Genuinely sharp heat kernel estimates on compact rank-one symmetric spaces, for Jacobi expansions, on a ball and on a simplex
Artikel i vetenskaplig tidskrift, 2021

We prove genuinely sharp two-sided global estimates for heat kernels on all compact rank-one symmetric spaces.
This generalizes the authors' recent result obtained for a Euclidean sphere of arbitrary dimension.
Furthermore, similar heat kernel bounds are shown in the context of classical Jacobi expansions,
on a ball and on a simplex. These results are more precise than the qualitatively sharp Gaussian estimates proved recently
by several authors.

projective space

sharp estimate

Jacobi heat kernel

two-point homogeneous space

compact symmetric space

heat kernel

Författare

Tomasz Szarek

Uniwersytet Wrocławski

Adam Nowak

Polish Academy of Sciences

Mathematische Annalen

0025-5831 (ISSN) 1432-1807 (eISSN)

Ämneskategorier

Beräkningsmatematik

Geometri

Matematisk analys

Fundament

Grundläggande vetenskaper

Mer information

Senast uppdaterat

2021-05-02