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Channel Estimation for RIS-Aided mmWave MIMO
Systems via Atomic Norm Minimization

Jiguang He, Member, IEEE, Henk Wymeersch, Senior Member, IEEE, and Markku Juntti, Fellow, IEEE

Abstract—A reconfigurable intelligent surface (RIS) can shape
the radio propagation environment by virtue of changing the
impinging electromagnetic waves towards any desired directions,
thus, breaking the general Snell’s reflection law. However, the
optimal control of the RIS requires perfect channel state in-
formation (CSI) of the individual channels that link the base
station (BS) and the mobile station (MS) to each other via the
RIS. Thereby super-resolution channel (parameter) estimation
needs to be efficiently conducted at the BS or MS with CSI
feedback to the RIS controller. In this paper, we adopt a two-
stage channel estimation scheme for RIS-aided millimeter wave
(mmWave) MIMO systems without a direct BS-MS channel,
using atomic norm minimization to sequentially estimate the
channel parameters, i.e., angular parameters, angle differences,
and the products of propagation path gains. We evaluate the
mean square error of the parameter estimates, the RIS gains, the
average effective spectrum efficiency bound, and average squared
distance between the designed beamforming and combining
vectors and the optimal ones. The results demonstrate that the
proposed scheme achieves super-resolution estimation compared
to the existing benchmark schemes, thus offering promising
performance in the subsequent data transmission phase.

Index Terms—Atomic norm minimization, channel parameter
estimation, compressive sensing, millimeter wave MIMO, recon-
figurable intelligent surface.

I. INTRODUCTION

The millimeter wave (mmWave) bands with multiple-input
multiple-output (MIMO) transmission is a promising candidate
for 5G and beyond 5G communication systems [1]. However,
the transmission distance is limited due to the high free-space
path loss, which can be compensated for by introducing large
antenna arrays at both ends of the link [2]–[4]. This in turn
brings challenges on the channel estimation (CE) compared
to that for small-scale MIMO systems with less unknown
channel coefficients. Unlike the sub-6 GHz bands, the wireless
channels at mmWave frequencies are verified to have less
scattering [1]. Thereby fewer resolvable paths exist between
the base station (BS) and mobile station (MS). Thus, the
mmWave MIMO channel is typically inherently sparse (i.e.,
the number of distinguishable paths in the angular domain
is much smaller than that of transmit and receive antennas).
Efficient yet effective compressive sensing (CS) techniques,
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which take advantage of the sparsity, have been widely applied
in the channel (parameter) estimation of point-to-point (P2P)
mmWave MIMO channels, e.g., in [5]–[8].

Due to the channel sparsity, the mmWave communications
typically require line-of-sight (LoS) connection to maintain
sufficient receive power level. In practice, the direct channel
between the BS and MS can be blocked by objects [9]. In order
to maintain the connectivity under LoS blockage, the concept
of a reconfigurable intelligent surface (RIS), also known as
intelligent reflecting surface (IRS) [10] or large intelligent
surface (LIS) [11], [12], has been recently proposed in [13]–
[17] as a smart reflector. It can also been interpreted as a
full-duplex (FD) relay [18], although it is in reality a passive
element with no active transmit power amplifier, which is a
core component of an actual relay station. Other potential
benefits brought by introducing a RIS include enhanced spec-
trum efficiency (SE), energy efficiency (EE), and physical-
layer security [19], which makes RIS a promising candidate for
upcoming 6G [20]. Additionally, the RIS has potential to offer
higher-accurate indoor or outdoor radio localization [17], [21].
In practice, the RIS can be made of an array of discrete phase
shifters, which can passively steer beams towards dedicated
terminals by controlling the phase of each RIS unit. This
kind of RIS architecture is called the discrete RIS and does
not have any baseband processing capability [14], [15], [17].
Therefore, extremely low power consumption is expected, used
only for the control of the RIS units. Another type of RIS, on
the contrary, is the continuous/contiguous RIS, which can be
seen as an active transceiver with baseband processing capa-
bility [12] or a passive reflector [22] like the aforementioned
discrete RIS. Various works on RIS channel modelling were
conducted [23]–[25], and these will guide the development of
CE algorithm and design of RIS phase control matrix, studied
in this paper. In these works, the RIS elements are modelled as
individual scatterers and can be jointly considered for the pur-
pose of steering the signal in a dedicated direction. Dynamic
metasurface antennas with advanced analog signal processing
capabilities for 6G communication were discussed in [26] in
terms of their main characteristics when used for radiation
and reception. In addition, a hardware architecture with single
radio frequency (RF) chain at the RIS was proposed explicitly
for channel estimation purpose with alternating optimization
method in [27].

CE methods for RIS-aided MIMO systems have been re-
cently studied in [28]–[34]. The RIS channel estimation was
discussed in [28], [29] as one of the main design challenges.
Taha et al. [30] considered a special setup with mixed active
and passive elements at the RIS. Therefore, CE was performed
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using CS and deep learning (DL) methods at the RIS based on
the received signals at the active elements with pilots sent from
the BS and MS. The introduction of active receive elements at
the RIS increases the power consumption, complexity and cost
of RIS, but can simplify the CE problem into two P2P MIMO
CE subproblems [35]. In [31], sparse matrix factorization and
matrix completion were exploited in a sequential manner to
perform iterative CE. Thereby full rate advantage of the RIS is
not achieved during the training process due to the on/off state
applied to the RIS elements. The individual MIMO channels
in the reflection link can also be estimated by parallel factor
decomposition [36], [37]. In these works, iterative refinement
of the individual channel estimation is conducted by using
bilinear alternating least squares (BALS). An optimal CE
scheme was studied by following the criterion of minimum
variance unbiased (MVU) estimation in [32]. In [33], CS was
applied to estimate the cascade mmWave channel. However, a
single antenna was assumed for the MS in both [32] and [33],
which applies for wireless sensor network applications, but
is not practical for mmWave MIMO communications. In our
recent work [34], we applied the iterative reweighted method
of [7], [38] to estimate the channel parameters. However, both
BS-RIS and RIS-MS channels were assumed to have only a
LoS path. Unlike all the aforementioned literature, a multi-
level hierarchical codebook based scheme was leveraged to
design the phase control matrix (reflection beam) at the RIS
and the combining vector at the MS jointly [39] instead of
estimating the MIMO channel parameters as an intermediate
step towards joint design of active combining vector at the MS
and passive beamforming (BF) at the RIS.

In this paper, we study the CE problem of passive RIS-
aided mmWave MIMO systems, where the direct channel
is obstructed and multiple paths exist for both the BS-RIS
and RIS-MS channels. We resort to the parametric channel
model for the individual channels [2], [40], based on angular
parameters, i.e., angles of departure (AoDs) and angles of
arrival (AoAs), and propagation path gains. Furthermore, no
data sharing backhaul link is assumed between the BS and
RIS; low rate control link is sufficient. We divide the CE
problem into two CS subproblems and apply atomic norm
minimization to sequentially find the estimates of the channel
parameters, e.g., angular parameters, angle differences, and
the products of propagation path gains. We take advantage
of channel sparsity in the proposed CE algorithm. Unlike the
estimation of cascaded channel or individual channels, much
fewer elements need to be estimated. In addition, when the
number of elements (including both RIS elements and BS/MS
antennas) increases, estimation of individual channel matrices
or cascaded channel matrix will cause substantial increases in
both training overhead and computational complexity. On the
contrary, channel sparsity level will further increase, which
may even reduce the required training overhead. Besides
evaluating the mean square error (MSE) of the estimated
channel parameters, we design the RIS phase control matrix,
the BS BF vector, and the MS combining vector based on
the estimates and evaluate the average effective SE bound
and RIS gains. The proposed CE scheme significantly out-
performs an orthogonal matching pursuit (OMP) based two-

stage counterpart [41]. Simulation results demonstrate that the
average effective SE bound achieved by the proposed method
approximate that with perfect channel state information (CSI)
in the low signal-to-noise ratio (SNR) regime with limited
training overhead.

The contributions of the paper are summarized as follows:
• We propose an efficient super-resolution channel param-

eter estimation scheme for RIS-aided mmwave MIMO
systems, based on atomic norm minimization [42], [43].
The proposed scheme can reduce the training overhead
significantly by first estimating part of the channel pa-
rameters (i.e., AoDs of the BS-RIS channel and AoAs of
the RIS-MS channel) and utilizing the estimates in the
subsequent training period.

• Decoupled atomic norm minimization is applied in the
first stage with a multiple measurement vectors (MMV)
model for the estimation of AoDs of the BS-RIS channel
and AoAs of the RIS-MS channel, while atomic norm
minimization is applied in the second stage with a single
measurement vector (SMV) one for the estimation of
angle differences and the products of propagation path
gains.

• The design of RIS phase control matrix is studied by
following the criterion of maximizing the power of the
effective channel. On the basis of the designed RIS
phase control matrix, the joint design of BS BF and
MS combining vectors are considered based on the re-
constructed composite channel matrix (using estimated
channel parameters).

The rest of the paper is organized as follows: Section II in-
troduces the channel model for the RIS-aided mmWave MIMO
system, followed by the sounding procedure in Section III.
Section IV provides the details about the proposed two-stage
CE approach based on atomic norm minimization, followed
by the RIS control as well as beamforming and combining
design in Section V. The performance evaluation is offered in
Section VI. Section VII draws the conclusions and discusses
the potential directions for future investigation.

Notations: A bold lowercase letter a denotes the column
vector, a bold capital letter A denotes the matrix, (·)H, (·)T,
and (·)∗ denote the Hermitian transpose, transpose, and con-
jugate, respectively, diag(a) denotes a square diagonal matrix
with entries of a on its diagonal, Toep(a) is a Toeplitz matrix
with a being its first row, Tr(A) returns the sum value of the
diagonal elements of A, vec(A) denotes the vectorization of
A by stacking the columns of the matrix A on top of one
another, E[·] is the expectation operator, var(·) is the variance
of a random variable, dae returns the least integer greater than
or equal to a, a ◦ b and a⊗ b denote the Hadamard product
and Kronecker product of a and b, respectively, [a]i denotes
the ith element of vector a, [A]ij denotes the (i, j)th element
of A, [A]i,: and [A]:,i denote the ith row and column vectors
of A, respectively, A � 0 means A is positive semidefinite,
and ‖ · ‖F is the Frobenius norm.

II. CHANNEL MODEL

We consider the RIS-aided mmWave MIMO system, which
comprises one multi-antenna BS, one multi-antenna MS, and
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Fig. 1. The considered RIS-aided mmWave MIMO system with one
multi-antenna BS, one multi-antenna MS, and one multi-element RIS,
with LB,R = 2 resolvable paths between the BS and RIS and LR,M =
3 resolvable paths between the RIS and MS.

one multi-element RIS, as depicted in Fig. 1. No data-sharing
backhaul link is assumed between the BS and RIS. The
numbers of antenna elements at BS and MS are denoted as NB
and NM, respectively; the number of elements at the RIS is
NR. The antenna array is assumed to be an uniform linear array
(ULA) with consideration of azimuth angle only; an extension
to an uniform planar array (UPA) can be done.1 We further
assume that the direct channel between the BS and MS is
obstructed, which renders the potential usage of a RIS for
maintaining the connectivity between the BS and MS.2

We assume the geometric channel model, which is based
on the AoDs, the AoAs, and the propagation path gains of
each link. The channel model was also validated in the recent
works [23]–[25]. The channel between the BS and the RIS
HB,R ∈ CNR×NB is

HB,R =

LB,R∑
l=1

[ρB,R]lα([φB,R]l)α
H([θB,R]l)

= A(φB,R)diag(ρB,R)AH(θB,R), (1)

where [θB,R]l and [φB,R]l denote the lth AoD and AoA of
the BS-RIS channel, respectively, LB,R denotes the number
of resolvable paths, which is usually on the order of 3–
8 in mmWave frequency bands [1], and [ρB,R]l denotes the
lth propagation path gain. Index l = 1 refers to the LoS
path, and l > 1 refer to the non-line-of-sight (NLoS) paths,
e.g., single-bounce or multi-bounce reflection paths. Usually,
|[ρB,R]1|2 � |[ρB,R]l|2 for l > 1, and the difference is
easily more than 20 dB [44]. Finally, α([θB,R]l) ∈ CNB×1

and α([φB,R]l) ∈ CNR×1 are the array response vectors
with

[
α([θB,R]l)

]
k

= exp
(
j2π dλ (k − 1) sin([θB,R]l)

)
for

k = 1, · · · , NB and
[
α([φB,R]l)

]
k

= exp
(
j2π dλ (k −

1) sin([φB,R]l)
)

for k = 1, · · · , NR, where d is the antenna ele-
ment spacing, λ is the wavelength of the carrier frequency, and
j
4
=
√
−1. By following φB,R =

[
[φB,R]1, · · · , [φB,R]LB,R

]T
and θB,R =

[
[θB,R]1, · · · , [θB,R]LB,R

]T
, array response matrices

1Fig. 1 shows the RIS as an UPA for the sake of better aesthetic illustration.
The proposed channel estimation scheme can also be extended to an UPA-type
RIS-aided mmWave MIMO system with some modifications.

2The proposed scheme can also be applied to the scenario, where the direct
BS-MS channel also exists. The process is summarized as follows: In the first
step, we turn the RIS into an absorption mode, and estimate the direct channel,
i.e., BS-MS channel; In the second step, we apply the proposed scheme to
estimate the channel parameters in the composite channel, i.e., BS-RIS-MS
channel.

A(φB,R) ∈ CNR×LB,R and A(θB,R) ∈ CNB×LB,R are formulated
as

A(θB,R) =
[
α
(
[θB,R]1), · · · ,α([θB,R]LB,R

)]
, (2)

A(φB,R) =
[
α
(
[φB,R]1), · · · ,α([φB,R]LB,R

)]
. (3)

Similar to (1), the channel between the RIS and the MS,
denoted as HR,M ∈ CNM×NR , is

HR,M =

LR,M∑
l=1

[ρR,M]lα([φR,M]l)α
H([θR,M]l)

= A(φR,M)diag(ρR,M)AH(θR,M), (4)

where the channel parameters φR,M, ρR,M, θR,M, A(φR,M), and
A(θR,M) are defined in the same manner as those in (1).

Using (1) and (4), the composite channel H ∈ CNM×NB

between the BS and MS, after taking into consideration the
RIS, becomes

H = HR,MΩHB,R

= A(φR,M)diag(ρR,M)AH(θR,M)

ΩA(φB,R)diag(ρB,R)AH(θB,R), (5)

where Ω ∈ CNR×NR is the phase control matrix at the RIS.
We assume that the RIS is composed of a series of discrete
phase shifters. Therefore, matrix Ω is a diagonal matrix with
unit-modulus constraint on the diagonal entries, i.e., [Ω]kk =
exp(jω) with phase ω ∈ [0, 2π). In practice, the reflection of
RIS may not be perfect so that reflection coefficient a ∈ [0, 1]
as in [Ω]kk = a exp(jω) describes the amplitude scaling and
power loss3 [10]. We assume an ideal RIS with a = 1; for our
focus on CE, this does not decrease the generality of the work
as long as the value of a is known.4 In this regard, the received
power at the MS can be considered as a theoretical upper
bound if the RIS phase control matrix is optimally designed.

Let us define G ∈ CLR,M×LB,R as the effective channel,

G = diag(ρR,M)AH(θR,M)ΩA(φB,R)diag(ρB,R), (6)

taking into consideration of propagation path gains, RIS phase
control matrix and the angular parameters associated with the
RIS, i.e., θR,M and φB,R. The expression (6) will be utilized in
the second CE stage, discussed in Section IV-C and the design
of phase control matrix based on parameter estimates, dis-
cussed in Section V. Because G is a function of the RIS phase
control matrix, the design of Ω affects the effective channel,
which in turn influences the achievable rate (i.e., capacity) of
the composite channel. This imposes the significance of the
RIS design and control for data communications, especially,
when the direct BS-MS channel is blocked. By following (6),
the composite channel H in (5) can be further expressed as

H = A(φR,M)GAH(θB,R). (7)

3If a = 0, the RIS is assumed to be operating in an absorption mode.
On the contrary, if a = 1, the RIS is assumed to be operating in an ideal
reflection mode. In practice, due to the imperfect fabrication of RIS elements,
the reflection coefficients may vary from one RIS element to another.

4However, in practice, phase-dependent amplitude variation may exist in the
RIS elements [45], which may require redesign of the proposed CE scheme
and RIS phase control matrix.
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Fig. 2. The sounding procedure, where each CE subinterval contains
T + 1 blocks (indexed by t = 0, · · · , T ) and Ωt varies over the
blocks. In the example, the phase control matrix keeps unchanged
within the first 9 symbol times (i.e., the first block of the CE
subinterval, also known as stage 1 sounding), and varies every 6
symbol times in the stage 2 sounding.

Remark 1. The composite channel matrix H in (7) is similar
to a P2P mmWave MIMO channel. However, a difference
exists. As for the P2P mmWave MIMO channel, G is a
diagonal matrix, like diag(ρB,R) in (1) and diag(ρR,M) in (4)
while for the RIS-aided MIMO channel, G is usually in a
general format, i.e., a full matrix. In addition, the effective
channel matrix G needs to be optimized via controlling the RIS
phase shifters in order to take the full potential of introducing
the RIS.

In the first CE stage, we estimate φR,M and θB,R with
randomly generated training sequences. In the second CE
stage, we estimate the remaining channel parameters, e.g.,
ρR,M, θR,M, ρB,R, and φB,R based on the training sequences
designed according to the estimates in the first stage. Due to
the coupling effect in (6), these parameters cannot be estimated
separately in the second stage, detailed in Section IV.

III. SOUNDING PROCEDURE

We also assume that the wireless channels are quasi-
static block fading. That is, the channel parameters remain
unchanged during a certain period of time, known as the
coherence time. For the sounding process, one coherence time
interval is divided into two subintervals, the first one for CE
and the second for data transmission (DT), as depicted in
Fig. 2. The CE subinterval is further divided into T+1 blocks.
In each block, a different Ω is taken into consideration, i.e.,
Ω0 6= Ω1 6= · · · 6= ΩT . The frequent change of the RIS phase
control matrix within one coherence time can be achieved by
n-type field-effect transistor (nFET) switches. The turn-on and
turn-off times of the switch are on the order of 300 ps [46],
which can be much smaller than a symbol duration at mmWave
communications.

A. Stage 1 Sounding

In the first block of CE subinterval, i.e., t = 0, the BS
sends a (random) training matrix X0 ∈ CNB×N0 which, after
reflected from the RIS with a (random) phase control matrix
Ω0,5 is received at the MS as Y0 ∈ CM0×N0 through a
(random) combining matrix W0 ∈ CNM×M0 . As in mmWave

5The phase control matrix is assumed to be known to the MS. This can be
achieved by generating it by agreed pseudo-noise (PN) sequences.

MIMO systems, the BS and MS are commonly assumed to
possess a hybrid analog-digital precoding architecture with
limited number of RF chains for the sake of reduced com-
plexity, cost, and power consumption [2], [3], [40], [47]. We
follow the same hybrid architecture in this paper. Therefore, at
the MS, we can only access to a maximum NRF-dimensional
signal vector per symbol time6 with NRF being the number of
RF chains at the MS. In other words, the combining matrix
at the MS can be as large as NM ×NRF per symbol duration.
Meanwhile, at the BS, we can only explore one beam (i.e.,
one column vector of transmitted signals in X0) per symbol
duration regardless of the number of RF chains at the BS [2],
[47]. When NRF < M0, each training beam from X0 needs to
be sent dM0

NRF
e times. Thus, the training overhead in the first

stage is N0dM0

NRF
e [7].

B. Stage 2 Sounding

Based on the received signal Y0, we resort to the atomic
norm minimization to recover the angular parameters θB,R and
φR,M, which guide the design of sequential training matrices
{X1, · · · ,XT } and combining matrices {W1, · · · ,WT }. To
simplify the design, we fix X1 = · · · = XT ∈ CNB×LB,R and
W1 = · · · = WT ∈ CNM×LR,M while changing Ωt for t =
1, · · · , T and obtain the received signals as {Y1, · · · ,YT }.7
We intentionally choose N0 � LB,R and M0 � LR,M in order
to provide a very accurate estimate in the first stage. Therefore,
the training overhead can be greatly reduced for the block t
as t = 1, · · · , T compared to that for the first block. The
overall training overhead in the second stage is TLB,RdLR,M

NRF
e.

Based on {Y1, · · · ,YT }, the atomic norm minimization is
further applied to estimate the remaining channel parameters
as detailed below.

C. Observation Model

The received signals for all the blocks are summarized as

Yt = WH
t H(Ωt)Xt + WH

t Zt,

= WH
t A(φR,M)GtA

H(θB,R)Xt + WH
t Zt,

for t = 0, · · · , T, (8)

where we write H explicitly as a function of Ωt, Gt =
diag(ρR,M)AH(θR,M)ΩtA(φB,R)diag(ρB,R), and each entry in
additive white Gaussian noise (AWGN) Zt follows CN (0, σ2).

IV. TWO-STAGE CE APPROACH

Before moving to the details of the two-stage CE approach,
we briefly review the atomic set, the atomic norm, and the
atomic norm minimization.

6The coherence time interval may include hundreds or even thousands of
modulated symbol times/durations at mmWave frequency bands, e.g., in [48],
which depends on the carrier frequency, MS velocity, and the bandwidth.

7In principle, we can refine the training and combing matrices at block t
based on the received signals up to block t − 1. However, this will bring
more computational complexity of the proposed CE algorithm. Also, we
intentionally use more time slots in the first block of CE subinterval in order
to obtain a super resolution for the estimates of channel parameters in the first
stage. Therefore, the room for gradual improvement will be rather limited.
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A. Atomic Norm Minimization

Unlike the conventional greedy CS approaches, e.g., OMP,
the atomic norm minimization is based on an infinite set
and solved by resorting to convex optimization tools [42],
[49]. Atomic norm minimization can well address the basis
mismatch problem, which is commonly known in finite-size
dictionary based CS approaches. Depending on the signals to
be recovered, an atomic set is formulated by containing atoms
with the same dimension of the desired signals [42], [49].

1) 1D Signal: As in direction of arrival (DoA) estima-
tion or line spectral estimation problems [42], [50], the one
dimensional (1D) signal to be recovered is in the form of
α(θ) ∈ CNu×1.8 Therefore, the atomic set is defined as

A = {α(θ1) ∈ CNu×1 : θ1 ∈ [−π, π]}, (9)

where the cardinality of A is infinite, i.e., card(A) = +∞.
For any signal with the same dimension of the atoms, e.g.,
u ∈ CNu×1, its atomic norm with respect to A in (9) is defined
as

‖u‖A = inf{q : u ∈ qconv(A)},

= inf{θ1,l∈[−π, π],βl∈C}

{∑
l

|βl|
∣∣∣u =

∑
l

βlα(θ1,l)
}
, (10)

where conv(A) is the convex hull of A, and u = Auβ falls
into the SMV model with Au = [α(θ1,1),α(θ1,2), · · · ] and
β = [β1, β2, · · · ]T.

The atomic norm is equivalent to the solution of the
following semidefinite program (SDP) [49]

‖u‖A =inf{u1,z}

{z
2

+
1

2Nu
Tr(Toep(u1))

}
,

s.t.
[
Toep(u1) u

uH z

]
� 0. (11)

2) 2D Signal: As for a two-dimensional signal, one valid
matrix atomic set can be defined as [8]

AM = {α(θ1)cT ∈ CNU×MU : θ1 ∈ [−π, π], ‖c‖ = 1}.
(12)

We intentionally introduce such an atomic set, since it will
be used in the first stage of the proposed two-stage CE
scheme. Other types of matrix atomic sets also exist in the
literature depending on the structure of the original signal to
be recovered. Each atom in set AM is a rank-1 matrix, and
the atomic set size is also infinite due to the continuum of θ1.

For any matrix U ∈ CNU×MU with the same dimension
of α(θ1)cT, its atomic norm with respect to AM in (12) is
defined as

‖U‖AM
= inf{q : U ∈ qconv(AM )},

= inf{θ1,l∈[−π, π],βl∈C}

{∑
l

|βl|
∣∣∣U =

∑
l

βlα(θ1,l)c
T
l

}
,

(13)

8The ultimate goal is to recover the angle (e.g., DoA θ) or equivalently
frequency (e.g., f = sin(θ)), which is contained in vector α(θ) or equiv-
alently in α(f). Knowing α(θ) is tantamount to knowing θ, and the same
principle is applied to α(f) and f , unless the following ambiguity exists,
∃ α(θ1) = α(θ2) with θ1 6= θ2 or ∃ α(f1) = α(f2) with f1 6= f2.

where conv(AM ) is the convex hull of AM and U =
Audiag(β)CT = AuC̆ falls into the MMV model with
C = [c1, c2, · · · ] and C̆ = diag(β)CT. This atomic norm
is equivalent to the solution of the following SDP, as in [49]

‖U‖AM
=inf{u1,Z}

{ 1

2MU
Tr(Z) +

1

2NU
Tr(Toep(u1))

}
,

s.t.
[
Toep(u1) U

UH Z

]
� 0. (14)

Similar to other CS methods, the goal of atomic norm mini-
mization is also to find the sparsest representation of u or U
with the least number of atoms from the predefined atomic
set [49].

B. First Stage of Channel Estimation Algorithm

The CE problem in the first stage falls into the category
of two decoupled 2D signal (with a MMV model) recovery
subproblems.

1) Estimation of φR,M: By expression Ū =
A(φR,M)G0A

H(θB,R)X0 as Ū = A(φR,M)C̄ with
C̄ = G0A

H
t (θB,R)X0, the estimation of φR,M based on

Y0 in the first stage can be formulated as regularized
denoising

min
µ

2
‖Ū‖AM

+
1

2
‖Y0 −WH

0 Ū‖2F, (15)

which can be further expressed as

{ˆ̄u1,
ˆ̄Z, ˆ̄U} = arg min

ū1,Z̄,Ū

µ

2N0
Tr(Z̄) +

µ

2NM
Tr(Toep(ū1))

+
1

2
‖Y0 −WH

0 Ū‖2F

s.t.
[
Toep(ū1) Ū

ŪH Z̄

]
� 0, (16)

where µ is a regularization parameter controlling the
trade-off between sparsity and data fitting, set as µ ∝√
σ2NM log(NM) [43]. We assume that we know the number

of (significant) paths as prior information. In practice, this can
be identified either by long-term site specific measurements
or CS based support recovery algorithms, for example. The
recovery of φR,M is then based on the solution of Toep(ˆ̄u1)
from (16) by root finding approach or other related approaches,
e.g., the classical multiple signal classification (MUSIC) and
estimation of signal parameters via rotational invariant tech-
niques (ESPRIT) [51], [52].

2) Estimation of θB,R: Similarly, based on the YH
0 , we can

recover θB,R by addressing the following convex problem

min
η

2
‖Ũ‖AM

+
1

2
‖YH

0 −XH
0 Ũ‖2F, (17)

where Ũ = A(θB,R)GH
0 AH(φR,M)W0 = A(θB,R)C̃ with

C̃ = GH
0 AH(φR,M)W0, and η is a regularization parameter
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controlling the trade-off between sparsity and data fitting, set
as η ∝

√
σ2NB log(NB) [43]. It can be further expressed as

{ˆ̃u1,
ˆ̃Z, ˆ̃U} = arg min

ũ1,Z̃,Ũ

η

2M0
Tr(Z̃) +

η

2NB
Tr(Toep(ũ1))

+
1

2
‖YH

0 −XH
0 Ũ‖2F

s.t.
[
Toep(ũ1) Ũ

ŨH Z̃

]
� 0. (18)

Similarly, the recovery of θB,R is based on the solution of
Toep(ˆ̃u1) from (18) by root finding approach or other related
approaches.

C. Second Stage of Channel Estimation Algorithm

In the second stage, we first design training and receive
beams, which leads to a simplified approximate observation
model. From this model, we can determine LB,RLR,M separate
observations and apply SMV atomic norm minimization on
each of these. These different steps are now detailed.

1) Training and Receive Beams: After estimation of θB,R
and φR,M, we align the training beams at BS and receiving
beams at MS with these angles. Namely, we design the Xt

and Wt, for t = 1, · · · , T , as follows

Xt =
1√
NB

A(θ̂B,R),

Wt =
1√
NM

A(φ̂R,M), (19)

where θ̂B,R and φ̂R,M are the estimates of θB,R and φR,M,
respectively, from the first stage. The numbers of columns
in Xt and Wt are LB,R and LR,M, respectively. In general,
these values are far less than the number of the training
beams/sequences used in the first stage, i.e., LB,R � N0 and
LR,M �M0. Therefore, the training overhead can be reduced
tremendously by first determining θB,R and φR,M in the first
stage and then guiding the design of Xt and Wt, used in the
second stage.

2) Simplified Observation Model: Assuming we have a
very accurate estimate in the first stage, i.e., θ̂B,R ≈ θB,R and
φ̂R,M ≈ φR,M, we have the following

AH(θB,R)Xt ≈
√
NBI,

WH
t A(φR,M) ≈

√
NMI, (20)

under the condition of sufficient separation of angles and a
large number of antennas at both BS and MS. In practice, the
estimation performance depends on the SNR level, number of
training sequences used in the first stage, and the size of the
combining matrix in the first stage. Super resolution estimation
can be achieved in the high SNR regime with reasonable
training overhead, as can be seen in the numerical study in
Section VI. In general, the estimation in the first stage loses
the order information on entries in θB,R and φR,M. Therefore,
the products may not be scaled identity matrices as in (20) but
scaled elementary matrices. This does not affect the parameter
estimation in the second stage, as explained in the sequel.

Let us assume that the relationship in (20) holds. Then, the
received signals in the second stage can be further approxi-
mated as

Yt = WH
t A(φR,M)GtA

H(θB,R)Xt + WH
t Zt

≈
√
NBNMGt + WH

t Zt, for t = 1, · · · , T. (21)

3) Formulation of LB,RLR,M observations: Recalling that
Gt = diag(ρR,M)AH(θR,M)ΩtA(φB,R)
diag(ρB,R), the (m,n)th entry of Gt is in the form of

[Gt]mn = [ρR,M]mω
T
t α([∆]mn)[ρB,R]n,

for m = 1, · · · , LR,M, n = 1, · · · , LB,R, (22)

where [∆]mn = asin
(

sin([φB,R]n) − sin([θR,M]m)
)

is the
angle difference matrix associated with the RIS and ωt ∈
CNR×1 is the vector composed of diagonal elements of Ωt,
i.e., Ωt = diag(ωt). By setting gt = vec(Gt), the ith element
of gt is of the form of

[gt]i = ρiω
T
t α(θ̃i) for i = 1, · · · , LB,RLR,M, (23)

where

ρi = [ρR,M]m[ρB,R]n,

θ̃i = asin
(

sin([φB,R]n)− sin([θR,M]m)
)
,

with m = (i− 1)%LR,M + 1, n =
⌈ i

LR,M

⌉
, (24)

where % is the modulo operation. In other words, the product
of propagation path gains ρi is taken from entries of vector
ρ = ρR,M ⊗ ρB,R, and θ̃i is taken from the set of angle
differences

Θ̃ = {θ̃ : asin
(

sin([φB,R]n)− sin([θR,M]m)
)
,

m = 1, · · · , LR,M, n = 1, · · · , LB,R}. (25)

Therefore, each element in vec(Yt) corresponds to one couple
of unknown parameters {ρi, θ̃i}, i = 1, . . . , LB,RLR,M. We
now gather these observations across T transmission blocks.
By introducing Y =

[
vec(Y1), · · · , vec(YT )

]
and Ḡ =

[g1, · · · ,gT ], each element in the ith row in Y, denoted by
[Y]i,:, corresponds to the same {ρi, θ̃i}. Hence, we can express
the ith row in column format as

[Y]Ti,: ≈
√
NBNM[Ḡ]Ti,: + zi,

=
√
NBNM[ω1, · · · ,ωT ]Tρiα(θ̃i) + zi,

=
√
NBNMΩ̄ρiα(θ̃i) + zi, (26)

where Ω̄ = [ω1, · · · ,ωT ]T and zi is the additive noise as
zi = [vec(WH

1 Z1), · · · , vec(WH
TZT )]Ti,:.

4) SMV Atomic Norm Minimization: According to the for-
mulation (26), this incurs LB,RLR,M sparsity-1 signal recovery
problems with Ω̄ being the linear measurement matrix. We can
estimate ρi and θ̃i by resorting to atomic norm minimization
on SMV. It should be noted that we cannot estimate ρR,M
and ρB,R separately due to the coupling effect, and the same
principle applies to φB,R and θR,M, as seen in (22) and (24).
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Fig. 3. The proposed two-stage CE approach, where in the first
stage AoDs from BS-RIS channel and AoAs from RIS-MS channel
are determined and in the second stage, training and receive beams
aligned with these directions are used to collect observations to
estimate the products of propagation path gains and angle differences.

In the second stage, LB,RLR,M atomic norm minimization
problems are formulated as

{v̂, ĥi, ẑ} = arg min
v,hi,z

0.5νiz +
νi

2NR
Tr(Toep(v))

+
1

2
‖[Y]Ti,: −

√
NBNMΩ̄hi‖22

s.t.
[
Toep(v) hi

hH
i z

]
� 0, for i = 1, · · · , LB,RLR,M,

(27)

where hi = ρiα(θ̃i) and the regularization parameter νi is set
as νi ∝

√
σ2NR log(NR). The estimate of θ̃i, denoted as ˆ̃

θi,
relies on Toep(v̂) by resorting to root finding methods. The
estimation of ρi is obtained by using least squares (LS) as

ρ̂i =
(
α(

ˆ̃
θi)
)†

ĥi, (28)

where (·)† denotes Moore-Penrose pseudo-inverse and ĥi is
the solution from (27) for hi.

The proposed two-stage CE approach is summarized in
Fig. 3.

Remark 2. There exists one-to-one correspondence between
{ρi, θ̃i} and [Y]i,:, depicted in (26). As shown in (27), we
estimate the parameter pairs {ρi, θ̃i} one by one based on
one row from Y. The loss of order information on entries in
θB,R and φR,M in the first CE stage will only change the row
order of Y accordingly, which will only changes the order
of estimating the parameter pairs other than bring negative
effect on the estimation accuracy.

D. Complexity Analysis and Training Overhead

The computational complexity in the first stage depends on
the size of the positive semidefinite matrix in (16) and (18),
i.e., max

{
O
(
(NB +M0)3.5

)
, O
(
(NM +N0)3.5

)}
[43]. In the

second stage, the computational complexity is proportional to

O
(
(NR + 1)3.5

)
. Therefore, the overall complexity is propor-

tional to max
{
O
(
(NB+M0)3.5

)
, O
(
(NM+N0)3.5

)
, O
(
(NR+

1)3.5
)}

, which is determined by the largest number among the
three-tuple {NB +M0, NM +N0, NR + 1}.

The overall training overhead is

Tt = N0

⌈M0

NRF

⌉
+ TLB,R

⌈LR,M

NRF

⌉
. (29)

V. RIS CONTROL AND BEAMFORMING & COMBINING
DESIGN

The ultimate motivation of estimating the channel parame-
ters discussed above is to enable coherent demodulation, to be
able to design the phase control matrix at the RIS and transmit
and receive beamforming vectors in order to maximize the SE.

A. Design of Ω

The optimization criterion used here is to maximize the
power of G, defined in (6), as a function of Ω, i.e., ‖G‖2F,
to maximize the effective SNR at the receiver.9 The optimal
design of Ω is expressed as

Ω? = arg max
Ω
‖G‖2F, (30)

where ‖G‖2F can be expressed as

‖G‖2F = ‖diag(ρR,M)AH(θR,M)ΩA(φB,R)diag(ρB,R)‖2F
(a)
=

LB,R∑
n=1

LR,M∑
m=1

∣∣∣[ρB,R]n[ρR,M]mω
T
(
α∗([θR,M]m) ◦α([φB,R]n)

)∣∣∣2
(b)
=

LB,RLR,M∑
i=1

∣∣∣ρiωTα(θ̃i)
∣∣∣2, (31)

where (a) and (b) are obtained by following (22) and (23),
respectively, and ω = diag(Ω). Therefore, the optimal ω
(denoted by ω?) based on the estimates in the second stage is
obtained by

ω? = arg max
ω

LB,RLR,M∑
i=1

∣∣∣ρ̂iωTα(
ˆ̃
θi)
∣∣∣2

= arg max
ω
ωTEEHω∗, (32)

where

E = [α(
ˆ̃
θ1), · · · ,α(

ˆ̃
θLB,RLR,M)]diag([ρ̂1, · · · , ρ̂LB,RLR,M ]).

(33)

We conduct singular value decomposition (SVD) on EEH

as EEH = JDJH, where JJH = JHJ = I and D is a
diagonal matrix with singular values on the diagonal as a
descending order. The optimal ω? is chosen as the conjugate
of the first column of J and then projected to the unit-modulus
vector space, i.e., ω? = exp(−jphase([J]:,1)), where phase(·)
denotes the element-wise operation of extracting the phases of
the argument.

9Note that the design of phase control matrix in (30) is heuristic, and not
guaranteed to be optimal for SE maximization. Better criteria may exist for
the design of Ω, which is left for our future investigation.
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Remark 3. The optimal phase control matrix Ω? = diag(ω?)
for the power maximization criterion of the effective channel
is closely aligned with the conjugate of the singular vector
associated with the largest singular value of the matrix EEH.

B. Beamforming at BS and Combining at MS

The BS BF and MS combining design is based on the
estimate of composite channel after setting Ω? = diag(ω?).
The reconstructed composite channel is formulated as

Ĥ = A(φ̂R,M)ĜAH(θ̂B,R), (34)

where Ĝ = vec2mat(ĝ) with [ĝ]i = ρ̂iω
?Tα(

ˆ̃
θi), constructed

by using Ω? and estimates in the second stage, i.e., {ρ̂i, ˆ̃
θi},

and vec2mat(·) converts a vector to a matrix with a predefined
size.10 The SVD is further applied to Ĥ as Ĥ = ŬΣV̆H, and
the optimal BF and combining vectors at the BS and MS are
aligned with the singular vectors associated with the largest
singular value, i.e., the BF vector at the BS as f ≈ [V̆]:,1 and
the combining vector at the MS as w ≈ [Ŭ]:,1 after taking
into consideration the constraints of the hybrid precoding
architecture.11

VI. PERFORMANCE EVALUATION

In this section, we demonstrate the efficiency of the pro-
posed CE approach. We present several benchmarks, detail the
simulation scenario parameters as well as performance metrics,
and provide an in-depth performance analysis and discussion.

A. Benchmarks

For the benchmark scheme, we consider the OMP based
two-stage approach. In the first stage, the vectorization of Y0

is in the form of

y0 = vec(Y0) = (XT
0 ⊗WH

0 )vec(H(Ω0)) + vec(WH
0 Z0),

= (XT
0 ⊗WH

0 )Āg0 + n0, (35)

where Ā = A∗(θB,R) ⊗ A(φR,M) and n0 = vec(WH
0 Z0).

Āg0 in (35) can be further expressed as Āg0 = Adg̃0,
where Ad is deemed as an overcomplete dictionary containing
the columns of Ā and constructed by quantizing the angular
domains of AoD of the BS-RIS channel and AoA of RIS-
MS channel into 2NB and 2NM levels, respectively. Ideally,
g̃0 is a vector with LB,RLR,M elements the same as these of
g0 while the remaining elements are all-zeros. In other words,
Āg0 can be sparsely represented under a certain overcomplete
dictionary. XT

0 ⊗WH
0 is considered as the linear measurement

matrix. Therefore, the recovery of Ā (or equivalently θB,R
and φR,M) and g0 can be addressed by resorting to the OMP
algorithm [41], which sequentially finds the atoms from the
overcomplete dictionary Ad in order to greedily improve
the approximation. In the second stage, the dictionary is

10Here, vec2mat(·) is an inverse operation of vec(·). For instance, we
have ĝ = vec(Ĝ), and on the contrary, we have Ĝ = vec2mat(ĝ) under
the condition that the size of Ĝ is known.

11We use ≈ here due to the inherent hardware constraints, which may bring
some gap between f(w) and [V̆]:,1([Ŭ]:,1). If no constraints exist, like that
in the full digital precoding systems, = will be used instead.

constructed by quantizing the angular domains into 2NR and
each atom is in the form of an array response vector. The
recovery of {ρi, θ̃i} is also conducted by using OMP on (26).

We also consider two benchmarks under perfect CSI: (i)
CSI of the individual channels is perfectly known to eval-
uate the average SE, where the RIS phase control matrix,
BS beamformer, and MS combiner are jointly designed via
an iterative method. This perfect CSI may be obtained by
knowing the exact location information of the BS, MS, and
RIS and environmental information [53]; (ii) CSI of the LoS
path is perfectly known, where we align the beams with the
angles related to the LoS path and evaluate the average SE
bound.

B. System Parameters and Performance Metrics

The simulation parameters are set as follows: NB = NM =
16, NR = 64, and NRF = 8. The angle separation in
terms of directional sine is assumed to be larger than 4/NB,
4/NR, and 4/NM at the BS, RIS, and MS, respectively. We
assume that the propagation path gains follow CN (0, 1) until
Section VI-C3 and each element of Zt follows CN (0, σ2). The
SNR is defined as 1/σ2, and 2000 realizations are considered
for averaging. Without loss of generality, we fix the channel
coherence time as 500 (in symbol times, i.e., Tc = 500) in the
evaluation of effective SE bound.

Performance will be assessed in several metrics: (i) the
MSE of the estimated parameters (angles in the first stage,
angle difference and the product of propagation path gains in
the second stage), (ii) the average effective SE bound; (iii)
the average squared distance (ASD) between the designed
beamformer (combiner) in Section V-B and the optimal one
obtained by assuming full CSI; and (iv) the RIS gain based
on the estimated parameters. The MSEs of angular parameter
estimation and product of propagation path gains estimation
are defined as12

MSE
(

sin(θB,R)
)

= E
[‖ sin(θB,R)− sin(θ̂B,R)‖22

LB,R

]
,

MSE
(

sin(φR,M)
)

= E
[‖ sin(φR,M)− sin(φ̂R,M)‖22

LR,M

]
,

MSE
(

sin(∆)
)

= E
[‖ sin(∆)− sin(∆̂)‖2F

LB,RLR,M

]
,

MSE(ρ) = E
[‖ρ− ρ̂‖22
LB,RLR,M

]
. (36)

The average effective SE bound for a given channel real-
ization is defined as13 [54]

R=E

[
Tc − Tt
Tc

log2

(
1 +

|wHĤf |2

σ2 +var
(
wHHe(Ω

?)f
))] bits/s/Hz,

(37)

12Another way to formulate the MSEs is directly based on the angular
estimates without taking sine operation. Nevertheless, the results based on
the two types of calculations will be consistent.

13It should be noticed that this is an asymptotic theoretical lower bound
on data rate for the subsequent data transmission phase after designing the
beamformers w and f and RIS phase control matrix Ω?, based on the
estimates by the proposed CE scheme.
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Fig. 4. Comparison between the proposed CE algorithm and that
from [34] in terms of channel parameter estimation for the single
path scenario.

where the design of Ω? was discussed in Section V-A and the
design of w and f in Section V-B, and He(Ω

?) is the channel
estimation error, defined as He(Ω

?) = H(Ω?) − Ĥ. Recall
that Tc denotes that number of time slots in a coherence time
interval, while Tt is the training time from (29), expressed
as a multiple of the OFDM symbol duration. As can be seen
in (37), the average effective SE bound is closely coupled with
the estimation accuracy, the training overhead, and the design
criterion of joint active and passive beamformers. Therefore,
we also introduce it here as a performance metric, like in [2],
[30], [47]. As said above, we average the SE results over 2000
channel realizations.

The ASD of the beamformer is defined as

ASDf = E[‖f − fo‖22], (38)

ASDw = E[‖w −wo‖22], (39)

where fo and wo denote the optimal beamformer and combiner
at the BS and MS, respectively (assuming full CSI).

Finally, the RIS gain is defined as

GRIS = |AH(θR,M)Ω?A(φB,R)|2F/N2
R . (40)

C. Results and Discussion

1) Single Path Scenario: As an initial study, we make
a comparison between our proposed CE scheme with that
from [34] (using iterative reweighted method) for single path
scenario, i.e., LB,R = LR,M = 1. The simulation results are
provided in Fig. 4, where the training overhead is Tt = 30.
As seen from the figure, the proposed CE scheme outperforms
that in [34].

2) Effect of Training Overhead: The simulation results on
the impact of training overhead on the parameter estimation
performance as a function of the SNR are shown in Figs. 5
and 6 for LB,R = LR,M = 2 with two different setups:
N0 = M0 = T = 10 with Tt = 40 and N0 = M0 = T = 14
with Tt = 56. The results in Figs. 5 and 6 show that the
increasing training overhead brings better performance on the
channel parameter estimation at both stages as expected. The
angular parameter estimation performance of the OMP-based
benchmark scheme saturates to the level of 10−2 while the
proposed scheme can bring better performance even in the
low SNR regime, where a mild saturation of our scheme can

Fig. 5. The effect of training overhead on angular parameter estima-
tion performance.

Fig. 6. The effect of training overhead on product of propagation path
gains estimation performance in the second stage.

also be observed. The results for the average effective SE
bound and RIS gains are provided in Figs. 7 and 8, which
are aligned with the results for channel parameter estimates,
shown in Figs. 5 and 6. The proposed scheme approximates
the perfect CSI case in the low SNR regime with only dozens
of consumed time slots in terms of both average effective SE
bound and RIS gains. The saturation of average effective SE
bound may results from the saturation of variance of channel
estimation error, and this phenomenon needs to be further
studied in depth as our future work.

3) Effect of Path Gain Profile: We continue to study the
effect of path gain profile on the estimation performance.
Unlike the homogenous paths with all the paths modelled
as CN (0, 1) in the previous subsection, we consider the
scenario of inhomogenous paths with one path modelled as
CN (0, 1) and the remaining modelled as CN (0, 0.01). On
the average, 20 dB gap is considered regarding the average
power of the strongest path vs. that of a weak path. The
simulation parameters are set as N0 = M0 = T = 10
and LB,R = LR,M = 2. The simulation results on channel
parameter estimation are provided in Fig. 9 path by path,
where the prior information on the number of paths is assumed
to be known precisely. The MSE performance of parameter
estimation related to the strong paths outperforms that related
to the weak path(s).
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Fig. 7. Average effective SE bound vs. SNR.

Fig. 8. RIS gain vs. SNR.

We now study the ASD between the designed beamformer
(combiner) in Section V-B and the optimal one, designed by
assuming full CSI of the individual channels. We compare the
performance with partial estimation, where in Stage 2 only
beams towards the strongest path are formed (leading to a
reduced Tt). We also compare with the OMP-based two-stage
approach. The performance is shown in Fig. 10. From the
figure, we observe that the partial estimation can offer com-
parable performance compared to the that by full estimation
in the inhomogeneous paths scenario, where only one path
dominates in each individual channel. The performance of the
proposed scheme significantly outperforms that of the OMP-
based counterpart in terms of ASD.

The full estimation aiming at estimating all the channel
parameters even brings some negative effect on the average
effective SE bound, shown in Fig. 11, compared to the
partial estimation. This may result from the poor estimation
of product of propagation path gains, related to weak paths,
which in turn provides a bad design of RIS phase control
matrix. An initial result on perfect CSI on the LoS (assuming
that the strongest path is the LoS with path gain following
CN (0, 1)) is obtained by aligning the beams towards the
corresponding angles. As shown in Fig. 11, knowing the LoS
path (e.g., from the accurate location information) even brings
some gains compared to the proposed scheme in the scenario
of inhomogeneous paths, and offers similar performance with

Fig. 9. Channel parameter estimation for inhomogeneous paths sce-
nario from the path by path perspective.

Fig. 10. Average squared distance between the designed beam-
former/combiner and the optimal one for partial estimation vs. full
estimation.

perfect full CSI case. This will attract great interests on
application of location information (in practice imperfect)
to the RIS-aided mmWave MIMO systems to boost the CE
process and BF design.

VII. CONCLUSIONS AND FUTURE WORK

We have studied the CE problem for the RIS-aided mmWave
MIMO systems and proposed a two-stage atomic norm
minimization problem, which can efficiently perform super-
resolution channel parameter estimation. The power maxi-
mization criterion has been utilized to guide the design of
phase control matrix at the RIS, followed by joint design
of beamforming and combining vectors at the BS and MS
based on the reconstructed composite channel. Simulation
results have confirmed the advantages of the proposed scheme
compared to the two-stage OMP approach in terms of MSE
of angular parameter estimation and product of propagation
of path gains estimation, average effective SE bound, and
RIS gains in the homogeneous paths scenario. In the inho-
mogeneous paths scenario, we have evaluated the parameter
estimation from the path by path perspective, where better
performance can be achieved for the parameters related to
the strong paths. The benefits brought by the availability of
location information in the inhomogenous paths scenario has
also been examined.
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Fig. 11. Average effective SE bound for inhomogeneous paths sce-
nario, partial estimation vs. full estimation.

Future studies can include the optimization of training and
combining matrices during stage 1 sounding, optimization of
the regularization parameter to bring a better trade-off between
the data fitting (i.e., effect of noise term) and sparsity (i.e.,
prior information). In addition, the transmit powers during
the entire sounding process can be optimized to bring better
estimation performance. The prior information on the number
of paths should be avoided to make the proposed scheme
practical. Some preliminary results on the benefits brought
by location information on the RIS and MS are provided,
and deserve to be explored in depth with a more realistic
assumption on the location awareness.
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