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Abstract
Kanade and Russell conjectured several Rogers–Ramanujan-type partition identities,
some of which are related to level 2 characters of the affine Lie algebra A(2)

9 . Many of
these conjectures have been proved by Bringmann, Jennings-Shaffer and Mahlburg.
We give new proofs of five conjectures first proved by those authors, as well as four
others that have been open until now. Our proofs for the new cases use quadratic
transformations for Askey–Wilson and Rogers polynomials. We also obtain some
related results, including a partition identity conjectured by Capparelli and first proved
by Andrews.

Keywords Kanade–Russell identity · Partition · Rogers polynomial · Askey–Wilson
polynomial · Basic hypergeometric series
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1 Introduction

The Rogers–Ramanujan identities are

∞∑

n=0

qn
2

(q; q)n
= 1

(q, q4; q5)∞ ,

∞∑

n=0

qn(n+1)

(q; q)n
= 1

(q2, q3; q5)∞ . (1.1)
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296 H. Rosengren

Here, we use the standard notation

(a; q)n =
n−1∏

j=0

(1 − aq j )

and

(a1, . . . , am; q)n = (a1; q)n . . . (am; q)n,

where n may be infinite. These intriguing identities were first found by Rogers [21]
and rediscovered by Ramanujan [20].

The identities (1.1) have a clear combinatorial meaning; for instance, the first iden-
tity states that the number of partitions of n without repeated or consecutive parts
equals the number of partitions of n into parts congruent to ±1 mod 5. They also
have deep connections to affine Lie algebras. Lepowsky and Milne [15] found that the
product sides of (1.1) can be interpreted as specialized characters of level 3 modules
of the Lie algebra A(1)

1 . Lepowsky and Wilson [16,17] were able to use this fact to
give Lie-theoretic proofs of (1.1).

There is now a huge literature on relations between Lie algebras and Rogers–
Ramanujan-type identities. Of particular relevance to the present work is Misra’s
observation [18] that the product sides in (1.1) may alternatively be interpreted as level
2 characters of A(2)

7 . This motivated Kanade and Russell [13] to search for Rogers–

Ramanujan-type identities related to level 2 characters of A(2)
9 . They discovered the

three conjectured identities (1.3c)–(1.3e) below, which give explicit values of the
function

F(u, v, w) =
∞∑

i, j,k=0

(−1)kq3k(k−1)+(i+2 j+3k)(i+2 j+3k−1)uiv jwk

(q; q)i (q4; q4) j (q6; q6)k . (1.2)

By an extended search, they found six more cases when F appears to have a simple
factorization. The resulting nine conjectures are

F
(
q, 1, q3

) =
(
q3; q12)∞(
q, q2; q4)∞

, (1.3a)

F
(
q2, q4, q9

) =
(
q9; q12)∞(

q2, q3; q4)∞
, (1.3b)

F
(
q4, q6, q15

) = 1(
q4, q5, q6, q7, q8; q12)∞

, (1.3c)

F
(
q, q6, q9

) = 1(
q, q4, q6, q8, q11; q12)∞

, (1.3d)

F
(
q2, q2, q9

) =
(
q6; q12)∞(

q2, q3, q4; q6)∞
, (1.3e)
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Proofs of some partition identities conjectured by Kanade and Russell 297

F
(
q3, q5, q12

) = 1(
q3; q4)∞

(
q4, q5; q12)∞

, (1.3f)

F(q, q3, q6) = 1

(q; q4)∞(q4, q11; q12)∞ , (1.3g)

F(q, q, q6) = 1

(q3; q4)∞(q, q8; q12)∞ , (1.3h)

F(q2, q−1, q6) = 1

(q; q4)∞(q7, q8; q12)∞ ; (1.3i)

see Conjecture 5, 5a, 3, 1, 2, 6a, 4, 6 and 4a in [13], respectively. We have stated them
more or less in order of increasing difficulty, at least in our approach. For each con-
jecture, Kanade and Russell gave a combinatorial interpretation in terms of partitions.
We stress that [13] contains several other conjectures that will not be discussed here.

The identities (1.3a)–(1.3e) were proved by Bringmann et al. [5]. In the present
work, we give a more streamlined proof of those results, and prove the remaining con-
jectures (1.3f)–(1.3i) for the first time. In each case, we use an integral representation
of the triple sum to reduce it to a single sum. The identities (1.3a)–(1.3b) then follow
from classical q-hypergeometric summation formulas. The identities (1.3c)–(1.3e) are
also reduced to classical summations, but we need Watson’s quintuple product iden-
tity [24] to simplify the result. The identities (1.3f)–(1.3i) are harder since we need
one-variable summations that cannot be found in the literature. To prove them we
use q-orthogonal polynomials. Roughly speaking, we identify the series we wish to
sum with generating functions for Askey–Wilson polynomials and then use quadratic
transformations, relating Askey–Wilson and Rogers polynomials, to compute them. It
is worth mentioning that Rogers polynomials first appeared in Rogers’ original proof
of (1.1).

The plan of the paper is as follows. After the preliminary Sect. 2, we obtain in Sect.
3 five one-parameter families of reduction formulas, which reduce the triple series F
to single series. The left-hand sides of (1.3) all belong to one of these families. In Sect.
4, we briefly describe how the identities (1.3a)–(1.3e) are obtained in our approach. In
Sect. 5, we give some results for other types ofmultiple series that can be obtainedwith
our methods. In particular, we recover a partition identity related to level 3 characters
of A(2)

2 , which was conjectured by Capparelli [6] and first proved by Andrews [1]. The
most technical part of the paper is Sect. 6, where we prove (1.3f)–(1.3i), as well as a
related identity given in Theorem 5.3.

2 Preliminaries

Throughout, ω is a primitive cubic root of unity and q a number with 0 < |q| < 1.
For ease of reference, we recall some classical results for the basic hypergeometric

series [8]

rφs

(
a1, . . . , ar
b1, . . . , bs

; q, z

)
=

∞∑

n=0

(a1, . . . , ar ; q)n

(b1, . . . , bs; q)n

(
(−1)nq(n2)

)1+s−r
zn .
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298 H. Rosengren

Namely, we have Euler’s q-exponential identities

∞∑

n=0

zn

(q; q)n
= 1

(z; q)∞
,

∞∑

n=0

q(n2)zn

(q; q)n
= (−z; q)∞, (2.1)

the q-binomial theorem

1φ0(a; q, z) =
∞∑

n=0

(a; q)n

(q; q)n
zn = (az; q)∞

(z; q)∞
(2.2)

and its disguised version

2φ1

(
a,−a
−q

; q, z

)
=

∞∑

n=0

(a2; q2)n
(q2; q2)n zn = (a2z; q2)∞

(z; q2)∞ . (2.3)

Applying one of Heine’s transformation formulas to (2.3) gives the Bailey–Daum
summation

2φ1

(
a, b
aq/b

; q,−q

b

)
= (−q; q)∞(aq, aq2/b2; q2)∞

(aq/b,−q/b; q)∞
. (2.4)

The q-Gauss summation is

2φ1

(
a, b
c

; q,
c

ab

)
= (c/a, c/b; q)∞

(c, c/ab; q)∞
. (2.5)

Finally, we mention the transformation

2φ1

(
a, b
c

; q, z

)
= (az, bz; q)∞

(c, z; q)∞
2φ2

(
z, abz/c
az, bz

; q, c

)
, (2.6)

which follows by combining [8, (III.2) and (III.4)].
We will need Jacobi’s triple product identity

(q, z, q/z; q)∞ =
∞∑

n=−∞
(−1)nq(n2)zn (2.7)

as well as Watson’s quintuple product identity in the form [23, Lemma 6.2]

1

1 + z

(
z2, z−2; q3)∞(
z, z−1; q3)∞

= 1 − ω

3

(
q; q)

∞(
q3; q3)∞

((
zqω,ω2/z; q)

∞−ω2(zqω2, ω/z; q)
∞

)
.
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If we replace q by q4 and then let z = q−5, z = q−1 and z = q−3, respectively, we
obtain

(
q2, q10; q12)∞(

q4, q5, q7, q8; q12)∞
= ω − ω2

3q

((
qω, q3ω2; q4)∞ − (

qω2, q3ω; q4)∞
)
, (2.8a)

(
q2, q10; q12)∞(

q, q4, q8, q11; q12)∞
= 1 − ω2

3

((
qω, q3ω2; q4)∞ − ω

(
qω2, q3ω; q4)∞

)
,

(2.8b)
(
q6; q12)2∞(

q3, q4, q8, q9; q12)∞
= 1 − ω

3

((
qω, q3ω2; q4)∞ − ω2(qω2, q3ω; q4)∞

)
.

(2.8c)

3 Reduction from triple to single series

In [5], Bringmann et al. showed that the nine conjectures (1.3) can be reduced to sums
of single series, which they could evaluate in the first five cases. In this section, we
will obtain more general reductions using the following integral representation of the
function (1.2).

Proposition 3.1 We have

F(u, v, w) = (
q2; q2)∞

∮ (
1/z, q2z; q2)∞

( − wz3; q6)∞( − uz; q)
∞

(
vz2; q4)∞

dz

2π iz
, (3.1)

where the integration is over a positively oriented contour separating 0 from all poles
of the integrand.

Proof We may take the contour close enough to zero so that |uz| < 1 and |vz2| < 1.
By (2.1) and (2.7), the right-hand side of (3.1) equals

∮ ∞∑

i=0

(−uz)i

(q; q)i

∞∑

j=0

(vz2) j

(q4; q4) j
∞∑

k=0

q3k(k−1)(wz3)k

(q6; q6)k
∞∑

l=−∞
ql(l−1)(−z−1)l

dz

2π iz
.

The integration picks out the constant term in this Laurent series, that is, the term with
l = i + 2 j + 3k. ��

Wewill also need the following integral representationof the function 2φ1.Although
it is an easy consequence of known results, we have not found it in the literature.

Proposition 3.2 For |t | < 1, we have the contour integral representation

2φ1

(
a, b
c

; q, t

)
= (q; q)∞

(c, t; q)∞

∮
(abz, cz, qz/t, t/z; q)∞

(az, bz, cz/t; q)∞
dz

2π iz
,
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300 H. Rosengren

where the integral is over a positively oriented contour separating 0 from all poles of
the integrand.

Note that the right-hand side displays the S3 × S2-symmetry of the function 2φ1
implied by Heine’s transformations [8, (III.1)–(III.3)]. Moreover, it gives the analytic
continuation of the left-hand side to t ∈ C \ qZ≤0 .

Proof We start from the more general integral

I =
∮

(abz, cz, qz/t, t/z; q)∞
(az, bz, cz/t, d/z; q)∞

dz

2π iz
,

which has an additional sequence of poles at (dqk)∞k=0. We take d close to zero so that
all those poles are inside the contour. If |t | < |d|, then by [8, Eq. (4.10.8)] the integral
equals the sum of the residues inside the contour, which can be written

(abd, cd, dq/t, t/d; q)∞
(q, ad, bd, cd/t; q)∞

3φ2

(
ad, bd, cd/t
abd, cd

; q,
t

d

)
.

Applying the transformation formula [8, Eq. (III.9)] gives

I = (abd, dq/t, t, c; q)∞
(q, ad, bd, cd/t; q)∞

3φ2

(
a, b, cd/t
c, abd

; q, t

)
.

By analytic continuation, this holds for |t | < 1.We nowobtain the desired result by let-
ting d → 0. ��

Replacing z by t z and relabelling the parameters gives the equivalent identity

∮ (
α1z, α2z, qz, 1/z; q

)
∞(

β1z, β2z, β3z; q
)
∞

dz

2π iz

=
(
β1, α1/β1; q

)
∞(

q; q)
∞

2φ1

(
α2/β2, α2/β3

β1
; q,

α1

β1

)
, α1α2 = β1β2β3. (3.2)

This can be compared with (3.1), where the integrand can be written

( − w1/3z,−w1/3ωz,−w1/3ω2z, q2z, 1/z; q2)∞( − uz,−uqz, v1/2z,−v1/2z; q2)∞
.

We obtain an integral of the form (3.2) (with q replaced by q2) ifw1/3 ∈ {u, uq, v1/2}
and in addition w = u2vq. That is, there are three one-parameter cases where F can
be reduced to the function 2φ1.
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Proofs of some partition identities conjectured by Kanade and Russell 301

Proposition 3.3 We have the reduction identities

F
(
u, uq−1, u3

) = ( − u1/2q−1/2, u1/2q1/2ω2; q2)∞

× 2φ1

(
q−1ω,−u1/2q1/2ω

−u1/2q−1/2 ; q2, u1/2q1/2ω2
)

, (3.3a)

F
(
u, uq2, u3q3

) = ( − u, qω2; q2)∞ 2φ1

(
u1/2ω,−u1/2ω

−u
; q2, qω2

)
, (3.3b)

F
(
u, u4q2, u6q3

) = ( − uq, uω2; q2)∞ 2φ1

(−ω, uqω

−uq
; q2, uω2

)
, (3.3c)

assuming that the 2φ1-series converge.

Applying (2.6) to (3.2) gives the equivalent identity

∮
(α1z, α2z, qz, 1/z; q)∞

(β1z, β2z, β3z; q)∞
dz

2π iz

= (β2, β3; q)∞
(q; q)∞

2φ2

(
α1/β1, α2/β1

β2, β3
; q, β1

)
, α1α2 = β1β2β3. (3.4)

This leads to alternative representations for (3.3) as 2φ2-series, which have infinite
radius of convergence and hence hold for all u.

The Kanade–Russell conjectures (1.3a)–(1.3d) and (1.3f)–(1.3g) are all reduced
to 2φ1-evaluations by Proposition 3.3. In the remaining three conjectures, (1.3e) and
(1.3h)–(1.3i), the variables in F(u, v, w) satisfy w = u2vq3 rather than w = u2vq.
They can be expressed as integrals of the form (3.2) with α1α2 = β1β2β3q. It is easy
to see that any such integral can be expressed (in several different ways) as the sum of
two integrals withα1α2 = β1β2β3, and hence as a sum of two 2φ1-series. If β3 = −β2,
there is a more compact expression as a 2φ2-series.

Lemma 3.4 When α1α2 = −β1β
2
2q, then

∮ (
α1z, α2z, qz, 1/z; q

)
∞(

β1z, β2z,−β2z; q
)
∞

dz

2π iz
=

(
β2
2q

2; q2)∞
(q; q)∞

2φ2

(
α1/β1, α2/β1
β2q,−β2q

; q, β1

)
.

Proof Let I denote the given integral. Inserting the factor

1 = (1 + β2z) + (1 − β2z)

2
,

it splits as a sum, where we may evaluate each term using (3.4). This gives

I = 1

2

∮ (
α1z, α2z, qz, 1/z; q

)
∞(

β1z, β2z,−β2qz; q
)
∞

dz

2π iz
+ 1

2

∮ (
α1z, α2z, qz, 1/z; q

)
∞(

β1z, β2qz,−β2z; q
)
∞

dz

2π iz

= 1

2(q; q)∞

((
β2,−β2q; q)

∞ 2φ2

(
α1/β1, α2/β1

β2,−β2q
; q, β1

)

123



302 H. Rosengren

+(
β2q,−β2; q

)
∞ 2φ2

(
α1/β1, α2/β1

β2q,−β2
; q, β1

)
.

)

Adding the series termwise gives

I =
(
β2
2q

2; q2)∞
(q; q)∞

∞∑

k=0

(
α1/β1, α2/β1; q

)
k(

β2q,−β2q; q)
k

(−1)kq(k2)βk
1

(
1 − β2qk

) + (
1 + β2qk

)

2
,

which simplifies to the desired expression. ��
Combining Proposition 3.1 and Lemma 3.4 gives the following reduction identities.

Note that (1.3e) and (1.3h) are series of the form (3.5a) whereas (1.3i) is of the form
(3.5b).

Proposition 3.5 We have

F
(
u, u, u3q3

) = (
uq4; q4)∞ 2φ2

(
qω, qω2

u1/2q2,−u1/2q2
; q2,−u

)
, (3.5a)

F
(
u, uq−3, u3

) = (
uq; q4)∞ 2φ2

(
q−1ω, q−1ω2

u1/2q1/2,−u1/2q1/2
; q2,−uq

)
. (3.5b)

4 Results of Bringmann, Jennings-Shaffer andMahlburg

For completeness,we showhow to prove the conjectures (1.3a)–(1.3e) in our approach.
Bringmann et al. [5] also obtain these results by reducing triple summations to single
summations, which are either the same as ours or easily seen to be equivalent. The
main virtue of our approach is the more streamlined way to obtain such reductions as
explained in Sect. 3.
Proof of (1.3a). If we let u = q in (3.3a) we get

F
(
q, 1, q3

) = ( − 1, qω2; q2)∞ 2φ1

(
q−1ω,−qω

−1
; q2, qω2

)

= ( − q2; q2)∞
(
qω, qω2; q4)∞,

where we used the Bailey–Daum summation (2.4). This can be rewritten as (1.3a). ��
Proof of (1.3b). If we let u = q2 in (3.3b), we get

F
(
q2, q4, q9

) = ( − q2, qω2; q2)∞ 2φ1

(
qω,−qω

−q2
; q2, qω2

)

= ( − q2; q2)∞
(
q3ω, q3ω2; q4)∞,

by either (2.3) or (2.4). This can be written as (1.3b). ��
Proof of (1.3c). If we let u = q4 in (3.3b), we get

F
(
q4, q6, q15

) = ( − q4, qω2; q2)∞ 2φ1

(
q2ω,−q2ω

−q4
; q2, qω2

)
.

123
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This 2φ1 is contiguous to a 1φ0 in base q4. More precisely, the terms can be expressed
as

(
q2ω,−q2ω; q2)k(
q2,−q4; q2)k

(
qω2)k = ω

(
1 + q2

)
(
1 − ω2

)
q

(
ω2; q4)k+1(
q4; q4)k+1

(
qω2)k(1 − q2k

)
.

Replacing k by k − 1 we find that

F
(
q4, q6, q15

) = ω
( − q2, qω2; q2)∞(

1 − ω2
)
q

(
1φ0

(
ω2; q4, qω2

)
− 1φ0

(
ω2; q4, q3ω2

) )

= ω
( − q2; q2)∞(
1 − ω2

)
q

((
qω, q3ω2; q4)∞ − (

qω2, q3ω; q4)∞
)
,

where we used the q-binomial theorem (2.2). Applying (2.8a) and simplifying we get
(1.3c). ��
Proof of (1.3d). If we let u = q in (3.3c) we get

F
(
q, q6, q9

) = ( − q2, qω2; q2)∞ 2φ1

(
q2ω,−ω

−q2
; q2, qω2

)
.

This time we write the terms as

(
q2ω,−ω; q2)k(
q2,−q2; q2)k

(
qω2)k = 1

1 − ω

(
ω2; q4)k(
q4; q4)k

(
qω2)k(1 − ωq2k

)
,

which gives

F
(
q, q6, q9

) =
( − q2, qω2; q2)∞

1 − ω

(
1φ0

(
ω2; q4, qω2

)
− ω 1φ0

(
ω2; q4, q3ω2

) )

=
( − q2; q2)∞(

1 − ω
)

((
qω, q3ω2; q4)∞ − ω

(
qω2, q3ω; q4)∞

)
.

Applying (2.8b) we arrive at (1.3d). ��
Proof of (1.3e). Although F(q2, q2, q9) is a special case of (3.5a), we do not use that
identity. It is easier to start from (3.1), which gives

F
(
q2, q2, q9

) = (
q2; q2)∞

∮ ( − q3ωz,−q3ω2z, 1/z, q2z; q2)∞(
qz,−qz,−q2z; q2)∞

dz

2π iz
.

Inserting the factor

1 =
(
1 + qωz

) − ω2
(
1 + qω2z

)

1 − ω2
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304 H. Rosengren

gives

F
(
q2, q2, q9

) =
(
q2; q2)∞
1 − ω2

(∮ ( − qωz,−q3ω2z, 1/z, q2z; q2)∞(
qz,−qz,−q2z; q2)∞

dz

2π iz

−ω2
∮ ( − q3ωz,−qω2z, 1/z, q2z; q2)∞(

qz,−qz,−q2z; q2)∞

dz

2π iz

)

=
( − q2; q2)∞

1 − ω2

((
qω2; q2)∞ 2φ1

(
ω,−ω

−q2
; q2, qω2

)

−ω2(qω; q2)∞ 2φ1

(
ω2,−ω2

−q2
; q2, qω

))

=
( − q2; q2)∞

1 − ω2

((
qω, q3ω2; q4)∞ − ω2(qω2, q3ω; q4)∞

)
,

where we used first (3.2) and then (2.3). Applying (2.8c) we arrive at (1.3e). ��

5 Other types of multiple series

The integral (3.2) can be used to study other types of multiple series apart from F . We
will give some examples that seem very close to the identities (1.3). We first observe
that (3.2) can be evaluated by (2.3) (or, alternatively, (2.4)) whenever β1 = −q and
β2 = −β3. Indeed, assuming also |α1| < q we have

∮ (
α1z, α2z, qz, 1/z; q

)
∞( − qz, β2z,−β2z; q

)
∞

dz

2π iz

=
( − q,−α1q−1; q)

∞
(q; q)∞

2φ1

(
α2/β2,−α2/β2

−q
; q,−α1q

−1
)

= (−q; q)∞
( − α1,−α2; q2

)
∞

(q; q)∞
, α1α2 = β2

2q.

(5.1)

By analytic continuation, the final expression is valid for general values of α1. This
particular case of Proposition 3.2 is equivalent to [7, Eq. (2.1)].

We will only consider (5.1) in the special case α2 = ωα1. Replacing q by q2, it can
be written

∮ ( − u3q3z3; q6)∞
(
q2z, 1/z; q2)∞( − q2z, uz,−uz,−uqz; q2)∞

dz

2π iz
=

( − q2; q2)∞
(
u3q3; q12)∞(

q2; q2)∞
(
uq; q4)∞

. (5.2)

Let us write

f (u) = ( − q2z, uz,−uz,−uqz; q2)∞
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for the denominator on the left-hand side. We may obtain double or triple summations
by combining factors from f before expanding the integrand as a Laurent series. The
most compact expression is obtained for u = −q, since

f (−q) = (
qz,−qz, q2z,−q2z; q2)∞ = (

q2z2; q2)∞.

By (2.1) and (2.7), the left-hand side of (5.2) then takes the form

∮ (
q6z3; q6)∞

(
q2z, 1/z; q2)∞(

q2z2; q2)∞

dz

2π iz

= 1(
q2; q2)∞

∞∑

j,k=0

∞∑

l=−∞

(−1)k+lq2 j+6(k2)+6k+2(l2)
(
q2; q2) j

(
q6; q6)k

∮
z2 j+3k−l dz

2π iz

= 1(
q2; q2)∞

∞∑

j,k=0

q4 j
2+12 jk+12k2

(
q2; q2) j

(
q6; q6)k

.

After replacing q2 by q we obtain the following double summation. It was shown in
[13,14] that it is equivalent to a partition identity conjectured by Capparelli [6] and
first proved by Andrews [1]. As the resulting proof of Caparelli’s identity is based on
(5.1), it is very close to the proof of a more general result given in [7].

Proposition 5.1 (Andrews, Kanade–Russell, Kurşungöz) We have

∞∑

j,k=0

q2 j
2+6 jk+6k2

(q; q) j
(
q3; q3)k

= 1(
q3; q6)∞

(
q2, q10; q12)∞

.

If we can write f (u) as the product of two factors of the form (azk;±ql)∞, we
obtain in the same way a triple summation. In Sect. 4, we obtained (1.3a) from the
factorization

f (1) = (
z,−z,−qz,−q2z; q2)∞ = ( − qz; q)

∞
(
z2; q4)∞

and (1.3b) from

f
(
q2

) = (
q2z,−q2z,−q2z,−q3z; q2)∞ = ( − q2z; q)

∞
(
q4z2; q4)∞.

There are essentially three other cases when this can be done, namely,

f
( − q3

) = ( − q2z, q3z,−q3z, q4z
) = ( − q2z; q)

∞
(
q3z; q)

∞,

f (q) = (
qz,−qz,−q2z,−q2z; q2)∞ = (−qz; q)∞(qz;−q)∞,

f (q3) = ( − q2z, q3z,−q3z,−q4z; q2)∞ = ( − q2z; q)
∞

(
q3z;−q

)
∞.
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The corresponding three summations are as follows. To our knowledge, they are new.
We do not know whether they have natural interpretations as partition identities, nor
whether they are related to Lie algebras.

Theorem 5.2 We have

∞∑

i, j,k=0

(−1) j q2(
i+ j+3k

2 )+6(k2)+2i+3 j+12k

(q; q)i (q; q) j (q6; q6)k = (q4, q20; q24)∞
(q2; q4)∞ , (5.3a)

∞∑

i, j,k=0

(−1) j+kq2(
i+ j+3k

2 )+6(k2)+i+ j+6k

(q; q)i (−q;−q) j (q6; q6)k = 1

(q2; q4)∞(q2, q10; q12)∞ , (5.3b)

∞∑

i, j,k=0

(−1) j+kq2(
i+ j+3k

2 )+6(k2)+2i+3 j+12k

(q; q)i (−q;−q) j (q6; q6)k = (q12; q12)∞
(q2; q2)∞ . (5.3c)

We have found one more result for the type of triple series appearing in (5.3b)–
(5.3c). The proof, which is parallel to that of (1.3f), is given in Sect. 6.

Theorem 5.3 We have

∞∑

i, j,k=0

(−1) j+kq2(
i+ j+3k

2 )+6(k2)+2i+ 3
2 j+9k

(q; q)i (−q;−q) j (q6; q6)k

= 1

(−q3/2, q5/2;−q3)∞(q4; q6)∞(q2; q12)∞ . (5.4)

6 New cases of the Kanade–Russell conjectures

In this section, we prove the conjectures (1.3f)–(1.3i) as well as (5.4).

6.1 Reduction to one-variable series

We first reduce the results to one-variable summations. By (3.3b) and (3.5) we have
the reduction formulas

F(q3, q5, q12) = (−q3, qω2; q2)∞ 2φ1

(
q3/2ω,−q3/2ω

−q3
; q2, qω2

)
,

F(q, q3, q6) = (−q, qω2; q2)∞ 2φ1

(
q1/2ω,−q1/2ω

−q
; q2, qω2

)
,

F(q, q, q6) = (q5; q4)∞ 2φ2

(
qω, qω2

q5/2,−q5/2
; q2,−q

)
,

F(q2, q−1, q6) = (q3; q4)∞ 2φ2

(
q−1ω, q−1ω2

q3/2,−q3/2
; q2,−q3

)
.
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For the first two cases, Bringmann et al. [5] found equivalent reductions but for the
last two cases, their reductions are more complicated. Replacing q by q1/2, it follows
that the conjectures (1.3f)–(1.3i) are equivalent to the following summations.

Theorem 6.1 The following summation formulas hold:

2φ1

(
q3/4ω,−q3/4ω

−q3/2
; q, q1/2ω2

)
= (1 + q1/2)(q1/2, q9/2; q6)∞

(q1/2ω2; q)∞(q; q2)∞(q2; q6)∞ , (6.1a)

2φ1

(
q1/4ω,−q1/4ω

−q1/2
; q, q1/2ω2

)
= (q3/2, q7/2; q6)∞

(q1/2ω2; q)∞(q; q2)∞(q2; q6)∞ , (6.1b)

2φ2

(
q1/2ω, q1/2ω2

q5/4,−q5/4
; q,−q1/2

)
= 1 − q1/2

(q1/2; q)∞(q1/2, q4; q6)∞ , (6.1c)

2φ2

(
q−1/2ω, q−1/2ω2

q3/4,−q3/4
; q,−q3/2

)
= 1

(q1/2; q)∞(q7/2, q4; q6)∞ . (6.1d)

The sum in (5.4) can be represented as

(q2; q2)∞
∮

(−q9z3; q6)∞(1/z, q2z; q2)∞
(−q2z; q)∞(q3/2z;−q)∞

dz

2π iz

= (q2; q2)∞
∮

(−q3ωz,−q3ω2z, 1/z, q2z; q2)∞
(−q2z, q3/2z,−q5/2z; q2)∞

dz

2π iz

= (−q2, qω2; q2)∞ 2φ1

(
q1/2ω,−q3/2ω

−q2
; q2, qω2

)
,

where we used (3.2). It follows that Theorem 5.3 is equivalent to the following result.

Theorem 6.2 We have the summation formula

2φ1

(
q1/4ω,−q3/4ω

−q
; q, q1/2ω2

)
= (q3; q6)∞

(q1/2ω2; q)∞(−q3/4, q5/4;−q3/2)∞(q2; q6)∞ .

(6.2)

6.2 Orthogonal polynomials

Our main tool to prove Theorems 6.1 and 6.2 is quadratic transformations relating
Askey–Wilson and Rogers polynomials. From now onwards, the variables x and z are
related by

x = z + z−1

2
.

The Rogers (or continuous q-ultraspherical) polynomials [2,22] are given by the gen-
erating function

(atz, at/z; q)∞
(t z, t/z; q)∞

=
∞∑

n=0

Cn (x; a|q) tn . (6.3)
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The more general Askey–Wilson polynomials [3] have the generating function [11]

2φ1

(
az, bz
ab

; q,
t

z

)
2φ1

(
c/z, d/z

cd
; q, t z

)
=

∞∑

n=0

pn(x; a, b, c, d|q)

(q, ab, cd; q)n
tn . (6.4)

These polynomials are symmetric in the parameters (a, b, c, d). The series in (6.3)
and (6.4) converge for |t | < min(|z|, |z|−1).

The Rogers polynomials appear as a special case of the Askey–Wilson polynomials
in several different ways [8, Sect. 7.5]. For instance,

Cn(x; a2|q) = (a4; q)n

(q,−a2, a2q1/2,−a2q1/2; q)n
pn

(
x; a,−a, aq1/2,−aq1/2|q)

,

(6.5a)

Cn(x; a2|q2) = (a2; q)n

(q2, a2q; q2)n pn
(
x; a,−a, q1/2,−q1/2|q)

, (6.5b)

C2n(x; a|q) = (a2; q2)n
(q,−a; q)2n

pn
(
2x2 − 1; a, aq,−1,−q|q2), (6.5c)

C2n+1(x; a|q) = 2(a2; q2)n+1

(q,−a; q)2n+1
x pn

(
2x2 − 1; a, aq,−q,−q2|q2). (6.5d)

These relations are easy to understand by comparing the orthogonality measures for
the polynomials involved.

Using (6.5) in (6.4) leads to alternative generating functions forRogers polynomials.
In particular, (6.5a) gives

2φ1

(
az,−az

−a2
; q,

t

z

)
2φ1

(
aq1/2/z,−aq1/2/z

−a2q
; q, t z

)

=
∞∑

n=0

(a2q1/2,−a2q1/2; q)n

(−a2q, a4; q)n
Cn(x; a2|q)tn . (6.6)

The generating functions arising from (6.5b)–(6.5d) are as follows.

Lemma 6.3 The Rogers polynomials have the generating functions

(tq/z; q2)∞
(t z; q2)∞ 2φ1

(
az,−az

−a2
; q,

t

z

)
=

∞∑

n=0

(a2q; q2)n
(a4; q2)n Cn(x; a2|q2)tn, (6.7a)

(−t/z; q)∞
(t z; q)∞

2φ1

(
az2, az2q

a2q
; q2, t

2

z2

)
=

∞∑

n=0

(−a; q)n

(a2; q)n
Cn(x; a|q)tn, (6.7b)

where the right-hand sides converge for |t | < min(|z|, |z|−1).
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Proof Choose (a, b, c, d) = (a,−a, q1/2,−q1/2) in (6.4). By (6.5b), the right-hand
side can be identified with the right-hand side of (6.7a). On the left-hand side, we
apply (2.3) in the form

2φ1

(
q1/2/z,−q1/2/z

−q
; q, t z

)
= (tq/z; q2)∞

(t z; q2)∞ . (6.8)

This proves (6.7a).
Using (6.5c)–(6.5d) and (6.4), the right-hand side of (6.7b) can be written

∞∑

n=0

t2n

(q, q2, a2q; q2)n pn
(
2x2 − 1; a, aq,−1,−q|q2

)

+ 2t x

1 − q

∞∑

n=0

t2n

(q2, q3, a2q; q2)n pn
(
2x2 − 1; a, aq,−q,−q2|q2

)

= 2φ1

(
az2, az2q

a2q
; q2, t

2

z2

) (
2φ1

(−1/z2,−q/z2

q
; q2, t2z2

)

+ 2t x

1 − q
2φ1

(−q/z2,−q2/z2

q3
; q2, t2z2

))
.

The final factor is evaluated by the q-binomial theorem in the form

∞∑

n=0

(−1/z2; q)2n

(q; q)2n
(t z)2n +

∞∑

n=0

(−1/z2; q)2n+1

(q; q)2n+1
(t z)2n+1

=
∞∑

n=0

(−1/z2; q)n

(q; q)n
(t z)n = (−t/z; q)∞

(t z; q)∞
.

This proves (6.7b). ��
Applying (2.6) to the left-hand side of (6.7a) gives the equivalent identity

(a2t2; q2)∞
(−a2; q)∞(t z, t/z; q2)∞ 2φ2

(
t z, t/z
at,−at

; q,−a2
)

=
∞∑

n=0

(a2q; q2)n
(a4; q2)n Cn(x; a2|q2)tn . (6.9)

To prove (1.3i) we will need the following variation of (6.9).

Lemma 6.4 The Rogers polynomials have the generating function

(a2t2; q2)∞
(−a2q−1; q)∞(t z, t/z; q2)∞ 2φ2

(
t z, t/z
at,−at

; q,−a2q−1
)
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=
∞∑

n=0

(a2q−1; q2)n
(a4q−2; q2)n Cn(x; a2|q2)tn, (6.10)

where the right-hand side converges for |t | < min(|z|, |z|−1).

Proof We start from the identity

pn(x; aq−1,−a, q1/2,−q1/2|q) = 1 − a2qn−1

1 − a2q2n−1 pn(x; a,−a, q1/2,−q1/2|q)

− aq−1(1 − q2n) pn−1(x; a,−a, q1/2,−q1/2|q),

which is a special case of [8, Eq. (7.6.8)] (in the first edition, a factor (q; q)n is missing
on the right-hand side of (7.6.9)). Taking the even part in a gives

pn(x; aq−1,−a, q1/2,−q1/2|q) + pn(x; a,−aq−1, q1/2,−q1/2|q)

= 2
1 − a2qn−1

1 − a2q2n−1 pn(x; a,−a, q1/2,−q1/2|q) = 2
(q2, a2q−1; q2)n

(a2q−1; q)n
Cn(x; a2|q2),

where we used (6.5b). It follows that the right-hand side of (6.10) equals

1

2

∞∑

n=0

pn(x; aq−1,−a, q1/2,−q1/2|q) + pn(x; a,−aq−1, q1/2,−q1/2|q)

(q,−a2q−1,−q; q)n
tn .

Summing the series using (6.4) and simplifying using (6.8) gives

1

2

(tq/z; q2)∞
(t z; q2)∞

(
2φ1

(
aq−1z,−az

−a2q−1 ; q,
t

z

)
+ 2φ1

(
az,−aq−1z

−a2q−1 ; q,
t

z

))
.

By (2.6), this is equal to

(a2t2; q2)∞
2(t z, t/z; q2)∞(−a2q−1; q)∞

(
(1 − atq−1) 2φ2

(
t z, t/z

atq−1,−at
; q,−a2q−1

)

+(1 + atq−1) 2φ2

(
t z, t/z

at,−atq−1; q,−a2q−1
))

.

Adding the series termwise as in the proof ofLemma3.4 gives the desired expression.��
Another key tool is the following identity for Rogers polynomials at x = −1/2 or,

equivalently, z = ω.

Lemma 6.5 One has

Cn

(
−1

2
; a∣∣q

)
=

�n/3	∑

l=0

(a3; q3)l(a−1; q)n−3l

(q3; q3)l(q; q)n−3l
an−3l . (6.11)
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Toprove this,we simply use theq-binomial theorem towrite the generating function
(6.3) as

(atω, atω−1; q)∞
(tω, tω−1; q)∞

= (t; q)∞
(at; q)∞

· (a3t3; q3)∞
(t3; q3)∞

=
∞∑

k=0

(a−1; q)k

(q; q)k
(at)k

∞∑

l=0

(a3; q3)l
(q3; q3)l t

3l .

In hypergeometric notation, (6.11) is

Cn

(
−1

2
; a∣∣q

)
= an(a−1; q)n

(q; q)n
4φ3

(
q−n, q1−n, q2−n, a3

aq1−n, aq2−n, aq3−n; q3, q3
)

.

This is a balanced series, so one can obtain alternative expressions by applying Sears’
and Watson’s transformation formulas to the right-hand side.

Combining the results stated above, we obtain the following sextic transformations,
which seem to be new.

Proposition 6.6 The transformation formulas

2φ1

(
aω,−aω

−a2
; q, a2q−1ω2

)
= (a6; q2)∞(a6q−3; q6)∞

(a2q−1ω2, a4q−1; q)∞

3φ2

(
a2q, a2q3, a2q5

a6q2, a6q4
; q6, a6q−3

)
, (6.12a)

2φ1

(
aω, aqω

a2q
; q2, a2ω2

)
= (a3; q)∞(−a3; q3)∞

(a2ω2, a4; q2)∞
3φ2

( −a,−aq,−aq2

a3q, a3q2
; q3,−a3

)
, (6.12b)

2φ2

(
a2q−1ω, a2q−1ω2

a3q−1,−a3q−1 ; q,−a2q−1
)

= (−a2q−1; q)∞(a6q−3; q6)∞
(a4q−2; q)∞

3φ2

(
a2q−1, a2q, a2q3

a6q−2, a6q2
; q6, a6q−3

)
, (6.12c)

2φ2

(
a2q−3ω, a2q−3ω2

a3q−3,−a3q−3 ; q,−a2q−1
)

= (−a2q−1; q)∞(a6q−9; q6)∞
(1 − a2q−3)(1 − a6q−6)(a4q−3; q)∞

×
(
3φ2

(
a2q−1, a2q, a2q3

a6q−4, a6q−2 ; q6, a6q−9
)

−a2q−3 1 − a2q−1

1 − a6q−4

3φ2

(
a2q, a2q3, a2q5

a6q−2, a6q2
; q6, a6q−9

))
, (6.12d)

hold when the series on both sides converge.
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Proof We first consider (6.12c). We let z = ω in (6.10), insert the first expression in
Lemma 6.5, replace n by n + 3l and change the order of summation. This gives

(a2t2; q2)∞
(−a2q−1; q)∞(tω, tω2; q2)∞ 2φ2

(
tω, tω2

at,−at
; q,−a2q−1

)

=
∞∑

l=0

∞∑

n=0

(a2q−1; q2)n+3l(a6; q6)l(a−2; q2)n
(a4q−2; q2)n+3l(q6; q6)l(q2; q2)n a2ntn+3l

=
∞∑

l=0

(a2q−1; q2)3l(a6; q6)l
(a4q−2; q2)3l(q6; q6)l t

3l
2φ1

(
a−2, a2q6l−1

a4q6l−2 ; q2, a2t
)

.

(6.13)

We now specialize t = a2q−1 and apply the q-Gauss summation (2.5) in the form

2φ1

(
a−2, a2q6l−1

a4q6l−2 ; q2, a4q−1
)

= (a6q−2, a2q−1; q2)∞
(a4q−2; q)∞

(a4q−2; q2)3l
(a6q−2; q2)3l .

It is straight-forward to write the result as in (6.12c).
The identities (6.12a) and (6.12b) follow in exactly the same way from (6.7a) and

(6.7b), respectively. We do not give the details.
Finally, we let t = a2q−3 in (6.13) and use [8, (III.2)] to write

2φ1

(
a−2, a2q6l−1

a4q6l−2 ; q2, a4q−3
)

= (a2q−1, a6q6l−4; q2)∞
(a4q−3, a4q6l−2; q2)∞

2φ1

(
q−2, a2q6l−1

a6q6l−4 ; q2, a2q−1
)

= (a2q−1, a6q6l−4; q2)∞
(a4q−3, a4q6l−2; q2)∞(
1 − a2q−3 1 − a2q6l−1

1 − a6q6l−4

)
.

Inserting this into (6.13) and simplifying gives (6.12d). ��

6.3 Proof of the remaining triple summations

We are now ready to prove Theorems 6.1 and 6.2, which imply the four Kanade–
Russell conjectures (1.3f)–(1.3i) and the new summation (5.4).
Proof of (1.3f). Let a = q3/4 in (6.12a). Then, the right-hand side reduces to

(q9/2; q2)∞(q3/2; q6)∞
(q1/2ω2; q)∞(q2; q)∞

2φ1

(
q5/2, q9/2

q17/2
; q6, q3/2

)
.

Applying the q-Gauss summation (2.5) and simplifying gives (6.1a). ��
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Proof of (1.3g).We need the generating function (6.6). Like in the proof of Proposition
6.6, we let z = ω, insert the first expression in Lemma 6.5 and change the order of
summation. This gives

2φ1

(
aω,−aω

−a2
; q,

t

ω

)
2φ1

(
aq1/2ω2,−aq1/2ω2

−a2q
; q, tω

)

=
∞∑

l=0

(a2q1/2,−a2q1/2; q)3l(a6; q3)l
(−a2q, a4; q)3l(q3; q3)l t3l

× 3φ2

(
a−2, a2q3l+1/2,−a2q3l+1/2

−a2q3l+1, a4q3l
; q, a2t

)
. (6.14)

In the special case a = q1/4 and t = q1/2, the inner series reduces to

2φ1

(
q−1/2,−q3l+1

−q3l+3/2 ; q, q

)
= (q1/2,−q3l+2; q)∞

(q,−q3l+3/2; q)∞
,

by (2.5). The right-hand side of (6.14) then simplifies to

(q1/2,−q2; q)∞
(q,−q3/2; q)∞

∞∑

l=0

(−q; q)3l(q3/2; q3)l
(−q2; q)3l(q3; q3)l q3l/2 = (q1/2,−q2; q)∞

(q,−q3/2; q)∞

2φ1

(−q, q3/2

−q4
; q3, q3/2

)

= (1 + q1/2)
(q1/2,−q; q)∞(−q5/2, q3; q3)∞
(q,−q1/2; q)∞(−q, q3/2; q3)∞ ,

again by (2.5). The left-hand side of (6.14) is

2φ1

(
q1/4ω,−q1/4ω

−q1/2
; q,

q1/2

ω

)
2φ1

(
q3/4ω2,−q3/4ω2

−q3/2
; q, q1/2ω

)
.

The second factor is computed by (6.1a), with ω replaced by ω2. After simplification,
this results in (6.1b). ��
Proof of (1.3h). If we let a = q3/4 in (6.12c), the right-hand side becomes

(−q1/2; q)∞(q3/2; q6)∞
(q; q)∞

2φ1

(
q1/2, q9/2

q13/2
; q6, q3/2

)
.

Applying the q-Gauss summation (2.5) and simplifying gives (6.1c). ��
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Proof of (1.3i). To prove the equivalent identity (6.1d) we would like to let a = q5/4

in (6.12d). Since the series on the right diverge at this point, we transform them using
[8, (III.9)]. This gives

2φ2

(
a2q−3ω, a2q−3ω2

a3q−3,−a3q−3 ; q,−a2q−1
)

= (1 − a2q−2)(a8q−8; q6)∞
(1 − a6q−6)(a2q−3; q)∞(a4q−3; q2)∞

×
(

(a4q−3; q6)∞
(a6q−2; q6)∞ 3φ2

(
a2q, a4q−7, a4q−3

a6q−4, a8q−8 ; q6, a4q−3
)

−a2q−3(1 − a2q−1)
(a4q; q6)∞

(a6q−4; q6)∞ 3φ2

(
a2q, a4q−7, a4q−5

a6q−2, a8q−8 ; q6, a4q
))

.

By analytic continuation, this holds for |a4q−3| < 1. When a = q5/4, the 3φ2-series
on the right reduce to

1φ0

(
q−2; q6, q2

)
= 0

and

3φ2

(
q7/2, q−2, 1
q11/2, q2

; q6, q6
)

= 1,

respectively. After simplification, we arrive at (6.1d). ��
Proof of (5.4). Replace q by −q1/2 in (6.12b) and then let a = q1/4. This gives

2φ1

(
q1/4ω,−q3/4ω

−q
; q, q1/2ω2

)
= (q3/4;−q1/2)∞(−q3/4;−q3/2)∞

(q1/2ω2, q; q)∞

2φ1

(−q1/4, q3/4

q7/4
;−q3/2,−q3/4

)
.

Applying (2.5) and simplifying we obtain (6.2). ��

6.4 Quadratic transformations

We conclude by discussing some applications of Lemma 6.3 to one-variable series.
We will need the generating function [10,19]

(btz; q)∞
(t z; q)∞

3φ2

(
a, b, az2

a2, btz
; q,

t

z

)
=

∞∑

n=0

(b; q)n

(a2; q)n
Cn(x; a|q)tn, x = z + z−1

2
.

Comparing it with (6.7) gives the quadratic transformation formulas

2φ1

(
az,−az

−a2
; q,

t

z

)
= (a2t zq; q2)∞

(tq/z; q2)∞ 3φ2

(
a2, a2q, a2z2

a4, a2t zq
; q2, t

z

)
, (6.15a)
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2φ1

(
az2, az2q

a2q
; q2, t

2

z2

)
= (−atz; q)∞

(−t/z; q)∞
3φ2

(
a,−a, az2

a2,−atz
; q,

t

z

)
. (6.15b)

The identity (6.15b) is due to Jain [12]. Although we would be surprised if (6.15a)
were new, we could not find it in the literature.

A pair of closely related identities were obtained by Gessel and Stanton [9, Eqs.
(5.6), (5.18)], namely,

2φ1

(
a,−a
−c

; q, cx

)
.= (a2x; q2)∞

(x; q2)∞ 3φ2

(
c, cq, a2

c2, q2/x
; q2, q2

)
, (6.16a)

2φ1

(
a, aq
c2q

; q2, c2x2
)

.= (ax; q)∞
(x; q)∞

3φ2

(
c,−c, a
c2, q/x

; q, q

)
. (6.16b)

Here,
.= means identity as formal power series in x . Although the right-hand sides

converge for generic values of the parameters, they have poles accumulating at x = 0,
so the corresponding power series diverge. Thus, (6.16) do not hold as identities
between convergent series (and the authors of [9] make no such claim). However,
applying [8, III.34] to (6.15) and changing parameters, one obtains

2φ1

(
a,−a
−c

; q, cx

)
= (a2x; q2)∞

(x; q2)∞ 3φ2

(
c, cq, a2

c2, q2/x
; q2, q2

)

+ (a2, c2x; q2)∞
(−c, cx; q)∞(1/x; q2)∞ 3φ2

(
cx, cqx, a2x
c2x, q2x

; q2, q2
)

,

2φ1

(
a, aq
c2q

; q2, c2x2
)

= (ax; q)∞
(x; q)∞

3φ2

(
c,−c, a
c2, q/x

; q, q

)

+ (a, c2x; q)∞
(c2q, c2x2; q2)∞(1/x; q)∞

3φ2

(
cx,−cx, ax
c2x, qx

; q, q

)
.

These identities can be viewed as analytic versions of the formal identities (6.16).
Finally, we note that an interesting identity is obtained by substituting z = i in

(6.7a) and using [8, Ex. (7.17)]

Cn(0; a|q) =
⎧
⎨

⎩
(−1)k

(a2; q2)k
(q2; q2)k , n = 2k,

0, n = 2k + 1.

After replacing a by ia and t by it , we obtain

2φ1

(
a,−a
a2

; q, t

)
= (−t; q2)∞

(tq; q2)∞ 2φ1

(−a2q,−a2q3

a4q2
; q4, t2

)
. (6.17)

This quartic transformation can also be proved by combining the two identities (6.15).
It can be obtained from [4, Eq. (3.19)] by replacing a by aq−n and letting n → ∞.
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