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Abstract

Mathematical models based on ordinary differential equations (ODEs) are
commonly used for describing the evolution of a system over time. In drug de-
velopment, pharmacokinetic (PK) and pharmacodynamic (PD) models are used
to characterize the exposure and effect of drugs. When developing mathemati-
cal models, an important step is to infer model parameters from experimental
data. This can be a challenging problem, and the methods used need to be
efficient and robust for the modeling to be successful. This thesis presents the
development of a set of novel methods for mathematical modeling of dynami-
cal systems and their application to PK-PD modeling in drug development.

A method for regularizing the parameter estimation problem for dynamical
systems is presented. The method is based on an extension of ODEs to stochas-
tic differential equations (SDEs), which allows for stochasticity in the system
dynamics, and is shown to lead to a parameter estimation problem that is easier
to solve.

The combination of parameter variability and SDEs are investigated, allowing
for an additional source of variability compared to the standard nonlinear
mixed effects (NLME) model. For NLME models with dynamics described
using either ODEs or SDEs, a novel parameter estimation algorithm is pre-
sented. The method is a gradient-based optimization method where the exact
gradient of the likelihood function is calculated using sensitivity equations,
which is shown to give a substantial improvement in computational speed
compared to existing methods. The methods developed have been integrated
into NLMEModeling, a freely available software package for mixed effects
modeling in Wolfram Mathematica. The package allows for general model
specifications and offers a user-friendly environment for NLME modeling of
dynamical systems.
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The SDE-NLME framework is used in two applied modeling problems in
drug development. First, a previously published PK model of nicotinic acid is
extended to incorporate SDEs. By extending the ODE model to an SDE model, it
is shown that an additional source of variability can be quantified. Second, the
SDE-NLME framework is applied in a model-based analysis of peak expiratory
flow (PEF) diary data from two Phase III studies in asthma. The established
PEF model can describe several aspects of the PEF dynamics, including long-
term fluctuations. The association to exacerbation risk is investigated using a
repeated time-to-event model, and several characteristics of the PEF dynamics
are shown to be associated with exacerbation risk.

The research presented in this doctoral thesis demonstrates the development
of a set of methods and applications of mathematical modeling of dynamical
systems. In this work, the methods were primarily applied in the field of
PK-PD modeling, but are also applicable in other scientific fields.

Keywords: mathematical modeling, dynamical systems, mixed effects, param-
eter estimation, pharmacokinetics, pharmacodynamics, time-to-event, pharma-
cometrics, drug development
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1 Introduction

This chapter gives a short introduction to this doctoral thesis. The idea of mod-
eling is described, with emphasis on mathematical modeling. The application
of mathematical models in drug development is highlighted, leading into the
motivation and aims for this thesis.

In Chapter 2, the most important mathematical concepts considered throughout
the appended papers are described. In Chapter 3, the results from the six
appended papers are presented and discussed. The thesis ends with further
discussions and future perspectives in Chapter 4.

1.1 The Idea of Modeling

Modeling is the process of representing real-world systems in a logical and
objective way, where a system can be described as a group of interrelated
entities that are integrated to accomplish a common goal. Starting with a
problem or question, the system of interest can be translated into a model
where the problem can be studied in a simplified context. Hence, a model
should always be developed with a purpose in mind. The modeling process
requires the modeler to carefully identify relevant aspects of the system, and to
transfer the necessary components of the system into the model. Depending
on the level of detail of interest, models might have different complexity. There
are several different classes of models, depending on how they represent the
system of interest. In this work, we will only consider quantitative models,
and the interested reader is referred to Gerlee and Lundh (2016) for a broad
introduction to modeling and its applications.

A quantitative model, also known as a mathematical model, is a formal repre-
sentation and description of a system. Eykhoff (1974) described a mathematical
model as a representation of the essential aspects of an existing system, which

1



2 1. Introduction

presents knowledge of that system in usable form. Described in other terms, a
mathematical model is a simplification of a system using mathematical concepts
and language. Mathematical models can take a variety of forms, including
dynamical models, statistical models, and agent-based models. The applica-
tions of mathematical models are enormous, spanning from natural sciences
(e.g., physics, chemistry, and biology) and engineering (e.g., automotive and
electronics) to social sciences (e.g., economics and sociology). From now on,
the terms ‘mathematical model’ and ‘model” will be used interchangeably.
Note that this should not be confused with animal models, commonly used in
preclinical experiments in drug development.

Once the system has been represented as a mathematical model, the problem at
hand can be studied in an isolated context. The results from the analysis of the
mathematical model then needs to interpreted, providing insights and answers
to the questions. As knowledge increases and new insights are gained, the
modeling process often needs to be repeated one or several times. A conceptual
illustration of the mathematical modeling process, and its iterative nature, is
illustrated in Figure

Real-world Formulation Mathematical

problem r— model

Inform Analysis
Modeling
Implications e
p . results
Interpretation

Figure 1.1: Conceptual illustration of the mathematical modeling process. Starting with
a problem in the real world, a mathematical model is created. The model produces
certain results, which then needs to be interpreted to inform the initial problem. As
knowledge increase, several iterations of the modeling process might be necessary.



1.2. Mathematical Modeling in Drug Development 3

1.2 Mathematical Modeling in Drug Development

Drug development is the process by which new therapies are created and
brought to market to treat diseases (Wood 2006). The development of new
drugs is a long and expensive process (DiMasi et al.[2016), involving many
different development phases such as discovery of a suitable target, compound
development, pre-clinical experiments, clinical studies in humans, and post-
marketing studies.

Pharmacology, named from the Greek words pharmakon (drug/poison) and
-logia (study of/knowledge), is a cornerstone of drug development which
aims to understand how chemical substances (man-made or natural) interacts
with living organisms. Two important concepts in pharmacology encountered
throughout this thesis is pharmacokinetics and pharmacodynamics. Pharmacoki-
netics (PK), often described as what the body does to the drug, deals with how
the concentration of drugs at various sites in the body changes over time. The
PK encompasses several different phases, such as drug absorption, distribu-
tion, metabolism, and elimination. Pharmacodynamics (PD), often described
as what the drug does to the body, deals with the time course of drug action
and effect and is (in most cases) closely linked to the PK. The PD effect could
for example be changes in glucose concentration, blood pressure, or disease
severity. These two important concepts are often studied simultaneously, in
a framework named pharmacokinetic-pharmacodynamic (PK-PD) modeling.
Several different examples of PK-PD models will be encountered throughout
this thesis.

The application of mathematical models in general, and PK-PD models in
particular, has increased in popularity in drug development during the last
decades. It has evolved into its own discipline named pharmacometrics, which
has been defined as the branch of science concerned with mathematical models
of biology, pharmacology, disease, and physiology to describe and quantify
interactions between drugs and patients (Barrett et al. 2008} Ette and Williams
2007).

Today, a wide spectrum of quantitative methods are used on a regular basis to
facilitate decision making in the drug development process, often referred to
as model-informed drug development (MIDD) (Helmlinger et al. 2017; Kimko
and Pinheiro [2015; Marshall et al. 2016; Milligan et al.[2013). MIDD can be
used to weigh risks and benefits throughout the development phases, and to
provide answers to important questions: How does the drug behave in the
body? What is the best dose? Which patients are likely to benefit from the
drug? What is the probability of success?
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1.3 Every Patient is Different

As humans are different, we also respond differently to drug therapies. The
differences might be attributed to known covariates, such as gender, ethnicity,
or weight. There might also be other sources of variation that are not known
explicitly. Often, the aim is to understand the sources of variation and quantify
the degree of variability within a population of interest.

A statistical framework suitable for incorporating variability between individ-
uals is the mixed effects model. The ‘mixed’ term refers to the fact that the
model incorporates both fixed effects (parameters assumed to be the same for all
individuals) and random effects (parameters assumed to be different between
individuals). The models encountered throughout this thesis deal with mixed
effects models where the model parameters occur nonlinearly, resulting in the
nonlinear mixed effects (NLME) model (Davidian and Giltinan [1995; Lind-
strom and Bates|1990). NLME modeling has been applied in several scientific
fields, including image analysis (Bilgel et al. 2016; Chen et al.2013), forestry
(Sirkié et al.|2015), and not least pharmacometrics.

In pharmacometrics, the NLME model has become the standard approach
for analyzing data from multiple individuals, where it is used to quantify
inter-individual variability in for example drug exposure and effect. In 1977,
Lewis Sheiner published a seminal paper, describing the estimation of inter-
individual variability in PK parameters (Sheiner et al.|1977). The paper was
followed by a series of papers by Lewis Sheiner and Stuart Beal (Sheiner and
Beal [1980; Sheiner and Beal (1981} Sheiner and Beal [1983), and their models and
estimation methods are now incorporated in the NONMEM program, one of
the most popular software for NLME modeling in drug development (Beal
et al. 2017).

1.4 Describing the Dynamics

In PK-PD modeling, the underlying system of interest is often described math-
ematically using ordinary differential equations (ODEs). The application of
ODEs in PK-PD modeling is diverse, spanning from rather simple PK models
describing change in concentration in different compartments to comprehen-
sive quantitative systems pharmacology models consisting of a large number
of interacting entities (Coletti et al.|[2020).

Using ODEs, the evolution of the system dynamics is by definition determin-
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istic, and any deviations between model predictions and observed data are
usually described using a random variable (typically referred to as the measure-
ment error). As the deterministic model does not account for uncertainty in the
underlying dynamical system, it attempts to represent the average behavior of
the system (Irurzun-Arana et al.|[2020). The deterministic description might be
an appropriate model in many cases, while in some cases the introduction of
stochasticity in the dynamical model is deemed more appropriate.

One way of introducing stochasticity in the dynamical model is to consider the
extension to stochastic differential equations (SDEs). SDEs are a flexible class of
models describing the evolution of a stochastic process. SDEs have successfully
been applied in several fields, including finance, electrical engineering, and
control theory (Black and Scholes [1973; Jazwinsky 1970; Astrém 1970). One of
the first applications of SDEs in PK-PD modeling was published by Kristensen
et al. (2005), where the authors proposed using SDEs to improve the structure
of the dynamical model.

The combination of SDEs and NLME is an intriguing approach, as it enables
characterization of three sources of variability in the observed data: inter-
individual variability, measurement error, and stochasticity in the system dy-
namics. The stochastic differential equation mixed effects model (SDEMEM)
framework was published during 2000s (Ditlevsen and De Gaetano 2005; Over-
gaard et al. 2005} Tornge et al. 2005). Since its introduction, it has been used in
several applications, including PK modeling, neuronal signaling, and oncology
(Berglund et al. 2012} Matzuka et al. 2016; Picchini et al. 2008; Picchini and
Forman [2019).

1.5 Motivation and Aims of This Thesis

The development and application of mathematical models is important in
many scientific areas. Once a model has been developed, it can be used to
shed light upon new questions and hypotheses. Hence, a model is a powerful
tool as it not only can be used retrospectively, but also to inform and guide
the design of future experiments. In drug development, the application of
modeling and simulation can accelerate the development of new drugs, reduce
patient burden, and build new knowledge.

The research in this thesis considers several aspects of mathematical modeling
of dynamical systems. The main focus has been on NLME modeling, both
in terms of method development and application of novel methodology. The
research addresses the following three aims:
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Aim 1: To investigate the use of stochastic dynamical models to improve un-
derstanding and description of the underlying system of interest.

Aim 2: To contribute to the development of methodology for parameter esti-
mation in dynamical systems, with focus on computational performance and
robustness.

Aim 3: To apply novel methodology to address relevant questions within
the area of drug development.



2 Methods

This chapter describes the most important mathematical concepts used through-
out the appended papers. In the following sections, bold font is used to denote
vectors and matrices.

2.1 Ordinary Differential Equations

One of the most frequently used tools for mathematical modeling in engineer-
ing and life sciences is differential equations. An ordinary differential equation
is a differential equation containing one or more functions of one independent
variable (which here will be time) and the derivatives of those functions. To
describe the underlying dynamical system of interest we will in this thesis
consider a set of first-order ODEs of the form

Z—f = f(x,u,t,0), x(to) = x0(0), (2.1)
where t denotes time, « is the vector of state variables, u is the known system
input, and 6 is the vector of model parameters. The function f(x,u,t,6)
describes the dynamics of the system. The initial condition, given at time
t = to, is described by (@), which may depend on the model parameters.
Examples of inputs, u, in PK-PD modeling applications could be different
dosing regimens, such as infusion or oral dosing.

Furthermore, the system is assumed to be observed at discrete time points. The
observation model is described by

Yy; = h(a:(tj),u(tj),tj, 0) + e(tj), j=1,...,J, (2.2)

where y; is a vector of output variables at time point ¢; and h(x(t;), u(t;),t;,0)
is a function describing the observation model. The observation error e(t;) is

7



8 2. Methods

assumed to be normally distributed with mean zero and covariance matrix
E = E(w(tj), ’U,(tj), tj, 0)

2.2 Sensitivity Analysis

Sensitivity analysis is the study of how perturbations affect the output of a
mathematical model or system. Different types of perturbations might be
considered, including perturbations in the input, initial conditions, and/or the
model parameters.

Parameter sensitivity analysis can serve as tool to investigate how sensitive
the model is with respect to different model parameters. This can for example
be used to guide experimental design and to reduce model complexity. For
gradient-based parameter optimization problems, parameter sensitivity analy-
sis can be utilized to calculate the gradient of the objective function, which is
considered throughout the appended papers.

The first-order sensitivity equations for an ODE are obtained by differentiating
the ODE with respect to the parameters. This leads to a set of new differential
equations describing the evolution of the sensitivity of the states (Dickinson
and Gelinas [1976). The first-order sensitivities, ;ka, of the state variables x
with respect to a parameter ), where k = 1, ..., p, with p being the number of
model parameters, is given by the solution to the differential equation

dde Of  Of dx dx ) = 0z (0)

ado. o0 Tozaes a0, = a0, (2.3)

For an ODE model with n state variables, depending on p parameters, the first-
order state sensitivities lead to a set of n - p sensitivity equations. In general,
the sensitivity equations depend on the state variables «. This requires the
sensitivity equations to be solved simultaneously as the original set of ODEs,
leading to a set of n (p + 1) differential equations. In the same fashion, higher
order parameter sensitivities can be obtained by differentiating the first-order
sensitivity equations.
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2.3 The Nonlinear Mixed Effects Model

Using ODEs, the evolution of the state variables is completely determined by
the initial condition (o), the input w(¢), and the model parameters 6. Hence,
the only source of variability in the observed data arises from the error in the
observation model. Since different individuals are likely to show different
dynamic behavior, it is motivated to consider an additional source of variability
in the model, namely the inter-individual variability.

In an NLME model, the model for individual i is described by

d:;i = flxi, wit, @), wmi(to) = xio(di), 2.4)
Yij = h(mi(tj>vui(tj)vtj7 ¢z) + e(tj), (25)

where ¢; denotes the parameters for individual i. The individual parameters
are related to the population parameters 6 by the relationship

where 0 denotes the fixed effects, Z; denotes the known covariates for individ-
ual 4, and n); denotes the random effects. The random effects are assumed to be
multivariate normally distributed

where Q denotes the covariance matrix for the random effects.

The NLME model, also known as multilevel or hierarchical model, introduces
an additional level in the statistical description of the data. By transformation
of the random effects, via the functional relationship ¢, different distributions
of the individual parameters can be obtained, such as log-normal and logit-
normal.

2.4 The Stochastic Differential Equation Mixed Ef-
fects Model

We will also consider dynamical models described by SDEs, allowing for
stochasticity in the dynamics. In a stochastic differential equation mixed effects
model (SDEMEM), the dynamics for individual ¢ is described by an SDE of the
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following form
dx; = f(xi, wi t, dp)dt + G(xi, wi t, ) dW;,  xi(to) = xio(di).  (2.8)

Here, W is a standard Wiener process, also known as Brownian motion, with
increments dW; ~ N (0, dtI) where I denotes the identity matrix. The matrix G
weights the increments, and we will refer to G(x;, u;, t, ¢;)dW; as the system
noise. For SDEs, the function f(x;, u;, t, ¢;) is usually referred to as the drift.
Note that in the case of G = 0, the SDE reduces to an ODE. The solution x; to
the SDE is a stochastic process and lacks, in most cases, a closed form solution.
For additional information regarding SDEs, see Jksendal (2003).

In models governed by SDEs, the underlying state is stochastic. The problem
of inferring the underlying state from observations is commonly referred to as
the filtering problem. To solve the filtering problem for models governed by
SDEs, we will consider the extended Kalman filter (EKF) (Jazwinsky|1970). For
linear dynamical system models, the Kalman filter provides an optimal state
estimator for a given parameter vector ¢;. For nonlinear dynamical system
models, the EKF uses a first-order linearization around the model prediction
and provides estimates of the conditional expectation and covariance of the
underlying state and output. Additional details regarding the EKF can be
found in Paper I, Paper II, and Paper IV.

In contrast to the classical NLME framework which only considers two sources
of variability in the observed data, the SDEMEM considers three sources of
variability: inter-individual variability, system noise, and measurement error.

2.5 Estimating Model Parameters

One key step in the mathematical modeling process is the problem of inferring
model parameters from experimental data, usually referred to as the parameter
estimation problem. A popular method for estimation of parameters in a
statistical model is the maximum likelihood approach. Maximum likelihood
estimation aims to find the values of the model parameters such that, given
the statistical model, the observed data is most probable. This is achieved by
defining a parametrized probabilistic model for the data and maximizing the
likelihood function with respect to the parameters.

For a statistical model, not necessarily a mixed effects model, the likelihood
function is defined as the joint probability distribution of the observed data
D, but viewed and used as a function of the model parameters. Hence, the
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likelihood function is defined by
£(6) = L(6D) £ p(D|9). 2.9)
In many cases, it is more convenient to work with the log-likelihood defined by
0(0) =log L(0). (2.10)

For NLME models, the random effects are unobserved entities which com-
plicates the parameter inference. To formulate the likelihood function for an
individual given the individual data D;, the joint distribution of the data and
the random effects are marginalized with respect to the random effects. To sim-
plify the notation, we let @ denote all model parameters of interest, including
parameters in 3, 2, and, in the case of stochastic dynamics, also the matrix G.
Hence, the likelihood for individual i can be expressed as

£(61D;) = / p(Ds,010)dn; = / p(Di|6. n)p(mil@)dm;.  (2.11)

In most cases, the integral over the random effects lacks a closed-form solution.
To deal with the integral several approaches exist, including sampling-based
methods or closed-form approximations, which will be further described in
the next chapter.

The goal of maximum likelihood estimation is to find the values of the model
parameters that maximize the likelihood over the parameter space ®. The
maximum likelihood estimate (MLE) is given by

0 = argmax L(0). (2.12)
0coO

Since the logarithm is a monotone function, maximizing the likelihood is
equivalent to minimizing the negative log-likelihood. This is of statistical and
computational convenience and will be used throughout the appended papers.

The MLE, é, is a point estimate, for which the observed data have the highest
probability to occur. To assess the precision in @ several approaches exist,
including bootstrapping (DiCiccio and Efron|1996), profile likelihood (Raue
et al. 2009), and observed Fisher information (Lehman and Casella|1998). Boot-
strapping and profile likelihood are computationally more expensive than the
observed Fisher information, which will be used throughout the appended

papers.

The observed Fisher information matrix I(0), or the observed information,
is given by the negative Hessian of the log-likelihood evaluated at 8. Hence,
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element I(0), ; of the observed Fisher information matrix is given by

82

1(6);; = —Wf(e)
i00;

(2.13)

The inverse of the observed Fisher information matrix at the MLE is an estima-
tor of the asymptotic covariance matrix of the estimated parameters. Hence,
the estimated parameters are asymptotically normal distributed

0 =% N(60, [I(6)] "), (2.14)

where 6y denote the true parameter value. Here, asymptotically normal means
that the distribution tends to a normal distribution when the size of the data
increases. The standard errors of the MLE are calculated as the square root of
the diagonal of the covariance matrix.

Although not part of this thesis, another important parameter estimation
method is the Bayesian approach. Unlike maximum likelihood, where the pa-
rameters are non-random, Bayesian inference treats the parameters as random
variables as well. This leads to a flexible approach, where prior information
regarding the parameters easily can be incorporated using Bayes’ theorem.
When Bayesian approaches is combined with random effects models, this is
usually referred to as Bayesian hierarchical modeling (Gelman et al.|[2013).

2.6 Model Selection and Evaluation

In any regression modeling problem, it is necessary to investigate the ability
of the model to describe the observed data. In addition, having one or more
criteria for selecting a model among several competing models is an important
step in the model building process. Here, a few of the most important methods
for model selection and evaluation used throughout the appended papers are
highlighted.

Model Selection

As the log-likelihood measures the goodness-of-fit of a statistical model, it
also plays an important role when selecting between competing models. The
likelihood-ratio test assesses the goodness-of-fit of two competing models, and
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is based on the test statistic
Arr = —2(£(60) — €(0)). (2.15)

In the test statistic above, £(6)) is the log-likelihood under the null hypothesis
6 € © and /(0) is the log-likelihood under the alternative hypothesis 6 € ©.
Asymptotically, the test statistic is y?-distributed under the null hypothesis
with degrees of freedom equal to the difference in dimensionality between ©
and O, (Wilks 1938). Hence, the likelihood-ratio test can be used to investi-
gate whether a model is significantly different from the null hypothesis. The
likelihood-ratio test requires that the two models are nested, which also implies
that @0 - o.

When there are several competing models, the Akaike information criterion
(AIC) can be used for model selection. The AIC is defined as

AIC =2p—2((0), (2.16)
where /() is the log-likelihood evaluated at the MLE and p is the number of
estimated parameters (Akaike|1974). Hence, as AIC weights goodness-of-fit
and model complexity, a model with lower AIC should be preferred over a
model with higher AIC.

The Bayesian information criterion (BIC) is closely related to the AIC, but with
a modified penalty term (Schwarz|1978). The BIC for an NLME model is given

by

BIC = 2plog N — 2((6), (2.17)

where N is the number of individuals, with p and () defined as previously.

Model Evaluation

As previously mentioned, it is important to investigate the ability of the esti-
mated model to describe the observed data and to determine that the underly-
ing model assumptions are appropriate. This exercise, usually referred to as
model evaluation, is a key step in the model building process.

For NLME models, graphical analysis is a popular tool as it can illustrate several
complex aspects of the model’s ability to describe the observed data, including
description on both the population and the individual level. Commonly used
goodness-of-fit plots, such as individual predictions versus observations and
individual residuals versus time, can be used to guide model development
and detect incorrect model assumptions. For a comprehensive overview of
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graphical model evaluation techniques for NLME models, see Nguyen et al.
(2017).

For simulation-based diagnostics, the visual predictive check (VPC) is one of
the most popular tools in pharmacometrics. The VPC is a simulation-based
graphical tool, with the purpose to assess graphically whether simulations
from a model can describe the trend and variability in the observed data. This
is achieved by simulating replicates of the observed data using the estimated
model and comparing different percentiles of the simulated data with corre-
sponding percentiles in the observed data. Several different types of VPCs of
different complexity exist, including scatter VPC, confidence interval VPC, and
prediction-corrected VPC (Bergstrand et al. 2011; Nguyen et al.[2017).

For NLME models described by ODEs, the VPC simulation incorporates inter-
individual variability and measurement error. The VPC method can, as shown
in Papers V and VI, be extended to NLME models described by SDEs. By
simulating realizations of the stochastic dynamics, for example using the Euler-
Maruyama scheme (Kloeden and Platen [1992), the stochasticity in the indi-
vidual dynamics can be incorporated in the simulations. Hence, the VPC for
SDEMEMs includes an additional source of variability when comparing the
distribution of the model simulations with observed data.

2.7 Survival Analysis

The models considered so far describes a continuous response, modelled using
either ODEs or SDEs, observed at discrete time points. Another type of model
that will be encountered in Paper VI is so called time-to-event models, which
considers the time until the occurrence of an event. In life sciences, the term
survival analysis is commonly used, while the term reliability analysis is used
in engineering applications. In this thesis, the term survival analysis will be
used, although the event of interest might not always be a true survival time, as
in the sense of ‘time-to-death’. Events in clinical trials that are of interest could
for example be onset of disease or withdrawal from a study (often referred to as
dropout). Here, the most important concepts in survival analysis are described,
and the interested reader is referred to Klein and Moeschberger (2003) and
Therneau and Grambsch (2000) for further details.

A time-to-event model considers a continuous, non-negative random variable
T, representing the time until the occurrence of an event. The random variable
T has a probability density function f(¢) with cumulative distribution function
F(t) = P(T < t). One important concept in survival analysis is the survival
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function, defined as the probability that the event has not yet occurred at time
t. The survival function S(t) is given by

S(t) =p(T > t) = /too f(z)dz =1— F(t). (2.18)

Another characterization of the random variable 7" is given by the hazard
function. The hazard function describes the instantaneous rate of occurrence of
the event and is defined by

< >
h(t) = lim PEST<tHdt[T21) (2.19)
dt—0 dt

In the equation above, the numerator describes the probability of an event
occurring in the interval [¢, ¢ + dt), given that no event has occurred up to time
t. By dividing with the interval length dt we obtain the rate of occurrence per
unit of time. Note that the hazard function in a time-to-event model is neither
a probability nor a probability density but an auxiliary entity, which turns out
to be very useful for modeling purposes.

The survival function S(t) can be expressed in terms of the hazard function
h(t). Expanding the numerator in the definition of the hazard function and
passing to the limit we obtain

pt <T <t+dt) 1 . F(t+dt)—F(t) [t

M) = b =TSy 50 A% dt BCION

(2.20)

The relationship derived above can be interpreted in the sense that the hazard
rate at time ¢ is equal to the density of events at time ¢ divided by the probability
of surviving to time ¢ without experiencing an event. Using the relationship
S'(t) = — f(t) we arrive at

= 10 __d

St~ @ log S(¥). (2.21)

Integrating both sides from 0 to ¢ and using the fact that no event has occurred
before time zero we obtain a useful formula describing the probability of
surviving to time ¢ expressed in terms of the hazard function

S(t) = exp < - /O t h(x)d;z:). (2.22)

The integral fot h(z)dz in the exponent is often referred to as the cumulative
hazard.
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One of the most popular time-to-event models is the Cox proportional hazards
model (Cox|1972)). The Cox proportional hazards model is specified through a
parametric hazard function h(¢) for individual 4

hi(t) = ho(t) exp(X[ B), (2.23)

where hg(t) denotes the baseline hazard, X; is a vector of individual covariates,
and 3 a vector of regression coefficients.

The Cox proportional hazards model can be extended to include random
effects, which turns out to be especially useful for recurrent events. Recurrent
events are events that might occur several times within the same individual
(in contrast to death, which only occur once). Examples of recurrent events in
medical applications are seizures, hospitalizations, or exacerbations (a period
of asthma worsening which is considered in Paper VI). For recurrent events,
the dependence between the events is incorporated through a non-negative
random effect. The random effect, usually referred to as the frailty, extends the
standard Cox model to a ‘shared frailty model” (Balan and Putter 2020). The
term ‘shared’ refers to the fact that events within the same individual shares
the same frailty. The frailty u; acts multiplicative on the hazard according to

hi(t) = ho(t)u; exp(X] B). (2.24)

The frailty can be used to model inter-individual variability in the underlying
risk that is not explained by the known covariates. Common distributions of the
frailty include the log-normal and the Gamma distribution. Recurrent events
are commonly defined in the framework of counting processes and martingale
theory (Andersen and Gill[1982), for which the underlying mathematical theory
is beyond the scope of this work.

Another important concept in survival analysis is censoring. An individual
is referred to as censored when the true survival time is not known. If an
individual has not experienced an event before the observation period ends,
they are described as right-censored. Other types of censoring in survival
analysis include left-censoring (the event occurred prior to the observation
period) and interval-censoring (the event occurred during a known interval).



3 Summary of Papers

In this chapter the six appended papers are summarized and discussed. First,
a short description of the six papers is given, followed by a more detailed
presentation.

Paper I illustrates how the extension of an ODE model to an SDE model can be
used to regularize the likelihood function for single-subject data. Sensitivity
equations for the EKF is derived and used in the parameter estimation.

Paper II extends the NLME model to incorporate SDEs. The method is used
both on simulated data and data from a preclinical PK experiment. A novel

method for the parameter estimation problem is used, which is described in
Paper III and Paper IV.

Paper III introduces the use of sensitivity equations to calculate the exact gra-
dient needed in the parameter estimation problem for NLME models described
by ODEs.

Paper IV extends the exact gradient method presented in Paper III to NLME
models with dynamics governed by SDEs.

Paper V presents NLMEModeling, a Wolfram Mathematica package for NLME
modeling of dynamical systems.

Paper VI develops a novel stochastic mixed effects model to analyze home-
measured lung function data in asthmatic patients and investigates the associa-
tion to exacerbation risk using a repeated time-to-event model.

17
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3.1 Regularization of the Likelihood Using Stochas-
tic Differential Equations

Estimation of model parameters in ODEs given discrete time measurement
data is a complex problem. There are a number of possible difficulties, includ-
ing convergence to local minima, non-identifiability, and non-differentiable
terms in dynamical system models (Schittkowski2002). Existing methods for
parameter estimation in dynamical systems include least-square minimization,
multiple shooting methods (Bock [1983), stochastic methods (Moles et al.[2003),
and hybrid methods (Rodriguez-Fernandez et al.2006).

In Paper I, a novel method to regularize the likelihood function in the parameter
estimation problem for ODE models is presented. We consider an extension
of the dynamical model to be described by SDEs. SDEs serve as a natural
way of introducing stochasticity in the dynamics, providing a more flexible
model structure to account for deviations between model predictions and
observations.

To estimate the model parameters from observations, the probabilistic approach
is considered with the EKF used for the state estimation. To maximize the likeli-
hood with respect to the model parameters, a gradient-based search method is
used. In contrast to the commonly used finite difference approximation of the
gradient, sensitivity equations for the EKF prediction and updating equations
are utilized for a robust and exact gradient calculation.

Using two different models from mathematical biology, namely the FitzHugh-
Nagumo model for excitable media (FitzHugh|1961; Nagumo et al.[1962) and
the Lotka-Volterra predator-prey model (Volterra 1926} Lotka |[1925), the impact
of system noise on the likelihood function is investigated.

By considering a likelihood function depending on two model parameters, the
likelihood function can easily be visualized. For the two models considered,
the ODE description gives likelihood functions with several local minima. By
extending the dynamical model to incorporate system noise, the state variables
are attracted towards the observed data and the number of local minima is
shown to be reduced, as depicted in Figure Similar results have recently
been shown in a discrete time setting, using a multiple shooting approach
(Ribeiro et al.|[2020).

For future work, we suggest an extended analysis to high dimensional prob-
lems that are known to exhibit problems with local minima. Another potential
extension of the method presented in Paper I could be to use the system noise
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Figure 3.1: Illustration of the regularization using SDEs in the Lotka-Volterra predator-
prey model. The two plots show the level curves of the likelihood function in the
parameter estimation problem using the ODE setting (a) and the SDE setting (b). In (a)
there are several local minima to where a local optimization algorithm might converge.

as a “turning knob” during the optimization of model parameters. Once the op-
timization algorithm is close to the minima, the magnitude of the system noise
could be decreased which eventually would make the SDE model correspond
to the ODE model (with system noise set to zero).

3.2 Nonlinear Mixed Effects with Stochastic Dynam-
ics

As previously discussed, the combination of stochastic differential equations
and mixed effects considers three sources of variability in the observations:
inter-individual variability, system noise, and measurement error.

Paper II explores the use of SDEMEMs for PK applications. Two different PK
modeling examples are presented. First, a simulation-estimation exercise is
conducted with the aim of investigating whether the model parameters and
the three sources of variability can reliably be estimated from observed data.
The impact of assuming a deterministic model and neglecting the system noise
is also investigated. Secondly, a previously published PK model of nicotinic
acid (NiAc) in obese Zucker rats is extended to incorporate SDEs (Ahlstrom
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et al. 2013).

The parameter estimation method used in Paper II considers the combination
of the first-order conditional estimation (FOCE) method (Beal et al. 2017; Wang
2007) and the EKFE. The FOCE method is used for approximating the intractable
likelihood, while the EKF is used for state estimation in the stochastic dynam-
ical model. The combination of FOCE and EKF was introduced by Henrik
Madsen and colleagues, see for instance Klim et al. (2009), Mortensen et al.
(2007), Overgaard et al. (2005)), and Tornge et al. (2005), which in this work has
been further extended.

Paper II utilize a novel method for calculating the gradient in the parameter
estimation problem. The method is based on an exact derivation of the gradient,
calculated using sensitivity equations. The exact gradient method for NLME
models governed by ODEs is presented in Paper III, and in Paper IV the
corresponding algorithm for NLME models with SDEs is presented.

The results from the simulation model in Paper II show that the model pa-
rameters as well as the three sources of variability can be reliably estimated
from the data. If the system noise is neglected, the estimated residual error
is significantly higher than the value used for simulations. Similar results
have recently been reported by others (Wiqvist et al. 2021). The results for
the NiAc disposition model show that the error previously described as pure
measurement error can be divided into a reduced measurement error and a
significant system noise term. The comparison of the approaches is illustrated
in Figure 3.2} where the estimated concentration of NiAc for six rats are shown
for the ODE case (left panels) and SDE case (right panels).

The significant system noise implies that the deterministic structure of the NiAc
disposition model potentially could be improved, with the aim of reducing the
uncertainty in the underlying dynamics. This was not in scope of the current
investigation but may be a suitable problem for future work.
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Figure 3.2: ODE modeling (left panels) compared to SDE modeling (right panels) for
the NiAc PK model in Paper II.

3.3 Exact Gradients for Nonlinear Mixed Effects Mod-
els

One of the challenges developing NLME models is the estimation of the model
parameters from observed data, and several computer programs exist for this
purpose (Beal et al. 2017} Certara 2020; Fidler et al.[2019; Lixoft SAS|{2020). For
parameter estimation based on the likelihood approach, the FOCE approxima-
tion and stochastic approximation expectation maximization (SAEM) are two
popular methods (Beal et al.[2017; Wang |2007; Kuhn and Lavielle 2005).
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Both the FOCE and SAEM methods approximate the likelihood function, and
the difference lies in how the approximation is performed. While the FOCE
approximates the integral with a closed-form expression, SAEM instead aims
to maximize the integral using a sampling-based approach, which (at least
in theory) can be made to be arbitrarily precise. However, for many PK-PD
problems, FOCE is still one of the most popular methods used. The FOCE
approximation and the calculation of the gradient are illustrated in Figure
and briefly explained as follows.

We consider a set of experimental observations d;;, where the index notation 4
is used to denote the jth observation for the ith individual, withi=1,... N
and j =1,...,n;. Here, we make a distinction between the actual observation
d;j, the model for the observation y;; (a random variable), and the model pre-
diction g;;. The residuals are given by the deviation from the model prediction

€j = di; — Uiy, (3.1)

where
Uij = Elyi;|Dij-1)] (3.2)

is the predicted model output, conditioned on D;(;_1) = {d;;,di2, ..., d;;-1)}
which is the information available up to time ¢;(;_1), with corresponding con-
ditional covariance matrix

R;j = Cov[y;;|Di(j-1))- (3.3)

Furthermore, we let D; denote the collection of all data for individual 7 and
D ={D;,Ds,...,Dy} denote the complete set of observations.

Assuming independence between individuals, i.e., the individual data and
random effects (D;,n;),i = 1,..., N are assumed to be independent between
individuals, the population likelihood for all data can be written as a product
over individual likelihoods. Since the random effects are unobserved, the
individual joint likelihoods (Figure[3.3]A) are marginalized over the random
effects, to obtain the contribution to the population likelihood (Figure [3.3B).
Hence, the expression for the population likelihood can be written as

N N
com) =] / p(D116, mo)p(mi0)in: = [ | / exp(l)dn;.  (34)

In the expression above, I; = [;(1;) is the individual joint log-likelihood. Since
both the observations and random effects are assumed to be normal distributed,
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the expression for /; is given by

l; = —% Z (egR;jleij + log det (27TR1‘47‘)) — %’r[l‘Tﬂ_l’I]i
P (3.5)

1
—3 log det (27rﬂ).

The integral with respect to 7; does not have a closed-form solution, except
in trivial cases. To approximate the integral, a second-order Taylor expansion
of I; around the point 1 which maximizes I; is used, often referred to as the
Laplacian approximation (Vonesh|1996). The first step of the FOCE method is
to find i} for each individual (Figure ). The second-order Taylor expansion
of I; at n; (Figure[3.3D) gives a closed-form expression of the marginalization,
which yields the following approximate expression for the population log-
likelihood

N

0(6) =log £(6) = Y (zi(n;) - %log det [#ﬁ’”] ) (3.6)

i=1

In the expression above, H; is the Hessian of I;, evaluated at n;. Depending on
the number of terms kept in an approximated expression of H;, the Laplacian
method, FOCE, or the FOCE with interaction (FOCEI) are obtained. Further
details can be found in Paper III.

Due to the nature of the conditional estimation methods, the maximization
of £() is a nested optimization problem and a computationally expensive
task. For each evaluation of the population log-likelihood ¢(8), N individual
optimizations of I; are required to find the points 0}, =1,..., N. We will refer
to the optimization of the population log-likelihood #(8) with respect to the
model parameters as the outer optimization problem and the optimization of
individual joint log-likelihoods /; with respect to the random effects parameters
as the inner optimization problem.

The maximizations of /() and I; (in fact, the minimizations of —/(8) and
—1;) are typically solved using a gradient-based optimization method, such as
the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method (Nocedal and Wright
2006). The BFGS algorithm is an iterative method for unconstrained nonlinear
optimization problems and approaches a (local) minimum by combining infor-
mation regarding the descent direction with curvature information. Both the
descent direction and the curvature information are obtained from the gradient.
To obtain the gradients needed in the inner and outer problem, as well as the
first-order derivatives in the approximation of H,, a finite difference approach
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is usually adopted (Figure 3.3F). In this work, we instead consider the use of
sensitivity equations to obtain the necessary expressions.

Paper III concerns the derivation of the exact gradient method for NLME
models described by ODEs. The exact gradient method is compared with a
finite difference approach, using a two-compartmental PK model of increasing
complexity. The performance of the method is investigated in terms of accuracy
and precision in the gradient calculation, as well as the computational time.

In Paper IV, the exact gradient method presented in Paper III is extended
to NLME models with dynamics described using SDEs. Expanding on the
combination of FOCE and EKEF, the exact gradient method for SDEMEMs is
derived. The derivation builds on the results from Paper III, with the additional
requirement of differentiating the prediction and updating equations of the
EKF. This was partly done in Paper I, where the first-order sensitivities for
the EKF were derived. The method is evaluated on simulated data from three
common PK and PK-PD models extended to stochastic models, describing
uncertainty in the absorption kinetics. As in Paper III, the performance of the
exact gradient method is compared to a finite difference approach.

The main result from Paper IIl and IV is the derivation of how the exact
gradients can be computed for the FOCE and FOCEI approximations of the
likelihood for NLME models. The derivation requires up to second-order
sensitivity equations of the underlying system equations, which is used to
form the needed gradient expressions. One key result in the derivation is the
computation of the matrix dn; /d@, describing how the point used in the Taylor
expansion depends on the model parameters (Figure 3.3F).

The exact gradient method is shown to have several advantages over the
finite difference approach. First, the exact gradient method is shown to be
faster than using finite differences. The speed-up varies depending on the
model complexity and the number of model parameters. Second, the exact
gradient method is shown to have an improved precision and accuracy in the
gradient calculation. The reason for this is most likely that in the exact gradient
approach, the numerical precision only depends on the precision used to solve
the underlying system of ODEs. In that sense, the exact gradient method is also
more convenient from a user perspective since the modeler does not have to
consider defining a step-length used in a finite difference approach (one value
for each dimension of the parameter space).

Expanding on the work presented in Paper Il and 1V, there are a few possible
extensions. In contrast to the FOCE approximation, which only considers
first-order terms in the approximation of the Hessian matrix H;, the Laplacian
approximation includes second-order terms. These could, at least in theory,
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be retrieved using sensitivity equations. However, second-order terms in the
Hessian of [; would require up to third-order sensitivity equations to obtain
the gradient, which might be computationally demanding to solve. It is also
important to note that in Paper III and Paper IV, we only show that the exact
gradient method improves speed and numerical properties of the gradient.
It remains to be shown that the improved numerical properties lead to an
increased robustness of the optimization problem. This has to some extent
been evaluated in a master thesis project, but a more thorough investigation is
warranted (Olafsdéttir 2016).

The exact gradient method presented in Paper III has been adopted and is
available in version 7.4 and higher of the computer program NONMEM (option
FAST), one of the most popular programs for NLME model estimation in the
pharmaceutical industry. In NONMEM, the exact gradient method was shown
to improve the computational speed for both the estimation and the covariance
step for ODE-based models (Beal et al.2017).
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Figure 3.3: Approximation of population likelihood and calculation of the gradient. In
(A) an individual joint log-likelihood I; is illustrated, depending on a fixed effect param-
eter § and a random effect parameter 7;. In (B) the integration over the random effect is
illustrated (strictly speaking the marginalization is done on the individual likelihoods),
which calculates the contribution of each I; to the population (log)-likelihood. (C) shows
the first step of the FOCE method, which is to find the value of n; which maximizes l;.
(D) illustrate the second step of the FOCE approximation, where a second-order Taylor
expansion is done at 7); to obtain an approximate expression for the contribution to the
population (log)-likelihood. (E) and (F) shows the concept of calculating the gradient
with either a finite difference approach (E) or an exact gradient approach (F). Figure
re-used with permission from the originator (Almquist.
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3.4 NLMEModeling: A Wolfram Mathematica Pack-
age

The methods and algorithms presented in this thesis have been implemented in
Wolfram Mathematica, a programming platform well suited for modeling and
scientific computation (Wolfram Research, Inc.[2020). Wolfram Mathematica
was primarily used due to its powerful and user-friendly combination of sym-
bolic computation, matrix operations, and efficient algorithms. The methods
developed were later refined, and together with user-friendly functionality
deployed into NLMEModeling, a Wolfram Mathematica package for NLME
modeling of dynamical systems. The package have previously been used in
several NLME modeling applications, including oncology (Cardilin et al.|[2017;
Cardilin et al. 2018} Cardilin et al.|2019), single-cell experiments (Almquist et al.
2015a), and PK-PD modeling (Andersson et al. [2016; Andersson et al. 2017;
Andersson et al. 2019; Tapani et al. 2014).

Paper V serves as a tutorial on NLMEModeling. The package is relevant for
both current users of Wolfram Mathematica that want the ability to perform
NLME modeling, but also to modelers who seek a convenient and streamlined
modeling environment. The current version of the package supports NLME
models where the dynamical model is defined using either ODEs or SDEs,
together with a flexible observation model.

The package is demonstrated using three PK-PD modeling examples. The
modeling workflow, including model definition, parameter estimation, and
model evaluation are illustrated. A minimal example is depicted in Figure
which shows how an NLME model can be defined and estimated using only a
few lines of code.
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(*Define dynamic modelx)
sys = {
A1'[t] = -ka *AL[t],
A2'[t] = ka*ALl[t] - CL*Exp[nl] /V=A2[t],
A1[0] == Dose,
A2[0] == 0,
c[t] == A2[t] /V};
(xDefine observation modelx)
obs = {c[t]};
(xEstimate the NLME model, using a proportional error model (and diagonal Q matrix)«)
modelObject = NLMEDynamicalModelFit[data, {sys, obs}, {{ka, ©.9}, {CL, 5}, {V, 30}}, nl1, Sigma -» "Proportional”];
(xPerform goodness-of-fit analysisx)
GoodnessOfFitAnalysis [modelObject] ;
(xDo a visual predictive check, based on 200 simulated datasetsx)
VisualPredictiveCheck [modelObject, 200, Quantiles -» {@.1, 0.5, 0.9}, ConfidenceInterval - 90];

Figure 3.4: [llustration of the syntax used to define, estimate, and perform additional
model diagnostics.

The estimation functionality returns a model object, which further can be used
for model evaluation and additional analyses. Here, the model object is passed
into a goodness-of-fit analysis and a VPC, resulting in the output depicted in

Figure[8.5]

NLMEModeling is a freely available package, providing the modeler with
an integrated Wolfram Mathematica environment for NLME modeling. In
addition, the user of the package can develop additional functionality tailored
to their own needs.
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3.5 Stochastic Mixed Effects Modeling of Peak Ex-
piratory Flow

In clinical trials, home-based measurements can allow for frequent monitoring
of study participants. In respiratory clinical trials, a patient’s lung function
can be captured at home using a hand-held device. An example of such a
measurement is peak expiratory flow (PEF), which measures the maximal flow
of air during exhalation. In contrast to previously considered applications
where the collection of data is sparse, home-measured variables is collected
frequently (sometimes several times a day). With that level of detail in the
observed data, several interesting aspects of the PEF dynamics can be studied.

Another important variable in respiratory clinical trials is exacerbations, which
currently is the registrational endpoint in Phase III trials. An exacerbation
is a period of disease worsening, that requires additional treatment and/or
hospital admission.

Paper VI describes the development of a novel longitudinal mixed effects
model to describe home-measured PEF. The combination of NLME modeling
and stochastic differential equations is used, which allows for quantification of
several properties related to the PEF dynamics: the longitudinal trend, long-
term fluctuations, and day-to-day variability. The concept is depicted in Figure
which illustrates the decomposition of the different components of the PEF
time series.

The three components are combined to describe a patient’s PEF observation
according to
PEF(t;) = x(t;) + v(t;) + oe(t;), (3.7

where z(t;), v(t;), and oe(t;) are used to describe the treatment response,
the long-term fluctuations, and the day-to-day variability, respectively. The
treatment response is modelled by an indirect response model governed by the
following ODE

da(t)

- iy (PEFbase(l +eff)— a:(t)), x(0) = PEFpqse, (3.8

where k;, describes the rate of onset of treatment effect, PE F},, .. is the baseline
PEF level, and ef f is an asymptotic treatment effect. The long-term fluctuations
are modeled using an SDE governed by

do(t) = =k, v(t)dt + gdW(t), v(0)=0, 3.9)
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Figure 3.6: Conceptual illustration of the modeling approach used in Paper VI. The
time series is decomposed into three components describing different characteristics of
the PEF response: trend, long-term fluctuations, and day-to-day variability.

commonly known as the Ornstein-Uhlenbeck model. In addition to the two
dynamical components, an additive observation noise, oe(t;), is used to capture
the day-to-day variability.

The proposed modeling approach is used to analyze PEF data from two previ-
ously reported clinical trials in asthma (Bleecker et al. 2016} FitzGerald et al.
2016). Using the mixed effects approach, individual parameters describing
baseline PEF, asymptotic treatment effect, and the size of the long-term fluc-
tuations and the day-to-day variability are estimated. The individual model
parameters together with known covariates are used in a repeated time-to-
event (RTTE) analysis to investigate the association to exacerbation risk. The
hazard function for individual 7 is described by

hi(t) = ho(t)u; exp(X] B), (3.10)

where hy(t) denotes the baseline hazard, u; is a gamma-distributed frailty,
X; denotes the individual covariates, and 3 are the corresponding regression
coefficients. Covariates considered in the RTTE analysis were the factors study,
treatment group, age, and sex, as well as the individual model parameters base-
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line PEF (PE Fjqsc), asymptotic treatment effect (ef f), day-to-day variability
(0), and long-term fluctuations (g).

The model enables characterization of multiple statistical properties of PEF
time series data to support better estimation and understanding of treatment
effects, disease stability, and exacerbation risk. Interestingly, several of the
model parameters are shown to be associated to the risk of experiencing an
exacerbation. The long-term fluctuations show a significant positive association
with exacerbation risk, implying that patients that have a higher degree of
fluctuations have a higher risk of experiencing an exacerbation.

The stochastic PEF model presented in Paper VI could be used as an informative
way of analyzing the home-measured PEF data. This might lead to better
designed clinical trials, as well as serve as a tool for finding patients that
has a high risk of experiencing an exacerbation. The modeling approach is
generalizable and could also be extended to other types of measurements or
disease areas.



4 Discussion and Conclusions

The research presented in this doctoral thesis aims to contribute to the devel-
opment of methods for mathematical modeling of dynamical systems, with
applications in drug development. The research is presented as six appended
papers and in the previous sections of this thesis.

4.1 Main Contributions and Research Aims

The three research aims presented in the introduction cover the investigation
of stochastic models (A1), the development of parameter estimation methods
(A2), and the application of mathematical modeling in drug development (A3).

In Paper I, the problem of parameter estimation in dynamical system given
discrete time observations was considered. The impact of going from an ODE
model to an SDE description was investigated as a tool to overcome the problem
of local minima in the likelihood function for single-subject data. In Paper
II, the combination of SDEs and NLME modeling was used and applied to
both simulated and experimental PK data. In this paper, a novel method for
parameter estimation in NLME models was developed, combining the FOCE
approximation with exact gradients using sensitivity equations. The details of
the exact gradient method is presented in Paper III and Paper IV. Furthermore,
the methods developed have been integrated into NLMEModeling, a Wolfram
Mathematica package for NLME modeling of dynamical systems, which is
presented in Paper V. Finally, the methodology was used in an applied setting
in Paper VI, where an NLME model governed by SDEs was used to describe
home-measured PEF data and to investigate the association to exacerbation
risk in asthma patients.

The appended papers contribute to the aims as follows. The investigation of
stochastic models (A1) has been addressed in the majority of the papers, except

33
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for Paper III. The development of parameter estimation methods (A2) was
the focus of Paper I, Paper III and Paper IV. The application of mathematical
modeling in drug development (A3) was addressed partly in Paper I and even
more extensively in Paper VI. Paper V is a result of the methods developed
in close collaboration with co-authors throughout this doctoral thesis, and
connects to all the aims.

4.2 The Modeling Process

The application of mathematical modeling presented in Paper VI is a clear
example of how the modeling process, depicted in Figure can be used to
provide insight into a real-world problem. The system of interest, in this case
the PEF response over time, was translated to a mathematical model with the
purpose of describing home-based PEF measurements to better understand
the characteristics of the PEF dynamics and the association to exacerbation
risk. The model was able to describe the most important characteristics of the
underlying system, such as the trend and fluctuations, which then was used to
provide answers to the questions at hand. The modeling results showed that
several factors could be contributed to exacerbation risk, including the stochas-
tic behavior of the dynamical process. This knowledge can potentially be used
in the future to design better clinical trials and to improve the understanding
of the patient population.

An important part of the modeling process is the estimation of model param-
eters from experimental data. For NLME models, this is a computationally
demanding task. In terms of parameter estimation methods, two novel meth-
ods have been presented as part of this thesis; the regularization method using
SDE:s for single-subject data and the exact gradient method for NLME models
described by either ODEs or SDEs. The exact gradient method presented in
Paper III and IV can replace the use of finite differences and is a significant
improvement of the established FOCE method. The exact gradient method
for NLME models with ODEs has been adopted by the developers of the
NONMEM software and is available from version 7.4, providing faster param-
eter estimation compared to a finite difference approach. Having access to
efficient and robust algorithms is important, as it enables modelers to spend
more time on scientific questions and linking back the model results to the
actual problem.

In pharmacometrics, the models have traditionally been described using ODEs.
It is, however, important to note that all models are simplifications of the
real world. As discussed in the introduction chapter, some aspects of the
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system that are deemed not relevant for the question might be removed in
the modeling process. To account for the fact that not only observations are
uncertain (as in the standard NLME model), uncertainty in the underlying
dynamics can be considered. The extension to stochastic models leads to a more
general class of models compared to ODEs, with the downside of being more
computationally demanding. The reward, however, is the ability to separate
and quantify different types of uncertainty. As mathematical models are an
important part of the decision-making process in modern drug development,
accurate quantification of the uncertainty in model predictions are particularly
important.

4.3 Future Work and Open Problems

The research conducted during this PhD project poses several new questions.
Here, a few potential extensions and important remarks are discussed, which
could be of interest for future investigations.

Exact Gradient Calculation

The computation of exact gradients is an important contribution to the pa-
rameter estimation problem. In this work, the computation was done using
sensitivity equations, obtained by differentiating the original system of ODEs
with respect to the model parameters, which is sometimes denoted forward
sensitivities (Serban and Hindmarsh 2005). For parameter estimation in NLME
models using the FOCE method, the sensitivity approach requires up to second-
order sensitivity equations. As the number of sensitivity equations required
grows with model complexity the size of the extended ODE system can become
large.

An alternative strategy for computing the gradient is to consider so called
adjoint sensitivities, where the adjoint-state method can be used to find the
gradient of a functional of the solution to the ODEs, such as a sum of squares
or an individual likelihood (Serban and Hindmarsh [2005). The adjoint-state
method is an intriguing approach, as it reduces the number of equations that
needs to be solved to obtain the gradient. In contrast to the sensitivity approach
used in this work which requires n (1 + p) equations, with n being the number
of state variables and p the number of parameters, the adjoint-state method only
requires 2n equations. The adjoint sensitivity method has successfully been
applied to parameter estimation in biochemical reaction networks modeling,
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where it was shown to improve computational efficiency (Frohlich et al. 2017).
Currently, the use of adjoint sensitivities in the parameter estimation for NLME
models are limited. Depending on the complexity of the functional (e.g., outer
or inner optimization problem in the FOCE approximation), the application of
adjoint sensitivities might be more or less complex. For the inner optimization
problem (to find the point used in the Laplace approximation), the use of
adjoint sensitivities should be straightforward. For the outer optimization
problem (the estimation of the NLME model parameters), on the other hand,
the FOCE algorithm requires second-order sensitivities, for which a potential
strategy could be to consider higher order adjoint sensitivities (Stapor et al.
2018).

Identifiability Analysis

Another important topic closely related to the problem of parameter estimation
is identifiability analysis, which aims to assess whether the parameters in a
model can be inferred from experimental data. Identifiability analysis is further
divided into structural and practical identifiability. Structural identifiability
is related to the model structure independent of experimental data (Bellman
and Astrém [1970), while practical identifiability considers the amount and
quality of the observed data used for parameter estimation (Raue et al.|[2009).
Although identifiability analysis has not been the topic of this research project,
it is an important part of the mathematical modeling process.

For single-subject data, several approaches exist to assess structural identifiabil-
ity including, e.g., Exact Arithmetic Rank, input-output approaches, and profile
likelihood (Karlsson et al.|2012; Bearup et al. 2013; Raue et al.[2009; Raue et al.
2014). For PK-PD applications, the identifiability of fundamental PD models
has been investigated (Janzén et al. 2016). For dynamical models described by
SDEs, identifiability analysis has been applied for a range of system biology
models (Browning et al. 2020).

In recent years, the concept of identifiability in mixed effects models has been
an area of increasing research interest (Lavielle and Aarons |2016). Several
methods has been extended to the mixed effects case, including the Taylor
series expansion approach and the input-output approach, with special focus
on PK-PD applications (Janzén et al. 2018). In addition to assessing structural
identifiability of the fixed effects parameters, the methods enable assessment
of structural identifiability of the random effects covariance matrix.

When mixed effects models with dynamics governed by SDEs are considered,
an additional source of variability has to be identified. As the applications of
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SDEs and mixed effects models increase, identifiability analysis for SDEMEMs
needs to be further investigated. Ultimately, assessment of identifiability (both
structural and practical) should be an important step of the modeling process.

Inferring the Underlying State

Throughout this work, the EKF has been used to infer the underlying state of
the system in dynamical models described by SDEs. For nonlinear systems, the
EKF uses a first-order linearization around the state trajectory to approximate
the probability densities for the state estimates conditioned on available data
using Gaussian distributions. However, for highly nonlinear models, the
linearization of the system dynamics around the state trajectory might not be
an adequate approximation. To allow for a more general representation of the
state estimates conditioned on available data other types of estimators can be
considered. One class of such methods is sequential Monte Carlo methods,
also known as particle filters (Schon et al.[2018). Applications of particle filters
within the field of PK-PD modeling have been considered (Krengel et al.2013),
and recent developments include the use of particle methods for SDEMEMs
(Botha et al.|[2020; Wiqvist et al. [2021).

Frequently Sampled Observations

Traditionally, PK-PD models utilize sparsely sampled data to infer the under-
lying model parameters. As digital solutions are becoming more common in
clinical trials, including home-based sampling and sensor devices, the resolu-
tion of the emerging clinical data is constantly improving (James et al. 2020).
To deal with high-frequent data, as in Paper VI, SDEs are an intriguing ap-
proach as they enable description of stochastic behaviours not captured by a
deterministic model. If the sampling frequency is high enough (in relation to
the time-scale of interest), the transition to so called discrete-time dynamical
models models could be possible (Ljung|1999). The discrete-time framework is
commonly used in technical applications, such as automotive and manufactur-
ing processes, and could significantly reduce the computational cost since no
integration of the ODE system is needed.

Joint Inference of Longitudinal and Event Data

Although only considered in the Paper VI, time-to-event data are important in
many clinical trials. In Paper VI, the longitudinal model and the time-to-event
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model were estimated separately. Recent developments on this topic is the
concept of joint modeling, where a joint probability distribution of the longi-
tudinal data and the event data are considered (Krdl et al. 2017} Rizopoulos
2016). Extensions of the SDEMEM framework to include time-to-event data is
an intriguing approach, as it would allow for simultaneous estimation of the
longitudinal model and the time-to-event model. This could potentially lead
to an improved understanding of the association between the longitudinal re-
sponse and the time-to-event process. Joint modeling has also been successfully
applied to account for study dropout in the analysis of exacerbation risk (Krél
et al. 2020). The impact of study dropout was not considered in the current
investigation, but is an interesting extension for future work.

A Last Remark

To conclude, the research presented in this doctoral thesis has contributed to
the development of methods and applications of mathematical modeling of
dynamical systems. Although the methods primarily have been applied to
problems within the field of drug development, they are most likely applicable
in many other scientific fields.
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