Fabrication and Characterization of GaN-Based Fin-Channel Array Metal-Oxide-Semiconductor High-Electron Mobility Transistors with Recessed-Gate and Ga2O3 Gate Insulator Layer

Citation for the original published paper (version of record):
Fabrication and Characterization of GaN-Based Fin-Channel Array Metal-Oxide-Semiconductor High-Electron Mobility Transistors with Recessed-Gate and Ga2O3 Gate Insulator Layer
IEEE Journal of the Electron Devices Society, 9: 393-399
http://dx.doi.org/10.1109/JEDS.2021.3069973

N.B. When citing this work, cite the original published paper.

©2021 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
Fabrication and Characterization of GaN-Based Fin-Channel Array Metal-Oxide-Semiconductor High-Electron Mobility Transistors With Recessed-Gate and Ga$_2$O$_3$ Gate Insulator Layer

HSIN-YING LEE1 (Member, IEEE), TING-WEI CHANG2, EDWARD YI CHANG3 (Fellow, IEEE), NIKLAS RORSMAN4, AND CHING-TING LEE1,5 (Life Fellow, IEEE)

1 Department of Photonics, National Cheng Kung University, Tainan 701, Taiwan
2 Institute of Microelectronics, Department of Electrical Engineering, National Cheng Kung University, Tainan 701, Taiwan
3 Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
4 Department of Microtechnology and Nanoscience, Chalmers University of Technology, 412 96 Gothenburg, Sweden
5 Department of Electrical Engineering, Yuan Ze University, Taoyuan 320, Taiwan

CORRESPONDING AUTHOR: Ching-Ting Lee (e-mail: ctlee@ee.ncku.edu.tw)

This work was supported in part by the Ministry of Science and Technology of the Republic of China under Grant MOST 108-2221-E-155-029-MY3, Grant MOST 108-2221-E-006-215-MY3, and Grant MOST 109-2923-E-155-001; and in part by the Swedish Strategic research Foundation under Contract STP19-0008.

ABSTRACT In this work, the properties of gallium oxide (Ga$_2$O$_3$) and its excellent interface properties to GaN-based materials are explored as a gate insulator layer for GaN-based metal-oxide-semiconductor high-electron mobility transistors (MOSHEMTs). A novel vapor cooling condensation system was used to deposit the high quality Ga$_2$O$_3$ films with high insulation and low defect suitable for gate insulator layer. The characteristics of the Ga$_2$O$_3$ films were further explored by implementing GaN-based fin-channel array MOSHEMTs with recessed-gates and different channel widths. Compared to planar channel structure, the direct current, high frequency, and flicker noise performances were enhanced in the fin-channel MOSHEMTs with Ga$_2$O$_3$ gate insulator layer. For the GaN-based fin-channel array MOSHEMTs with 300-nm-wide channel, the devices exhibited superior performances of maximum extrinsic transconductance of 194.2 mS/mm, threshold voltage of -1.4 V, extrinsic unit gain cutoff frequency of 6.4 GHz, maximum oscillation frequency of 14.8 GHz, and normalized noise power of 8.45×10^{-15} Hz$^{-1}$. It was also demonstrated that the associated performances were improved by reducing the width of fin-channel array.

INDEX TERMS Ga$_2$O$_3$ gate insulator layer, GaN-based MOSHEMTs, laser interference photolithography system, fin-channel array, vapor cooling condensation system.

I. INTRODUCTION GaN-based high-electron mobility transistors (HEMTs) are suitable for high temperature, high power, and high frequency applications [1], [2], due to wide bandgap as well as good electron transport properties and high sheet electron density of two-dimensional electron gas (2-DEG) residing in the available heterostructures of the material system. Despite impressive performances of GaN-based metal-semiconductor high-electron mobility transistors (MESHEMTs), metal-oxide-semiconductor high-electron mobility transistors (MOSHEMTs) have more recently attracted interest to improve the high voltage operation and high power-handling capability. Several dielectric materials have been used as gate insulator by inserting them between the GaN-based semiconductors and gate metals [3]–[5]. Owing to the high radiation resistance,
high breakdown electric field, high thermal stability, and high chemical stability of Ga$_2$O$_3$ material [6], it has previously been used in electronic devices and electrooptical devices [7]–[9]. Furthermore, the Ga$_2$O$_3$ material is expected to be a good gate insulator for GaN-based MOSHEMTs, since the Ga$_2$O$_3$/GaN interface exhibits superior interface properties caused by the spontaneous termination of Ga atoms with oxygen [10]. Although several methods have been used to deposit Ga$_2$O$_3$ thin films [11]–[13], it is difficult to obtain the required insulator properties due to the undesirably induced oxygen vacancies and defects residing within the Ga$_2$O$_3$ thin films [14].

In this work, we apply the vapor cooling condensation system to deposit high quality Ga$_2$O$_3$ thin films as the gate-insulator in various GaN-based fin-MOSHEMTs. The direct current (DC), high frequency, and low frequency noise performances of the resulting GaN-based planar channel and fin-submicron channel array MOSHEMTs with Ga$_2$O$_3$ gate insulator layer were measured and analyzed.

II. EXPERIMENT

A metalorganic chemical vapor deposition (MOCVD) system was used to grow epitaxial layers of GaN-based MOSHEMTs on c-plane sapphire substrates. The epitaxial layers included a 20-nm-thick AlN nucleation layer, 4.0-μm-thick carbon-doped GaN buffer layer, 300-nm-thick undoped i-GaN layer, and 35-nm-thick Al$_{0.15}$Ga$_{0.85}$N layer (referred to as AlGaN, hereafter). The induced 2-DEG electron density and mobility were 1.11×10^{13} cm$^{-2}$ and 1700 cm2/V-s, respectively.

Fig. 1 shows the epitaxial layers and schematic configuration of the GaN-based fin-MOSHEMT consisting of an array of submicron channels with Ga$_2$O$_3$ gate insulator layer and recessed-gates. The fin-channels were defined with a He-Cd laser interference photolithography system using AZ6112 positive photoresist. By changing the incident angle of the two-intersected He-Cd laser beams, both 300-nm-wide and 500-nm-wide channel arrays were defined. After a lift-off process, a Ni/Au (20/100 nm) mask was formed. A photoelectrochemical (PEC) etching method was used to etch the unmasked AlGaN regions to a depth of about 70 nm. The PEC etching system was reported previously [15]. Standard photolithography system and reactive-ion-etching system were sequentially used to define and form the mesa isolation region (310 μm x 320 μm) using a Ni (500 nm) mask. After removing the native oxide on the AlGaN surface with an (NH$_4$)$_2$S$_2$ solution at 60 °C for 30 min [16], source and drain electrodes were formed by evaporating Ti/Al/Pt/Au (25/100/50/300 nm) metals and annealing in a N$_2$ ambient rapid-thermal-annealing (RTA) system at 800 °C for 2 min. Using the measurement of a transfer length method, the resulting specific contact resistance was about 7.0×10^{-6} Ω·cm2. The separation between source electrode and drain electrode was 6 μm. Using standard photolithography to define gate-recessed structure, the 10-nm-deep and 1-μm-wide gate-recessed regions were etched with a PEC etching system. The vapor cooling condensation system [17] was used to deposit 40-nm-thick Ga$_2$O$_3$ layer as the gate insulator layer at approximately 80 K. The sample was then annealed in an oxygen ambience at 900 °C for 60 min. Using the measurement of X-ray diffraction pattern, the as-deposited Ga$_2$O$_3$ films were amorphous and the 900 °C-annealed Ga$_2$O$_3$ films were polycrystalline β-Ga$_2$O$_3$ films [18]. The electron concentration of 1.0×10^{15} cm$^{-3}$ and electron mobility of 16.0 cm2/V-s of the resulting Ga$_2$O$_3$ insulator layer were obtained previously [18]. 1-μm-wide Ni/Au (20/320 nm) gate metals were deposited using an electron-beam evaporator system and a lift-off process. The gate with 1 μm length was located at the center regions between source electrode and drain electrode and the gate-to-drain separation was 2.5 μm. Fig. 2(a) and Fig. 2(b) show the cross-sectional configuration of source, gate, and drain regions, and its cross-sectional configuration of a fin-channel array, respectively.
III. EXPERIMENTAL RESULTS AND DISCUSSION

Fig. 3(a) shows the high resolution transmission electron microscopy (HRTEM) image of the cross-sectional AlGaN/GaN submicron fin-channel array MOSHEMTs with 300-nm-wide channels. In the HRTEM image, the Pt layer was deposited for protecting sample by ion bombardment during cutting process using focus ion beam system. Besides, the carbon (C) layer was deposited to protect sample during HRTEM measurement. The actual channel width and channel period were 316.1 nm and 929.5 nm, respectively. Consequently, there are 53 channels within the 50-μm-wide source electrode and drain electrode, resulting in a real total channel width of 16.75 μm. Fig. 3(b) shows the HRTEM image of the MOSHEMTs with 500-nm wide channels. In this case, the channel width, channel period, channel number and real total channel width were 508.2 nm, 1010.3 nm, 50, and 25.41 μm, respectively.

Figs. 4(a), (b), and (c) show the typical drain-source current-drain-source voltage (I_D-S-V_D-S) characteristics of the AlGaN/GaN MOSHEMTs with planar channel, 500-nm-wide channels, and 300-nm-wide channels, respectively. The normalized saturation drain-source current was 506.7 mA/mm, 617.6 mA/mm, and 750.0 mA/mm, respectively, at a bias of V_{DS} = 10 V and V_{GS} = 5 V. The normalized drain-source current was normalized by the associated real total channel width. The normalized saturation drain-source current increased with a reduction of channel width due to the better heat dissipation driven by lateral heat flow [19], [20]. Fig. 5 shows the associated drain-source current and extrinsic transconductance (g_m) as a function of gate-source voltage at V_{DS} = 10 V. A threshold voltage (V_{T}) of −3.5 V, −2.3 V, and −1.4 V was obtained for the devices with planar channel, 500-nm-wide channel array, and 300-nm-wide channel array, respectively. The reduction in absolute threshold voltage (|V_{T}|) with a narrower fin-channel width is attributed to the enhanced pinch-off effect.
caused by the lateral electric field [21], [22]. The maximum extrinsic transconductance (g_{mmax}) was 85.8 mS/mm, 121.9 mS/mm, and 194.2 mS/mm for the devices with planar channel, 500-nm-wide channel array, and 300-nm-wide channel array, respectively. The improved g_{mmax} in the devices with a narrower fin-channel width was attributed to the better gate control capability and better heat dissipation in the narrower fin-channel structure.

The subthreshold swing (SS), defined as $dV_{\text{GS}}/d\log(I_{\text{DS}})$, was extracted from typical drain-source current-gate-source voltage (Ids-Vgs) characteristics at $V_{\text{DS}} = 0.1$ V (Fig. 6). The SS of the devices with planar channel, 500-nm-wide channel array, and 300-nm-wide channel array was 380.2, 175.9, and 113.1 mV/dec, respectively. The improvement of SS by decreasing the fin-channel width was attributed to the better heat dissipation and better gate control capability in narrower fin-channel array [19]–[23]. Fig. 7 shows the dependence of gate-source leakage current on gate-source voltage. As shown in Fig. 7, it was found that the gate-source leakage current at a bias voltage of $V_{\text{GS}} = -100$ V was 778.2 nA, 20.4 nA and 0.73 nA for the devices with planar channel, 500-nm-wide channel array, and 300-nm-wide channel array, respectively. The smaller gate-source leakage current is attributed to the smaller real total gate area in the narrower fin-channel array. However, similar gate-source breakdown voltage of approximately -540 V was obtained for the different channel designs. The low gate-source leakage current and high gate-source breakdown voltage can verify the high quality and high insulation of the Ga$_2$O$_3$ films deposited by vapor cooling condensation system at low temperature.

Fig. 8 shows the small-signal high frequency characteristics of the various devices measured with a network analyzer (Agilent 8150C). The extrinsic unit gain cutoff frequency (f_T) and the maximum oscillation frequency (f_{max}) were 5.7 GHz and 11.0 GHz, 6.0 GHz and 13.2 GHz, and 6.4 GHz and 14.8 GHz for the AlGaN/GaN MOSHEMTs with planar channel, 500-nm-wide channel array, and 300-nm-wide channel array, respectively. Figs. 9(a), (b), and (c) show the normalized noise power density (S_{ids}(f)/I_{DS}^2) spectra as a function of frequency (f) of the various devices.
FIGURE 8. Short-circuit current gain and maximum available power gain as a function of frequency of various AlGaN/GaN MOSHEMTs.

TABLE 1. Comparison of Hooge’s coefficient of various devices.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hooge’s coefficient</td>
<td>9.7×10^-4</td>
<td>1.6×10^-4</td>
<td>1.6×10^-4</td>
<td>1.6×10^-4</td>
<td>5.1×10^-4</td>
<td></td>
</tr>
</tbody>
</table>

measured with a low-noise bias supply (Agilent 4156C semiconductor parameter analyzer), dynamic signal analyzer (HP 35670A), and noise analyzer (BTA 9812B) where S_{IDS} was the noise power density. The normalized noise power density at 1 Hz was 3.79×10^{-14} Hz$^{-1}$, 1.41×10^{-14} Hz$^{-1}$, and 8.45×10^{-15} Hz$^{-1}$ for the devices with planar channel, 500-nm-wide channel array, 300-nm-wide channel array, respectively. The normalized noise power density was reduced with narrower fin-channels owing to better screening effect of trapping/detrapping probability [24]. To compare low-frequency noise performances, the Hooge’s coefficient α is a figure-of-merit of devices. Using the mobility fluctuation model [25], the α value is calculated from the following expression:

$$\alpha = \left(\frac{S_{IDS}}{I_{DS}^2} \right) \cdot f \cdot (L_G W_{Gnch}(V_{GS} - V_T)/|V_T|) \tag{1}$$

where f is frequency, L_G is gate length, W_G is gate width, n_{ch} is channel electron density, V_{GS} is gate-source voltage, and V_T is threshold voltage. By substituting the related values, under the operation of $V_{DS} = 1$ V and $f = 100$ Hz, the α value of 5.1×10^{-5}, 8.0×10^{-6}, and 6.2×10^{-6} was obtained for the devices with planar channel, 500-nm-wide channel array, and 300-nm-wide channel array, respectively. To compare the low-frequency noise performances with the other published results, Table 1 listed the Hooge’s coefficient of various devices. It was found that the better low-frequency noise performances were achieved by using the Ga$_2$O$_3$ films deposited using the vapor cooling condensation system. Furthermore, by extracting the normalized noise power density as a function of $1/f^\gamma$ shown in Fig. 9, the γ value was approximately 1. This phenomenon indicated that the flick noise was the dominant noise.

IV. SUMMARY AND CONCLUSION

To summarize the features of Ga$_2$O$_3$-gate-structured fin-channel width, Table 2 listed the figures of merit of the AlGaN/GaN MOSHEMTs with Ga$_2$O$_3$-gate insulator layer and with planar channel, 500-nm-wide fin-channel array, and 300-nm-wide fin-channel array, respectively. It was found that the performances were improved by reducing the width of fin-channel array. Since the efficient heat dissipation was better by driving lateral heat flow in a narrower fin-channel array [19], [20], the normalized saturation drain-source current and maximum extrinsic transconductance were consequently improved. Furthermore, owing to the early pinch-off effect [22], the threshold voltage in the AlGaN/GaN MOSHEMTs with a narrower fin-channel array was pushed toward a more positive voltage. That the subthreshold swing reduced with a narrower fin-channel width was attributed to the better heat dissipation driven by a lateral heat flow, better gate control capability, and effective passivation by Ga$_2$O$_3$ film [19]–[23]. Besides, in
view of the better gate control capability and the better complete separation between 2-DEG channel layer and GaN buffer layer in the narrower fin-channel region, the low-noise performances were consequently improved by reducing the width of fin-channel array owing to the better screening effect of trapping/detrapping probability [24]. Because of the smaller real total gate area in the AlGaN/GaN MOSHEMTs with narrower fin-channel array, the resulted smaller parasitic parameters improved the high frequency performances. Besides, the obtained low gate-source leakage current and high gate-source breakdown voltage verified that high quality and high insulating Ga2O3 films were achieved using the deposition of vapor cooling condensation system. AlGaN/GaN fin-MOSHEMTs with a Ga2O3 gate insulator deposited by the novel vapor cooling condensation system is a promising candidate in high-power and high-frequency applications.

REFERENCES

TABLE 2. Performances of various-structured GaN-based MOSHEMTs with Ga2O3 gate insulator layer.

<table>
<thead>
<tr>
<th>Channel structure</th>
<th>Planar channel width (μm)</th>
<th>Fin-channel array (μm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normalized saturation drain-source current (mA/mm) at</td>
<td>VDS = 10 V</td>
<td>VDS = 5 V</td>
</tr>
<tr>
<td>506.7</td>
<td>617.6</td>
<td>750.0</td>
</tr>
<tr>
<td>Maximum extrinsic transconductance (mS/mm)</td>
<td>85.8</td>
<td>121.9</td>
</tr>
<tr>
<td>Threshold voltage (V)</td>
<td>−3.5</td>
<td>−2.3</td>
</tr>
<tr>
<td>Subthreshold voltage (mV/dec)</td>
<td>380.2</td>
<td>175.9</td>
</tr>
<tr>
<td>Extrinsic unit gain cutoff frequency (GHz)</td>
<td>5.7</td>
<td>6.0</td>
</tr>
<tr>
<td>Maximum oscillation frequency (GHz)</td>
<td>11.0</td>
<td>13.2</td>
</tr>
</tbody>
</table>
| Normalized noise power density (Hz)
| 3.79 × 10^{-14} | \(\frac{1.41 \times 10^{-14}}{8.45 \times 10^{-15}} \) |
| Hooke’s coefficient | 5.1 × 10^{-5} | 8.0 × 10^{-5} | 6.2 × 10^{-6} |

