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In this paper, we investigate the dynamics of a single superconducting artificial atom capacitively coupled to
a transmission line with a characteristic impedance comparable to or larger than the quantum resistance. In this
regime, microwaves are reflected from the atom also at frequencies far from the atom’s transition frequency.
Adding a single mirror in the transmission line then creates cavity modes between the atom and the mirror.
Investigating the spontaneous emission from the atom, we then find Rabi oscillations, where the energy oscillates
between the atom and one of the cavity modes.
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I. INTRODUCTION

In the past two decades, circuit quantum electrodynamics
(circuit QED) has become a field of growing interest for quan-
tum information processing and also to realize new regimes
in quantum optics [1–11]. The restriction to one-dimensional
(1D) waveguides in circuit and waveguide QED enhances
directionality and reduces losses and therefore has a great
advantage over higher-dimensional systems to reach strong-
and ultrastrong-coupling regimes [12–22]. A typical circuit
QED setup consists of a superconducting qubit coupled to a
1D transmission line (TL) [2,6–8,23]. Superconducting qubits
are artificial atoms built with a nonlinear Josephson Junction
(JJ) that creates an anharmonic energy spectrum [9]. There are
different kinds of superconducting qubits, such as flux qubits,
phase qubits, and charge qubits [8,24]. A 1D transmission
line can be modeled by coupled LC oscillators, each having
a characteristic impedance of Z0 = √

L0/C0 ≈ 50 �, smaller
than the quantum resistance RQ = h̄/(2e)2 ≈ 1.0 k�. But re-
cent studies showed that it is possible to reach impedances
comparable to the quantum resistance or higher [25–31]. This
can be realized by building circuits made of arrays of JJs
[27,28,30–34] or high-kinetic-inductance materials, called su-
perinductors [25,26,29,35–37]. High-impedance JJ arrays and
superinductors are, for example, used in the fluxonium qubit
[38–41], which has reduced charge noise sensitivity and can
have relaxation times up to milliseconds [40,42]. This also has
an advantage for metrology since the charge noise insensitiv-
ity makes it possible to measure the current very accurately
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[43]. Furthermore, high-impedance resonators make it pos-
sible for light-matter interaction to reach strong-coupling
regimes due to strong coupling to vacuum fluctuations [44].

In this article, we investigate the spontaneous emission
of a transmon [45] capacitively coupled to a 1D TL that is
shorted at one end. This system is known as an “atom in front
of a mirror” [46–51]. Instead of using a Markovian master
equation approach, we are taking the photon traveling time
fully into account, making the dynamics nontrivial [14,52–
61]. Furthermore, we explore the above-mentioned regime of
a TL impedance Z0 exceeding the impedance of the trans-
mon ZJ = RQ

√
2EC/EJ , Z0 � ZJ . We find that the system

behaves qualitatively differently compared to the well-studied
low-impedance regime Z0 � ZJ . The atom reflects strongly
at all frequencies, except its transition frequency. Together
with the mirror, it thus forms a cavity, and when the transition
frequency is close to a cavity mode, we find a vacuum Rabi
splitting, resulting in Rabi oscillations in the spontaneous
emission. In this regime, all dynamical timescales are inde-
pendent of the coupling capacitance and instead depend on
the intrinsic transmon capacitance and the TL impedance.

Other cavity-free systems that show Rabi splitting and Rabi
oscillations have been found with giant atoms [62], e.g., an
artificial atom coupled to surface acoustic waves [63]. Sys-
tems involving atoms that act like mirrors were also studied
experimentally with a single trapped cold ion in front of a
dielectric mirror [64] and exploration of collective dark states
of strongly coupled qubits [65].

II. CIRCUIT-QED MODEL

Our system consists of a transmon qubit capacitively cou-
pled to a semi-infinite 1D TL at a distance L from its grounded
end (see Fig. 1). The transmon qubit consists of a supercon-
ducting anharmonic LC oscillator, where the inductive (L)
element is formed by a JJ with characteristic energy EJ in
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FIG. 1. (a) Circuit model of a transmon coupled through the
coupling capacitance Cc to a semi-infinite 1D TL with impedance
Z0. The Josephson energy, flux, and capacitance of the transmon are
denoted by EJ , φJ , and CJ . The flux on the coupling capacitance Cc is
denoted by φ0, with the corresponding voltage V0 = φ̇0. (b) Sketch of
the system depicting an atom in front of a mirror coupled to incoming
and outgoing microwave fields to the left and right characterized by
their respective voltages V in/out

L/R , respectively, at the transmon. The
mirror couples the fields to the right V in

R (t ) = −V out
R (t − T ), intro-

ducing the time of propagation to the mirror and back T = 2L/v.

parallel with a capacitor C with capacitance CJ . The sinusoidal
current-phase relation of the JJ makes the energy spectrum of
the transmon qubit anharmonic, allowing for excitation with a
single microwave photon using standard harmonic microwave
sources. The transmon is capacitively coupled to a microwave
TL, characterized by its inductance per unit length L0 and
capacitance per unit length C0. The velocity and characteristic
impedance of the electromagnetic field inside the TL are given
by v = 1/

√
L0C0 and Z0 = √

L0/C0, respectively. Using the
standard circuit quantization procedure [61,66,67], we can
derive the Heisenberg equations of motion for the charge p0(t )
on the coupling capacitor Cc, the charge pJ (t ) on CJ , and its
conjugate flux φJ (t ), giving the phase difference 2eφJ (t )/h̄
over the JJ. Denoting the operators for the voltages of the
incoming and outgoing microwave fields to the left and right
of the transmon as V in/out

L/R (t ) [see Fig. 1(b)], respectively, these
equations are

∂tφJ (t ) = 1

CJ
[pJ (t ) + p0(t )], (1)

∂t pJ (t ) = −EJ
2e

h̄
sin

[
2e

h̄
φJ (t )

]
≈ −φJ (t )

LJ
, (2)

∂t p0(t ) = 2p0(t )

Z0C�

+ 2pJ (t )

Z0CJ
− 2

Z0

[
V in

L (t ) + V in
R (t )

]
, (3)

V out
L/R(t ) = V in

R/L(t ) − Z0

2
∂t p0(t ), (4)

where we denoted the capacitance to the ground seen by
the coupling node as C� = CcCJ/(Cc + CJ ) and, in the sec-
ond equation, we introduced the Josephson inductance LJ =
h̄2/4e2EJ , which describes the linearized dynamics of the
Josephson junction. This approximation is obviously good in
the weak-excitation regime |φJ (t )| < h̄/2e and will also be
sufficient to describe the spontaneous emission, where the

FIG. 2. Reflection of a transmon in an open TL for different
ratios of the TL and qubit impedance Z0/ZJ . The curves show
the reflection for Cc

Cc+CJ
= 0.1 and Z0/ZJ = 0.1 (purple), Z0/ZJ =

1 (blue), Z0/ZJ = 10 (green), Z0/ZJ = 100 (yellow), and Z0/ZJ =
1000 (red) from low to high TL impedance. For low impedance, the
qubit reflects only at its low-impedance frequency ω0, but for high
impedance, it reflects everywhere but its bare frequency ωJ .

transmon is initially excited by a single microwave photon.
Here, we note that the equations of motion are linear and thus
could be understood from classical dynamics.

III. REFLECTION

A. Open TL

To characterize how the behavior of the system changes
when we increase the TL impedance Z0, we first investigate
the reflection of microwaves from the transmon coupled to an
open TL, i.e., without a mirror. Since the equations of motion
are linear, we can express the reflected field operator V out

L in
terms of the incoming probe field operator V in

L by Fourier
transforming the equations of motion (1)–(4), assuming no
incoming field from the right (V in

R = 0). The expression for
the frequency-dependent reflection coefficient is given by

r(ω) ≡ V out
L (ω)

V in
L (ω)

=
CcZ0ω

(
ω2

ω2
J
− 1

)
2i

(
1 − ω2

ω2
0

) + CcZ0ω
(

ω2

ω2
J
− 1

) , (5)

where ω0 = 1/
√

LJ (Cc + CJ ) is the resonance frequency of
the coupled transmon and ωJ = 1/

√
LJCJ is the resonance

frequency of the bare (uncoupled) transmon. In Fig. 2 the re-
flection around the transmon resonance frequencies is shown
for different values of Z0. We see that for low impedance
Z0Ccω < 1, the reflection is weak, except at ω0, where it is
unity due to resonant reflection from the transmon [68]. For
high impedance Z0Ccω > 1 we instead see strong reflection at
all frequencies, except around the “new” resonance frequency
ωJ , where we find zero reflection independent of Z0. The
crossover occurs at Z0 ∼ ZJCJ/Cc, introducing the transmon
impedance

ZJ =
√

LJ

CJ
= RQ

√
2EC

EJ
, (6)

where EC = e2/(2CJ ) is the charging energy of the transmon.
In the high-impedance regime, the strong scattering away

from ωJ occurs due to the comparably strong capacitive
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coupling to the ground at the transmon without exciting the
transmon. Close to ωJ , the resonantly excited transmon coun-
teracts this capacitive coupling and effectively acts like an
open circuit. This is the opposite behavior compared to the
low-impedance regime, where the transmon is effectively an
open circuit at all frequencies, except at its resonance fre-
quency ω0, where it acts like a shorted circuit, giving full
reflection.

By expanding Eq. (5) around its pole close to ωJ , we can
extract the high-impedance coupling strength γJ = 2/Z0CJ ,
which, in contrast to the low-impedance expression γ0 =
Z0C2

c /2LJ (CJ + Cc)2, does not depend on Cc and decreases
with increasing Z0. In this regime, the voltage V0 = V in

L +
V out

L = V in
R + V out

R at the node coupling to the TL oscillates
with the full voltage across the JJ, VJ = φ̇J . Due to the large
Z0, the amount of current passing through the TL is small
(∝ VJ/Z0) and is thus not able to change the voltage V0 − VJ

across Cc significantly, i.e., |V0 − VJ | � VJ . More details of
the derivation can be found in Appendix B.

In the low-impedance regime, we instead have large cur-
rents flowing through the TL, keeping the voltage at the
coupling node close to zero, i.e., |V0| � |VJ |. These currents
obviously scale with Cc, and the energy dissipation scales
with Z0, explaining the expression for γ0. In the following,
we investigate how the mirror affects the scattering.

B. Mirror

The mirror couples the fields to the right of the transmon
V in

R (t ) = −V out
R (t − T ), introducing the time of propagation

to the mirror and back T = 2L/v [see Fig 1(b)]. Like before,
we can find the response to a harmonic field incoming from
the left by Fourier transformation of the equations of motion.
Since the absolute value of the reflection for the transmon in
front of a mirror is always unity, we are now interested in the
frequency dependence of the ratio between the trapped field
(between the qubit and the mirror) and the incoming field,
which is given by f (ω) ≡ V out

R (ω)/V in
L (ω),

f (ω) =
(

ω2

ω2
0
− 1

)
(
1 − ω2

ω2
0

) − iCcZ0ω
2

(
ω2

ω2
J
− 1

)
(eiωT − 1)

, (7)

which is shown in Fig. 3. In the high-impedance regime, we
now find cavity resonances between the highly reflective atom
and the mirror when the frequency is close to nωc for n =
1, 2, . . . and ωc = 2π/T , as shown by the peaks in the inset
of Fig. 3. These are broadened by the coupling to the TL by
γ n

c = |t (nωc)|2/T , where t (ω) is the transmission across the
transmon and |t (ω)|2 = 1 − |r(ω)|2.

We find that the effect of the mirror on the transmon
resonance close to ωJ is simply to reduce its broadening by
a factor of 2 to γ m

J = 1/Z0CJ , away from any qubit-cavity
resonance ωJ ≈ n ωc. As shown in the main panel of Fig. 3,
on resonance ωJ ≈ n ωc we find an avoided crossing with the
coupling strength

�n = 2ωJ√
2πnCJZ0ωJ

= 2ωJ√
2πn Z0

ZJ

, (8)

FIG. 3. Amplitude of the electromagnetic field between the qubit
and the mirror | f (ω)| = |V out

R (ω)/V in
L (ω)| for Cc

CJ
= 0.1 and Z0/ZJ =

1000. The delay time is given by T = 2πn/ωc, n = 1, and ωc varies
with respect to ωJ . The different colors show ωc/ωJ = 0.98 (red),
ωc/ωJ = 0.99 (yellow), ωc/ωJ = 1 (green), ωc/ωJ = 1.01 (blue),
and ωc/ωJ = 1.02 (purple). All curves show a splitting which can be
understood as a vacuum Rabi splitting. Without detuning between ωJ

and ωc, the splitting is centered exactly around ω/ωJ = 1. The inset
shows the appearance of higher cavity modes appearing at ω ≈ nωc,
where ωcT = 2π for ωc/ωJ = 1, corresponding to the green curve
in the main plot.

which we derived by analyzing the splitting of the poles of
the Laplace transform of the equations of motion in the high-
impedance regime. More details can be found in Appendix A.
Using the resonance condition ωJ ≈ n ωc again, we note that
the n dependence cancels on resonance,

�T = 2√
TCJZ0

. (9)

As we will see in the next section, where we investigate the
spontaneous emission dynamics of the transmon, we find that
this coupling indeed gives rise to vacuum Rabi oscillations
between the transmon and the cavity mode.

In the low-impedance regime Z0Ccω < 1, f (ω) is instead
close to unity, indicating only a little scattering from the
transmon for all frequencies far from the transmon resonance
ω = ω0. Here, f (ω0) = 0 since the field is reflected by the
transmon and does not reach the mirror. When the transmon
is located at a distance corresponding to a node of the elec-
tromagnetic field at its resonance frequency, i.e., ω0T = 2nπ ,
it is in a dark state and is thus completely invisible to the
incoming field at frequency ω0, giving instead f (ω0) = 1. In
the dark state, both the transmon and the field between the
transmon and the mirror are excited. Thus, if the distance is
slightly longer or shorter than the node, the state is no longer
completely dark, and we instead get a pronounced scatter-
ing resonance (| f (ω)| � 1) at frequencies slightly lower or
higher than ω0 (see, e.g., the red line in Fig. 3). For higher
Z0, we see that this dark state resonance moves in frequency
towards the cavity frequency ωc = 2π/T . As shown in Ap-
pendix A, for small Cc/CJ � 1 and ω0 = nωc, we can find
vacuum Rabi oscillations damped towards a finite dark state
population.

In the following, we investigate how the high-impedance
TL influences spontaneous emission of the transmon.
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FIG. 4. Energy of the transmon (blue), field between the mirror
and transmon (pink), outgoing field to the left (orange), sum of all
energies (red), approximated decay γ m

J (dashed cyan), and approx-
imated Rabi frequency �T and decay e−γ m

J t/2 cos2(�T t/2) (dashed
yellow) for Cc/CJ = 0.5, Z0/ZJ = 100, T = 2π/ωc, nωc = ωJ , n =
1 as a function of periods of the Rabi oscillations. The inset shows
the energy of the transmon (blue) and the flux φ2

J (green) for the
first oscillation of the frequency �T . This clearly shows the different
timescales of the energy compared to the variables of the transmon.

IV. SPONTANEOUS EMISSION AND RABI OSCILLATIONS

We consider the case of a transmon initially excited at
time t = 0 with a finite flux φJ (0) > 0, while the other qubit
variables are zero pJ (0) = p0(0) = 0 and the TL is in the
vacuum state. The qubit energy

Eq(t ) = [pJ (t ) + p0(t )]2

2CJ
+ p0(t )2

2Cc
+ φJ (t )2

2LJ
, (10)

is the sum of the capacitive energy on the two capacitances
and the inductive energy in the JJ. The current amplitude
emitted from the transmon into the TL is ∂t p0(t ), and from
this we can write the change in the energy ER(t ) of the field
between the transmon and the mirror as

∂t ER(t ) = Z0

4
{[∂t p0(t )]2 − [∂t p0(t − T )]2}, (11)

where the first term corresponds to the instantaneous power
emitted into the TL and the second term is the instantaneous
power coming back from the mirror. The change in the energy
of the field to the left of the transmon EL(t ) is given by the
instantaneous left-moving power leaving the system,

∂t EL(t ) = Z0

4
[∂t p0(t ) − ∂t p0(t − T )]2, (12)

where the left-moving current amplitude is a sum of the cur-
rent emitted by the transmon and the delayed current arriving
from the mirror.

In Fig. 4, we plot these energies for Z0/ZJ = 100 for
the case of resonance between the transmon and the first
cavity resonance ωJ = ωc. The system energies indeed per-
form damped Rabi oscillations with the frequency �T =
2/

√
TCJZ0 and half the off-resonance damping rate γ m

J /2 =
1/2CJZ0, as indicated by the yellow line given by the expres-
sion e−γ m

J t/2 cos2(�T t/2), approximating the full numerical
solution of the differential equations very well. We note that
Laplace transforming the equations of motion (1)–(4) and

FIG. 5. Response function (log color scale) versus normalized
frequency ω/ωJ and linearly varied time delay ωJ T . The eigenval-
ues �α are computed for N = 8 cavity modes and are shown as
superimposed white dashed lines. The parameters are chosen to be
Z0/ZJ = 100 and Cc/CJ = 0.3.

calculating the residues of the system variables give expres-
sions for the Rabi frequency and damping rate similar to
the analysis of the resonances in the scattering amplitudes.
More details and a comparison of the approximation to the
numerical results are found in Appendix A.

V. EFFECTIVE QUANTUM MODEL: ATOM IN A
MULTIMODE CAVITY HAMILTONIAN

We now go on to demonstrate that in the high-impedance
regime the response function f (ω) of the field trapped
between the transmon and the mirror (7) reproduces the dy-
namics of an effective Hamiltonian of a single transition atom
in a multimode cavity. This Hamiltonian is of the form

H = ωJ
(
a†a + 1

2

) +
∞∑

n=1

nωc
(
c†

ncn + 1
2

)

+
∞∑

n=1

�n

2
(a† + a)(c†

n + cn), (13)

where the operators a, a† are annihilation and creation bosonic
operators ([a, a†] = 1) associated with excitation in the trans-
mon qubit, while cn, c†

n annihilate and create photons in the
cavity modes. When weakly excited, the choice of bosonic
excitations of the transmon is justified, while the orthogonality
relations between the cavity modes is ensured by the high
finesse of the latter, so that we have [cn, c†

m] = δnm. Details
of the diagonalization of the Hamiltonian are shown in Ap-
pendix C. The response function | f (ω)| and eigenfrequencies
of Hamiltonian (13) are shown in Fig. 5. The eigenfrequencies
are shown to match the peaks of | f (ω)| for all cavity modes.
Noticeably, a dip in the response function corresponding to
the dark state is found for ω = ω0. A similar multimode
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FIG. 6. Energy of the transmon (blue), energy of the field trapped between the transmon and the mirror (magenta), outgoing field to the left
side of the transmon (orange), total energy of the system (red), and semi-numerically calculated energy of the transmon using Eq. (A2) (yellow
dashed) as a function of the period of the Rabi oscillations. The parameters for the panels are the following: (a) Z0/ZJ = 1000, Cc/CJ = 0.02,
T = 2π/ωc, and ωJ = nωc, n = 1. Since we chose Cc/CJ = 0.02, the decay is very slow. (b) Z0/ZJ = 1000, Cc/(CJ + Cc ) = 0.02, T = 2π/ωc,
and ω0 = nωc, n = 1. Here, the parameters are almost the same as in (a), but now the dark state condition ωc = ω0 is fulfilled. The system
converges into a dark state with a finite-excitation probability of both the transmon and the field between the transmon and the mirror. The

green line indicates the analytical value of the dark state energy EDS
E0

= 1
(1+ T

2 γ0 )2 , with γ0 = Z0ω2
0

2
C2

c
Cc+CJ

. (c) Z0/ZJ = 1000, Cc/(CJ + Cc ) = 0.3,

T = 2π/ωc and ω0 = nωc, n = 1. Here, although ω0 = ωC as in (b), the system does not seem to converge into a dark state, and the decay
rate is given by γJ = 1/CJ Z0. The difference from (b) is that the ratio between Cc

CJ

Z0
ZJ

here is much bigger than in (b), which also means that ωJ

is not close to ωC and the Rabi oscillations are barely visible. (d) Z0/ZJ = 1000, Cc/CJ = 0.3, T = 2πωc, and ωJ = nωc, n = 1. Here, as in
(c) Cc

CJ

Z0
ZJ

� 1, but the “Rabi condition” ωJ = nωC is still fulfilled. We see clear Rabi oscillations, the decay is slower compared to (c), and the
decay rate is given by γ m

J /2 = 1/2CJ Z0.

Hamiltonian with a (1/
√

n)-dependent coupling was studied
in Refs. [69,70].

VI. DISCUSSION AND OUTLOOK

We have theoretically investigated the properties of a trans-
mon capacitively coupled to a high-impedance transmission
line, a system which is currently becoming experimentally
accessible. By linearizing the Josephson junction, we could
describe the low-excitation dynamics, including spontaneous
emission. We find qualitatively different behavior compared
to that of the low-impedance regime. In particular, the atom
now forms its own cavity, and we can observe a vacuum Rabi
splitting, giving rise to Rabi oscillations in the spontaneous
emission. The system is well described by a Hamiltonian for
an atom weakly coupled to a multimode cavity. We hope that
this analysis will inspire an experimental realization of this
novel system.
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APPENDIX A: RABI OSCILLATIONS OF AN ATOM
COUPLED TO A HIGH-IMPEDANCE SEMI-INFINITE TL:

ADDITIONAL PARAMETER VALUES

We can Laplace transform the equations of motion of the
transmon shown in the main text and extract the exact poles
numerically. With the following formulas we can calculate the
inverse Laplace transform of the system variables and energy:

Res±
1,2 pJ (s) = lim

s→s±
1,2

pJ (s)(s − s±
1,2), (A1)

pJ (t ) =
∫

pJ (s)e−st ds = 2π i
∑

k

Res pJ (s)e−st

∣∣∣∣∣
s=sk

, (A2)

where k = s±
1,2 are the poles of pJ (s). Similarly, we calcu-

late φJ (t ). We show the results as an addition to Fig. 4 in
the main text. Here, we provide more figures for different
system parameters. In all panels of Fig. 6, the impedance
is chosen to be Z0/ZJ = 1000. In Fig. 6(a), the ratio of the
coupling capacitance and the Josephson capacitance is fairly
small, Cc/CJ = 0.02, and the coupling to the TL is weak.
The cavity frequency equals the resonance frequency of the
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FIG. 7. Rabi frequency � as a function of Z0/ZJ calculated
analytically �T (solid yellow line) and numerically �N (dots) for dif-
ferent values of Cc/CJ , Cc/CJ = 0.01 (purple), Cc/CJ = 0.05 (red),
Cc/CJ = 0.3 (orange), for T = 2π/ωc, ωJ = nωc, n = 1. We see that
the higher Cc

CJ

Z0
ZJ

becomes, the closer the approximated analytical
frequency �T and the numerically calculated frequency �N become.

transmon ωc = ωJ . The decay is weak, and the Rabi oscil-
lations are clearly visible. The parameters in Fig. 6(b) are
similar to those of Fig. 6(a), but now Cc/(CJ + Cc) = 0.02,
and most importantly, the cavity frequency equals the tran-
sition frequency of the qubit for low impedance, ωc = ω0,
which is the condition for a dark state [61]. The energy of the
transmon decays until it reaches the dark state, with energy
EDS
E0

= 1
(1+ T

2 γ0 )2 , where γ0 = Z0ω
2
0

2
C2

c
Cc+CJ

[61]. In Fig. 6(c), the

coupling capacitance is much larger than those of Figs. 6(a)
and 6(b), Cc/(Cc + CJ ) = 0.3, and the transmon fulfills the
dark state condition ωc = ω0. Anyhow, the system does not
converge into a dark state, and the Rabi oscillations are very
weak. The main difference here is that, since Cc/(Cc + CJ ) is
rather large, ωJ is not close to ωc, and the Rabi oscillations
and coupling to the cavity are suppressed. In this parameter
regime, the behavior of the system seems to be independent of
the position of the transmon with respect to the mirror. Similar
to Fig. 6(c), in Fig. 6(d), the coupling capacitance is rather
large too, Cc/CJ = 0.3, but here, the cavity frequency equals
the frequency of the transmon ωc = ωJ , which means that the
Rabi condition is fulfilled. We see clear Rabi oscillations, and
in addition, the decay is much slower than in Fig. 6(c).

As mentioned in the main text, we find an analytical
expression for the oscillation frequency by analyzing the
Laplace transform of the equations of motion. The denomi-
nator of all system variables in Laplace transform is given by

N (s) = 2esT

(
1 + s2

ω2
0

)
+ s(1 − esT )

(
1 + s2

ω2
J

)
CcZ0. (A3)

If we expand the denominator N (s) around the resonance
frequency s → ωJ (i + x + iy), with x, y � 1 for high Cc

CJ

Z0
ZJ

,
we find that the splitting of the poles, and hence the Rabi
frequency, is given by �n = 2ωJ√

2πnCJ Z0ωJ
. In Fig. 7, we demon-

strate the deviations of the approximation from numerically
calculated values. We find that the higher the ratio Cc

CJ

Z0
ZJ

is,
the more closely the approximation resembles the numerical
solution.

APPENDIX B: ANALYSIS OF THE RESPONSE FUNCTIONS

To analyze the solution of the Fourier transformation of the
equations of motion in the main text in a convenient manner,
we introduce the following functions:

N (ω) = R0(ω) − iRJ (ω), (B1)

R0(ω) =
(

1 − ω2

ω2
0

)
(B2)

RJ (ω) = CcZ0

2
ω

(
1 − ω2

ω2
J

)
. (B3)

With these definitions we are able to write the transmission
and the reflection amplitudes of the qubit in the open trans-
mission line as

r(ω) = iRJ (ω)

N (ω)
, t (ω) = R0(ω)

N (ω)
, r(ω) + 1 = t (ω).

(B4)

We note that the high-impedance regime corresponds to
|RJ (ω)| � |R0(ω)| away from resonances, i.e., |CcZ0ω/2| �
1, while the opposite (|RJ (ω)| � |R0(ω)|) is true in the low-
impedance regime, |CcZ0ω/2| � 1.

1. Damping rate for the open TL

We analyze the scattering solution of the qubit excitation
φJ to find the damping rate for the transmon in an open TL.
The solution in frequency space reads

φJ (ω) = − CcLJω

R0(ω) − RJ (ω)
. (B5)

In the high-impedance regime, we perform an expansion
around the bare qubit frequency ω = ωJ + δω and find, to first
order in δω,

φJ (ωJ + δω) ≈ i

ωJ

1

1 − i2δω/γJ
, (B6)

where γJ = 2/Z0CJ is the energy damping rate for sponta-
neous emission.

In the low-impedance regime, the qubit resonance is shifted
to ω0, and we instead expand ω = ω0 + δω to find

φJ (ω0 + δω) = 1

CcZ0ω
2
0

1

1 − i2δω/γ0
, (B7)

where γ0 = Z0ω
2
0

2
C2

c
Cc+CJ

is the low-impedance damping rate
[61].

2. Damping rates and Lamb shifts with a mirror

With a mirror, the solution of the Josephson flux φJ can be
written as

φJ (ω) = −iCcLJω(1 − eiωT )

R0(ω) − iRJ (ω)(1 − eiωT )
. (B8)

In the low-impedance regime, we find that the qubit resonance
is Lamb shifted to ω̃0 = ω0 + γ0 sin(ω0T )/2, and we can
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expand φJ (ω) around the resonance and find

φJ (ω̃0 + δω) ≈ −i
Cc

CJ + Cc

eiω0T/2

γ0 sin (ω0T/2)

1

1 − i2δω/γ m
0

,

(B9)

with the Purcell-modified damping rate γ m
0 =

2γ0 sin2 (ω0T/2).
In the high-impedance regime, the resonance frequency

is Lamb shifted to ω̃J = ωJ + γJ cot (ωJT/2)/4. Expanding
φJ (ω) around this frequency, we find

φJ (ω̃J + δω) = − 2i

ωJ

1

1 + i2δω/γ m
J

, (B10)

where γ m
J = γJ/2 = 1/CJZ0 is the damping rate of an atom in

front of a mirror in the high-Z0 regime. Here, we note that the
expression for the Lamb shift diverges when sin (ωJT/2) = 0,
i.e., when ωJ is close to a cavity resonance ωn

c = 2πn/T . This
is when the single pole approximation is no longer valid and
we find the vacuum Rabi splitting. Away from the Rabi condi-
tion, we also note that the damping rate is independent of the
distance to the mirror; that is, we see no Purcell effect. Away
from the Rabi condition, we can also analyze the response
function

f (ω) = 1

1 − i RJ (ω)
R0(ω) (1 − eiωT )

(B11)

to extract the cavity modes. Due to the finite transmission
through the transmon, they are slightly shifted from the per-
fect mirror frequencies to ω̃n

c = ωn
c + R0(ωn

c )/T RJ (ωn
c ). Close

to the resonances we can expand ω = ω̃n
c + δω and find

f
(
ω̃n

c + δω
) ≈ 2

t
(
ωn

c

) 1

1 − i2δω/γ n
c

, (B12)

where γ n
c ≈ |t (ω̃n

c )|2/T is the energy damping rate of cavity
mode n.

APPENDIX C: HOPFIELD DIAGONALIZATION OF THE
ATOM IN A MULTIMODE CAVITY HAMILTONIAN

To diagonalize the effective quantum optical Hamiltonian
[Eq. (13) in the main text], we first introduce the new polari-
tonic operators

�α = xαa + yαa† +
∑

n

(
mα

n cn + hα
n c†

n

)
, (C1)

with xα, yα, mα
n , hα

n being the Hopfield coefficients associ-
ated with each bosonic operator a, a†, cn, c†

n. To ensure the
bosonicity of the polaritonic operators ([�α,�

†
β ] = δαβ), the

coefficients should satisfy the relation

|xα|2 − |yα|2 +
∑

n

(∣∣mα
n

∣∣2 − ∣∣hα
n

∣∣2) = 1. (C2)

The new operators should satisfy the eigenvalue problem

[�α, H] = �α�α, (C3)

where �α are the eigenfrequencies labeled with a new index
α. Typically, if we couple the atom with N cavity modes,
then α runs from 1 to N + 1. Expanding the commutator in
the previous equation, it is possible to write the eigenvalue
problem in matrix form:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ωJ 0 g1 −g1 . . . gN −gN

0 −ωJ g1 −g1 . . . gN −gN

g1 −g1 ω1 0 . . . 0 0
g1 −g1 0 −ω1 0 0
...

...
...

. . .
...

gN −gN 0 0 ωN 0
gN −gN 0 0 . . . 0 −ωN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

xα

yα

mα
1

hα
1
...

mα
N

hα
N

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

= �α

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

xα

yα

mα
1

hα
1
...

mα
N

hα
N

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (C4)

This eigenvalue problem can be solved analytically for N = 1, but in general, one has to diagonalize it numerically. A comparison
between the full response function and the eigenvalues is shown in Fig. 5 in the main text.
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