 1990’s.
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Modularity of generating series of objects in a more classical context that are
similar to the idea of special cycles dates back to Jacobi, who showed that the
generating series of the number of solutions to the equation Q(x) = t defines an
elliptic modular form. Here Q is a positive definite quadratic form, the unknown
x lies in a lattice L, and t runs through a family of non-negative integers. In the
twentieth century, Siegel and Hecke extended Jacobi’s work to higher rank and
they also studied the case of indefinite quadratic forms Q.

Kudla’s modularity conjecture is about the modularity of the generating func-
tions of special cycles on Shimura varieties of orthogonal and unitary types, val-
ued in the Chow groups and their variations. This conjecture lies at the heart
of Kudla’s Program, which is a development of the earlier work of Hirzebruch-
Zagier [HZ76], Gross—Zagier [GZ86], Kudla-Millson [KM86; KM87; KM90], and
Gross—Keating [GK93] among others, formulated by Kudla in [Kud97].

1.6.2 The unitary Kudla conjecture

Let us state the unitary Kudla conjecture based on the notation from the last
section. Let £p be the tautological line bundle over D, that is, the restriction
to D of the line bundle & (-1) over P(V(C)). Since the action of H=U(V) on D
lifts naturally to a certain action on 4, the line bundle #p descends to a line
bundle Zr over the Shimura variety Xr. We write EFV for the class of the dual
line bundle in the first Chow group CH!(Xt). It is clear that Z(T,¢) is a cycle
of codimension r(T) (the rank of T) from the definition of special cycles, and
we write Z(T,¢) also for its class in the Chow group CH”")(Xt). Finally, the
generating series for special cycles on Xr is defined to be the formal sum

Yo, @i= Y Z(Te) - ()8 Pexp (2mite(TT)),
TeHermg (E)xo

where the dot “.” denotes the intersection product in the Chow ring CH* (Xt),
and 7 lies in the Hermitian upper half space Hg (in analogy to the upper half
plane §) defined at the beginning of the thesis). Note that the intersection prod-
uct with the dual line bundle £’ is nothing but taking a hyperplane section.
The unitary Kudla conjecture states that, for any linear functional ¢ on the Chow
group CH& (Xr), the termwise application of the functional to the generating se-
ries, denoted by ¢ owg:lp (1), is a Hermitian modular form over E/Q of genus g and
weight n, that is, absolutely convergent and invariant under a certain weight-n
slash action of a congruence subgroup of U(g, g) over the integers in E.
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1.6.3 Previous work and arithmetic applications

First of all, an immediate consequence of this conjecture is that the C-span of
special cycles Z(T, ) in the complexification of the Chow group CHE (Xk)c is
finite dimensional. A further appealing feature is that relations between Fourier
coefficients of certain Hermitian modular forms give rise to the correspond-
ing relations between special cycles Z(T, ) in the complexification CHE (Xx)c,
which are otherwise inaccessible in the literature. See [BW15; Wesl15] for this
computational aspect in the orthogonal case.

The modularity of generating series for geometric cycles has been studied
since the seminal work of Hirzebruch-Zagier [HZ76]. In a long collaboration,
Kudla-Millson [KM86; KM87; KM90] established the modularity of generating
series of special cycles valued in cohomology. The analogous generating series
valued in Chow groups can also be defined, and it is natural to ask if they are
already modular at this level. In the case of Shimura varieties of orthogonal type
(n—2,2), this question was raised in [Kud97].

Two years later, Borcherds [Bor99] proved the modularity of generating se-
ries for Heegner (special) divisors valued in the first Chow group inspired by the
work of Gross-Kohnen-Zagier [GKZ87] on the images of Heegner points in the
Jacobian of a modular curve, and also based on his celebrated work [Bor98] on
the construction of a family of meromorphic modular functions via regularized
theta lift. Building upon Borcherds’ work, W. Zhang [Zha09] proved that assum-
ing absolute convergence, the generating series for special cycles valued in the
Chow groups are Siegel modular forms. Finally, Bruinier-Raum [BW15] com-
pleted the proof of Kudla’s modularity conjecture over Q by showing that such a
convergence assumption holds unconditionally.

In a recent colloboration of Bruinier-Howard-Kudla-Rapoport-Yang, mod-
ularity of generating series for arithmetic special divisors over certain imaginary
quadratic fields was established [Bru+20a], and more arithmetic applications
were found [Bru+20b], including relations between derivatives of L-functions
and arithmetic intersection pairings a la Gross-Zagier, as well as a special case
of Colmez’s Conjecture on the Faltings heights of abelian varieties with complex
multiplication, in line with the work of Andreatta-Goren-Howard-Pera [And+18].
In an announced work by Bruinier-Howard, they use an inductive argument to
compute the arithmetic volumes of unitary Shimura varieties of higher dimen-
sion, based on the work of Howard [How20] for unitary Shimura curves.

Most recently under the assumption of the unitary Kudla conjecture for gen-
eral CM-fields, Chao Li and Yifeng Liu [LL21] proved the arithmetic inner prod-
uct formula, which can be viewed as a generalization of the Gross-Zagier for-
mula to higher dimensional motives. Their approach is via arithmetic theta lift-
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ing. While the exact cases needed by the work of Li-Liu are not covered in this
thesis as they require a more general CM-fields than the imaginary quadratic
fields, this illustrates the arithmetic indications of the presented thesis work.

1.6.4 The main result

In Preprint II, we combine a result of Yifeng Liu [Liul1] on the formal modular-
ity of such generating series in the cases of arbitrary CM-fields and the method
of Bruinier-Raum to show the following main result.

Theorem 1.6.1 (Preprint III). The unitary Kudla conjecture for open Shimura
varieties is true in the cases of norm-Euclidean imaginary quadratic fields, which
are the ones generated by a square root of —1,-2,-3,-7,—11, repectively.

Remark 1.6.2. After uploading a first version of this preprint on arXiv, the au-
thor learned that Yuxiang Wang partially proved similar results in his thesis work
[Wan20]. Note that Wang claims to prove the general case of imaginary quadratic
fields. However, in the proof of Lemma 4.6 on page 39 of his thesis, the choice of
r is not justified, and in fact cannot be made in the general case. One of the first
counterexamples arises from the case of E = Q( v/=5), where in Wang’s notations
for an arbitrarily fixed a € #(@’#)g /08, one cannot even choose r = (r1,...,7g)
such that - r = a (mod %) and that |rg|*> < m? (but Wang claims |rg|* < ’%2 for
D = 20).

1.7 Summaries of the appended publications

1.7.1 Articlel

The existence of geometric designs on path-connected spaces was first proved
by Seymour-Zaslavsky [SZ84]. Inspired by their work, we defined a suitable no-
tion of path-connected spaces for designs over Q, which we call algebraically
path-connected spaces, and proved the following analogous result for rational
geometric designs. Let ¢ and d be natural numbers in the following discussion.

Theorem 1.7.1 (Article I). For every algebraically path-connected space defined
in the paper, there exists t-designs on it of size n for arbitrary t and every suffi-
ciently large integer n.

A natural consequence of this result is the existence of rational z-designs on
rational convex polytopes.
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Theorem 1.7.2 (Article I). Let Z < R? be a d-dimensional convex polytope whose
vertices are in Q%, and p; the Lebesgue measure. Then, there exists a natural
number ngy such that for every natural number n = ngy, there exist rational t-
designs on (Z,uz) of size n. In particular, there exist rational t-designs on the
unit interval [0,1].

On the unit circle S', the notion of regular (¢ + 1)-gon provides a spherical
t-design over the field Q% NR, where Q2 is the abelian closure of Q. Combining
this aspect with our main result, we showed the following result about spherical
designs.

Theorem 1.7.3 (Article I). There exists a natural number ngy such that for every
even natural number n = ny, there exist spherical t-designs on S% of size n where
for each point in the design, all of its coordinates are rational numbers except
possibly for the first coordinate. In particular, there exist spherical t-designs of
size n over the field Q({\/q : q prime}).

1.7.2 ArticleII

Let k and N be positive integers. Let &4 (IN) denote the space spanned by Fourier

expansions at every cusp of the congruence subgroup I'; (V) € SL,(Z) of all Eisen-
stein series of weight k and level N. Let M (I'(N)) denote the space of weight-k

modular forms for the principal congruence subgroup I'(N). We proved the fol-

lowing main result.

Theorem 1.7.4 (Article II). Let k, I, and N be positive integers. Then there is a
positive integer Ny such that

M 1T(N)) € Exr1(N) + E(Np) - E1(No).

Moreover, if k+ 1 = 3, then a suitable Ny is explicitly specified in the paper, and
there is a positive integer N, specified explicitly in the paper such that

M1 T(N)) € Er(lcm(Np, NN7)) - &;(lcm(Np, N1)).

Remark 1.7.5. This main result is a consequence of two theorems in the paper
expressing cusp forms and Eisenstein series by linear combinations of products
of exactly two Eisenstein series, respectively. Our results in the paper also cover
the more general case of arbitrary arithmetic type, by general theory about the
connection between vector-valued elliptic modular forms and classical elliptic
modular forms. Moreover, we obtain precise statements about which subspace
is equal to My (y) for a Dirichlet character y modulo N.
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1.7.3 PreprintIII

Following the approach of Bruinier—-Raum [BW15] in the orthogonal case over
the rationals @, I proved the following result in some unitary cases over imagi-
nary quadratic fields.

Theorem 1.7.6 (Preprint III). The unitary Kudla conjecture for open Shimura
varieties is true in the cases of norm-Euclidean imaginary quadratic fields.

Remark 1.7.7. Note that if the Hermitian space V is anisotropic, so that Xk is
compact, my result automatically covers the whole conjecture in this case.

The proof of Theorem 1.7.6 combines Theorem 3.5 of [Liull] about formal
modularity of the generating series and my result stated below that such formal
series satisfying the modularity automatically converge absolutely. To state this
rigidity result, we first introduce the notion of symmetric formal Fourier-Jacobi
series, which was shown in [Liul1l; YZZ09; Zha09] to encode among other things
special cycles on Shimura varieties of orthogonal and unitary types. Fourier—
Jacobi expansions of automorphic forms, first defined in [Pia66], are among
prominent tools to study automorphic forms. For example, they played impor-
tant roles in the proof of Saito—Kurokawa conjecture [And79; Maa79a; Maa79b;
Maa79c; Zag81].

Let E/Q be an imaginary quadratic field. For integers g, k,/ such that 0 </ <
g, every Hermitian modular form f of degree g, weight k has a Fourier-Jacobi
expansion of cogenus /. More precisely, if we write the variable 7 € Hg in the
Hermitian upper half space Hg as

(Tl w)

T= ,

z T2

for7y € Hg;, 72 € Hj, w € Matg_; ;(C), and z € Mat; ¢;(C), then every Hermitian

modular form f of degree g and arithmetic type p has a Fourier-Jacobi expan-
sion of the form

f@= Y ¢, wzelmt),

meHerm;(E)sq

where the sum runs over all the [ x [ positive semidefinite Hermitian matrices
m with entries in E, and e(x) := exp (27i - tr(x)) for a square matrix x, and the
coefficients ¢, are Hermitian Jacobi forms of degree (g—1[), weight k, type p and
index m, which satisfy a certain symmetry condition for their ordinary Fourier
coefficients from the modularity of f.
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By general definition, every Hermitian modular form is a formal Fourier—
Jacobi series satisfying a certain symmetry condition and absolute convergence.
This point of view motivates us to define symmetric formal Fourier-Jacobi se-
ries, which are formal Fourier-Jacobi series that satisfy the symmetry condition,
without assuming absolute convergence. By the definition, if such a series con-
verges absolutely, then it is a Hermitian modular form. One natural question
is: does every symmetric formal Fourier-Jacobi series automatically converge
absolutely?

In the case of Siegel modular forms, Ibukiyama-Poor-Yuen also raised this
question for Siegel paramodular forms in [IPY13]. The first breakthrough in this
direction belongs to J. Bruinier [Brul5] and M. Raum [Wes15], who proved inde-
pendently the case of genus 2 and arbitrary type for Siegel modular forms over
Q. Their joint work [BW15] then resolved the case of higher genus and arbitrary
type over Q.

For Hermitian modular forms, we show the following rigidity result, which is
a key step to prove Theorem 1.7.6, and will probably be of independent interest
for the theory of Jacobi forms and formal geometry.

Theorem 1.7.8 (Preprint III). Every symmetric formal Fourier—Jacobi series of ar-
bitrary arithmetic type for the unitary group U(g,g)(Z) in the cases of norm-
Euclidean imaginary quadratic fields, converges absolutely to a Hermitian mod-
ular form.
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