
Fast Analytical Motion Blur with Transparency

Downloaded from: https://research.chalmers.se, 2025-07-01 14:22 UTC

Citation for the original published paper (version of record):
Rönnow, M., Assarsson, U., Fratarcangeli, M. (2021). Fast Analytical Motion Blur with
Transparency. Computers and Graphics, 95: 36-34. http://dx.doi.org/10.1016/j.cag.2021.01.006

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology. It
covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004. research.chalmers.se is
administrated and maintained by Chalmers Library

(article starts on next page)

Computers & Graphics 95 (2021) 36–46

Contents lists available at ScienceDirect

Computers & Graphics

journal homepage: www.elsevier.com/locate/cag

Technical Section

Fast analytical motion blur with transparency

✩

Mads J.L. Rønnow

∗, Ulf Assarsson , Marco Fratarcangeli

Chalmers University of Technology, Gothenburg, Sweden

a r t i c l e i n f o

Article history:

Received 16 September 2020

Revised 26 November 2020

Accepted 15 January 2021

Available online 23 January 2021

Keywords:

Real-time rendering

Motion blur

Parallel computing

a b s t r a c t

We introduce a practical parallel technique to achieve real-time motion blur for textured and semi-

transparent triangles with high accuracy using modern commodity GPUs. In our approach, moving tri-

angles are represented as prisms. Each prism is bounded by the initial and final position of the triangle

during one animation frame and three bilinear patches on the sides. Each prism covers a number of pix-

els for a certain amount of time according to its trajectory on the screen. We efficiently find, store and

sort the list of prisms covering each pixel including the amount of time the pixel is covered by each

prism. This information, together with the color, texture, normal, and transparency of the pixel, is used

to resolve its final color. We demonstrate the performance, scalability, and generality of our approach in

a number of test scenarios, showing that it achieves a visual quality practically indistinguishable from

the ground truth in a matter of just a few milliseconds, including rendering of textured and transparent

objects. A supplementary video has been made available online. 1

© 2021 Elsevier Ltd. All rights reserved.

1

p

g

t

c

c

s

t

w

g

f

M

t

t

c

s

s

e

s

i

t

b

i

s

[

a

o

d

r

g

c

T

i

u

t

b

d

g

h

0

. Introduction

The Visual Effect industry (VFX) is currently undergoing a

aradigm shift towards real-time content productions. Modern

ame engines, in fact, are able to reproduce many realistic graphics

echniques interactively which traditionally took a high amount of

omputation time. As a consequence, design and prototyping cy-

les are shorter, and more content can be produced in less time

aving costly resources. Being able to produce vast amounts of con-

ent quickly is also useful to create training datasets for neural net-

orks from scratch.

To reach interactivity, however, some of these effects are still

rossly approximated leading to visible artifacts. One of these ef-

ects is motion blur , which is essential to represent moving objects.

otion blur is a common optical effect in photographs and videos

hat occurs when the positions of objects change with respect to

he camera point of view during the interval in time where the

amera shutter is open. If the objects are moving rapidly, or the

hutter interval is long enough, then the objects leave a blurred

treak in the direction of motion. It is important to reproduce this

ffect to synthesize immersive and more believable scenes, mimic

pecific camera models, or achieve artistic effects.
✩ This paper was recommended for publication by Michael Doggett.
∗ Corresponding author.

E-mail address: ronnow@chalmers.se (M.J.L. Rønnow).
1 Supplementary video available here

c

2

c

c

i

c

ttps://doi.org/10.1016/j.cag.2021.01.006

097-8493/© 2021 Elsevier Ltd. All rights reserved.
The computation time for this type of effect is particularly crit-

cal for real-time interactive graphics, such as video games, where

he time budget available for rendering effects such as motion

lur is just a few milliseconds. For this reason, the approach used

n modern game engines is to use computationally-cheap, screen-

pace approaches in post-processing to achieve motion blur (e.g.,

1]). While being fast, these methods suffer from occlusion issues

nd artifacts, in particular when used with transparent geometries,

r when background and foreground objects move in conflicting

irections.

Gribel et al. [2] provided precise directions on how to accu-

ately represent motion blur in a computer animation, which is

eneric enough to represent any type of triangulated object, in-

luding transparent, textured, shaded and any of these combined.

he method is validated only in a software renderer though, and it

s not possible to directly map it to modern graphics hardware to

se it in a real-time application.

In this work, we start from such directions and provide a prac-

ical, efficient parallel implementation for a corresponding GPU-

ased algorithm. Instead of using analytic edge equations and

epth functions for moving triangles [2] , we represent each trian-

le trajectory, during each single time step, by a prism with uv

oordinates and t values stored for each prism vertex. Conservative

D hulls of these prisms are then rasterized using a shader that

omputes the entry and exit points of the prism for a ray from the

amera through the pixel. These points are pairwise connected into

ntervals inside the prism, for which time, depth, and also texture

oordinates (extracted from the intersection points on the prism

https://doi.org/10.1016/j.cag.2021.01.006
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cag
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cag.2021.01.006&domain=pdf
mailto:ronnow@chalmers.se
https://www.dropbox.com/s/qeyep7osai03lq1/Supplementary_video_Fast_Analytical_Motion_Blur_with_Transparency.mp4?dl=1
https://doi.org/10.1016/j.cag.2021.01.006

M.J.L. Rønnow, U. Assarsson and M. Fratarcangeli Computers & Graphics 95 (2021) 36–46

Fig. 1. A transparent cloth falls on top of a rotating sphere producing motion blurred images. Our results (top) are rendered in real-time and are visually indistinguishable

from the ground truth (bottom).

s

T

l

o

n

t

a

p

2

t

p

b

T

r

c

h

t

t

m

r

n

c

b

t

f

e

i

a

W

m

p

a

m

o

d

l

b

t

s

t

s

a

a

t

t

i

m

t

m

e

p

u

b

v

g

i

a

e

m

n

e

f

I

i

t

s

p

f

3

o

s

b

n

t

r

i

urface) are stored for both the start and end points of the interval.

he intervals are then quickly sorted on time for each pixel, fol-

owed by a pass that resolves the final colors by sweeping the list

f time-sorted intervals while using an active list of intervals dy-

amically sorted on depth [2] . We extend this step to handle tex-

ures during the color and transparency aggregation and present

n efficient CUDA implementation. The main benefits of our ap-

roach are:

• Performance : our method fully exploits the massively parallel

capabilities of modern GPUs, achieving a performance suitable

for interactive graphics;
• Scalability : we instantiate a thread for each pixel covered by a

moving object. Since each pixel is handled by a single thread

on the GPU, this makes our approach scalable in the number of

threads that the graphics card can instantiate;
• Generality : differently from previous GPU-based works [3] , our

approach can handle triangulated textured objects that are also

transparent.

. Related work

In this section, we first provide a brief overview of the related

echniques in motion blur and conclude by motivating our own ap-

roach.

The first brute-force approaches proposed in the literature

lurred the current animation frame with previous ones [4,5] .

hese approaches are simple to implement and lead to accurate

esults. The number of required previous frames, however, may be-

ome quite large leading to a loss of performance in particular for

igh pixel resolutions.

Stochastic sampling approaches (e.g., [2,6–11]) exploit compu-

ational features hardwired on modern GPUs to randomly sample

he triangles occluding a pixel both in time and space. Stochastic

ethods are more efficient than the brute force approach, but still

equire many samples per frame and tend to suffer from sampling

oise, which is magnified as the per-frame length of the motion in-

reases. Accuracy is achieved by increasing the number of samples

ut this, in general, negatively affects their performance, making

hem suitable only for offline productions like movies.

Post-processing approaches (e.g., [1,12,13]) are fast and suitable

or hard time budget applications and, for this reason, are widely

mployed in modern game engines. In these approaches, the dom-

nant velocity of the triangles occluding a pixel is included in the

ttributes of the pixel itself, and used to blur in screen space.

hile these highly-parallel approaches are scalable and fast, they

ay suffer from the lack of robustness typical of screen-space ap-

roaches due to the loss of information caused by the projection

nd rasterization from the 3D scene to the 2D image space. This

ay lead to artifacts such as incorrect blurring of the background,
37
r errors when different moving objects traverse the same pixel in

ifferent directions.

A promising avenue for 3D post-processing approaches are

earning-based techniques [14,15] . High performance is achieved

y using different flavors of neural networks to convert pixel at-

ributes (e.g., position, normal and color) to a number of screen-

pace effects, e.g., ambient occlusion, light scattering and mo-

ion blur. Recently, motion blur effects have been also applied to

till images as an artistic style to convey motion and to direct

ttention [16–18] . Recent developments in GPU hardware is en-

bling real-time ray tracing, including support for ray-traced mo-

ion blur [19] . Though these hardware features still use stochas-

ic sampling that needs high sampling counts to achieve the same

mage quality as analytical methods. Hybrid approaches, however,

ight be a viable path forward for analytical motion blur.

In this work, we provide a practical, GPU-based implementa-

ion of the theory provided by Gribel et al., which described a

ethod for analytically rendering motion blur using triangle-edge

quations with a time parameter [2] . In the same work, they also

roposed a compression scheme removing the need for sorting

nbounded per-pixel lists, together with a method for accurately

lending different layers of colored triangles. The method was only

alidated on a software renderer and with a single color per trian-

le. Extensions to this work were made still using software raster-

zation [20] . The same blending technique was used to implement

 GPU version for opaque geometry only, not supporting transpar-

nt objects [3] . The actual performance of this method is unclear,

ostly because it is not measured with respect to the main bottle-

ecks, namely the depth complexity of each pixel and how much

ach triangle moves on the screen for each frame.

Our system optimizes for such factors, obtaining real-time per-

ormances while maintaining an accuracy close to ground truth.

n fact, we use uncompressed time values (limited to 16-bit float-

ng point numbers), and represents the potentially curved edges of

he moving triangle accurately with bilinear patches. Our approach

cales well with the number of available threads. We test our ap-

roach on a number of challenging scenes, achieving real-time per-

ormances even for high polygonal and pixel resolutions.

. Overview

Let us assume our animation to be continuous in time instead

f being a mere sequence of frames separated by discrete time

teps. Let us also assume that the considered time span is defined

etween the instants when the camera shutter opens and closes,

ormalized between t = 0 and t = 1 . Since time is continuous in

he considered time step, we would obtain an infinite sequence of

asterized images. In this ideal setting, the motion blurred image

n a given time is simply the result of averaging together the

M.J.L. Rønnow, U. Assarsson and M. Fratarcangeli Computers & Graphics 95 (2021) 36–46

Fig. 2. Two objects moving across the screen from left to right between two frames,

without motion blur (top) and with motion blur (bottom). The pixels at the start

and end positions are less saturated than the ones towards the center, because the

objects cover those pixels for a shorter amount of time.

i

a

b

A

h

o

c

s

i

a

i

s

e

a

s

p

1

w

c

c

i

p

g

f

U

d

a

b

t

i

w

a

t

t

s

t

t

t

l

a

r

G

Fig. 3. Left. A triangular prism shape represents the trajectory of a moving triangle.

Right. The prism has been cut open to reveal the two triangles and three bilinear

patches it is composed of in our representation. The dark grey triangles represent

the start and end positions of the triangle’s motion.

d

t

p

A

a

t

s

i

a

i

c

p

t

s

w

t

o

w

t

a

b

A

i

l

f

4

4

a

p

p

p

s

I

t

a

t
nfinite number of images. It is important to note that the color of

 pixel is given by the color of the triangles covering it, weighted

y the quantity of time the triangle covers the pixel while moving.

 fast-moving triangle traversing the screen, for example, will

ave a small influence on the color of the covered pixels. A static,

paque triangle in front of the scene will define entirely the final

olor of the pixel.

In a computer animation, motion is discrete, simulated by time

teps, rather than being continuous. In this case, motion blurred

mages can be computed by averaging together a finite set of im-

ges produced with small increments in time between the open-

ng and closing time of the shutter. This brute force approach

cales poorly with the image resolution and it can be highly in-

fficient [4,5] . Nonetheless, the quality of the motion blur is high

nd we consider it as our ground truth. If, for example, we con-

ider N images while the shutter is open, and if a triangle is only

resent in a pixel for a single step, then that pixel’s color will be

/N of the triangle’s color. This effect is shown in Fig. 2 .

In a scene with many triangles, they may occlude each other

hen they move. With standard transparent rasterization, if an oc-

luder is opaque, then the occludee will be invisible. If the oc-

luder is semi-transparent, the occludee will be partially visible,

.e., the depth order of triangle fragments determines the final

ixel color. For motion blur, occlusion is handled similarly by the

round truth method described above. Depth testing can be used

or opaque geometry, and blending with either the OVER or the

NDER operator can be used for transparent geometry [21] . The

epth order of triangles can change during the shutter window,

nd a triangle may be occluded in some of the incremental steps

ut not in others.

Similar to previous work [3,22,23] , we represent the triangle

rajectory with a prism, as depicted in Fig. 3 (left). The prism

s constructed from the triangle’s start and end position together

ith bilinear patches from the extrusion of the triangle edges

long the linear vertex motions.

We cast a ray from a pixel center along the z -axis and store

he surface properties at the entry and exit intersection points of

he prism. Interpolated time values are embedded on the prism

urface as one of the surface properties, which we use to find the

ime span for the triangle’s presence in the pixel. Other proper-

ies include clip-space depth, UVs, normal, and texture ID. Each of

hese (apart from the texture ID), as well as the time property, are

inearly interpolated between their respective values of the start

nd end triangles. Linear interpolation is not fully physically accu-

ate, as discussed in Section 5.1 .

Our system implements analytical motion blur efficiently on the

PU and is composed of four steps (Fig. 4):
38
Step 1. Bound the screen-space area of a moving triangle In or-

er to bound, for each prism, the pixels that should cast prism in-

ersecting rays, we compute a conservative clip-space hull of the

rism. In a single parallel step, we compute the clip-space 2D

ABB of every moving triangle.

Step 2. Render moving triangles The AABB of each moving tri-

ngle is rasterized with a fragment shader performing ray casting

o find each primary ray’s entry and exit points of the prism. The

hader also pairs the intersection points, based on their time order,

nto intervals and outputs them to a buffer capable of storing an

rray per pixel. This involves a pre-pass. First, the depth complex-

ties for all pixels is established. An exclusive sum over the depth

omplexities is computed to determine the start location of each

ixel array as well as the buffer size needed to fit exactly all of

hem.

Step 3. Sort intervals by time The intervals for each pixel are

orted by entry time in order to find triangles that overlap in time

ithin a pixel.

Step 4. Pixel color resolve This pass resolves the color contribu-

ion of each interval based on time overlap and occlusion with

ther intervals, and the duration of time a triangle is present

ithin a pixel. This is combined with anisotropic texture lookups

o get the linearly interpolated texture colors based on the entry

nd exit UVs of the triangles.

The theory of our method regarding rendering of motion

lurred geometry is largely based on the work by Gribel et al. [2] .

 short description of the method will be presented in the follow-

ng section. We omit compression and aim for a more precise so-

ution. An efficient GPU implementation is described, with support

or transparency and texturing.

. Method

.1. Rendering prisms

We represent the surface of the prism formed by a moving tri-

ngle directly with a set of triangles and bilinear patches as de-

icted on Fig. 3 (right). In previous works, the prism sides are ap-

roximated with triangles [3,22] . Our method, however, models the

rism sides accurately with bilinear patches.

In order to render a bilinear patch, we need to find a convex

et of vertices that conservatively contain its clip-space surface.

n practice, we use a single parallel step to compute an AABB of

he six clip-space vertices formed by each moving triangle’s start

nd end positions that conservatively contains all five sides of the

he prism as sketched in (Fig. 4 , step 1). The AABB is subsequently

M.J.L. Rønnow, U. Assarsson and M. Fratarcangeli Computers & Graphics 95 (2021) 36–46

Fig. 4. The stages of our motion blur system.

Fig. 5. As a ray intersects with a prism there can be multiple intervals. The ray

intersects the left prism at two distinct points creating one interval I 0 , while on the

right the ray intersects the prism at six distinct points resulting in three intervals

I 1 , I 2 , and I 3 . The intersection points per-prism are sorted by time and paired up

into intervals. Time values between 0 and 1 are embedded on the prism surfaces,

illustrated here as a color from green to red. (For interpretation of the references to

color in this figure legend, the reader is referred to the web version of this article.)

r

m

s

t

i

i

p

i

t

t

t

[

f

t

c

p

s

o

t

w

W

e

Fig. 6. An interval is defined by a start time (t s), end time (t e), start depth (z s), end

depth (z e), start UV (u v s), end UV (u v e), start normal (normal s), and a texture ID

(texID).

p

p

o

b

i

t

t

o

r

t

i

g

p

t

c

a

s

v

i

o

p

p

e

n

t

c

t

t

s

a

c

t

l

w

w

p

asterized, and for each fragment a ray is extended from the frag-

ent center (x 0 , y 0) along the z-axis potentially intersecting prism

urfaces along its trajectory as shown in Fig. 5 . To find the intersec-

ions between the ray and the prism, we compute two ray/triangle

ntersection tests and three ray/bilinear patch intersection tests.

A ray can intersect a bilinear patch twice and a triangle once,

n total up to 8 intersections can occur between a ray and a

rism. While Gribel et al. [2] found the intersection points by solv-

ng time-dependent edge equations in a closed form, we found

hat ray/triangle and ray/bilinear patch intersection computations

o be more practical and straightforward to implement. We use

he ray/bilinear patch intersection algorithm described by Reshetov

24] which, according to the author, achieves better relative per-

ormance compared to approximating the bilinear patch with two

riangles. Since a triangle is a special case of a bilinear patch we

an even use the same intersection test for all five surfaces of the

rism.

We handle all five intersection tests in a single fragment

hader invocation because it simplifies the following phases of

ur method, in particular the sorting step. For the intersection

ests, we consider all the three clip-space bilinear patches together

ith the two clip-space triangles when computing the convex set.

e also considered using convex hulls as was done by McGuire

t al. [25] , but the AABB is robust and cheap enough in our ex-
39
erience, and the amount of exceeding pixels leads to a negligible

erformance penalty.

The prisms are rendered with two render passes similar to

rder-independent transparency approaches [26] (Fig. 4 , step 2). In

oth render passes, the AABBs are rasterized as two triangles form-

ng a planar quad. For each AABB, the six clip-space vertex posi-

ions, the vertex normals, and the three vertex UV coordinates of

he moving triangle are passed along in the shader pipeline with-

ut interpolation.

These values are used in the fragment shader to compute three

ay/bilinear patch intersection tests and two ray/triangle intersec-

ion tests. The intersection tests output intersection samples that

nclude the depth, time, normal, and UV coordinates of the trian-

le or bilinear patch at the point of intersection. In the first render

ass (2 a) , used to establish per-pixel depth complexities to know

he required per-pixel array lengths, these sample values are not

omputed and instead a counter is simply incremented whenever

n intersection is found, while in the second pass (2 d) they are

tored in temporary arrays for each per-pixel fragment shader in-

ocation, then sorted by their relative time values and paired into

ntervals. The ray/triangle intersection samples are either at t = 0

r t = 1, and hence do not need to be sorted by time if they are ex-

licitly placed before and after the bilinear patch intersection sam-

les. The ray/bilinear patch tests can have two intersection samples

ach, in total giving a maximum of six bilinear patch samples that

eed to be sorted by time.

The first render pass is followed by an exclusive sum computa-

ion over the depth complexity of every pixel (2 b) , and the allo-

ation of required GPU memory for a global interval buffer (used

o store intervals in the subsequent render pass) using the sum of

he per-pixel depth complexities (2 c) . The second render pass (2 d)
tores the prism intervals in the global interval buffer which was

llocated in the previous substage, with indexing based on the ex-

lusive sum of the depth complexities as well as atomic counters

hat count the number of intervals stored so far for each pixel. At

east two intersection sample points are produced for each pixel

ith a prism covering it: an entry sample and an exit sample

hich define the interval in time and depth where the prism is

resent in the pixel. Each prism can in theory have up to four such

M.J.L. Rønnow, U. Assarsson and M. Fratarcangeli Computers & Graphics 95 (2021) 36–46

Fig. 7. Color resolve for a single pixel. At the top in Interval UV resolve , the intervals

are partitioned based on time and depth order due to blending order requirements.

In Pixel Color Blending , the partitioned UV ranges are used to look up the texture

color for each of the time partitions. These intermediate values are shown in C k . The

final pixel color is shown in C f as the result of averaging all the partitions together.

In Ray/triangle Intersection Intervals , the textured triangles are shown along with the

entry and exit point for the intersecting ray from which the intervals are composed.

For illustrative simplicity, each interval belongs to its own triangle and each triangle

has a single color, each with some degree of transparency.

i

t

t

b

b

s

a

Fig. 8. A triangle with a texture depicting the text Coffee with a grey background.

The texel colors are filtered between an interval’s start UV (u v s) and end UV (u v e)
resulting in the filtered color showed at the bottom.

i

t

t

i

o

o

4

a

[

t

s

t

t

4

e

t

m

s

c

ntervals within a pixel. The samples are found with the ray in-

ersection tests described earlier and as mentioned above, the in-

ersection samples between a ray and a prism need to be sorted

y time. This is in order to efficiently pair them up into intervals

ased on time order. An interval is 160 bits wide and is defined as

hown in Fig. 6 .

For ray/triangle intersections, the three vertices of the triangle

nd the barycentric coordinates at the hit point can be used to
Fig. 9. Quality comparison with ground truth. Opaque and transparent pills fa

40
nterpolate the UV coordinates, normal and depth value, while the

ime value is either 0 or 1 for the starting position or end position

riangle respectively. For ray/bilinear patch intersections, however,

t is necessary to bilinearly interpolate based on the four vertices

f the patch and the bilinear coordinates at the hit point. We store

nly the start normal in order to save memory space.

.2. Sorting intervals

In preparation for the color resolve, the intervals for each pixel

re sorted by t s (Fig. 4 , step 3). We use the work by Hou et al.

27] (modified for our use case by key-only based sorting and op-

imized by using CUB functions [28] for histogram and exclusive

um computation) for a segmented sort that sorts all intervals in

he global interval buffer segmented by which pixel they belong

o.

.3. Color resolve

We use a method similar to the one described by Gribel

t al. [2] to compute the final pixel color (Fig. 4 , step 4), as de-

ailed on Fig. 7 . We have extended the method to enable texture-

apped triangles. With texturing, intervals can no longer be as-

umed to have a static color from start to end, but instead the

olor is based on a continuous range of texels limited by the start
ll into a transparent bottle while a background object moves to the left.

M.J.L. Rønnow, U. Assarsson and M. Fratarcangeli Computers & Graphics 95 (2021) 36–46

Algorithm 1: Per-pixel color resolve algorithm. (Optional steps

for colliding triangles are marked in red).

Input : Intervals for this pixel (sorted by t s): IL ,

Active-interval list (empty at init): AL

Output : Final pixel color C final

Initialize:

C final = (0,0,0);

r s = 0.0, r e = 1.0 ; // range of current time partition

index = 0 ; // index to interval in IL

while index < IL .size() or AL .size() > 0 do

if AL .size() = 0 then r s = IL [index].t s ; // next t s in IL

// Find nearest resolve time r e (the next interval start, end

or intersect event).

while index < IL .size() and IL [index].t s = r s do

// Loop to solve IL intervals with equal t s .r e = min(r e ,

IL [index].t e);

AL .insert(IL [index]) sorted by interval depth;

index++;

// Check if the next IL interval’s t s is the new nearest

resolve time r e : if index < IL .size() and IL [index].t s < r e
then

r e = IL [index].t s ;

p = FindNearestIntervalIntersection(AL);

i e = 0; j e = 0;

if p.hasIntersection and p.t > r s and p.t < r e then

i e = p.intervalALIndex i ;

j e = p.intervalALIndex j ;

r e = p.t; // time at intersection point

// All intervals for time range r s - r e are now in AL, with

no intersections within this range.

// Blend AL interval colors (after texture lookups and

shading computations) front-to-back. If transmittance

threshold is reached, stop early.

C k = ResolveIntervalsRange(AL, r s , r e , lightPos);

C final += (r e - r s) · C k ;

// Colors have now been resolved up until time r e .// Swap

intersecting intervals at r e for correct blend order in next

partition time range:

swap(AL [j e], AL [i e]); // Unlikely > 1 intersection at r e

Remove all intervals I i from AL where I i . t e ≤ r e .

r s = r e ; // Advance to next time partition

r e = (isEmpty(AL)) ? 1.0 : min(I i . t e for all intervals I i in

AL); // accelerated by tracking current min(I i . t e) during AL

interval removal above.

a

o

f

i

t

F

t

t

p

I

a

t

n

r

w

i

c

t

c

f

g

r

U

c

t

a

t

w

t

m

n

d

C

f

r

fi

a

l

e

l

i

F

a

t

Table 1

Performance results. The values displayed are averages over all frames in the sequence,

sequence. Resolutions used are: 1024 ×1024, 1920 ×1080 (1080p), 2048 ×2048, and 3840 ×

Clothball Character

63k tris 49k tris

315k prism faces 245k pris

1024 ×1024 2048 ×2048 1080p

Time per frame (ms) 9.4 27.4 24.5

Max. intervals per pixel 127.8 130.9 525.1

Number of intervals
(
×10 6

)
2.45 9.79 2.28

Max. GPU memory (MB) 175 688 189

41
nd end texture UV coordinates stored in the interval as illustrated

n Fig. 8 . The intervals for each pixel are sequentially resolved

rom t = 0 to t = 1 using an active interval list where the active

ntervals are kept sorted by depth.

There are two main cases that complicate the color resolve: in-

ervals that partially overlap in time and intervals that intersect. In

ig. 7 , intervals I 0 and I 1 intersect at t i where they share depth and

ime values. In order to ensure the correct blending order of the

wo intersecting intervals, they are partitioned at the intersection

oint into four new intervals. To the left of the intersection point,

 1 is behind I 0 , while to the right, I 0 is behind I 1 . Intervals must

lso be partitioned when another interval starts or ends within its

ime range, such as I 2 ending within the time range of I 1 . This is

ecessary in order to be able to blend the colors of I 1 and I 2 in the

ange where they share time, and to not blend them in the range

here only one of them is present. When an interval is partitioned,

ts UV values are partitioned as well by interpolation.

The blending order is swapped at intersection points, as is the

ase in Fig. 7 between intervals I 0 and I 1 at the intersection point

 i . The boxes with U V I a → U V I
b

should be interpreted as: the texture

oordinates for the anisotropic texture lookup should be the UV values

rom UV I a to UV I
b
, where I identifies the interval and a and b distin-

uish either the interval’s start UV

(
UV I s

)
, end UV

(
UV I e

)
or, as a

esult of partitioning, an interpolated UV value:

 V

I
t = lerp

(
U V

I
s , U V

I
e ,

t − t I s
t I e − t I s

)

Since the color contribution of each interval depends on the UV

oordinates at the start and end of the interval, partitioning an in-

erval will change its color contribution as the UV coordinates are

lso partitioned. Therefore, the color contribution of each parti-

ion, including lighting computations, cannot be trivially resolved

hen the interval is created but must be resolved at the parti-

ioning stage. The UV coordinates and the interpolated vertex nor-

al need to be stored in the interval, as the color value alone is

ot sufficient. The partitioning of intervals and the color resolve is

one with an active list approach as outlined in Algorithm 1 . The

UDA source code is provided on the web, including details on

urther low-level optimizations. We approximate the continuous

ange of texels between the start and end UVs using anisotropic

ltering. For increased precision, the range is split up in two ×16

nisotropic lookups to simulate ×32 anisotropic filtering. Simi-

arly to Shkurko et al. [22] , we assume that a ray moves lin-

arly over a triangle surface, which makes it possible to calcu-

ate hit point data by linear interpolating two end points of an

nterval.

An interval intersection, such as the one depicted at the top in

ig. 7 as t i , happens at a point where two intervals have equal time

nd equal depth. This occurs precisely when the triangles collide in

he 3D world.
while Max. GPU memory is the maximum allocated GPU memory over the entire

2160 (4K).

 running Character dancing Falling Pills

49k tris 45k tris

m faces 245k prism faces 225k prism faces

4K 1024 ×1024 2048 ×2048 1080p 4K

53.7 19.3 41 8.3 29.2

530.8 450.5 455.4 40.5 41.1

9.11 1.75 7.0 3.8 15.2

746 133 523 281 1116

M.J.L. Rønnow, U. Assarsson and M. Fratarcangeli Computers & Graphics 95 (2021) 36–46

Fig. 10. Performance comparison of using back-face culling on the character danc-

ing scene with a 1024 ×1024 resolution and opaque textures. The blue graph shows

the time per frame without back-face culling and the orange graph shows the time

per frame with back-face culling. As expected, the average time per frame is signifi-

cantly shorter with back-face culling at 6.67 ms compared to 15.72 ms without. The

grey horizontal line indicates 60 FPS. (For interpretation of the references to color

in this figure legend, the reader is referred to the web version of this article.)

4

p

p

a

b

i

d

o

p

e

f

5

O

r

t

f

r

i

a

t

a

d

p

d

t

c

i

o

i

d

a

t

s

w

c

s

Fig. 11. Top. A red and a green quad are in front of an orthographic camera and

move along the z -axis. The red one moves from back to front, while the green

one moves from front to back. Bottom. Comparison of the results obtained with

and without intersection handling. Without intersection handling (left), the result-

ing color belongs to the green quad entirely occluding the red one. With intersec-

tion handling (right), the colors are instead correctly blended resulting in the yellow

color. (For interpretation of the references to color in this figure legend, the reader

is referred to the web version of this article.)

Fig. 12. Quality comparison with ground truth. Transparent characters running

(top) and dancing (bottom).
.4. Back-face culling

For semi-transparent objects we need to store all surface sam-

les, while for opaque objects we can discard back facing sam-

les. While our main contribution is an efficient general system for

nalytical motion blur for transparent objects, mixed scenes with

oth transparent and opaque objects are common, which makes

t important to have an implementation that can efficiently ren-

er both within a scene. For this reason we have implemented an

ptional, non-conservative back-face culling method that discards

risms when the triangle is back-facing at both the start and the

nd positions (while precise methods do exist [10]). We used back-

ace culling on all opaque geometry.

. Results

We have implemented and tested our motion blur system in

penGL 4.6 and C++/CUDA 10.2 on an NVIDIA RTX 2080 system

unning Windows 10. We tested four scenes with varying mo-

ion and fidelity: clothball , character running , character dancing , and

alling pills . The tests have been performed at several different pixel

esolutions: 1920 ×1080, 1024 ×1024, 2048 ×2048, and 3840 ×2160.

The clothball scene shows a transparent cloth falling on a rotat-

ng opaque sphere recorded at window resolutions of 1024 ×1024

nd 2048 ×2048. The two character scenes both show a moving

ransparent character model. The character running was recorded

t resolutions of 1920 ×1080 and 3840 ×2160, while the character

ancing was recorded at 1024 ×1024 and 2048 ×2048. The falling

ills scene shows a mix of opaque and transparent pills falling

own in a transparent bottle while a background object is scrolling

owards the left, recorded at 1920 ×1080 and 3840 ×2160. Back-face

ulling can only be used on opaque objects and is thus used only

n the falling pills scene on the opaque pills and the background

bject, and in the clothball scene on the opaque sphere. As shown

n Fig. 10 , back-face culling on an opaque version of the character

ancing scene significantly increases performance with no notice-

ble visual errors introduced by the approximate back-facing de-

ermination.

While all our scene benchmarks were run with interval inter-

ection handling on, in most cases intersections can be ignored

ithout a significant loss in visual quality, because triangle

ollisions typically would be handled by a collision detection

ystem before rendering the scene. If intersections are ignored,
42

M.J.L. Rønnow, U. Assarsson and M. Fratarcangeli Computers & Graphics 95 (2021) 36–46

Fig. 13. (Top) Per frame timings for tested scenes. For screen resolutions of 1920 ×1080 and 1024 ×1024 (top), the timings generally stay within 30 frames per second and

within 60 frames per second for some scenes. For resolutions of 3840 ×2160 and 2048 ×2048 (bottom), timings go up to 100 ms in the character running scene. The grey

horizontal lines indicate 60 and 30 FPS respectively.

t

p

t

d

t

t

a

p

a

he red-marked lines in Algorithm 1 can be removed. In some

athological cases the image quality loss is significant, such as

he one shown in Fig. 11 . In our benchmark scenes, the visual

ifference is mostly undetectable by the human eye, while the

ime per frame difference is only about 10%.
43
For quality evaluation, we compare with a brute force, ground

ruth implementation with 10 0 0 iterations per frame, as well as

 fast real-time post-process implementation [1] . The motion blur

roduced by our method is noise-free and virtually indistinguish-

ble from the ground truth, as shown in Figs. 1 , 9 , and 12 .

M.J.L. Rønnow, U. Assarsson and M. Fratarcangeli Computers & Graphics 95 (2021) 36–46

Fig. 14. Qualitative comparison between ground truth (left), our method (middle) and stochastic ray traced motion blur, 128 samples per pixel (right), at different exposure

times. Below each image, the normalized difference between the synthesized result and the ground truth is shown as a grayscale image, together with the structural

similarity index measure (SSIM), and the peak signal-to-noise ratio (PSNR). Our results are indistinguishable from the ground truth, and are obtained one order of magnitude

faster than stochastic ray traced motion blur.

44

M.J.L. Rønnow, U. Assarsson and M. Fratarcangeli Computers & Graphics 95 (2021) 36–46

Fig. 15. Time per frame of the first 60 frames of the character dancing scene re-

lated with interval counts per frame. The time per frame is largely dependent on

the number of intervals per frame and on the length of the longest pixel lists. The

average number of intervals considers also empty pixels hence the magnification

×200.

Fig. 16. Quality comparison with a post-process implementation [1] . With a static

background (top) the post-process method performs relatively well; only the trans-

parent pills are not blurred. With a moving background, the post-process method

produces undesirable blur on the semi-transparent bottle, and the pills are blurred

largely in the direction of motion of the moving background instead of their own.

(For interpretation of the references to color in this figure, the reader is referred to

the web version of this article.)

f

P

l

F

d

b

p

t

t

h

m

p

w

p

a

i

a

g

(

w

p

Fig. 17. Per frame timings with varying exposure times of our method (blue)

against the per frame timings of ray traced motion blur with 128 samples per pixel

(orange) excluding the BVH build time. Our method achieves roughly an order of

magnitude faster frame timings. (For interpretation of the references to color in this

figure legend, the reader is referred to the web version of this article.)

O

o

c

g

m

a

m

m

t

i

t

O

F

p

i

t

a

b

5

m

t

i

c

f

a

c

b

t

t

i

e

a

w

Experimental results are summarized in Table 1 while the

rame-by-frame timings of our tested scenes is shown in Fig. 13 .

erformance scales sub-linearly relatively to the resolution. The re-

ation between frame time and intervals per pixel is outlined in

ig. 15 . The pixel color resolve step dominates the time per frame

ue to it sequentially handling the intervals in each pixel. The main

ottleneck is in the pixels with the highest number of intervals.

While the post-process method [1] runs scenes such as falling

ills in the range of 1ms or less per frame, there are clear cases

hat it has difficulty in handling. These include cases such as mul-

iple overlapping orthogonal motions and transparency, that are

andled well by our method, as shown in Fig. 16 . Note that our

ethod supports order-independent transparency, while the post-

rocess method is limited to object order-dependent transparency,

ithout layer information. In the post-processing method, trans-

arent objects do not contribute to the motion vectors used to cre-

te blur but are affected by them. The transparent bottle is thus

gnored when calculating the motion blur of the opaque pills (red

nd blue) inside it, but has blur applied to it by motion vectors

enerated from the moving background, while the transparent pills

yellow and blue) are not blurred in their direction of motion.

Our method is primarily optimized for rendering motion blur

ith transparent objects. Thus, it is not possible to directly com-

are with the performance of a method such as Hong and
45
h [3] that takes advantage of the assumption that all objects are

paque. Their paper also does not provide information about depth

omplexity in their tested scenes, which makes it difficult to ar-

ue about relative performance based on tables alone. Their scenes

ax out at 70 intervals per pixel, which is significantly lower than

ll the scenes we tested except for one. Given that the perfor-

ance of these methods depends largely on depth complexity, our

ethod seems to compare favorably.

In order to compare our method with implementations that

ake advantage of modern hardware’s ability to accelerate ray trac-

ng, including BVH traversal and hardware ray/triangle intersection

ests, we have implemented stochastic ray traced motion blur in

ptix 6.5 [29] and tested on the same hardware. As depicted in

ig. 14 we achieve better image quality than the ray traced method

roduces with 128 samples per pixel while, as Fig. 17 shows, be-

ng roughly an order of magnitude faster, even when excluding

he BVH build time. In general, longer exposure time has a neg-

tive impact on performance. This correlation, however, seems to

e stronger in our method than in the ray traced method.

.1. Limitations

Our approach has three main limitations. Firstly, our prisms

ay not always faithfully represent the true trajectory of a rigid

riangle, since we use linear motion vectors. An obvious such case

nclude rotations [20] . Secondarily, linear interpolation of texture

oordinates between entry and exit points is an approximation. In

act, the uv coordinates may follow a curved path in texture space

nd time. Gribel et al. [2] show that the texture coordinates be-

ome rational polynomials of degree two in t . Similar to how Gri-

el et al. approximates depth using a linear depth function per

ime partition, our anisotropic texture lookups will approximate

he texture-color integration linearly in texture space for the whole

nterval.

Thirdly, lighting is computed with just the start normal of ev-

ry interval to conserve memory bandwidth. This approximation

nd the linear uv interpolation introduce an error in the shading,

hich, however, was not visually noticeable in all our test scenes.

M.J.L. Rønnow, U. Assarsson and M. Fratarcangeli Computers & Graphics 95 (2021) 36–46

5

s

R

a

o

i

t

s

b

G

a

s

a

z

f

t

t

o

c

w

6

f

a

l

o

w

m

p

t

e

p

p

t

s

t

o

i

D

c

i

A

d

R

[

[

[

[

[

[

[

[

[

[

[

[
.2. Discussion

The color-resolve pass (Algorithm 1) can be seen as a deferred-

hading step where the final colors are computed in the call to

esolveIntervalRange(). This function currently requires access to

ll relevant information to compute the final surface shading, in

ur case: normals, positions, lights, and UVs. We store most of this

nformation within each interval for cache-locality reasons. Fur-

her data can be added at a linearly increased cost of the sorting

tep and overall bandwidth. At some point, indices into a separate

uffer may be faster.

A traditional deferred shading pipeline instead typically uses a

-buffer. If transparency is supported, the G-buffer may contain an

rray per pixel of all the visible semi-transparent fragments.

One way to combine motion-blurred objects with a deferred-

hading pipeline for non-motion-blurred objects could be to create

n interval, I j , for each such G-buffer fragment, j, with z s = z e =
, t s = 0, t e = 1, u v = j, texID = GBuffer , where z is the depth value

or the G-buffer fragment. These intervals are then merged with

he intervals from motion blur before the interval-sorting step. If

he G-buffer does not support transparency, or if motion-blurred

bjects are fully in front of or behind the G-buffer pixels, then its

olors could be precomputed by a deferred-shader pass and stored

ith its created intervals.

. Conclusion

We have presented an efficient GPU rasterization-based method

or analytical noise-free motion blur. By representing dynamic tri-

ngles as prisms and ray tracing their surfaces in clip space, fol-

owed by sorting, and finally color resolving depth-time intervals,

ur method gives results very similar to the brute force reference

hile producing superior quality images compared to post-process

ethods. Our method can deal with cases that are difficult for

ost-process methods, such as transparency and conflicting mo-

ion, and for the scenes we have tested, it runs in real-time, gen-

rally higher than 30 frames per second at 1080p.

In future work, we would like to add shadowing and improve

erformance further by parallelizing the color resolve of each

ixel. Back-face culling could be made accurate by implementing

he method described by Munkberg and Akenine-Möller [10] . For

lightly better precision, a watertight version of the ray/triangle in-

ersection algorithm could be used [30] ; unfortunately, to the best

f our knowledge there is not yet a watertight ray-bilinear patch

ntersection algorithm.

eclaration of Competing Interest

The authors declare that they have no known competing finan-

ial interests or personal relationships that could have appeared to

nfluence the work reported in this paper.

cknowledgments

This work was supported by the Swedish Research Council un-

er Grants 2015-05345 and 2014-4559 .

eferences

[1] Guertin J-P , McGuire M , Nowrouzezahrai D . A fast and stable feature-aware

motion blur filter. In: Proceedings of the high performance graphics. Euro-
graphics Association; 2014. p. 51–60 .
46
[2] Gribel CJ , Doggett M , Akenine-Möller T . Analytical motion blur rasterization
with compression. In: Proceedings of the high performance graphics. Euro-

graphics Association; 2010. p. 163–72 .
[3] Hong M-P , Oh K . Real-time motion blur using extruded triangles. Multimed

Tools Appl 2018;77(11):13323–41 .
[4] Korein J , Badler N . Temporal anti-aliasing in computer generated animation.

SIGGRAPH Comput Graph 1983;17(3):377–88 .
[5] Haeberli P , Akeley K . The accumulation buffer: hardware support for high-

-quality rendering. SIGGRAPH Comput Graph 1990;24(4):309–18 .

[6] Akenine-Möller T , Munkberg J , Hasselgren J . Stochastic rasterization using
time-continuous triangles. In: Proceedings of the ACM SIGGRAPH/eurographics

graphics hardware, GH ’07. Eurographics Association; 2007. p. 7–16 .
[7] Fatahalian K , Luong E , Boulos S , Akeley K , Mark WR , Hanrahan P . Data-parallel

rasterization of micropolygons with defocus and motion blur. In: Proceedings
of the high performance graphics. Eurographics Association; 2009. p. 59–68 .

[8] Brunhaver JS , Fatahalian K , Hanrahan P . Hardware implementation of microp-

olygon rasterization with motion and defocus blur. In: Proceedings of the high
performance graphics. Eurographics Association; 2010. p. 1–9 .

[9] Boulos S , Luong E , Fatahalian K , Moreton H , Hanrahan P . Space-time hierar-
chical occlusion culling for micropolygon rendering with motion blur. In: Pro-

ceedings of the high performance graphics. Eurographics Association; 2010.
p. 11–18 .

[10] Munkberg J , Akenine-Möller T . Backface culling for motion blur and depth of

field. J Graph Tools 2011;15:123–39 .
[11] Vaidyanathan K , Toth R , Salvi M , Boulos S , Lefohn A . Adaptive image space

shading for motion and defocus blur. In: Proceedings of the high-performance
graphics. Eurographics Association; 2012. p. 13–21 .

12] McGuire M , Hennessy P , Bukowski M , Osman B . A reconstruction filter for
plausible motion blur. In: Proceedings of the interactive 3D graphics and

games. ACM; 2012. p. 135–42 .

[13] Guertin J-P , Nowrouzezahrai D . High performance non-linear motion blur.
In: Lehtinen J, Nowrouzezahrai D, editors. Proceedings of the symposium on

rendering – experimental ideas & implementations. Eurographics Association;
2015 .

[14] Nalbach O , Arabadzhiyska E , Mehta D , Seidel H-P , Ritschel T . Deep shading:
convolutional neural networks for screen space shading. Comput Graph Forum

2017;36(4):65–78 .

[15] Brooks T , Barron JT . Learning to synthesize motion blur. In: Proceedings of the
IEEE conference on computer vision and pattern recognition (CVPR); 2019 .

[16] Luo X , Salamon NZ , Eisemann E . Adding motion blur to still images. In: Pro-
ceedings of the graphics interface; 2018 .

[17] Lancelle M , Dogan P , Gross M . Controlling motion blur in synthetic long time
exposures. Comput Graph Forum 2019;38(2):393–403 .

[18] Luo X , Salamon NZ , Eisemann E . Controllable motion-blur effects in still im-

ages. IEEE Trans Vis Comput Graph 2020;26(7):2362–72 .
[19] NVIDIA. NVIDIA AMPERE Whitepaper; 2020a. https://www.

nvidia.com/content/dam/en-zz/Solutions/geforce/ampere/pdf/
NVIDIA- ampere- GA102- GPU- Architecture- Whitepaper- V1.pdf . (accessed

November 26, 2020)
20] Gribel CJ , Munkberg J , Hasselgren J , Akenine-Möller T . Theory and analysis

of higher-order motion blur rasterization. In: Proceedings of the high-perfor-
mance graphics. Eurographics Association; 2013. p. 7–15 .

21] Porter T , Duff T . Compositing digital images. SIGGRAPH Comput Graph

1984;18(3):253–9 .
22] Shkurko K , Yuksel C , Kopta D , Mallett I , Brunvand E . Time interval ray tracing

for motion blur. IEEE Trans Vis Comput Graph 2017;PP(99) .
23] Brochu T , Edwards E , Bridson R . Efficient geometrically exact continuous colli-

sion detection. ACM Trans Graph 2012;31(4) .
24] Reshetov A . Cool patches: a geometric approach to ray/bilinear patch intersec-

tions. Berkeley, CA: Apress; 2019. p. 95–109 .

25] McGuire M , Enderton E , Shirley P , Luebke D . Real-time stochastic rasterization
on conventional GPU architectures. In: Proceedings of the high performance

graphics. Eurographics Association; 2010. p. 173–82 .
26] Maule M , Comba JLD , Torchelsen R , Bastos R . Memory-efficient order-indepen-

dent transparency with dynamic fragment buffer. In: Proceedings of the SIB-
GRAPI graphics, patterns and images; 2012. p. 134–41 .

27] Hou K., Liu W., Wang H., Feng W.. Fast segmented sort on GPUs. 2017, p. 1–10.

28] NVIDIA. CUB 1.8.0; 2020b. http://nvlabs.github.io/cub/ . (accessed November 26,
2020)

29] NVIDIA. Optix 6.5; 2020c. https://developer.nvidia.com/optix . (accessed
November 26, 2020)

30] Woop S , Benthin C , Wald I . Watertight ray/triangle intersection. J Comput
Graph Tech (JCGT) 2013;2(1):65–82 .

https://doi.org/10.13039/501100001862
http://refhub.elsevier.com/S0097-8493(21)00006-6/sbref0001
http://refhub.elsevier.com/S0097-8493(21)00006-6/sbref0001
http://refhub.elsevier.com/S0097-8493(21)00006-6/sbref0001
http://refhub.elsevier.com/S0097-8493(21)00006-6/sbref0001
http://refhub.elsevier.com/S0097-8493(21)00006-6/sbref0002
http://refhub.elsevier.com/S0097-8493(21)00006-6/sbref0002
http://refhub.elsevier.com/S0097-8493(21)00006-6/sbref0002
http://refhub.elsevier.com/S0097-8493(21)00006-6/sbref0002
http://refhub.elsevier.com/S0097-8493(21)00006-6/sbref0003
http://refhub.elsevier.com/S0097-8493(21)00006-6/sbref0003
http://refhub.elsevier.com/S0097-8493(21)00006-6/sbref0003
http://refhub.elsevier.com/S0097-8493(21)00006-6/sbref0004
http://refhub.elsevier.com/S0097-8493(21)00006-6/sbref0004
http://refhub.elsevier.com/S0097-8493(21)00006-6/sbref0004
http://refhub.elsevier.com/S0097-8493(21)00006-6/sbref0005
http://refhub.elsevier.com/S0097-8493(21)00006-6/sbref0005
http://refhub.elsevier.com/S0097-8493(21)00006-6/sbref0005
http://refhub.elsevier.com/S0097-8493(21)00006-6/sbref0006
http://refhub.elsevier.com/S0097-8493(21)00006-6/sbref0006
http://refhub.elsevier.com/S0097-8493(21)00006-6/sbref0006
http://refhub.elsevier.com/S0097-8493(21)00006-6/sbref0006
http://refhub.elsevier.com/S0097-8493(21)00006-6/sbref0007
http://refhub.elsevier.com/S0097-8493(21)00006-6/sbref0007
http://refhub.elsevier.com/S0097-8493(21)00006-6/sbref0007
http://refhub.elsevier.com/S0097-8493(21)00006-6/sbref0007
http://refhub.elsevier.com/S0097-8493(21)00006-6/sbref0007
http://refhub.elsevier.com/S0097-8493(21)00006-6/sbref0007
http://refhub.elsevier.com/S0097-8493(21)00006-6/sbref0007
http://refhub.elsevier.com/S0097-8493(21)00006-6/sbref0008
http://refhub.elsevier.com/S0097-8493(21)00006-6/sbref0008
http://refhub.elsevier.com/S0097-8493(21)00006-6/sbref0008
http://refhub.elsevier.com/S0097-8493(21)00006-6/sbref0008
http://refhub.elsevier.com/S0097-8493(21)00006-6/sbref0009
http://refhub.elsevier.com/S0097-8493(21)00006-6/sbref0009
http://refhub.elsevier.com/S0097-8493(21)00006-6/sbref0009
http://refhub.elsevier.com/S0097-8493(21)00006-6/sbref0009
http://refhub.elsevier.com/S0097-8493(21)00006-6/sbref0009
http://refhub.elsevier.com/S0097-8493(21)00006-6/sbref0009
http://refhub.elsevier.com/S0097-8493(21)00006-6/sbref0010
http://refhub.elsevier.com/S0097-8493(21)00006-6/sbref0010
http://refhub.elsevier.com/S0097-8493(21)00006-6/sbref0010
http://refhub.elsevier.com/S0097-8493(21)00006-6/sbref0011
http://refhub.elsevier.com/S0097-8493(21)00006-6/sbref0011
http://refhub.elsevier.com/S0097-8493(21)00006-6/sbref0011
http://refhub.elsevier.com/S0097-8493(21)00006-6/sbref0011
http://refhub.elsevier.com/S0097-8493(21)00006-6/sbref0011
http://refhub.elsevier.com/S0097-8493(21)00006-6/sbref0011
http://refhub.elsevier.com/S0097-8493(21)00006-6/sbref0012
http://refhub.elsevier.com/S0097-8493(21)00006-6/sbref0012
http://refhub.elsevier.com/S0097-8493(21)00006-6/sbref0012
http://refhub.elsevier.com/S0097-8493(21)00006-6/sbref0012
http://refhub.elsevier.com/S0097-8493(21)00006-6/sbref0012
http://refhub.elsevier.com/S0097-8493(21)00006-6/sbref0013
http://refhub.elsevier.com/S0097-8493(21)00006-6/sbref0013
http://refhub.elsevier.com/S0097-8493(21)00006-6/sbref0013
http://refhub.elsevier.com/S0097-8493(21)00006-6/sbref0014
http://refhub.elsevier.com/S0097-8493(21)00006-6/sbref0014
http://refhub.elsevier.com/S0097-8493(21)00006-6/sbref0014
http://refhub.elsevier.com/S0097-8493(21)00006-6/sbref0014
http://refhub.elsevier.com/S0097-8493(21)00006-6/sbref0014
http://refhub.elsevier.com/S0097-8493(21)00006-6/sbref0014
http://refhub.elsevier.com/S0097-8493(21)00006-6/sbref0015
http://refhub.elsevier.com/S0097-8493(21)00006-6/sbref0015
http://refhub.elsevier.com/S0097-8493(21)00006-6/sbref0015
http://refhub.elsevier.com/S0097-8493(21)00006-6/sbref0016
http://refhub.elsevier.com/S0097-8493(21)00006-6/sbref0016
http://refhub.elsevier.com/S0097-8493(21)00006-6/sbref0016
http://refhub.elsevier.com/S0097-8493(21)00006-6/sbref0016
http://refhub.elsevier.com/S0097-8493(21)00006-6/sbref0017
http://refhub.elsevier.com/S0097-8493(21)00006-6/sbref0017
http://refhub.elsevier.com/S0097-8493(21)00006-6/sbref0017
http://refhub.elsevier.com/S0097-8493(21)00006-6/sbref0017
http://refhub.elsevier.com/S0097-8493(21)00006-6/sbref0018
http://refhub.elsevier.com/S0097-8493(21)00006-6/sbref0018
http://refhub.elsevier.com/S0097-8493(21)00006-6/sbref0018
http://refhub.elsevier.com/S0097-8493(21)00006-6/sbref0018
https://www.nvidia.com/content/dam/en-zz/Solutions/geforce/ampere/pdf/NVIDIA-ampere-GA102-GPU-Architecture-Whitepaper-V1.pdf
http://refhub.elsevier.com/S0097-8493(21)00006-6/sbref0020
http://refhub.elsevier.com/S0097-8493(21)00006-6/sbref0020
http://refhub.elsevier.com/S0097-8493(21)00006-6/sbref0020
http://refhub.elsevier.com/S0097-8493(21)00006-6/sbref0020
http://refhub.elsevier.com/S0097-8493(21)00006-6/sbref0020
http://refhub.elsevier.com/S0097-8493(21)00006-6/sbref0021
http://refhub.elsevier.com/S0097-8493(21)00006-6/sbref0021
http://refhub.elsevier.com/S0097-8493(21)00006-6/sbref0021
http://refhub.elsevier.com/S0097-8493(21)00006-6/sbref0022
http://refhub.elsevier.com/S0097-8493(21)00006-6/sbref0022
http://refhub.elsevier.com/S0097-8493(21)00006-6/sbref0022
http://refhub.elsevier.com/S0097-8493(21)00006-6/sbref0022
http://refhub.elsevier.com/S0097-8493(21)00006-6/sbref0022
http://refhub.elsevier.com/S0097-8493(21)00006-6/sbref0022
http://refhub.elsevier.com/S0097-8493(21)00006-6/sbref0023
http://refhub.elsevier.com/S0097-8493(21)00006-6/sbref0023
http://refhub.elsevier.com/S0097-8493(21)00006-6/sbref0023
http://refhub.elsevier.com/S0097-8493(21)00006-6/sbref0023
http://refhub.elsevier.com/S0097-8493(21)00006-6/sbref0024
http://refhub.elsevier.com/S0097-8493(21)00006-6/sbref0024
http://refhub.elsevier.com/S0097-8493(21)00006-6/sbref0025
http://refhub.elsevier.com/S0097-8493(21)00006-6/sbref0025
http://refhub.elsevier.com/S0097-8493(21)00006-6/sbref0025
http://refhub.elsevier.com/S0097-8493(21)00006-6/sbref0025
http://refhub.elsevier.com/S0097-8493(21)00006-6/sbref0025
http://refhub.elsevier.com/S0097-8493(21)00006-6/sbref0026
http://refhub.elsevier.com/S0097-8493(21)00006-6/sbref0026
http://refhub.elsevier.com/S0097-8493(21)00006-6/sbref0026
http://refhub.elsevier.com/S0097-8493(21)00006-6/sbref0026
http://refhub.elsevier.com/S0097-8493(21)00006-6/sbref0026
http://nvlabs.github.io/cub/
https://developer.nvidia.com/optix
http://refhub.elsevier.com/S0097-8493(21)00006-6/sbref0030
http://refhub.elsevier.com/S0097-8493(21)00006-6/sbref0030
http://refhub.elsevier.com/S0097-8493(21)00006-6/sbref0030
http://refhub.elsevier.com/S0097-8493(21)00006-6/sbref0030

	Fast analytical motion blur with transparency
	1 Introduction
	2 Related work
	3 Overview
	4 Method
	4.1 Rendering prisms
	4.2 Sorting intervals
	4.3 Color resolve
	4.4 Back-face culling

	5 Results
	5.1 Limitations
	5.2 Discussion

	6 Conclusion
	Declaration of Competing Interest
	Acknowledgments
	References

