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There Is an Alloy at the End of the Rainbow:
Structure and Optical Properties From Bulk to Nano

J. MAGNUS RAHM
Department of Physics
Chalmers University of Technology

Abstract

Mixing different chemical species and decreasing dimensions to the nanoscale are two
powerful approaches for improving materials. In both cases new properties emerge,
and structure, composition, and chemical ordering can be tuned to tailor materials for
specific purposes. To exploit the potential of these materials, it is crucial that they are
fundamentally understood, and to this end, computational methods have emerged as
an important complement to experiment. This thesis presents the development and ap-
plication of methods for modeling alloys, nanoparticles, and nanoalloys on the atomic
scale, with the purpose of guiding the search for new materials, in particular those re-
lated to plasmonic sensing of hydrogen.

A software for creating and sampling alloy cluster expansion has been developed par-
tially in connection to this thesis, and is applied to hydrogenation of Pd and Pd-Au. For
Pd-Au, the impact of chemical order on hydrogen uptake is studied, and two kinds of
phase diagrams are calculated; one in which the Pd/Au atoms are fixed, and one in which
they rearrange in response to hydrogen. These phase diagrams are constructed under
the assumption that phase separation occurs with incoherent interfaces. This is not al-
ways the case, in particular not during hydrogenation of small Pd nanoparticles. Co-
herent interfaces lead to strain, and a methodology for studying this significantly more
complex case is developed and applied to Pd-H, showing that there are three tempera-
ture intervals with qualitatively distinct hydrogenation behaviors.

Moreover, a software for creating Wulff constructions for the prediction of equilibrium
nanoparticle shapes has been developed as part of this thesis and is used to study the
impact of halides on the shapes of Auand Pd nanoparticles. Furthermore, an algorithm
for finding equilibrium shapes of nanoparticles on the atomic scale is detailed, and the
results indicate that an ensemble of nanoparticles in thermodynamic equilibrium in
general should be expected to contain multiple different shapes. Moreover, nanoalloys
of Ag—Cu and Pd-Au are studied on the atomic scale with the aim to understand how
chemical ordering is impacted on the nanoscale, which reveals an interplay between
chemistry and strain that can give rise to a rather complex distribution of the compo-
nents throughout a nanoalloy. Finally, the dielectric functions of ten metallic alloys are
calculated with first-principles methods and benchmarked with experiment, providing
alibrary of reference data to aid modeling of nanoplasmonic systems. The latter results
have also been made available in the form of a web application.

Keywords: alloys, nanoalloys, thermodynamics, hydrides, alloy cluster expansions, op-
tical properties, dielectric functions
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Introduction

Adamantium, vibranium, unobtainium, and cryptonite—not only scientists recognize
the importance of new materials for technological advancement. Unlike Black Panther
and Superman, chemists and materials scientists are restricted to the periodic table
when making new materials. But even these hundred or so chemical elements provide a
toolbox that is almost unfathomable. The diversity derives primarily from two degrees
of freedom: the combination of elements and the spatial arrangement of the atoms. The
combination of two or more metals is an alloy, and an alloy often has the favorable prop-
erties of its components and sometimes qualities that are entirely unforeseen. Likewise,
by making nanoparticles and other objects on the nanoscale, materials behave in ways
unheard of on the macroscale. Solutions to many of the challenges related to the energy
crisis are undoubtedly hidden in this realm of yet-to-be-realized materials [1, 2]. The
pot of gold at the end of the rainbow is full of alloys too.

The first element of the periodic table, hydrogen, is expected to play an important
role in the replacement of fossil fuels [3]. The H, molecule is an excellent energy carrier,
which when consumed leaves only water behind. The Swedish (or German) word for a
mixture of hydrogen and oxygen gas, knallgas (‘bang gas”), indicates, however, that hy-
drogen is not necessarily the most easily maintainable source of energy. The dramatic
footage of the tragic Hindenburg accident, in which an airship filled with hydrogen ex-
ploded, is imprinted in collective memory and reminds us that mishandling of hydrogen
can have fatal consequences. Strategies for detecting hydrogen leakages are essential
[4].

This thesishas emerged in relation to the development of palladium-based nanoalloys
for hydrogen sensing. The idea is the following: palladium nanoparticles, possibly al-
loyed with gold and/or copper [5-7], easily absorb hydrogen upon exposure to hydrogen
gas, and when doing so, their optical properties change [8, 9]. By placing the nanopar-
ticles just outside the equipment where the hydrogen ought to be confined and by con-




Chapter 1. Introduction

tinuously tracking the optical response of the nanoparticles, a hydrogen leakage can be
detected [10, 11]. These hydrogen detectors would not fit in Marvel comics. Their success
is instead based on both a rational combination of chemical elements (for obtaining a fa-
vorable hydrogen uptake) and a tuning of the structure at the nanoscale (for obtaining a
detectable optical response and faster kinetics [12, 13]). It is, however, in many respects
a complex material and many questions are yet to be answered. How are the palladium
and gold atoms arranged relative to each other in the material and how does this affect
the sensing properties? What happens on the atomic scale when the nanoparticles are
loaded with hydrogen? What is the optimal shape of the nanoparticles? How can we
understand the change in optical properties at the electronic level? This thesis attempts
to provide answers to some of these questions and to serve as a springboard for further
investigation of others.

The work in this thesis can be loosely divided into three categories: the thermody-
namics of palladium-based hydrides (Papers I-III), the atomic structure and shapes of
nanoparticles (Papers IV-VII), and the optical properties of alloys (Paper VIII). While
palladium-based, optical hydrogen sensing is the application in mind for much of this
content, the thesis is also part of the general effort to further our knowledge of materi-
als through computer simulations. The tremendous improvements of computational
power as well as computational techniques and algorithms over the last decades has
made computation an important complement to experiment. Yet, the development of
user-friendly software that incorporates these algorithms while lending flexibility for
the users remains a challenge in many parts of physics and materials science [14]. This
thesis has contributed to two open-source software packages: ICET (for modeling of al-
loys with alloy cluster expansions) and WULFFPACK (for constructing equilibrium nano-
particle shapes via Wulff constructions). These software have been important tools in
much of the work presented here, and will hopefully be useful for many scientific stud-
ies to come.

This thesis is structured as follows. Chapter 2 discusses the thermodynamics of al-
loys and hydrides with focus on phase diagrams in bulk. The nanoscale is introduced
in Chapter 3, with an emphasis on the atomic structure of metallic nanoparticles. The
optical properties of metals in general and metallic nanoparticles in particular are dis-
cussed in Chapter 4. An overview of the computational methods used within the scope
of this thesis is given in Chapter 5, highlighting the most central aspects. The appended
papers are summarized in Chapter 6. Finally, possible future extensions of the present
work are discussed in Chapter 7.



Thermodynamics of
alloys and hydrides

The properties of alloys, or any material consisting of more than one chemical element,
depend on the way in which the atoms are organized. This chemical ordering of the
atoms is to a large extent governed by the laws of thermodynamics. Materials are of-
ten found in their thermodynamic equilibrium state, and even when they are not, ther-
modynamics provides the driving force that governs how the material will evolve over
time. This chapter gives an introduction to the thermodynamics of alloys and metallic
hydrides, which are both highly relevant for nanoplasmonic hydrogen sensors.

2.1 Phase diagrams

Information about equilibrium states under various conditions can be visualized in a
phase diagram. While this section focuses on the special case of a binary alloy consider-
ing equilibria as a function of composition and temperature, the principles are general
and are readily extended to more than two components. A particular pressure, typically
1atm for solid systems, is implicit but it is in principle possible to extend the diagram
with a pressure axis.

Under these circumstances, the equilibrium state of a system is characterized by a
minimum in the Gibbs free energy G. The phase diagram can be constructed if the free
energy as a function of composition and temperature is known. The situation becomes
interesting when the free energy curve contains one or more concave regions. The sys-
tem can then phase separate in two or more phases, the sum of which has a lower free
energy than the non-phase separated (single-phase) system.
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Consider an alloy with a free energy curve G(c) such as the red one in Fig. 2.1a. If the
system is homogeneous (the concentration is the same in all parts of the sample) with
concentration c,y, it has a free energy G(c,,). We can compare this free energy to the free
energy of a system with the same average concentration c,, but where the concentration
is not homogeneous. Specifically, if the system has phase separated in two phases 1and
2 with concentrations ¢; and ¢, in proportions ¢; and @,, the new free energy is

Gi12(cay) = a1G(c) + apGlcz) 2.1)
but the mass of either element needs to be conserved, so we require
e+ e =cy and o +ap = 1. (2.2)

Combining the equations we find

c—c Cay — C1
a; = v and ay = v (2.3)
G —0 G —0
and the new free energy is
C2 — Cyy Cav — (1
G1+2(Cav) = G(Cl) + G(cp). (2.4)
G~ /|

The question is then whether such a phase separation lowers the free energy (compared
to the single-phase free energy G(c,,)) and if so, which values of ¢; and ¢, minimize
Gi42(cay). Itis asimple matter of differentiation and algebra to show that an extremum
in Gy 49(c,y) is reached for ¢; and ¢, chosen such that

_ Gley) — Gley)

c=c, C—0

&
ac

_ G

— (2.5)
c=¢, OC

which implies that the tangents at G(c¢;) and G(c,) coincide (dashed lines in Fig. 2.1a).
This extremum is a minimum only if this tangent lies below G(c). The family of such
tangents that lie below G(c) is referred to as the convex hull. The system phase separates
into multiple phases only in regions where the convex hull deviates from G(c). Such re-
gions are referred to as multi-phase regions (two-phase regions in binary alloys) and
an alloy phase diagram is a map where the boundaries for these regions are drawn as a
function of temperature or other thermodynamic variables (Fig. 2.1b). Due to the lower-
ing of the free energy by phase separation, some elements do not dissolve in each other,
and in such materials the two-phase region is often referred to as a miscibility gap.

2.1.1 Mean-field treatment of the Ising model

The previous section discussed two-phase regions for a material with a given free energy
G(c) but nothing was said about how this function emerges physically. The free energy
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Figure 2.1: Construction of phase diagram from free energy curves in the mean-field approxi-
mation of the Ising model (Eq. (2.9)) with w = 0.13 eV/atom. (a) The free energy curves have two
minima that move towards ¢ = 0.5 as temperature is increased, and above the critical tempera-
ture there is only one minimum. (b) The phase diagram tracks the position of the two minima
as a function of temperature.

(in this case the Gibbs free energy") is defined as
G=H-TS (2.6)

where H is enthalpy, T temperature and S entropy. The enthalpy H depends on the bind-
ing energies between the atoms in the material. The largest contribution to the entropy
S, on the other hand, is oblivious to the chemistry of the components; it is only a func-
tion of how the atoms of type A and B are ordered in the lattice (vibrational and other
forms of entropy are neglected here).

The arguably simplest model of a binary alloy is the Ising model, in which the enthalpy
is written as a sum of interactions between nearest neighbors. This interaction may
take one of two different values, u, if the nearest neighbors are alike or u,_j if they are
unlike. In an infinite crystal with completely random order (referred to as an ideal sub-
stitutional solid solution), each atom will on average have nc neighbors of type A and
n(1 — ¢) neighbors of type B, where n is the number of nearest neighbors for each atom
and c the overall concentration of A atoms. It is a simple algebraic exercise to show that
the enthalpy of mixing? for the system can then be written

Hpix(c) = H(c) — cH(1) — (1 - ¢)H(0) = Nawc(1 - ), (2.7)

'Here we will use energy and enthalpy interchangeably as the the difference between the two, the
pressure—volume term, is typically small for solids near ambient conditions.

ZMixing energies are tilted such that the energy atc = 0 and ¢ = 1is zero by definition. They are often
more convenient than total energies when constructing phase diagrams for the sake of visualization, but
the physics is the same.
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where N is the total number of atoms and w = n(uy_g — 1). Furthermore, the configu-
rational entropy in the completely random state is

S(c) = —Nkg Y. piln p; = —Nkg [clnc + (1 - ¢)In(1 - ¢)] (2.8)

because each site is occupied by an A or B atom with probability p4 = cand pg =1 —c¢,
respectively. Putting it together, we have a free energy of mixing per atom

Gmix(c) = wc(1 —¢) + kgT [clnc+ (1 —¢)In(1 = ¢)]. (2.9)

If the bond between unlike atoms is stronger than the bond between identical atoms,
such that w < 0, then G;4(c) is negative and convex for all temperatures. If like atoms
bind stronger than unlike, however, then the function will have a concave region at suffi-
ciently low temperatures. As derived in the previous section, the system will then phase
separate; in other words, it has a miscibility gap. This situation is illustrated in Fig. 2.1
for two values of T along with the resulting phase diagram. The phase boundary for
the miscibility gap (the solvus line) maps the maximum concentration at which B can
dissolve in A or vice versa as a function of temperature. This limit is referred to as the
solubility of either element in the other.

2.1.2 Order and disorder in real systems

In the mean-field treatment of the Ising model we assumed random order and arrived
at an expression with only one material-dependent parameter, w. This is of course an
oversimplification of a real material. In general, minimization of G leads to a compe-
tition between H and TS. If the interaction between unlike atoms is favorable enough,
the material will be ordered such that the number of such bonds is larger than in the
completely disordered state. An ordered phase has a lower entropy than a random one
and will thus only be stable at low enough temperatures. Furthermore, the character of
this order will depend on the details of the atomic interaction, for which the Ising model
does not in general provide a sufficient description. Nevertheless, by generalizing the
Ising model to include interaction between more distant neighbors, as well as clusters
of three or more atoms, an accurate model can often be constructed. Such models are
known as alloy cluster expansions, and are described in detail in Sect. 5.4, implemented
in Paper I and utilized in Paper II and III.

Atomic interaction more complex than the Ising model opens the possibility for more
complex phase diagrams. Three examples from the literature are shown in Fig. 2.2 to-
gether with schematic free energy curves. The Ag—Cu phase diagram is fairly similar
to the Ising model with an unfavorable interaction between the two species, and melt-
ing occurs before a solid solution is formed (Fig. 2.2a). The Au—Pd alloy is also rea-
sonably well described by the Ising model but with a favorable interaction between the
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two species. Consequently, a solid solution is formed at all compositions at moder-
ately high temperatures (Fig. 2.2b). For Au—Cu, however, the mean-field treatment of
the Ising model cannot give a satisfactory description, because in this case the inter-
action between the two elements is particularly favorable in some configurations such
that ordered phases (also called intermetallic compounds) appear in the phase diagram
(Fig. 2.2¢). These are always surrounded by two-phase regions in accordance with Gibbs’
phase rule [15, Chapter 9]. Phase separation can thus occur as a result of unfavorable
interaction between the two species, as in Ag—Cu, but also as a result of particularly
favorable interaction at some compositions, as in Au—Cu.

It should be noted that also in mixing systems such as Au—Pd, ordered phases are ex-
pected to form at sufficiently low temperatures, although these phases may be unreach-
able in practice since the diffusivity plummets as the temperature is lowered. In fact, in
the case of Au—Pd there is no consensus on the exact from of the phase diagram as some
authors report ordered phases [20, 21] while others do not [22]. It seems likely that the
critical temperatures of these ordered phases are close to room temperature and diffi-
cult to reach in practice, but they may be stabilized by strain or other mechanisms and
thereby form at higher temperatures in some experiments.

It is in general difficult to predict the mixing behavior of two elements without so-
phisticated methods. A number of simple rules according to Hume-Rothery [23] do,
however, attempt a prediction of whether two elements form a substitutional solid so-
lution:

the atomic radii should differ by no more than 15 %,

the crystal structures of the two elements should be similar,

« the two elements should have the same valency, and

« the two elements should have similar electronegativity (if they differ too much, an
intermetallic compound is likely to form).

The predictive power of these rules is limited if applied blindly, but they identify a num-
ber of parameters that have influence. Itis thus reasonable to attribute the low solubility
of Agin Cuand vice versa to their 13 % difference in size [24], and the tendency of Au—-Cu
to form intermetallic compounds to their 34 % difference in electronegativity [25, 26].

2.1.3 Vacancies as a component

A number of techniques for computational modeling of alloys have been developed over
the last 50 years or so (some are described in Chapter 5). In one way or the other, these
often rely on a lattice with sites that can assume two or more chemical identities. It is
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[ ]Liquid solution [ | Solid solution [ Liquid sol. + solid sol. [ ] Solid sol. + solid sol.
Il Ordered phase [__|Ordered + ordered  [__]Ordered + solid sol.
Ag Cu Au Pd Au Cu

(a) Ag-Cu (b) Au—Pd (c) Au=Cu

é 1500 k | ///— _ |
(O]
5 \J’/
§ 1000 M
a8 L1,
OE, L1, L1,
'_

500 1 F 1 F b

Free energy of mixing

0 0.25 0.5 0.75 10 0.25 0.5 0.75 10 0.25 0.5 0.75 1
Cu concentration Pd concentration Cu concentration

Figure 2.2: Phase diagrams reproduced from the literature together with schematic free energy
curves at low temperature (well below the solidus lines where melting starts). (a) Ag—Cu [16] is
immiscible at all temperatures below the solidus line. The free energy of mixing is positive except
very close toc = 0 and 1. (b) Au-Pd [17] forms a solid solution in the full concentration range
(tentative ordered phase have been excluded here). The corresponding free energy of mixing is
negative and convex. (c) Au—Cu [18] forms ordered phases at ¢ = 0.25 ¢ = 0.5 and ¢ = 0.75 [19].
These are surrounded by two-phase regions as required by Gibbs’ phase rule. The corresponding
free energy curve at temperatures where ordering occurs is negative in the full concentration
range, but concave regions emerge because the ordered phases have particularly low energy. L1,
and L1, denote the specific ordering of the intermetallic compounds. L1, consists of monoele-
mental atomic planes in the [100] direction, and L1, is identical except every second atom is
substituted for the majority species in the atomic planes of the minority species.

sometimes useful to apply this approach to a system in which one of the chemical iden-
tities is a vacancy, i.e., the absence of an atom. The system of a metal species and vacan-
cies can be regarded as an extreme case of an immiscible system. Vacancy-formation
energies are usually on the order of an electronvolt or more in transition metals [27],
which in the language of binary alloys means that the solubility of vacancies in the metal
is very low. Likewise, given the very high boiling temperatures of metals, it is clear that
the solubility of metal atoms among vacancies at moderate temperatures is very low
too. Simulating the metal-vacancy system is thus mainly relevant for studying the in-
terface between the two phases, i.e., the surface of the metal, primarily in nanoparticles.
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This technique was employed in Paper V. The system of vacancies and another chemical
species is, however, not always immiscible. Interstitial hydrides, which are discussed
in Paper II, Paper 111, and the following section, is one such example.

2.2 Hydrogen in palladium and its alloys

We now turn our attention to interstitial solutions of hydrogen in metals. When exposed
to H, gas, many metals absorb hydrogen. Specifically, H, molecules are split on the sur-
face of the metal and subsequently absorbed in atomic form into interstitial sites in the
lattice, where, in the language of the preceding section, they form a more or less mis-
cible system with interstitial vacancies. In some metals, the volumetric density of hy-
drogen can become very high, and they can therefore be used to store hydrogen [28, 29].
Furthermore, as the content of hydrogen increases in the material, its properties are
changed. By detecting these changes, hydrogen leakages can be caught. The anticipated
need for fast, accurate, and reliable hydrogen sensors in the emerging hydrogen econ-
omy has led to a growing research interest in this field [4], and particularly promising
for sensing are Pd-based nanoparticles, whose optical properties change upon absorp-
tion of hydrogen [11]. This section discusses the thermodynamics of hydrogen in Pd and
Pd-based alloys, as the thermodynamics underpin the behavior of the system and by
extension the response of optical sensors.

2.2.1 Why palladium?

Pd is sometimes described as a hydrogen sponge, since it readily absorbs large quanti-
ties when exposed to a H, gas. Just as important is the fact that the hydrogen is also
easily desorbed when the H, pressure is lowered. In the dilute limit (i.e., low hydrogen
concentration in the material), this can be quantified with Sieverts’ law [30]. This law
states that the solubility of a diatomic gas (such as H,) is proportional to the square root
of the partial pressure of said gas, cy = k\/p_2 , where the constant of proportionality

can be expressed as

AH, — TASO] .10

kgT

Here, AS, is the change in non-configurational entropy per H atom upon absorption,
whereas AHj is the change in enthalpy at infinite dilution. The change in entropy differs
only slightly between different metals since its primary contribution is from the entropy
decrease in the gas [31, Chapter 2]. The change in enthalpy is thus the primary measure
that determines whether the material will absorb and desorb hydrogen to a sufficient
extent in the H, pressure interval of interest. For Pd, the experimental value [32] of the
enthalpy change is AH, = 0.1eV/atom, which is small enough to partially explain its
sponge-like behavior. This can be compared to for example Au (AH, =~ 0.4eV/atom),

k o exp [—
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which absorbs very little hydrogen, or Hf (AH, = —0.4 eV /atom), for which the hydride
will be stable even close to vacuum (in which case Sieverts’ law essentially breaks down,
as the hydride becomes non-dilute even at infinitesimally small pressures). The Hf hy-
dride may still be useful for hydrogen sensing as the hydrogen content varies with pres-
sure but in a different regime [33], but it is unlikely to be useful for hydrogen storage as
full hydrogen desorption is infeasible at ambient temperatures.

2.2.2 The phase fransition

It is important to note that Sieverts’ law holds only in the dilute limit, where the hydro-
gen atoms in the material do not interact with each other. At higher concentrations,
hydrogen-hydrogen interaction makes the situation more complex. In the case of Pd,
the enthalpy curve turns out concave between the dilute limit and ¢y = 2/3 (Fig. 2.3a).
As a consequence, the system phase separates into a dilute phase, usually labeled , and
adense hydride, f§ (Fig. 2.3b—c). These phases are both solid solutions of hydrogen, with
the difference being the density of hydrogen.

Here, it should be noted that the (Pd-)H-vacancy system and a regular binary alloy
are quite different from an experimental standpoint. Although we may view the intersti-
tial sites as a sublattice containing two species, hydrogen and vacancies, which adheres
to the same principles as any binary alloy, in experiment it is almost always the chemical
potential of hydrogen that is controlled (via the partial H, pressure), and not its conju-
gate thermodynamic variable (the concentration). It follows that the phase-separated
system, with & and f coexisting, is seen at most temporarily while the phase transition
from « to S or ff to a occurs.

Experimentally, the phase transition can be observed by fixing the temperature and
tracking the hydrogen content in the material as the partial pressure of H, in the sur-
roundings is slowly increased. The phase transition manifests itself as a discontinuity
in the corresponding isotherm (Fig. 2.3d); at a specific pressure, called the plateau pres-
sure, the hydrogen content increases abruptly. If the H, pressure is then lowered, hydro-
gen will desorb from the material. The phase transition from f to « will, however, occur
at a lower H, pressure; the system exhibits hysteresis. Thermodynamically, hysteresis
is the result of an energy barrier between the two phases. In many systems, this energy
barrier can be well described by assuming that a sufficiently large nucleus of the new
phase has to form before the free energy can be lowered, and that this is an event driven
by fluctuations that can essentially be waited out, meaning the hysteresis will decrease
if the experiment is run more slowly. An important exception, however, are coherent
phase transitions, which are relevant for the hydrogenation of Pd nanoparticles and are
discussed in Sect. 2.3.
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Figure 2.3: Thermodynamics of the Pd—H system. (a) The energy of mixing at 300 K is positive
at dilute concentrations but negative otherwise, creating a wide concave region from approxi-
mately ¢ = 0toc = 2/3. The enthalpy at infinite dilution (AH,) is directly related to the slope
atc — 0. (b) In the free energy of mixing at 300 K, the concave region is barely discernible. Yet
by tilting the free energy curve (inset figure), it becomes apparent that the concavity persists,
and the convex hull (red, dashed line) consequently lies below the free energy curve. (c) The lim-
its of the concave interval define the two-phase (@ + f) region when plotted as a function of
temperature in a phase diagram. (d) The most commonly reported experimental quantity is the
isotherm, i.e., content of hydrogen as H, pressure is increased at constant temperature (here
300 K). The concentration changes discontinuously at the plateau pressure (red, dashed curve),
but this phase transition is associated with hysteresis (green curves), which means the system
transitions at a higher (lower) pressure upon loading (unloading). The two phases have the same
(lack of) symmetry and differ only in the concentration of hydrogen on the interstitial lattice
(inset figures). The data presented here were generated with the cluster expansion developed
in Paper III. Energies are plotted per formula unit (1 f.u. =1 Pd atom + 1 interstitial site) and
concentrations are defined as number of H atoms per Pd atoms.

2.2.3 Hydrogen in palladium-based alloys

If we want to use Pd as a hydrogen sensor, the phase transition is undesirable, because it
renders the relationship between H, pressure and hydrogen content (and by extension
sensor readout) non-linear, and with hysteresis the correspondence between hydrogen
content and H, pressure is not one-to-one. By studying the enthalpy curve in Fig. 2.3a,
we can devise a plan to suppress the two-phase region in order to make a better sen-
sor. The agent responsible for the two-phase region is the increase in enthalpy in the
dilute limit, compared to the lower enthalpy in the dense hydride. If the enthalpy of
infinite dilution (AH,) is lowered, while simultaneously the enthalpy in the dense hy-
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dride is increased, the two-phase region can be expected to disappear. The difference
between the enthalpy of dilute and dense solution in Pd—H is usually attributed to the
energetic penalty of elastic dilation of the lattice. Inserting one hydrogen atom is asso-
ciated with a significant elastic energy penalty, because the lattice needs to expand in
the vicinity of the interstitial. But when the next hydrogen atom is absorbed, the lattice
is already slightly expanded by the presence of the first, and the elastic energy penalty is
thus lower for the second atom. One could thus imagine that by pre-straining the lattice
by alloying with a chemical species larger than Pd, the elastic energy penalty would de-
crease also at infinite dilution of hydrogen. By studying the enthalpy at infinite dilution
(AHy) in Pd-based alloys, a clear correlation between the size of the alloying element and
the enthalpy is found, with elements larger than Pd lowering AHj [31, 34]. At the same
time, if the chemical interaction between the alloying element and hydrogen is unfavor-
able compared to Pd, the enthalpy becomes relatively higher when the hydride becomes
dense, which should further suppress the concavity in the enthalpy curve. To summa-
rize, alloying with a chemical species that is larger and has a less favorable hydrogen
interaction than Pd, should shrink the two-phase region.

An example of such an element is Au, which has a lattice parameter that is 4.9% larger
than Pd [24] and an enthalpy at infinite dilution AH, = 0.4eV/atom, compared to
o.1eV/atom for Pd [32]. Indeed, with with a sufficiently large fraction of Au in Pd, the
two-phase region is completely suppressed (Fig. 2.4). A similar behavior is found for Ag,
which is 5.1% larger than Pd [24] and has AH, = 0.7 eV/atom [32]. In what follows, the
focus will be the Pd—Au alloy.

2.2.4 Equilibrium in alloy hydrides

By introducing another chemical species, it becomes significantly more complex to pre-
dict and understand the properties of the material. In addition to the compositional de-
gree of freedom, the chemical ordering of the chemical species can be expected to play
arole. It is important to note that the two sublattices, Pd—Au and hydrogen—vacancy,
are very different from a kinetic perspective. Hydrogen, being a small and light atom,
diffuses easily on the interstitial lattice, meaning equilibrium will usually be reached
very quickly [37]. The Pd and Au atoms, on the other hand, diffuse very slowly and
will typically require both high temperatures and long times to reach equilibrium. For
many practical purposes it is therefore reasonable to assume that the Pd—Au sublattice
is frozen—the atoms do not change places with one another—while equilibrium forms
on the H-vacancy sublattice. This situation is referred to as para-equilibrium [38, 39].
We may further distinguish different para-equilibria depending on how the Pd—-Au
sublattice is frozen in. Experimentally, the Pd-Au alloy is usually formed through an
annealing process, during which the system is held at an elevated temperature for an
extended period of time, and then cooled. If the annealing time is long enough and the
material is cooled rapidly, we can expect that the Pd-Au sublattice has been frozen in
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Figure 2.4: Thermodynamics of the Pd-Au-H system in para-equilibrium (see Sect. 2.2.4).
(a) Isotherms at 300 K reveal that below the plateau pressure, the content of hydrogen at a fixed
H, pressure increases by addition of Au, whereas the opposite holds above the plateau pressure.
The plateau pressure does not change much with Au content, but it disappears if a sufficiently
large Au concentration is reached. (b) The corresponding energy of mixing reveals that the slope
atc = 0 (corresponding to AH,) decreases and becomes negative with an increased amount of Au.
Meanwhile, the minimum in the mixing energy shifts to lower concentrations. (c) These effects
jointly act to suppress the two phase region in the phase diagram at 300 K. The data presented
here were generated with the cluster expansion developed in Paper II. The critical Au concentra-
tion at which the two-phase region is suppressed is lower in this model than in most experiments
35, 36].

the equilibrium chemical ordering at the annealing temperature. On the other hand, if
the material is cooled slowly, we may assume that the system is approximately in equilib-
rium at the final temperature (often room temperature). The chemical ordering on the
Pd-Au sublattice will be at least slightly different in the two cases. When the material is
then exposed to hydrogen, it may behave differently depending on what chemical order
was formed during annealing. In Paper II, we identified two extremes; infinitely slow
cooling to 300 K, and rapid cooling from infinite temperature (disregarding melting).
We reserved the term para-equilibrium for the former and used random equilibrium to
denote the latter, since the chemical order will be fully random if it is annealed at infinite
temperature.

A different situation arises if full (sometimes called complete) equilibrium is allowed
to form. This would be the case if the Pd—Au sublattice is allowed to rearrange in re-
sponse to the presence of hydrogen. The low diffusivity of the Pd—Au sublattice at mod-
erate temperatures makes it time-consuming to reach this equilibrium experimentally,
but it is by no means impossible as has been shown in studies on Pd—Au [22] and Pd-
Mn [40], and even in the absence of full equilibrium, it provides the driving force for the
changes that occur on a Pd—Au sublattice not yet in equilibrium. In Paper II, we con-
structed the phase diagram in full equilibrium as well, showing that it is significantly
more complex than in para-equilibrium due to formation of an ordered phase at ap-
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Chapter 2. Thermodynamics of alloys and hydrides

proximately 25% Au. Under most conditions, this ordered phase absorbs significantly
more hydrogen than the disordered phase, and knowledge of the equilibrium situation
is thus important when comparing hydrogen absorption isotherms.

2.3 Coherent phase transitions

The phase diagram construction described in Sect. 2.1 relies on the assumption that the
free energy of the phase separated system is the sum of the free energies of its con-
stituent phases. This assumption is violated by the energy associated with the inter-
face between the phases, but since the interface energy contribution scales with area
while the free energies of the phases scale with volume, it can be ignored for sufficiently
large samples. If the two phases have different equilibrium lattice parameters, how-
ever, more complicated situations can emerge. In many materials, dislocations form at
the interface between the two phases to accommodate the differing lattice parameters
(lower inset in Fig. 2.5a). Such defects typically contribute to a higher interface energy,
but can be energetically favorable since stresses far from the interface are relieved. In
some materials, however, no such defects tend to form. The interface instead remains
fully coherent, i.e., the atomic planes line up (upper inset in Fig. 2.5a). In this case, the
interface energy may be lower than in the incoherent case, but the constituent phases
are strained. This strain contributes an energy that scales with volume, and thereby
violates the assumptions underpinning the phase diagram construction described in
Sect. 2.1. This leads to a behavior distinct from conventional, stress-free thermodynam-
ics [41-44].

Experiments have shown that the «/f interfaces formed during hydrogenation of
single-crystalline Pd nanoparticles less than about 300 nm in diameter are predomi-
nantly coherent [45-47]. Since there is a significant size-mismatch between the & and
the f phase, hydrogenation of Pd nanoparticles is subject to the distinct characteristics
of coherent interfaces.

To better understand the consequences of coherent interfaces, we can write the free
energy of the coherently phase-separated system as a minimization problem,

Gfigerent

(cay) = micl’l { a1G(c1) + apG(cy) + Vegerain(Cays €1, C2) }
2 \ J J

c, (2.11)

bulk free energy strain

Here, c,y is the overall concentration of the full sample, which is phase separated into
phases1and 2 with respective concentrations ¢; and ¢, in proportions a; and a,. The bulk
free energy term is the same as Eq. (2.4), while the average strain energy density egyain
associated with the coherent interface contributes a new term that scales with volume V.
Here, we have once again ignored the interface energy since it scales with area, and we
have not written out explicitly that the strain energy eg,;, depends on the orientation
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of the interface. Moreover, Eq. (2.11) is approximate since the (chemical) free energy of
the constituent phases can be expected to be at least weakly dependent on the degree of
strain in the system.

Equation (2.11) is a minimization problem in the concentrations of the two phases, ¢;
and ¢,. In the absence of strain, this is exactly the problem that is solved by the convex
hull construction discussed in Sect. 2.1. With strain, however, Eq. (2.11) will not be min-
imized by the convex hull construction. In general, a small difference between ¢; and
¢y leads to a smaller strain energy, because the difference in equilibrium lattice param-
eter between the two phases decreases when the difference between ¢; and ¢, decreases.
The minimum in Eq. (2.11) is thus typically found for ¢; and ¢, inside the convex hull
construction, i.e., coherency strain shrinks the two-phase region.

Itisinstructive to depict the energetics of the incoherent and the coherent case graph-
ically (Fig. 2.5). The difference in chemical potential Ay between the two species maps to
multiple concentrations c inside a two-phase region (black line in Fig. 2.5a). This form of
Ap is equivalent to a barrier in the free energy (Fig. 2.5b), which is obtained by integra-
tion of Ap. At this point, it is worth noting that the black lines in Fig. 2.5 are somewhat
artificial constructions inside the two-phase region. They should be understood as the
equilibrium states under the constraint that the system has a spatially homogeneous con-
centration, i.e., no phase separation is allowed. As we saw in Sect. 2.1, these are not the
lowest possible free energies for a given concentration, because incoherent phase sepa-
ration can lower it. In the incoherent case, we know from Sect. 2.1 that the convex hull
yields the lowest free energy (green lines in Fig. 2.5). The convex hull construction de-
fines the boundaries of the two-phase region in the incoherent case, here denoted cinCOh
and cénc"h (also referred to as binodals). In the coherent case, Eq. (2.11) can be applied.
The typical result is a sloping Ap—c isotherm that connects two concentrations chh and
cs° which fulfill ¢§0 > ¢i"P and ¢§oP < (lneoh 148, 49] (orange line in Fig. 2.5a). Such
a sloping plateau is associated with a free energy barrier (orange line in Fig. 2.5a).

In open systems (such as Pd subject to a certain partial pressure of H,) it is particu-
larly important to note that the free energy barrier in the coherent case is a macroscopic
barrier, because it scales with the total number of sites and thereby the macroscopic
volume of the sample. This distinguishes the coherent energy barrier from the barrier
associated with incoherent interface energy, which scales with area and thereby is mi-
croscopic, i.e. it is comparable to kg T and can be overcome with nucleation and growth.
With an energy landscape like the one in Fig. 2.5, the macroscopic energy barrier can
only be overcome by increasing the partial pressure (or equivalently Ay) until the con-
centration has reached the coherent phase boundary (c¢$°" during absorption, ¢ dur-
ing desorption). Since the plateau is sloping in the coherent case, the Ay required to
transition from left to right is higher than the Ay required to transition from right to
left. The system will thus exhibit hysteresis. This hysteresis, which was first discussed
by Schwarz and Khachaturyan [48, 49], is entirely thermodynamic in origin and cannot
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Figure 2.5: Schematic energy landscape for a binary alloy with a miscibility gap. (a) The differ-
ence in chemical potential Ay between the two species as a function of concentration. If the
system is forced to stay in a single-phase configuration with a spatially homogeneous concen-
tration, a miscibility gap can be recognized as, for example, the presence of a maximum and a
minimum in Ay (black line). If incoherent phase separation is allowed (lower inset), the system
transforms from ™" and ¢i*°" along a straight line (green line). If the interface is coherent
(upper inset), the Ap—c curve will instead have a negative slope inside the miscibility gap, which
connects the coherent phase boundaries ¢{° and ¢$°?. (b) The free energy of mixing is obtained
by integration of Ap. The incoherent phase transition (green line) is entirely free from energy bar-
riers (as long as interface energies can be ignored). The coherent phase transition, on the other
hand, needs to pass a free energy barrier, but in the present case this barrier is lower than in the

single-phase case, where the concentration changes homogeneously throughout the sample.

be avoided as long as the interface is coherent.

Compared to the strain-free case, the phase diagram is more complicated when co-
herent phase transitions occur. To better understand the temperature-dependent be-
havior, we can study a prototypical system as a function of temperature (Fig. 2.6). The
situation depicted in Fig. 2.5 corresponds to low temperatures (Fig. 2.6a). Incoherent
phase separation can occur for ¢! < ¢ < ¢i"P (green dots), while coherent phase sep-
aration can only occur for ¢ < ¢ < ¢§°! (orange diamonds). When the temperature
is increased (Fig. 2.6b), the system reaches a regime where the coherent phase bound-
aries are inside the (incoherent) spinodals, i.e., the maximum and the minimum in Ay
(purple squares). At this temperature, the phase transition in the open system will start
to occur spontaneously before there is phase coexistence between the two phases. With
an even higher temperature (Fig. 2.6¢), the coherent phase transition will occur without
any coexistence between the two phases; the sample will remain spatially homogeneous
throughout the whole phase transition. For a sufficiently high temperature (Fig. 2.6d),
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Figure 2.6: Schematic phase diagram construction for a system with incoherent or coherent in-
terfaces. (a—d) Ap—c isotherms at increasing temperatures. The coherent phase boundaries (or-
ange diamonds) are always inside the incoherent phase boundaries (green circles). In (b) the
coherent phase boundaries are inside the spinodals (purple squares) as well, in (c) there is no
coherent phase coexistence at all and in (d), incoherent phase coexistence disappears as well.
(e) The two critical temperatures T, and TCC"h can be read from the phase diagram. Above T, there
is no phase transition and thus no phase coexistence (f). Below T, but above T*°", the two phases
will coexist during the phase transition if it is incoherent, but if it is coherent, the system will
maintain a homogeneous concentration distribution throughout the full phase transition (g).
Below TSP, the two phases will coexist during the phase transition regardless of whether it is
incoherent or coherent (h).

there is no miscibility gap and there is no need to distinguish coherent systems from
incoherent ones.

The (incoherent®) spinodals are significant also in the coherent, open system, because
they mark the concentrations where all free energy barriers are gone and the phase tran-
sition can occur spontaneously. To demonstrate this, it is advantageous to consider the

*Incoherent spinodals are defined by *G/ac® = 0 and are important for incoherently phase separat-
ing systems, because such systems are unstable with respect to formation of concentration waves when
9°G/ac* < 0. Coherent spinodals, where the system is unstable with respect to coherent phase separation,
exist too but are not relevant for our analysis of the open system.
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Figure 2.7: Significance of the incoherent spinodal in an open system that does not transition in-
coherently. (a) Even if the chemical potential y is such that the grand potential Q is the same in
phase 1and phase 2, the coherent phase transition from 1to 2 (or vice versa) cannot occur, because
there is a macroscopic energy barrier (shaded grey) that prevents it. (b) If i is increased, phase
2 will be lower in energy than phase 1. Yet, the free energy barrier still prevents the phase tran-
sition, and the system will remain in a metastable state with only slightly higher concentration
than ¢i"°P (red cross). (c) When p has been increased such that the metastable state coincides
with the incoherent spinodal (dashed, purple line), the free energy barrier is gone, and the sys-
tem can transition to phase 2 spontaneously. If the coherent phase boundary lies outside the
spinodal (" < ¢P'™), the phase transition may occur already at §°" (because the remaining
barrier is only microscopic), but if it lies inside (cfOh >, the spinodal marks the concentra-
tion where the phase transition starts.

grand potential Q = H — TS — pcNyo, which is minimized in equilibrium in open sys-
tems (here p is the chemical potential of the species being absorbed, c is the fraction
of sites occupied, and Ny, is the total number of sites). Let us further (without loss of
generality) assume that 9G/dc = 0 at the incoherent phase boundaries cilnCOh and cénwh
(Fig. 2.7a). When p = 0, the grand potential of phase 1 and phase 2 are then equal. As
soon as y > 0, the grand potential is minimized by phase 2 only. During an absorption
cycle, the phase transition will, however, not occur immediately, because there is still a
macroscopic free energy barrier (caused by the volumetric strain energy contribution)
to pass from phase 1 to phase 2, and the system will stay in the metastable state on the
phase 1-side where 9G/dc = p (Fig. 2.7b). Itis not until y is increased to the point where
9°G/ac? = 0 (the spinodal) that the barrier is completely gone, and the phase transition
can proceed spontaneously (Fig. 2.7¢c).

We can now summarize the temperature-dependent behavior in a phase diagram
(Fig. 2.6e). It is clear that two critical temperatures need to be distinguished; the usual
one where the incoherent two-phase region closes (T;), and the coherent critical tem-

perature (T€°?) above which there can be incoherent phase coexistence during the phase
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transition, but no coherent phase coexistence. It should be stressed that also in the in-
terval between TS and T, there is always a phase transition from phase 1 to phase 2
(and vice versa) that is associated with a jump in the isotherm as well as hysteresis, but
the pathway of the phase transition is different from below T,

In Paper III, we develop and apply a methodology for calculating the most important
thermodynamic quantities, including the phase diagram, of the Pd—H system under
the assumption that interfaces remains coherent. Our results predict a critical temper-
ature of T, = 540K and a coherent critical temperature of T? = 400 K. While T, is
within 20 K of the experimental value [50], the coherent critical temperature TS has to
the best of our knowledge previously only been approximated with simple continuum
models [51] (and its existence may well be unknown to many in the field). It is impor-
tant to emphasize that while the exact experimental value of TP might differ from our
simulations, its principle existence is dictated by thermodynamics.

The hydrogenation process of Pd nanoparticles has been intensely and very success-
fully studied experimentally during the last decade using advanced imaging techniques,
but these experiments have for technical reasons primarily been performed at temper-
atures well below TS°!, where there is an unmistakable & + § phase coexistence [47, 52].
The conclusions from these experiments may need careful reexamination before they
are generalized to higher temperatures, since as discussed above the phase transition
occurs without & + S phase coexistence above T, a structurally completely different
behavior.
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Shapes and structures
of nanoparticles

They say no two snowflakes are alike, but the same statement would not be true for
metallic nanoparticles. Being made of materials that are crystalline at room temper-
ature, they tend to form highly regular structures that usually can be categorized as
shapes well-known from fundamental geometry. This chapter explains the emergence
of these particle shapes from a continuum perspective and discusses when the contin-
uum approach needs to be replaced by a model with atomistic resolution. Nanoalloys
(nanoparticles consisting of two or more metals) and ensembles of nanoparticles are
also treated briefly.

3.1 Asimple model for the energy

The equilibrium shapes of nanoparticles are governed by the energetics of the materials
of which they are made. The total energy of a nanoparticle may, as a first model, be
written as a polynomial in the particle volume V,

Enanoparticle = aV + bV?/% +cv1/3 4 4. 3.1)

The first term incorporates all contributions that scale with the volume of the particle,
including cohesive energy and strain. The second term, bV'%/3, includes the energy of the
surface and any other contributions that scale with area. The third term, cV1/3 accounts
forlinear defects such as edges. The fourth term, d, is made up of any zero-dimensional
contribution, including corners and point defects. The coefficients are themselves func-
tions of the shape of the particle. A cube, for example, has edges and corners whereas

21




Chapter 3. Shapes and structures of nanoparticles

Figure 3.1: Wulff construction in two dimensions. The distance from the origin to the thick black
line is proportional to the surface energy for a surface with that crystal orientation, i.e., the thick
black line denotes y(n). In this hypothetical example, three inequivalent facets are exposed in
the optimal shape (filled with blue), namely {10}, {11} and {41}.

a sphere does not, and hence we expect ¢ and d to be much larger for the cube than the
sphere.

To find the equilibrium nanoparticle shape we need to find the shape whose coeffi-
cients minimize Eq. (3.1) for a given volume. For water or any other liquid, this problem
is trivial; the lowest energy shape is always a sphere because a sphere has the smallest
possible surface area for a given volume (and any contribution from edges or corners is
always positive). For crystals, however, the problem is non-trivial, because the surface
energy of a crystal is facet-dependent, i.e., it depends on the orientation of the surface.
Also, a crystal may be strained and incorporate defects that will contribute to any of the
coefficients a, b, ¢ or d depending on their dimensionality. This gives rise to a rich va-
riety of particle structures, which are stable at specific sizes in specific materials. The
situation calls for refined models in which the effects of crystallinity are accounted for.

3.2 The WuIff construction

The Wulff construction [53, 54] solves the problem of finding the optimal particle shape
given a set of facet-dependent surface energies. Wulff constructions are based on po-
lar plots of surface energy, y(n), where the distance from the origin to the surface in a
certain direction n is proportional to the surface energy of a facet with that orientation.
Planes are drawn perpendicular to each n, and the optimal shape is finally obtained as
the inner envelope of such planes. The procedure is outlined graphically in Fig. 3.1 for a
two-dimensional case.
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While a rigorous proof of the Wulff construction can be daunting, a motivation for its
validity can be given in simple terms [55]. Consider a set of surface energies y(n;). With
distances h; from the origin to each facet, and with corresponding facet areas A;, we can
write the total surface energy as

Esurface = Z y() A (3.2)

1

and the volume of the particle as

1
V=) Shidki (3.3)

i

We want to minimize the total surface energy for a fixed volume V;,. The latter condition
can be handled with a Lagrange multiplier,

6 [ Equrtce = AV = Vo)l = 38 (Y = Ahia;) = 0 6.4

where the variation vanishes for the minimum energy shape. The method of Lagrange
multipliers asserts that the terms vanish independently, so that

hi o< y(n;) (3.5)

with the same constant of proportionality for all facets i. This is the condition required
by the Wulff construction. Mathematically, we can thus write the Wulff shape as the set
W of points x that fulfill

W ={x : x-n < ky(n) forall n}, (3.6)

where k is a constant of proportionality that can be varied to obtain a specific volume.

3.2.1 Implementation of the Wulff construction

From a computational perspective, it is possible to solve the Wulff construction by brute
force. With y(#n;) as input, we can construct planes with unit normal n; at a distance
y(n;) from the origin. We then find all intersections between these planes, and discard
those that do not fulfill Eq. (3.6). The remaining intersections constitute the vertices of
the Wulff shape. Unfortunately, this method scales poorly with the number of planes
(O(N*), where N is the number of planes) and thus becomes very slow when the surface
energy is specified for many orientations.

A much faster method can be conceived [56] by making use of the concept of dual
polyhedra [57, Chapter 3]. The vertices of a polyhedron correspond to the faces of its dual,
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Chapter 3. Shapes and structures of nanoparticles

and vice versa, and the dual of the dual is the original polyhedron. Consider a vertex
v € W. By the definition of dual shapes, this vertex corresponds to a plane with unit
normal rig,,; = v/|v| on a distance 1/|v| from the origin. A plane in the original shape,
on the other hand, with unit normal 71 on a distance ky from the origin corresponds to a
vertex vy, = n/ky. The vertex vy, lies inside the plane with unit normal ng,,; because

7 - k

~ n-v Y 1

v ‘n = 0 < — = — .7
dual * dual k)/ | = kyl | | |, (3.7)

where we used the condition that v fulfills the Wulff criterion (Eq. (3.6)) to obtain the
inequality. Conversely, any plane that lies inside the vertex vy, corresponds to a ver-
tex in the original shape that is outside the Wulff shape. Finding the Wulff shape is
thus equivalent to finding the smallest, convex polyhedron that exactly contains all dual
vertices vqy,, i-e., the convex hull. Fortunately, this is a well-studied problem and algo-
rithms that reduce the complexity to G(N?) or less exist [58]. Since the dual of the dual
is the original shape, we can calculate the Wulft shape by (1) calculating the dual shape
by converting each tentative face to its dual vertex, (2) discarding all vertices not on the
convex hull, and (3) converting the thus obtained shape to its dual. The resultis the Wulff
shape. This was implemented in Paper IV with the aid of the QuickHULL algorithm [58]
as interfaced in ScIPy [59].

3.2.2 Symmetries and twinned particles

The facet-dependent surface energy y(n) must of course have the same symmetry as
the crystal structure from which it is derived. This means that it is sufficient to specify
surface energies for Miller indices in the irreducible Brillouin zone and then apply the
symmetry operations of the point group of the crystal to obtain the remaining surface
energies.

In light of this, constructing the Wulff shape for systems with broken symmetry does
not pose any significant additional difficulties. This applies, for example, to particles in
contact with a flat surface. The contact breaks the symmetry; the energy is different for
the facet in contact with the surface and crystallographically equivalent facets that are
in contact with the environment. As long as the normal to the interface as well as the
interface energy can be provided (in addition to y(n)), the Wulff construction, in this
case often referred to as a Winterbottom construction [60], can proceed as normal. An-
other important case of broken symmetry are twinned particles [61] such as decahedra
(Sect. 3.3.2) and icosahedra (Sect. 3.3.3), which are polycrystalline particles with identi-
cal grains that share twin boundaries. After specifying the twin boundary energy and
acknowledging the broken symmetry, the Wulff construction can be carried out as nor-
mal, and the full particle can eventually be constructed by patching together the grains.
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3.3. Nanoparticle shapes

3.3 Nanoparticle shapes

Equipped with the Wulft construction, the only task remaining is to find the facet-de-
pendent surface energies. This is almost impossible experimentally, but tractable com-
putationally. It should be stressed that surface energies are strongly dependent on en-
vironment. The equilibrium shape of nanoparticles in vacuum are thus not necessarily
the same as nanoparticles of the same material in solution. This issue is addressed in
Paper VII.

Fig. 3.2 (right) shows surface energies for Au as calculated with density-functional
theory (DFT) in Paper VII. The results are representative for face-centered cubic (FCC)
metals and can be rationalized by a simple bond-counting model; facets that minimize
the number of broken bonds also have the lowest energies, which typically means that
the close-packed {111} surface is the lowest energy facet in FCC metals. This section in-
troduces some shapes that are primarily relevant for materials with cubic symmetry and
for which the {111} facet has the lowest energy.

3.3.1 Truncated octahedra

The Wulff shape resulting from the surface energies of Au can be described as a trun-
cated octahedron (Fig. 3.2a). The lowest energy facet, {111}, does indeed have the largest
area, followed by {100} and {110}. Note that a complete (not truncated) octahedron has
only {111} facets, but according to the Wulff construction, it is still not the lowest energy
structure because of its high surface-to-volume ratio. In this thesis, octahedra that are
truncated such that the hexagonal {111} facets are equilateral (disregarding {110}) are re-
ferred to as regular truncated octahedra (RTOs). In the Wulff construction they emerge
when

Mo _ 2 s (3.8)

i V3
i.e., when the surface energy of the {100} surface is approximately 15 % larger than the
surface energy of {111} (all other surfaces disregarded).

3.3.2 Truncated decahedra

The original Wulff construction assumes a single crystalline particle. If this require-
ment is relaxed, it is possible to construct particles with lower surface energy than the
Waulff shape. Stacking five truncated tetrahedra such that they share an edge (Fig. 3.2b)
produces one such example, a truncated decahedron [62]. This shape was first observed
in experiments on nanoparticles more than 50 years ago [63, 64] and has a large frac-
tion of {111} facets but contains twin boundaries at the interface between each pair of
tetrahedra, as well as a line defect where the five tetrahedra meet. In the context of
Eq. (3.1), the twin boundaries and line defect will effectively increase the values of b and
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Figure 3.2: Nanoparticle shapes commonly adopted by FCC metals: (a) truncated octahedron, (b)
Marks decahedron, and (c) icosahedron. The shapes are Wulff constructions that were created
and visualized with WULFFPACK (Paper IV) based on surface energies of low-index facets of Au
as calculated in Paper VII and plotted to the right.

¢, respectively. Furthermore, a decahedron is always strained, because five equilateral
tetrahedra do not completely fill space. It is worth noting that the generalized Wulff
construction pictured in Fig. 3.2b is not convex; there are notches where the tetrahedra
meet. Structures with such notches are commonly referred to as Marks decahedra [65].

3.3.3 Icosahedra

If twenty tetrahedra are stacked such that they meet in the center, they form an icosa-
hedron (Fig. 3.2¢), which, just as the decahedron, has more than 50 years of history in
experiment [63, 64]. An icosahedron is quite spherical' but contains more twin bound-
aries and is even more strained than the decahedron. Just as for a decahedron, twenty
equilateral tetrahedra do not fill space entirely, which causes strain. Geometry does,
however, not require the strain to be uniform. In Paper V, icosahedral particles were
observed to be compressed in the center but essentially free from strain close to the
surface. It seems likely that this is simply the most energetically favorable way to ful-
fill the geometrical requirements. The tetrahedra have their tip in the center, and the
number of atoms per shell increases in proportion to the distance from the center. If
the height of the tetrahedron, i.e., the distance from its tip in the center to its face at
the surface, is commensurate with the equilibrium lattice parameter, the lattice needs
to be stretched about 5.1% in the direction parallel to the surface. This would imply an
approximately uniform strain in the particle. If, on the other hand, the length of the
face of the tetrahedron is commensurate with the lattice parameter, then the particle
must be compressed about 4.9 % in the radial direction. These 4.9 % may be unevenly
distributed, and it should be favorable to compress the lattice primarily close to the cen-
ter of the particle where the number of atoms per radial distance is the lowest.

'The classic football with hexagonal white and pentagonal black patches is in fact a truncated icosa-
hedron (but it is recommended to inflate it properly to achieve an even more spherical shape).
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3.4. Deficiencies of continuum models

3.3.4 Other shapes

In addition to the above described shapes, there are some structures that appear regu-
larly. Particularly common among particles with less than a few hundred atoms are poly-
icosahedra, which are constructed by stacking smaller regular icosahedra [66, 67]. An-
other example is the rhombic dodecahedron, which emerges from a Wulff construction
with a low {110} surface energy and thus is likely to occur among body-centered cubic
(BCC) metals [54, 68]. Experimentalists also synthesize nanoparticles with a plethora
of shapes and structures that are out of equilibrium, including rods, cages, stars and
cubes [69-73]. Since this thesis focuses on equilibrium nanoparticles made of FCC met-
als with more than a hundred atoms, these shapes will not be discussed further.

3.3.5 Comparison of energetics

To compare the above mentioned shapes, we may construct a series of atomic structures
with increasing number of atoms arranged in the target shape, calculate their energy,
and fit Eq. (3.1) to each such series. We may then compare the fits and determine which
shapes are stable in which size region (Fig. 3.3). Metals that adopt the FCC structure in
the bulk generally exhibit the same trend; icosahedra are stable for the smallest sizes,
Marks decahedra in an intermediate size regime, and truncated octahedra are stable
for all sizes above a certain threshold. This trend is an immediate consequence of the
scaling of the terms in Eq. (3.1). The first term dominates for large enough sizes, which
destabilizes shapes that are strained, i.e., decahedra and icosahedra. For smaller sizes,
the surface-to-volume ratio increases, making the second term increasingly important,
favoring particles with a low overall surface energy. Since the icosahedron is more ex-
treme than the decahedron in this sense, for small enough sizes the icosahedron will
always be the most stable in this model. This trend is well-established and has been
demonstrated by similar means in several publications [74-77].

3.4 Deficiencies of contfinuum models

Even though polynomial fits and Wulff constructions are powerful for making general
predictions and explain trends, they are fundamentally continuum models and thus in-
herently unable to account for the finer details of the atomic scale. These include finite
size effects pertaining to quantum mechanics, such as the distribution of charge around
edges and corners, as well as volume-dependent strain fields caused by surface tension.
Anotherimportant deficiency is a purely geometric one: a fixed number of atoms cannot
form any shape. To create a RTO, for example, one needs 38, 201, 586 (etc.) atoms, and
an icosahedron requires 55, 147, 309, 568 (etc.) atoms (marked with circles in Fig. 3.3).
These atom counts are referred to as magic numbers. Any number of atoms that does
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Figure 3.3: Energy per atom in magic number Cu nanoparticles fitted to a third degree poly-
nomial in N~'/3 where N is the number of atoms in the particle. The particles were relaxed in
LAMMPS [78] with the EAM potential parametrized by Mishin et al. [79]. The color bars at the
bottom indicate regions of stability, i.e., which shape has the lowest energy. Ih, Dh, and RTO
denote icosahedron, decahedron and regular truncated octahedron, respectively.

not match a magic number will always form a shape that is not ideal, which could mean,
for example, a non-equilateral hexagon, an elongated shape, a reconstructed surface,
or any other defect. In any case, such a particle cannot be expected to be well described
by a polynomial fit to magic number particles but will most likely have an energy higher
than such a fit. This issue is addressed in Paper V. To improve the description of the
energetics of nanoparticles, one is forced to abandon continuum models and calculate
energies on the atomic scale. Atomic scale modeling is the subject of Chapter s.

3.5 Chemical order in nanoalloys

By making nanoparticles with more than one chemical element—nanoalloys—the com-
plexity increases significantly. All quantities become dependent on concentration, and
even continuum models, such as the Wulff construction generalized to alloys [80], re-
quire great care because surface segregation may occur. In fact, an important difference
between (ideal) bulk and nanoalloys is that while the former has at most a few crystal-
lographically inequivalent sites, the latter has a wide range of sites with different local
environments caused by surfaces and strain. Yet, the different possible chemical order-
ings in bulk alloys pervade nanoalloys as well; the mixing behavior in the bulk alloy is
usually expected to be similar in the corresponding nanoalloy. The existence of a sur-
face, a finite number of atoms, strain and possibly polycrystallinity as in a decahedron
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3.5. Chemical order in nanoalloys

' . .
' . .
Figure 3.4: Nanoalloys with idealized chemical orderings: (a) core—shell, (b) off-center core-
shell, (c) sandwich, (d) Janus, (e) random and (f) ordered.

or icosahedron do, however, allow for new behavior and modification of the ranges at
which particular phases are stable. This has been demonstrated in computationally as-
sessed phase diagrams for a wide range of nanoalloys, including Pt—Rh [81], Ag—Au [82],
Ag—-Cu [83], Au—Cu [84], and several Ni-based alloys [85]. It has also recently become
possible to experimentally image the chemical order of nanoalloys atom by atom using
atomic electron tomography [86]. Where models on the atomic scale would previously
be compared indirectly to observations in the laboratory, there is now an exciting av-
enue to a level playground between theory and experiment.

Some nomenclature has emerged to systematize possible structures [87] (Fig. 3.4).
The core—shell structure (Fig. 3.4a) is particularly ubiquitous, partly because it is pos-
sible to synthesize for a wide range of alloys, including alloys that would mix in ther-
modynamic equilibrium. A core-shell structure can for example be of economic inter-
est for an application where the element at the surface of the particle is important but
expensive and can be filled with a cheaper element in the core. Computational stud-
ies show that the core is often asymmetrically positioned in equilibrium [88] (Fig. 3.4b).
The investigation of Ag—Cu in Paper VI further indicates that the notion of a core is in
some structures merely a special case of a more complex segregation pattern, which at
some compositions may lead to a ring-like sandwich pattern (Fig. 3.4c). The shape of the
segregate is thus largely dictated by the underlying structure of the particle. So-called
Janus particles, where the elements segregate at either side of the particle (Fig. 3.4d), are
attractive for some applications primarily because they are inherently anisotropic [89].
Randomly mixed nanoalloys (Fig. 3.4€) and nanoalloys with long-range order (Fig. 3.4e)
are often desirable for applications in catalysis, where there can be synergistic effects
from the two elements [90]. There are of course many more possibilities than the highly
idealized structures described here, and some of them are illustrated in Paper VI.
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3.6 Ensembles of nanoparticles

Nanoparticles never walk alone; a laboratory making one nanoparticle at a time would
hardly make a profitable business. It is useful to think of a solution of nanoparticles
as an ensemble of nanoparticles. Such ensembles are directly related to ensembles as
described by statistical mechanics, i.e., large sets of copies of the system in different
states. Unlike the virtual copies of a statistical mechanics ensemble, the nanoparticlesin
such a system interact by heat exchange with the solvent, but if the solvent is voluminous
enough to have an essentially infinite heat capacity, this interaction is merely indirect.
A dilute solution of nanoparticles is then well approximated by a canonical ensemble for
which the solvent is the heat reservoir. A seemingly trivial but important consequence
is that if we calculate, say, that the probability in the canonical ensemble for a certain
nanoparticle to be an icosahedron is 30 %, a solution with 100 such particles should have
on average 30 icosahedra.

In a similar fashion, we can imagine a solution of nanoparticles that may exchange
both energy and atoms with the solution. Even though atoms would be exchanged be-
tween particles, each particle may be considered an independent system interacting
with a reservoir of heat and single atoms. The corresponding ensemble is referred to
as grand canonical, and the probability for a particular state s for a single particle is cal-

culated as
e_(es_luN)/kBT

P(s) = —z (3.9)

where 1 is the chemical potential of the atoms that are being supplied from the solution,
N is the number of atoms in the particle and Z is the partition function in the grand
canonical ensemble (a sum over all states of terms such as the one in the numerator).

In practice, an equilibrium solution of metallic nanoparticles that exchange atoms
with the solution may be difficult to realize in an experiment, because the atoms are
generally much too strongly bound to be released to the solution. The experimental
problem is rather the opposite, that nanoparticles tend to cluster into bigger entities,
a phenomenon usually prevented by stabilizing organic molecules on the surface of the
particles. The atom count for each particle is to a large extent established during growth,
when the particles assemble atoms from a solution of a metal salt and a reducing agent.
This process is predominantly kinetically driven and can usually only be understood par-
tially from an equilibrium perspective. The result is always that the particle ensemble
is more or less polydisperse, i.e., the particles have different numbers of atoms, but
the size distribution is, as a manifestation of the central limit theorem, usually well de-
scribed by a normal distribution regardless of synthesis route.

Given the impact of atomic-scale details and the existence of magic numbers (as dis-
cussed in Sect. 3.4), polydisperse and monodisperse ensembles may differ significantly.
In other words, it may be important to consider the whole distribution of sizes in a poly-
disperse ensemble and not just the average size. In Paper V, we assumed a normal dis-
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tribution f(n, N) of atom counts n with average atom count N. For each atom count, we
then assumed a Boltzmann distribution of shapes, such that the probability of a shape
So is

exp (—en,so / kBT)
Zsl- €xp (_En,s,»/kBT)

where ¢, ;. is the lowest energy of any particle with n atoms in structural motif s;. The
probability for a particular shape for an ensemble with average size N was then calcu-
lated as

Py(sp) = (3.10)

Pn(sp) = % > Fn. N)Py(s) (3.11)

where M ensures that the probabilities sum up to 1. Fed with the results from the algo-
rithm of Paper V, this model indicates that there is a distribution of structural motifs
in thermodynamic equilibrium. The model assumes that energetics does not affect the
distribution of atom counts; it is not more probable to have a particle with 923 atoms
just because it is an icosahedral magic number. This may or may not be a valid assump-
tion, depending on the growth protocol. It is perhaps more questionable that only the
ground states for three structural motifs were taken into account, and all with the same
multiplicity. Whereas inclusion of more structural motifs with higher energy could only
strengthen the conclusion that there is a distribution of shapes in thermodynamic equi-
librium, it cannot be ruled out that an account for multiplicity could have the opposite
effect. Furthermore, elevated temperatures, which are assumed in the Boltzmann fac-
tors of Eq. (3.10), may favor some structural motifs over the others, primarily due to vi-
brations. This has been demonstrated in the case of Au, for which decahedral particles
were seen to be stabilized by temperature relative to the other structural motifs [76].

It should be stressed that the energy entering Eq. (3.10) should be the total energy
of the nanoparticle, not the energy per atom as occasionally encountered in the litera-
ture. This is perhaps easiest realized if we let the nanoparticle grow towards the ther-
modynamic limit. We could still apply the same formula to, for example, predict the
probability of finding the material in one of two crystal structures, but if we plug in en-
ergy per atom the conclusion would be that both crystal structures can be anticipated
(unless the energy differs by a lot), contrary to our knowledge about equilibrium in the
thermodynamic limit. If the energy per atom is erroneously used in the nanoparticle
case, different structural motifs would appear more competitive than they actually are.
The primary reason for our conclusion that there is a distribution of structural motifs
in thermodynamic equilibrium, is that different structural motifs are the most stable at
different atom counts. A perfectly monodisperse ensemble, with only one nanoparticle
atom count, would in equilibrium typically not contain different structural motifs.
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Optical properties of
metals and nanoparticles

If we lived our lives in a nanoscale world, the word “golden” to describe color would have
been quite confusing. When the length scale of objects are shrunk towards the wave-
length of visible light, their optical properties are dramatically changed, and solutions
of gold nanoparticles can appear red or blue. Even on the nanoscale, most optical prop-
erties can be predicted with the use of dielectric functions, which on a macroscopic scale
describe the response of materials to an applied electric field (such aslight). This chapter
approaches dielectric functions from both a classical and a quantum mechanical per-
spective, and describes how their properties relate to the optical response of metallic
nanoparticles.

4.1 The dielectric function from
a classical perspective

Consider a free-electron bulk system (an approximation for metallic behavior) subject
to an external electric field E.y. Since the electrons are free, they will rearrange so as
to counteract the external electric field by producing an electric field E; of their own.
This field is usually expressed in terms of a polarization, E; = —P/¢,, where ¢ is the
permittivity of free space. If the electrons are truly free, the polarization P will be such
that E; completely cancels E.y, inside the material. This, however, is only possible if Eqy,
does not vary too quickly in time, in which case, simply put, damping and inertia of the
electrons will lead to a lag in the response.
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To better understand the dynamics, we can introduce a classical model by writing the
equation of motion for the electrons,

mx + ymx = —eE. (4.1)

Here, x is the displacement of the electrons, m the mass of the electron, y a damping
factor, e the elementary charge and E the total electric field, i.e., E = E.y + E;. This
equation is easily solved by entering Fourier space,

e/

— Bw). (4.2)

x(0) = —
W +iyw

Polarization is given by the product of charge and displacement, so with a charge density
n we obtain
ne? /m

> E(w). (4.3)

P(w) = —nex = — .
w* + iy

We have thus arrived at a relation between the polarization and the electric field. This

relation is often expressed in terms of the dielectric function e(w), which can be defined

by

P() = ey(e(w) — DE(w) (4.4)
and by comparison to Eq. (4.3) we identify
2
®
6(0)) =1- 2—#, (45)
w* +iyw

where we have introduced the plasma frequency w,, = /ne® /me,. Equation (4.5) is some-
times called the Drude dielectric function. Its real and imaginary parts are given by

Ree() = 1 cof,a)z 4 Ime) cojz,coy "o
ee(w)=1-— an me(w) = ————, 4.
o* + y20? o* + y2w?

which are plotted in Fig. 4.1a.

From Eq. (4.4) it is clear that the dielectric function is an important quantity; it de-
scribes the response of a material to an electric field and thus governs the propagation
of light in presence of this material. Let us now examine the general behavior of the
Drude dielectric function. Both the real and the imaginary part diverge at w = 0. This
is the expected behavior for a free-electron system, which is “infinitely flexible” in the
static limit. For finite frequencies, the real part is monotonically increasing and nega-
tive for sufficiently small frequencies w. Ify is small, Re e(w) becomes positive at w > w,,.
In terms of wave propagation, this means the medium becomes transparent to electric
fields with a frequency higher than the plasma frequency. The positive imaginary part
indicates that energy is absorbed through damping of the waves, but since the imagi-
nary part of e(w) is monotonically decreasing, this absorption decreases with frequency
as well.
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Figure 4.1: (a) Drude dielectric function with y = 0.1w,,, with real part in blue and imaginary
in orange. The Fréhlich condition (Ree(w) = -2, grey line) is fulfilled at © = w, / V3 (green
line). (b) The corresponding polarizability of a small sphere exhibits a resonance at » = w,, / V3,
manifested by a peak in the imaginary part.

4.2 Localized surface plasmon resonance

In the derivation in the preceding section we assumed that the electrons resided in bulk
matter. What changes if we instead confine the electrons to a sphere? The equation of
motion for the electrons will still be Eq. (4.1), but the difference is the induced field (de-
picted in Fig. 4.2a). The displacement x of the electrons will effectively create a surface
charge of the form o = ex-n, where nis the direction of the applied field. Such a surface
charge creates a uniform field inside the sphere [91, Chapter 4],

ne
Ei = —x, (4.7)
360

while outside the sphere, the field will be identical to that from a dipole located at the
center of the sphere with dipole moment

p = —Vnex. (4.8)
We can now write an alternative version of Eq. (4.1) using our explicit expression for E;,

mx +ymx = —e <Eext + Kx) , (4.9)
360

which in Fourier space yields

e/m

x(w) = Eexi(0). (4.10)

w? —a)jz,/3 + iyw
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(a) Static field (b) Time-varying field
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Figure 4.2: Schematic of the response from a conducting sphere to (a) a static and (b) a time-
varying field. The electron cloud is depicted as an orange circle, the positive background as a
blue circle. (a) The static external field E,,, induces a displacement of the electron cloud that
creates a field E;, which cancels E,,; inside the sphere. Outside the sphere, the field is identical
to the field from a dipole at the center of the sphere. (b) The electron cloud oscillates in response
toatime-varying field, and at the LSPR frequency, there is a 7 /2 phase shift between the external
field and the response.

Here, we have assumed that the electric field is homogeneous over the sphere at ev-
ery instant, i.e., the particle is small compared to the wavelength (the so-called qua-
sistatic limit). The proportionality coefficient between dipole moment and external field
is called the polarizability, and by comparison with Eq. (4.8), we see that the polarizabil-
ity is given by
2

@) = -Vg¢, “r . (4.11)
Eexi(w) w? — W} /3 +iyw

a(w) =

We can already at this point note that for small values of y, there is a resonance at w =
w,/~3; a small electric field will trigger a large response (Fig. 4.1b and Fig. 4.2b). With
a little bit of algebra, we can rewrite Eq. (4.11) in terms of the Drude dielectric function

(Eq. (4.5)),
(4.12)

Unlike Eq. (4.11), this result is not specific for the simple derivation here but is general
for spherical particles in vacuum in the quasistatic limit [92, Capter 5]. The polarizabil-
ity has a resonance, referred to as localized surface plasmon resonance (LSPR), at the
frequency w that fulfills

Ree(w) = -2, (4.13)

provided Im e(w) is small or does not vary too quickly. This is referred to as the Froh-
lich condition. Quantum mechanically, this resonance can be regarded as a collective
oscillation of electrons that is quantized: a localized surface plasmon.

36



4.2. Localized surface plasmon resonance

4.2.1 Absorption and scattering

The absorption and scattering by a nanoparticle is directly related to the polarizability.
Specifically, the absorption cross section is proportional to the imaginary part [92],
W

O'absorption(w) =
€oC

Im a(w), (4.14)

(cis the speed of light) whereas the scattering cross section is proportional to the square
of the polarizability,

4
O'scattering(w) = % <9> la(w)|?. (4.15)
brey \ €
Extinction is the sum of absorption and scattering. Since a(w) is proportional to the
volume of the particle, absorption will also scale with volume, whereas scattering scales
with volume squared. Extinction is therefore dominated by absorption for small parti-
cles and scattering for large particles.

4.2.2 Ellipsoidal particles

The extinction spectrum from a spherical nanoparticle is not guaranteed to contain a
sharp peak where the Frohlich condition (Eq. (4.13)) is met, because the resonance can
be drowned by a large imaginary part. By making the particle non-spherical, however,
the resonance condition can be tuned. Itis, for example, possible to move the resonance
to a frequency where the imaginary part of the dielectric function is small, and the LSPR
peak in the extinction spectrum will then be much sharper. Using ellipsoidal coordi-
nates, one can show [92, Chapter 5] that for an ellipsoid with principal axes g; (i = 1, 2, 3)
the polarizability in direction i is given by

e(w)—1
a(w) = 360VL1‘ ) — 1]+ 3’ (4.16)
meaning the condition for resonance reads
Ree(w) = —3/L; +1, (4.17)
where L; is real and depends on geometry,
L= %a1aza3 r" 4 (4.18)

0 (g+a?)\J(g+ad) (g+ ) (g+ad)

For a sphere, all axes are equal (@; = a3 = a3) and L; = L, = L3 = 1, and we recover
Eq. (4.11). For an ellipsoid, L; is different in different directions, and in the direction
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of the longest (shortest) semi-axis, L; is smaller (greater) than 1. If the real part of the
dielectric function is monotonically increasing (as in the Drude dielectric function), this
means the resonance will be shifted to lower energies along the long axis and higher
energies along the short axis. This is intuitively sound, since lower energies correspond
to longer wavelengths.

4.3 Impact of bound electrons

The derivation of the Drude dielectric function in Sect. 4.1 assumed that the electrons
of the material were free to move around at will. This assumption works well for some
simple metals such as Na [93] but not necessarily for materials with a richer electronic
structure, for which the free electron model is less well suited. To treat these electrons
classically, we could write a similar equation of motion as Eq. (4.1) but include an addi-
tional restoring force, —Kx, that would cause a resonance at nonzero frequencies. The
dielectric function of the material would then be the sum of a Drude-like function and
functions with resonances at nonzero frequencies. In metals, these resonances are typi-
cally broadened and modified by the details of the electronic structure to such an extent
that their effect on the dielectric function is indistinguishable from this classical model,
but their most easily recognizable impact is an increase in the imaginary part of the di-
electric function at frequencies where bound electrons can be excited. We will return to
these aspects in Sect. 4.4.1.

4.4 The dielectric function from
linear-response theory

To go beyond the classical description of an electron moving in an electric field, we need
to approach the dielectric function from a more fundamental direction. The most im-
portant results from linear-response theory combined with quantum mechanics will be
stated here. Let us view the incoming light as an external time-dependent potential,
Vext(r, ). This perturbation induces a response in the electron density, n;(r,t). If we as-
sume that vy, is small, it suffices to study the first-order effects. We can then write the
following connection between the first-order density response and the perturbation:

ny(r,t) = J d J dgr’)((r, ot =t Wee (', t7). (4.19)

Here, y is the density—density response function, which is given by the Kubo formula
as

X(r5 r,9t - t,) = —19(t - t,) <\IIO|[ﬁ(r’ t— t,): ﬁ(l",)]|\Po> s (4-20)
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where (¢ — t”) is the Heaviside step function, |¥,) the ground state wave function, and
n the density operator. Equation (4.19) suggests that these expressions are simpler in
Fourier space,

() = j & (0o ) (4.2

and the response function, with the use of the completeness relation for |¥,, ) and the in-
tegral representation of O(t—t"), can be written in the so-called Lehmann representation
[94, Chapter 7],

(v o) = i ((‘I’olﬁ(r‘)l‘l’n><‘Pn|ﬂ(r’)|‘1’o> _ (FolaG)[¥n) (FulAa(r)[¥o)
AT 0= w—Q,+in W+ Q, +in

n=1

), (4.22)

where Q, = w, — @, i.e., the excitation energy of the n-th excited state (we are using
h = 1 here). This form is in itself of little use to calculate the response, because it re-
quires knowledge of the many-body eigenstates |¥,) to the Hamiltonian. Nevertheless,
it highlights that the response is the strongest when the frequency of the light matches
the excitation energies Q,,.

For periodic systems, it is advantageous to enter reciprocal space by Fourier trans-
form,

xr.r', o) = L Z Z e ikt OI Tt GO 3 o (K, ), (4.23)
ke1BZ G,G’

where V is the crystal volume, and the first sum runs over all points in the first Bril-
louin zone (BZ) and the second over all pairs of reciprocal lattice vectors G (the notation
xca' (k, ) is shorthand for y(k + G,k + G’, w)). It can be shown that the macroscopic
dielectric function in the optical limit is given by [94, Chapter 12]

. 4 -1
e(w) = ,lcli% [1 + ﬁ)(oo(k, w)] - (4.24)

This quantity is calculated in Paper VIII, and Sect. 5.2 outlines a method for getting there
without the arduous Eq. (4.22).

44.1 Connectionto band structure

The connection between excitation energies and the response function as established
in Eq. (4.22), makes a closer inspection of electronic band structures worthwhile, since
they reveal which elementary excitations are possible. The dominant type of excitations
are vertical (i.e., they involve no change in momentum k) from below the Fermi level
to above. Metals are characterized by the lack of a band gap; at least one band crosses
the Fermi level. This means excitations with infinitesimally small energies are possible,
which gives rise to the singularity at @ = 0 seen also in the Drude dielectric function
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and often referred to as the Drude peak. Such excitations that occur within a band are
referred to as intraband transitions. At higher energies, bands below the Fermi level
start to play a role. For late transition metals, such as Pd and Au, the d electrons are
particularly important. In Pd (Fig. 4.3a), the d-electron bands lie just below the Fermi
level, and even cross it in some parts of the Brillouin zone. This effectively makes the
Drude peak very wide (Fig. 4.3c). For Au (Fig. 4.3b), on the other hand, the d states lie
approximately 2 eV below the Fermi level. Consequently, the Drude peak dies off and the
imaginary part of the dielectric function becomes very small, before it increases again
due to the onset of interband transitions from the d band to the s and p bands (Fig. 4.3d).

The behavior of the dielectric function, and in particular the impact of interband tran-
sitions, has major consequences for optical absorption of nanoparticles. In both Pd and
Au, the Frohlich condition (Eq. (4.13)) is fulfilled at a frequency where the imaginary part
of the dielectric function is substantial. The corresponding absorption spectrum of a Pd
sphere in the quasistatic limit (Fig. 4.3¢, green line) has a very wide peak located approx-
imately 1 eV above the Frohlich condition. In Au (Fig. 4.3f), there is hardly any peak at all.
By using an oblate ellipsoid (two equally long axes and one short), however, a different
picture emerges. For Pd, the change is primarily a shift to lower frequencies, but the
peak is still wide. For Au, on the other hand, a very sharp LSPR forms, in sharp contrast
to the featureless absorption spectrum of the sphere. The reason is that the resonance
condition (Eq. (4.17)) is now fulfilled at a lower frequency, just below the onset of inter-
band transitions from the d band to the s and p bands. At this frequency, the imaginary
part of the dielectric function is very low, which allows for a sharp peak. It is worth not-
ing that it is only in the case of the sharp Au peak that the absorption maximum coin-
cides with the resonance condition. These observations demonstrate that the resonance
conditions can be misleading when ignoring the underlying assumptions, namely that
the imaginary part of the dielectric function should be small or very slowly varying (al-
most constant).

For late transition metal alloys, the band structure essentially turns out to be an in-
terpolation of the band structures of the constituents (Fig. 4.4). This interpolation is,
however, not necessarily linear. Fig. 4.4 indicates that upon addition of 25% Au to Pd,
the d band is in almost the same position with respect to the Fermi level as in pure Pd.
It is only when the concentration of Au reaches 50% that the distance between d band
and Fermi level starts to increase quickly. To understand this non-linearity, we may ap-
proximate the band structure as unaffected by alloying (the rigid band model [95]), with
the only change upon alloying being a shift of the Fermi level due to the additional va-
lence electron in Au. This valence electron occupies the states closest to the Fermi level,
which gradually pushes the Fermi level up. Since the density of states close to the Fermi
level is very high in pure Pd, this shift in the Fermi level is first very slow, and it is only
when these states are filled that the shift occurs more quickly. The shift is thus slow for
low Au content and fast for high Au content, as observed in Fig. 4.4. This explanation
is of course only schematic, given that the band structure is not entirely rigid. The non-
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Figure 4.3: Electronic and optical properties of Pd (left) and Au (right), calculated within the
scope of Paper VIII. (a-b) The band structures of Pd and Au are similar but the Fermi level is
shifted such that the d band lies at the edge of the Fermi level in Pd but about 2 €V below it in
Au. This is particularly clear in the density of states (right), where the d band is manifested by
a high density. (c-d) The dielectric functions of Pd and Au differ significantly. While for Pd the
imaginary part (orange line) is large and featureless, for Au it dips between roughly 1 and 2 eV
before it increases again due to the onset of interband transitions. (e—f) The corresponding opti-
cal absorption of spherical nanoparticles (green) and along the long axis of oblate ellipsoids with
aspect ratio 4 (red) in the quasistatic limit differ vastly. For Pd, the peaks are very wide, while
for spherical Au, there is hardly any peak at all. A sharp LSPR peak forms only in the Au ellipsoid,
because the resonance condition for the oblate shape (Eq. (4.17), horizontal, red line in (d)) has
shifted the resonance frequency to a lower energy, just below the onset of interband transitions.
Note that when the imaginary part is large (and not constant), the Frohlich condition (Eq. (4.13),
green, dashed lines) and its generalization (Eq. (4.17), red, dashed lines) do not give accurate
estimates of where a peak forms.
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Figure 4.4: Electronic band structure of (2) Pd, (b) Pd, ;5Au, 25, (¢) Pdy sAu, 5, (d) Pdg 2540, 75, and
(e) Au. The energy scale has been shifted to align the Fermi levels (dotted, grey line). For the
alloys, the band structures are calculated by unfolding the band structures [98] of the reciprocal
cell of 24 atoms large special quasirandom supercells (Sect. 5.5) as calculated using the Gpaw
software [99, 100] within the scope of Paper VIII. Note that the distance between the Fermi level
and the d band monotonically but non-linearly increases when approaching pure Au.

linear trend does, however, hold in general for the non-isovalent systems discussed in
Paper VIII. Non-linearities are of particular interest since they increase the probability
of finding a material that is more than the sum of its parts [96].

Finally, a glaring difference between the band structures of pure and alloyed systems
in Fig. 4.4 needs to be addressed. The sharp, well-defined bands of the pure systems
result from an ideal crystal. In alloys, the bands are blurred unless there is perfect long-
range order. In real systems, this difference is not as significant as Fig. 4.4 suggests,
because the bands of a pure system are in practice more or less blurred too, due to vibra-
tions and defects. Yet, the less well-defined bands of alloys may still have appreciable
consequences on the macroscale, such as a higher resistivity compared to the pure sys-
tems [97, Chapter 22].
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Computational methods

In a world of infinite computational power and memory, it would perhaps have been
sufficient to state the Schrodinger equation here and then move on. Unfortunately (or
luckily for us who enjoy the art of the method development), the complexity of many-
body problems in physics requires sophisticated methods that are adapted to the time
and length scales relevant to the problem at hand. This chapter describes the computa-
tional methods employed in this thesis, starting on the electronic scale and working its
way to atomic scale modeling of systems with hundreds or thousands of atoms. The em-
phasis is on the most central aspects, and the reader is referred to the references stated
for rigorous theory or details of implementation.

5.1 Density-functional theory

DFT is a framework for solving the Schrédinger equation

for a system of interacting electrons. Specifically, the problem is cast in terms of the
electron density instead of the wave function, which dramatically reduces the complex-
ity. This is justified by the Hohenberg—Kohn theorems [101], which state that the exter-
nal potential is a unique functional of the electron density, and that the electron density
that minimizes the energy is the exact electron density, i.e., it can be obtained varia-
tionally. Since the external potential is a functional of the density, the full Hamiltonian
is also given by the density, and thereby all properties of the system. These facts are
exploited in the Kohn-Sham approach [102], which casts the many-body problem as a
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system of non-interacting particles subject to an effective potential’,

2 ’
(_V? +v(r) + J' |:(_rr),| dr’ + vxc(r)> @;i(r) = &p;(r). (5.2)
Here, the first term in the parenthesis represents the kinetic energy, the second the ex-
ternal potential (due to the ions), the third an effective Coulomb interaction between
the electrons (the Hartree term), and the fourth is referred to as exchange—correlation
and collects everything not captured by the other terms. The success of DFT hinges on
a proper approximation of the exchange—correlation term, which is itself a functional
of the electron density. With the exact exchange—correlation functional (which is un-
known) the density of the interacting system is recovered as a sum over the occupied
orbitals of the non-interacting system,

n(r) =Y lo(r). (5.3)

J

5.2 Linear-response time-dependent
density-functional theory

The Hohenberg—Kohn theorems have a time-dependent equivalent, the Runge—Gross
theorem [103], which states that a time-dependent external potential is a functional of
the corresponding time-dependent electron density (up to a time-dependent but spa-
tially homogeneous constant). This provides the fundamental basis for extending DFT
to time-dependent phenomena and excited states. In particular, time-dependent den-
sity-functional theory (TDDFT) can be used to calculate dielectric functions using the
linear-response formalism outlined in Sect. 4.4. To this end, the first step is to rewrite
the induced density in terms of a non-interacting response function [104],

ny(r,t) = J dt’J Er y vt — v, ). (5.4)

Here, y; is the response function of the non-interacting system and v; is the time-depen-
dent equivalent of the potential terms in the left-hand side of Eq. (5.2). The Lehmann
representation of the non-interacting response function, unlike the response function
of the interacting system, can be readily evaluated and is given in terms of the single-
particle orbitals as obtained in the Kohn-Sham approach of (ground-state) DFT [94,
Chapter 7],

o)} (e (r p;(r’)

—(&—¢)+in

xsrr o)=Y (fi— f) : (5.5)
ij=1

IAtomic units will be used here.
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where f;is the occupation of orbitali. By equating the right-hand sides of the interacting
(EQ. (4.19)) and the non-interacting (Eq. (5.4)) response equations, a Dyson-like equation
can be obtained [94, Chapter 12],

X, r' o) = x@r,r', o)

.6
+ J d’r J d&’ry 45,11, 0) G-

+ fe(r, rp, @) | (.1’ 0),
Iry — o
where fy.(r1, 1y, @) is the exchange—correlation kernel, a functional of the ground state
density. The dielectric function can thus be calculated by (1) making a ground-state DFT
calculation, (2) evaluating the non-interacting response function (Eq. (5.5)), 3) solving
Eq. (5.6) for y, and (4) transforming y to the dielectric function using Eq. (4.24). For
periodic systems, the full calculation is done in reciprocal space. In Paper VIII we used
the gpaw implementation [105] of this scheme to calculate the dielectric functions of
binary alloys.

5.3 Empirical potentials

Even if DFT is a massive improvement over any attempt to solve the Schrédinger equa-
tion by brute force, it is still often too slow if the system size is larger than a few hundred
atoms. Simplified methods based on empirical potentials and classical mechanics come
to the rescue.

5.3.1 Justification of a classical approach

Why is a classical mechanics approach to an atomic scale problem valid? The physics
and chemistry of a material are largely governed by its electronic structure, and elec-
trons at room temperature have a de Broglie wavelength of more than 4 nm, which is
much longer than the interelectronic distances, and thus much too long for a classical
description to be valid. The resolution is the application of the Born—Oppenheimer ap-
proximation, which formalizes the consequences of the difference in mass between the
atomic nuclei and the electrons?. In this approximation, the wave function is assumed
to be separable in an electronic and an ionic part, and the electrons are assumed to in-
stantaneously assume the ground state for given positions r of the ions. The resultis that
the Schrodinger equation for the full system can be simplified to a Schrodinger equation
for the ionic wave function only, but with an effective potential U(r) incorporating the
energy of the electrons [106],

U(r) = Uzz(r) + gy(r). (5.7)

%In fact, the Born—Oppenheimer approximation underpins DFT and TDDFT as well, because without
it the electronic wave functions would not have been separable from the ionic wave functions.
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Here, Uz 7(r) is the potential energy from ion—ion interaction and ¢y(r) the ground state
energy of the electrons with ions fixed in positions r. The de Broglie wavelength of an
atomic nucleus in room temperature is always much smaller than the interatomic spac-
ing, in particular for the heavier elements. A classical treatment of the ions is thus war-
ranted, and since U(r) is the effective potential for the ions, we can use it in the same
way as we would use any classical potential. The quantum mechanics of the electrons is
then implicitly taken into account in the functional form of ¢y(r). It is worth noting that
even though U(r) is often referred to as the potential energy of the atoms, it contains
also the kinetic energy of the electrons via ,(r).

5.3.2 Embedded atom method

The possibility to use a classical potential to describe the energetics of a material is a
blessing only if we can find a proper form for the interatomic potential U(r). Whereas
an exact expression is of course unattainable, many attempts have been made to find
proper functional forms that can be fitted to experimental observations or theoretical
results from quantum mechanics (usually obtained with DFT calculations). The sim-
plest functional forms are pair potentials, which approximate the energy as a sum of
pair interactions. Pair potentials have merit in their simplicity but fail to reproduce fun-
damental properties of most materials. A deficiency particularly damaging for metals
is their built-in dependency of energy on the number of bonds. In a real metal, the en-
ergy scales approximately with the square root of the number of bonds; a bond formed
in isolation is stronger than a bond formed in presence of other bonds [106, 107]. The
expected scaling can be reproduced by functional forms with two terms,

Utr) =5 Y 40"+ Y Flp'l 5.9)
ij i

i#j

Here, '/ is the distance between atom i and j, ¢ is a function that assigns an energy to
each pairinteraction, and F is a functional dependent on a yet unspecified function p. A
number of potentials of this or similar forms were published in the 1980s and have come
to be known as embedded atom method (EAM) [108], effective medium theory [109, 110],
Finnis—Sinclair potentials [111], glue potentials [112] etc. The nomenclature is more di-
verse than the physics, and we will base the discussion on EAM, which is employed in
Paper V and VI.

In EAM potentials, the functional F;, is referred to as the embedding term and depends
on a linear superposition of the electron densities from the neighboring atoms [107],

p=> pirh). (5.9

J#i
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Here, p® is a function that remains to be determined and just as before, ¥ is simply the
distance between atom i and j, meaning that the electron density from each atom is ap-
proximated as spherically symmetric. Such a superposition of electron densities can be
motivated by the Hohenberg—Kohn theorems [101], from which it is known that the en-
ergy can be written as a functional of the electron density. This concept was further elab-
orated by Stott and Zaremba [113] who showed that the energy of an impurity embedded
in a host is a functional of the electron density of the unperturbed host. The impurity
may in this case simply be the same kind of atom as the host. This shows that there is a
fundamental reason for writing the energy as a functional of the electron density of the
neighboring atoms, even though the exact form of this functional is unknown.

To construct an EAM potential for a specific material, one needs to determine ¢, F
and p“. Thisis typically done by choosing certain physically reasonable functional forms
with the desired number of free parameters and fitting those parameters to experimen-
taland/or first-principles data for certain materials properties, which may include cohe-
sive energy, lattice parameter, elastic constants, thermal expansion coefficients, defect
formation and migration energies, phonon frequencies etc, all in one or more crystal
structures. This task needs to be carried out with care and all potentials have a limited
range of applicability, largely determined by the input data in the parameter fit.

Aswehave seen, EAM potentials assume a spherically symmetric electron density cen-
tered ateach atom. Their accuracy is thus dependent on a high degree of non-directional
bonding. The late transition metals are particularly well suited in this regard, because
their filled d band (and s orbital in the case of the coinage metals) gives rise to a predom-
inantly spherically symmetric electronic structure and thus low degree of directionality.
For materials with a high degree of directionality, most notably covalently bonded solids
such as diamond and silicon, other functional forms are needed and a viable approach
is to include three-body terms, which is, however, beyond the scope of this thesis.

5.4 Alloy cluster expansions

In alloys, most of the thermodynamics often derive from the possibility to distribute
the chemical species in different configurations on the lattice. Vibrations can play a
role [114], but it is often a reasonable approximation that their contribution is indepen-
dent of configuration and linear in composition, in which case they can be ignored for
most purposes. While interatomic potential schemes (Sect. 5.3) can model vibrations,
they are rarely flexible enough to accurately reproduce the energetics of different con-
figurations. These considerations point to the possibility of developing models that are
confined to a lattice but detailed enough to resolve small configurational differences.
Alloy cluster expansions is an example of such models [115].

Consider a lattice decorated by two species of atoms. The decoration can be specified
by a vector o, the n-th element of which is 0 if site n is occupied by species A and 1 if it
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is occupied by B. In an alloy cluster expansion, the energy (or any other property) of the
configuration o is given by

E(0) = Jo+ Y, Jumg (yr (0))y (5.10)

where the summation is carried out over orbits «. Here, an orbit is a set of clusters that
can be related to each other by the available symmetry operations of the underlying crys-
tal structure. For example, the set of nearest neighbor pairs, the set of second-nearest
neighbor pairs and the set of fifth-nearest neighbor pairs each form a distinct orbit. The
parameters J, are referred to as effective cluster interactions (ECIs) and quantify the
energy contribution associated with each cluster, while m,, is the multiplicity of orbit «
(i.e., the number of symmetry equivalent clusters that it contains). The factor (Il (o)),
is called a cluster correlation and quantifies how the orbit « is decorated, i.e., if « is the
nearest neighbor pair, it measures how many of the nearest neighbor pairs are unlike
(A-B) vs alike (A-A or B-B). It does so using so-called point functions ©(o;,,), which in
the binary case are +1if o, = 0 (sitenis occupied by A)and —1if o, = 1 (sitenis occupied
by B). The correlation function for a cluster &’ in the orbit « is

My (o) = [ ] (), (5.11)

nea’

which is then averaged over all symmetrically equivalent clusters a’ € «. The procedure
is depicted in Fig. 5.1a. Note that the alloy cluster expansion is essentially a generaliza-
tion of the Ising model described in Sect. 2.1.1.

It can be shown [115] that the correlation functions form a complete, orthogonal ba-
sis set, and thereby any function of the configuration o can be expanded in the cluster
space exactly. In practice, however, the infinite sum in Eq. (5.10) needs to be truncated.
This is usually done by dropping clusters with many sites or long distances between sites.
Although such a truncation can sometimes produce spurious interactions among the re-
maining clusters, especially if the volume of the system changes with composition [116],
the nearsightedness of atomic interaction is often sufficient for the model to remain ac-
curate. With a successful fitting, the accuracy of a cluster expansion often approaches
that of DFT, while it is many orders of magnitude faster to compute. It can therefore
be used for thermodynamic sampling, usually with the help of Monte Carlo (MC) meth-
ods (Sect. 5.6.3). A software for construction and sampling of cluster expansions was
developed in Paper I and used in Paper II and III.

5.4.1 Determining the effective cluster interactions

With a truncated cluster space, the remaining task is to determine the ECIs J,. Thisis a
problem of solving a system of linear equations (see also Fig. 5.1b),

AJ =E. (5.12)
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Figure 5.1: (a) The chemical order of an atomic structure can be quantified by its cluster
vector, which is calculated by counting species, pairs, triplets and possibly higher-order
clusters. For example, in the present case there are 50 nearest neighbor pairs in to-
tal. Among these, 6 are blue-blue, 24 blue-orange, and 20 orange—orange. By choosing
Oorange = 12and O = —1, the cluster correlation for nearest neighbor pairs is (Il (0)) =
[6x(—1x—1)+24x(—1x+1)+ 20 x (+1 x +1)] /50 = 0.04. Here, the cluster expansion has
been truncated already after the second nearest neighbor and after the first triplet. The first
element of the cluster vector (the “zerolet”) is always 1. (b) By calculating the cluster vectors of
several structures with different chemical ordering, as well as their corresponding energies (us-
ing DFT or other methods), the matrix equation (5.12) can be set up. Each row of the matrix A
corresponds to a unique configuration, and each column corresponds to a symmetrically distinct
cluster. (Here, the multiplicities m, have been included in the ECIs; sometimes they are instead
included in the cluster vectors.) In this example, the number of parameters and target values
are identical and the solution is unique. This is, however, usually undesirable, since it tends to
lead to overfitting when the target values E contain noise. Instead, an under- or overdetermined
system solved with linear regression techniques is often preferable (see Sect. 5.4.1).
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Here, the vector J comprises the unknown coefficients J, and A is a matrix, each row of
which is called a cluster vector and corresponds to a certain configuration o;, and each
column corresponds to a different orbit a;,

Aij = maj <H0!; (O'i)>aj . (5.13)

Thevector E is often referred to as the training data and comprises the energies (or some
other property) corresponding to a particular decoration, E; = E(o;). Usually, it is an
energy obtained with a DFT calculation of a structure having configuration o;.

The most straight-forward approach for determining J is the well-known ordinary
least squares (OLS) solution, Jors = (AT A)"'ATE. This estimate of J minimizes the
sum of the squares of the errors?,

. . 2
JoLs = arg min Z (B —AyJ;)" (5.14)
i

Since the observed values E; are not exact, this solution is prone to overfitting unless a
very large number of observed values E; can be included. Overfitting may lead to un-
physical ECIs and a model that reproduces training data but not unseen data. Since E
is typically a list of energies from DFT calculations, it is expensive to generate sufficient
data to avoid overfitting.

A cheap approach to overcome overfitting is regularization. Specifically, the norm of
the solution vector J is suppressed by modifying Eq. (5.14),

Jreg = arg min > [(E- Agly) + A (5.15)

Here, A is a parameter that determines the extent of the regularization and n indicates
that different norms can be used. Withn = 2 (the L, norm), this is called ridge re-
gression, and with n = 1 (the L; norm) least absolute shrinkage and selection operator
(LASSO) [117, 118] is perhaps the most well-known approach to solve the problem. This
approach to fit ECIs using a regularizing term has been used in many cluster expansion
studies [119-122], including Paper I and Paper III.

Another approach to fit ECIs follows from Bayesian statistics [123]. We may view freg
as the parameter vector that, under certain conditions, yields the most probable model
given the data. To understand this, we can rewrite Eq. (5.15) using logarithms,

Jreg = arg max Z In exp [— (E - Aij]j)2 - /Uin]
(5.16)

= arg m]ax In 317[ exp [— (Ei - Aij]j)z /25] H exp [_A']in] g )

3Repeated indices are implicitly summed over.
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where we also redefined A in order to introduce a constant o. If we assume that the
error (or the noise) in the data follows a normal distribution with standard deviation o,
the first product represents exactly this distribution (up to a multiplicative factor). We
may denote this distribution P(E|J), since it represents the probability of observing the
data E given the model J. To estimate the uncertainty in a model J, however, we are
rather interested in the opposite, the probability of J given the data E, usually referred
to as the posterior distribution P(J|E). The two are related according to Bayes’ law [124],

P(E)PU)

P(JIE) = P(E)

(5.17)
The denominator P(E) is unimportant as it can be used for normalization, ensuring that
the probabilities sum up to 1. The probability distribution P(J) is called the prior dis-
tribution of J, and we note that if we set it equal to the second product in Eq. (5.16),
P(J) = [1;exp[-A"J"], finding jreg is equivalent to finding the J that maximizes the
posterior P(J|E). By modifying the prior, we adapt the problem to be solved. As physi-
cal intuition tells us that interactions should decay with distance and cluster order, we
expect most ECIs to be small or zero. The Gaussian functions in Eq. (5.16) effectively
reflect this intuition as they attribute a higher probability to parameter values close to
zero. On the other hand, the OLS solution Jog results if we use a flat prior, i.e., we
consider all values of J; to be a priori equally likely. The prior thus provides a means to
facilitate the fitting by encoding physical intuition [125].

The parameter A’ can itself be part of the optimization. Automatic relevance deter-
mination regression (ARDR) [126], in particular, is a method for automatically solving
Eq. (5.16) (with n = 2) while simultaneously optimizing A’, in this case using a sepa-
rate A’ for each coeflicient J;. In Paper I we found that ARDR performed very well in a
comparison with other regression techniques and it was therefore used also in Paper III
(also see [127]).

Another advantage of the Bayesian approach is that the full posterior distribution can
be produced with Markov chain-Monte Carlo simulations [128], and not only the param-
eters J that maximizes it. Knowing the posterior distribution, a distribution of models
can be constructed and uncertainties in quantities predicted by the model can thereby
be estimated too. This approach was used in Paper II to quantify the uncertainty in
the critical temperature of long-range order formation in Pd—Au-H as predicted by the
cluster expansion.

5.4.2 Selection of training structures

Equation (5.12) generally becomes less vulnerable to both under- and overfitting with
more training data, i.e., more rows in the matrix A. Addition of a row is usually asso-
ciated with DFT calculation of a structure with a unique configuration o, and the size
of the training data set is thus limited by the computational expense of DFT. To avoid
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an excessive number of DFT calculations, the set of configurations should be generated
with care. This is often referred to as the problem of structure selection.

A simple approach to structure selection is random population of cells with a certain
size and shape. This is unlikely to result in a useful training set, because it is almost
guaranteed to yield mostly training structures that closely resemble the random solid
solution. Multiple strategies for better structure selection have been proposed. Some
focus on generating the structures that are the most important for the problem at hand,
typically by an iterative process where cluster expansions are fitted, ground states or
other important structures identified and added to the training set, and the process
is repeated until, for example, a certain cross-validation score has been reached [129-
131]. Other approaches attempt to reduce the variance of the predicted property (usually
energy) as efficiently as possible [114, 132, 133]. Yet another strategy is to consider the
properties of the matrix A and make its rows as orthogonal as possible [119]. For the
cluster expansions in this work, we have mostly studied systems with small primitive
cells, and we have been fortunate to have access to generous computational resources.
It has therefore been possible to calculate several hundred structures, meaning that the
problem Eq. (5.12) is considerably overdetermined. Under these circumstances, we have
found the structure selection to have only a marginal impact on the performance of the
cluster expansions, and we have mostly relied on so-called structure enumeration to
provide the training data set.

5.4.3 Structure enumeration

For a given cell size, there exists a limited number of symmetrically distinct configu-
rations o. By putting a limit on the cell size, it is thus possible to enumerate all sym-
metrically distinct configurations (see Fig. 5.2 for an example). Several algorithms for
doing this efficiently have been proposed [134, 135], and we implemented the algorithm
developed by Hart and Forcade [136, 137] within the scope of Paper I.

Enumeration of structures is not only a straight-forward and reproducible method
for generating a certain number of structures, but it is also often used to build a pool of
structures from which training structures can be drawn using a more elaborate scheme.
In general, cells with few atoms can be expected to be a valuable addition to almost any
training data set, because their cluster vectors are more likely to be “extreme” in the
sense that they, for example, maximize the ratio of A-A and B-B to A-B nearest or next-
nearest neighbor pairs (Fig. 5.3). It is for precisely this reason that ground states are
generally expected to have small primitive cells [138], and structure enumeration can
thus also be used to exhaustively search for ground states.

52



5.4. Alloy cluster expansions

¢ éo! édeoleoe h&o—'o/ooo/of{oo/”
¢ &0 éeeles0e WWWE
es0e so0e ed00

Figure 5.2: Structure enumeration of the two-dimensional square lattice with two species and
up to four atoms in the cell. The structures are periodic and for each cell size, multiple cell shapes
have to be included systematically. All structures are unique and the enumeration is exhaustive,
i.e., any decoration of the square 2D lattice with four atoms or less is symmetrically equivalent
to one of these structures. Note that the number of structures grows quickly when the cell size
is increased.
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Figure 5.3: Pair cluster correlations in ordered, random, and quasi-random binary FCC alloys.
Only two symmetrically distinct FCC alloys can be constructed with a primitive cell with two
atoms, L1; and L1;. In terms of cluster correlations, they are similar for first and third nearest
neighbor pairs, but completely different for second nearest neighbor pairs; L1, has only A-A and
B-B second nearest neighbor pairs, L1; has only A-B. If the ECI for second nearest neighbors is
large, one of these structures is a good candidate for being the ground state (which one depends
on the sign of the ECI). The random alloy is best represented with a large cell. When ¢ = 0.5, it
always has as many A-B pairs as it has A-A and B-B pairs, regardless of the distance between
the sites. This character can be mimicked with the much smaller special quasirandom structure
(SQS), which closely reproduces the cluster correlations of the fully random alloy.
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5.5 Special quasirandom structures

As we saw in Chapter 2, (random) solid solutions are a common occurrence in transi-
tion metal alloys. It is therefore unfortunate that in principle an infinitely large cell
is required to reproduce it exactly in atomistic simulations, unlike long-range ordered
structures which typically require only a few atoms that are repeated by virtue of peri-
odic boundary conditions. Of course, even a random alloy can be approximated by a
sufficiently large cell. The cluster correlations introduced in the previous section pro-
vide a concept for systematically generating such quasirandom atomic structures [139].
Specifically, one recognizes that the most short-ranged pairs, and possibly a few triplets
and higher-order clusters, are the most important for the properties of the alloy. A struc-
ture whose cluster correlations for these short-ranged clusters are similar to the cluster
correlations of the truly random alloy should thus be a good representation of the ran-
dom alloy (Fig. 5.3). To find such structures, the most common method is to define a cost
function that quantifies the difference between the cluster correlations of a structure
and the fully random alloy, and then minimize this cost function by MC and simulated
annealing [140] (Sect. 5.7.3). The resulting atomic structure is called a special quasiran-
dom structure (SQS) [139]. This was implemented within the scope of Paper I and used
in Paper VIII to calculate the dielectric functions of random alloys using linear-response
TDDFT.

5.6 Atomistic simulations

With a computationally efficient model such as an EAM potential or a cluster expansion,
it is possible to sample a large number of states and thereby calculate a wealth of mate-
rials properties.

5.6.1 Molecular dynamics

One of the most obvious application of interatomic potentials is to temporally evolve a
system of atoms in some geometry according to Newtonian mechanics*. This has been
coined molecular dynamics (MD). Every atom i in a MD simulation is assigned an initial
coordinate r; and momentum p; and the system is propagated in time with each atom
acting on every other according to Newton’s second law,

Fi = —VU(T"I') = Pl (5.18)

The basicideais simple but the actual implementation may be complicated with a wealth
of considerations regarding, for example, discretization of time and space, boundary

“This is of course not possible with a lattice model such as a cluster expansion.
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conditions, cutoffs in the interatomic potential and baro- or thermostats to mimic a
desired physical situation.

5.6.2 Time and ensemble averages

Physical quantities are usually extracted from MD simulations by taking averages over
time,
B 1 lo+T
P=i s (519
T f
Here, f is the sought-for physical quantity, ¢ time, 7 a certain time interval, and the
data collection starts only after an initial time %, that allows the system to equilibrate.
The spirit is the same as an experimental measurement, which does also always occur
over some time, short or long.
It is often assumed that the time average equals the ensemble average,

_ j f(r, p)e_g('?P)/kBT drN de

<f> J‘e—s(r,p)/kBT drN de

(5.20)

If the ergodic hypothesis holds for the system at hand, i.e., all microstates are equally
probable over a sufficiently long time scale, we may indeed have f = (f). In this con-
text, it needs to be stressed that atomic motion occurs on the scale of picoseconds, which
means that a typical MD simulation rarely exceeds microseconds and usually much less.
The risk of having a system trapped between energy barriers in a certain part of phase
space over the time scale of the simulation is thus significant, such that the time aver-
age will differ from the ensemble average even if the ergodic hypothesis holds for the
system under consideration. A good example is a metallic alloy, for which atoms rarely
exchange sites, hindering the use of MD for sampling configuration space. In such sys-
tems, other methods are called for.

5.6.3 Monte Carlo simulations

MC represents a wide class of computational methods that rely on sampling with a com-
ponent of randomness to evaluate multidimensional integrals. Here, MC will be de-
scribed in a limited scope as applied to configurational sampling of an alloy using the
Metropolis algorithm. In such a simulation, the atoms are fixed and the system is de-
scribed by the chemical identity of the atoms on each site. The simulation consists of
changing the chemical identities on trial, and accepting or rejecting the change based
on a carefully chosen criterion. Metropolis et al. [141] chose the criterion

P(accept) = min {1, exp (—AE/kgT)}, (5.21)
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where AE is the change in potential energy caused by the trial. This choice ensures
that an ensemble of systems subject to this criterion approaches the canonical ensem-
ble [141], or in other words, a single simulation will sample a Boltzmann distribution.
In the canonical ensemble, the concentration is always conserved, which means a trial
change will always consist of a swap of chemical identity between two sites with unlike
atoms. Such MC simulations may overcome the inability of MD to properly sample all of
configuration space, because the simulation knows fewer energy barriers; all calculated
quantities are ensemble averages and the algorithm is usually not designed to simulate
a real trajectory.

5.6.4 The semi-grand canonical ensemble

The Metropolis criterion is readily generalized to ensembles other than the canonical
one. The procedure is to simply replace AE in Eq. (5.21) with the change in the thermo-
dynamic potential associated with the ensemble to be sampled (excluding the —T'S term).
For alloys, a common choice is the semi-grand canonical (SGC) ensemble. This ensem-
ble corresponds to a physical situation in which the difference in chemical potential be-
tween different species is fixed (in addition to temperature, volume and total number of
atoms N). The SGC ensemble thus allows concentrations to fluctuate, such that a trial
change can be taken as the change of chemical identity on a single site, i.e., no swap
of two sites as in the canonical ensemble. A Legendre transformation [15, Chapter 5]
reveals that the thermodynamic potential associated with the ensemble is

Y=FE+NcAu-TS, (5.22)

where N is the total number of atoms, ¢ = N, /N the concentration of species A, and
Ap = pp— pg the difference in chemical potential between species A and B. The modified
Metropolis criterion is thus

P(accept) = min {1, exp [— (AE + NAcAy) /kgT]}. (5.23)

In MC simulations of alloys, the SGC ensemble has at least two advantages over the
canonical ensemble. Firstly, the acceptance probability is sometimes better in the SGC
ensemble for systems where moves that keep the energy low are rare. The probability
of lowering the energy when swapping two randomly picked sites, as is done in the
canonical ensemble, is essentially the square of the already low probability of finding
a favorable flip. Secondly, the allowance to vary concentration makes it simple to con-
tinuously carry the system from one composition to another and integrate the free en-
ergy along the path. The theoretical foundation for this integration can be derived by
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coarse-graining the SGC partition function in energy and concentration,

Zsgc = Y. exp[(—(es + NeAp)/kpT]

= Z Q(c, E) exp [—(E(c) + NcAp) /kpT]
¢,E

(5.24)
= exp[~(E—TS(E,V,N,c) + NeAp)/ksT]
c,E

~ Y exp[—(F(T,V,N,c) + NcAp)/kgT].

where we introduced Q(c, E) as the number of microstates with concentration ¢ and en-
ergy E, and used the fact that the entropy at fixed ¢ and E is the logarithm of this quan-
tity (times kg). The last step introduced the canonical free energy F(T,V, N, c). For every
value of T, V, N and Ay, and for a sufficiently large system, the term with the largest ex-
ponent will completely dominate the sum. Assuming the exponent is differentiable in
c, we have

aﬁ (F(T,V, N, ¢) + NeAp) = 0 (5.25)
C
so that o
%% — _NAn (5.26)
ac

In practice, the canonical free energy energy can thus be recovered from a MC simula-
tion in the SGC ensemble by continuously varying Ay and recording the average concen-
tration. When faced with multi-phase regions, however, this integration fails, because
Ay maps to multiple values of the concentration there. A MC simulation in the SGC
ensemble will not be able to stabilize in such a region, but will discontinuously jump be-
tween the phase boundaries (Fig. 5.4). While such jumps contain information that may
be exploited to, for example, construct phase diagrams [142], they prevent extraction of
information from within the multi-phase region.

5.6.5 The variance-constrained semi-grand canonical ensemble

To overcome the limitations of the SGC ensemble in multi-phase regions, Sadigh et al.
[143, 144] developed the variance-constrained semi-grand canonical (VCSGC) ensemble,
which takes inspiration from the SGC ensemble but introduces a parameter & that con-
strains the fluctuations (variance) of the concentration. Its thermodynamic potential
can be written )

¥y = E+kNkgT (c+¢/2)" - TS (5.27)

where ¢ replaces Ay as the parameter that drives the concentration. For a sufficiently
large value of %, the mapping between ¢ and ¢ becomes single-valued so that a simu-
lation can stabilize concentrations also inside multi-phase regions (Fig. 5.4). It is thus
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Figure 5.4: Free energy derivative as a function of Pd concentration in the Ag—Pd alloy calculated
with MC simulations in the SGC (thick lines) and the VCSGC (thin lines) ensembles (Paper I). The
two ensembles yield identical results everywhere except in the two-phase region (magnified in
the inset), where the SGC simulation jumps between the phase boundaries whereas the VCSGC
simulation stabilizes also between the phase boundaries. The VCSGC data can thus, unlike the
SGC data, be integrated across the two-phase region.

possible to extract thermodynamic data also inside multi-phase regions, a feature that
was extensively utilized in Papers III, V, and VI. In particular, it can be derived in a
fashion equivalent to Eq. (5.24) that the derivative of the canonical free energy can be
expressed in terms of observables of the VCSGC ensemble [143],

oF z

T = 2kNkgT (c+ $/2). 28
Py sT (c+4/2) (5.28)
It is thus possible to integrate the free energy across multi-phase regions by sweeping ¢
and recording the average concentration along the path. This can greatly simplify phase
diagram construction from MC simulations, and the VCSGC ensemble was employed
for this purpose in Papers I-II1.

5.6.6 Hybrid MD—MC simulations

When discussing the energetics of alloys, it is often convenient to split the partition func-
tion in a configurational and a vibrational part,

zZ=Y J e E/ksT gpN dpN. (5.29)
o led

Here, the configurational part is represented by a sum over all possible decorations o of
the lattice, whereas the vibrational part is represented by a multidimensional integral
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over the part of phase space Q, consistent with each decoration. It is often advanta-
geous to evaluate the different parts with different methods; because MD is particularly
well suited for sampling the vibrational part and MC the configurational part, we may
combine the two. In practice, this means that we run a MD simulation but interrupt it
at regular intervals to carry out a series of MC trial steps. A quantity of interest is then
calculated by time averages over the vibrational part combined with ensemble averages
over the configurational part. This technique was employed in Paper VI.

5.7 Energy minimization techniques

MD and MC simulations are often used to study materials at a specific temperature. A
well-behaved system will approach equilibrium, and equilibrium properties can be ex-
tracted by calculating averages and analyzing trajectories. As a special case, one is often
interested in the equilibrium at zero temperature, i.e., the ground state. The ground
state is characterized by a minimum in potential energy and is as such, if nothing else,
attractively well-defined and of fundamental interest. For many systems it also often
provides a reasonable approximation to the equilibrium state at room temperature, pro-
vided that the melting temperature is much higher. Unfortunately, it is not straightfor-
ward to extract the ground state from MD or MC simulations, because sampling can
become prohibitively inefficient at low temperatures.

5.7.1 Spatial and configurational global optimization

The separation of the partition function in a configurational and a spatial part (as in
Eq. (5.29)) is fruitful when facing the task of finding ground states in metallic systems.
For monometallic particles, the configurational part disappears and the problem is es-
sentially to position a given number of atoms in space such that their interaction yields
the lowest energy. Given that every atom has three coordinates, this problem is extraor-
dinarily difficult already for clusters with less than a few tens of atoms. The problem
has received considerable attention and become the target of many novel optimization
schemes [145]. A wide array of techniques exist [146, 147], many of which are based on
either genetic algorithms [148, 149] or basin hopping [150-152].

The problem of optimizing the configuration, i.e., assigning an optimal ordering of
chemical identities, is quite different, because in this case the possible states are dis-
crete. For a binary system with N atoms of which N, are of type A and Nj of type B, the
number of possible configurations n is exactly

N!
n= .
N, INg!
Usually, many of these are equivalent by symmetry, but the number is still extremely
large for a few tens of atoms and non-dilute concentrations. This problem is even more

(5.30)
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well-studied than monoelemental optimization, but the gallery of useful optimization
techniques turns out almost the same [146, 147, 153, 154], even though the possibility
of lattice-based energy models for alloys opens an avenue to more specialized methods
[155]. It should be stressed that the configurational and spatial parts are dependent; the
optimal configuration may change as the positions of the atoms are changed. Global
optimization of a nanoalloy is thus significantly more difficult than global optimization
of a monoelemental particle.

5.7.2 Local optimization

The complexity of the global optimization problem has necessitated restricted searches
for local minima. A particularly common approach has been to restrict the positions of
the atoms to the vicinity of a structural motif and then optimize the chemical config-
uration subject to that structure, possibly allowing local relaxation [88, 156, 157]. The
structures have usually been chosen from the high-symmetry motifs described in Chap-
ter 3. Both global minimization studies and experimental observations have repeatedly
pointed to the relevance of these structures, and even if a particular configuration in the
chosen structure is not a global minimum, experimentally a nanoparticle may very well
be kinetically trapped in that structure. This is the philosophy of Paper V and VI.

5.7.3 Simulated annealing

Another widespread approach to optimization is simulated annealing (Fig. 5.5). Itis
inspired by the protocol an experimentalist might follow to quench a real system into its
ground state. AMD or MC simulation is started at high temperature, where chances are
good that energy barriers can be overcome, and the temperature is gradually lowered.
The system is then expected to approach its ground state (or alocal minimum if the setup
constrains the system to a certain part of phase space). There is a risk that the system is
quenched into a funnel of the potential energy surface whose bottom is not the ground
state. Still, simulated annealing does in practice often identify the global ground state,
in particular if the process is repeated multiple times. Simulated annealing with hybrid
MD-MC was employed in both Paper V and VI.
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Figure 5.5: Schematic of simulated annealing in a hybrid MD-MC simulation of a Au-Pd {111}
surface alloy. Orange dots indicate that the MD propagation is interrupted for MC trial steps. At
high temperatures, the surface is disordered but as low temperatures are reached, the surface
assumes an ordered ground state, in this case a honeycomb pattern.
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Paper |

ICET - A Python library for constructing and sampling alloy cluster expansions

This paper introduces ICET, an open-source software package for constructing and sam-
pling alloy cluster expansions. Being largely written in Python and integrated with the
Atomic Simulation Environment [158], ICET aims to simplify and accelerate the con-
struction of cluster expansions, while still lending sufficient flexibility to allow for cus-
tom solutions. The package includes a submodule that allows sampling via MC simu-
lations. Various supplemental tools have been implemented, including structure enu-
meration [136, 137], generation of SQS [139], convex hull construction [58], exact ground
state search using mixed integer programming [155] and Wang-Landau sampling [159].
We illustrate the usage of 1CET with two examples: phase diagram construction for Ag-
Pd and chemical ordering in the inorganic clathrate BagAl,Si,s_ .

The documentation of ICET is available at https://icet.materialsmodeling.org. A
web application for the generation of special quasirandom structures in the browser,
using ICET on the server-side, has been developed and is available at
https://sharc.materialsmodeling.org/sgs.

Paper I

A tale of two phase diagrams: Interplay of ordering and hydrogen uptake in Pd-Au-H

As discussed in Chapter 2, Pd alloyed with Au behaves differently compared to pure
Pd when it comes to the response to a hydrogen-rich environment. Most notably, the
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phase transition from a hydrogen-poor to a hydrogen-rich phase is suppressed by a rela-
tively small content of Au, and the relationship between hydrogen uptake and hydrogen
pressure becomes more linear. While these properties are favorable for many applica-
tions, the alloy is also more complex than pure Pd in the sense that different chemical
orderings on the Pd-Au lattice can influence the properties of the material. For exam-
ple, it has been shown experimentally that annealing of a Pd—Au alloy with 19% Au in a
hydrogen-rich environment, causes long-range order formation and thereby a signifi-
cantly higher hydrogen uptake [22].

In this paper, we carry out a thorough investigation of how the chemical ordering of
Pd-Au influences its hydrogen uptake, and, conversely, how uptake of hydrogen influ-
ences the chemical ordering. To this end, we used ICET to construct alloy cluster expan-
sion models and we sampled these models using MC simulations.

The Pd—Au-H system can be described as two interpenetrating FCC sublattices, one
with Pd and Au, and one with H and vacancies. In this paper, we exploited the possibil-
ity of sampling these two sublattices with different ensembles. This is not only practical
from a computational standpoint, but is also grounded in the fact that in most experi-
ments, the composition is conserved on the Pd—Au sublattice (a closed thermodynamic
system) while it varies on the H-vacancy sublattice (an open thermodynamic system),
being controlled by the partial pressure of H, in the environment. With this approach,
we can also fix the Pd-Au sublattice and sample only the H-vacancy sublattice, and
thereby mimic a para-equilibrium situation (discussed in Sect. 2.2.4). In this paper, we
distinguish two extremes, para-equilibrium in which the Pd—Au sublattice has been equi-
librated at 300 K, and random equilibrium in which the Pd-Au sublattice is completely
random (“equilibrated at infinite temperature”). The difference is that there is some de-
gree of short-range order in the former case. The results indicate that the short-range
order in para-equilibrium has only minor consequences for the uptake of hydrogen. It
is only at fairly high Au concentrations (= 15%) that the hydrogen uptake is somewhat
higher in random equilibrium than para-equilibrium at a fixed hydrogen pressure. The
phase diagram (Fig. 6.1a) is virtually indistinguishable in these two cases.

In full equilibrium, in which equilibrium forms on both sublattices simultaneously, the
situation is more complex. The major difference compared to para-equilibrium is that
at sufficiently high H, pressures and not too high temperatures, a long-range ordered
L1, phase forms. This phase opens a multiphase region in the phase diagram, i.e., phase
separation between this ordered phase and other phases are expected in full equilibrium
(Fig. 6.1b). Just as observed experimentally [22], this ordered phase enables a signifi-
cantly higher hydrogen uptake at low hydrogen pressures. It might thus be possible to
boost the sensitivity of Pd-Au-based hydrogen sensors by synthesizing sensors with this
ordered phase using annealing at high H, pressures. To guide experimentalists in this
regard, we provide a prediction of which temperatures and hydrogen pressures are re-
quired to form this phase. While the pressures required are high, they are by no means
inaccessible.
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Figure 6.1: Phase diagrams for Au—Pd-H at 300 Kin (a) para-equilibrium and (b) full equilibrium.
White indicates single-phase regions, black multi-phase regions. In para-equilbrium, there is
a two-phase (« + p) region that closes upon addition of a sufficient amount of Au. The phase
diagram in full equilibrium contains approximately the same two-phase region, but also a much
larger multi-phase region that is largely caused by the stable L1, phase phase at approximately
25% Au and 10-25% H.

Paper lli

Quantitative predictions of thermodynamic hysteresis:
Temperature-dependent character of the phase transition in Pd-H

An assumption implicitly underlying much of the analysis of Paper II was that the in-
terface between phases remains incoherent, such that the constituent phases are not
strained. As discussed in Sect. 2.3, this is typically not the case during hydration of Pd
nanoparticles smaller than approximately 300 nm in diameter [45, 46]. In this paper,
we develop a methodology to study this phase transition under the assumption that it
is coherent. We do so by constructing a cluster expansion using the constituent strain
formalism first developed by Laks et al. [160]. Unlike a regular cluster expansion, such
a cluster expansion is able to recognize coherently strained phases by the use of a struc-
ture factor calculation, and it assigns the proper strain energy to such configurations
based on systematically pre-calculated DFT data. We then sample this cluster expan-
sion with the VCSGC ensemble and show how the MC data inside the two-phase region
reveal the nature of the phase transition in both the incoherent and the coherent case.
With this approach, we find a critical temperature for the phase transition at T, =
540 K, which is within 20 K of the experimental value [50] (Fig. 6.2). Further, we find that
the system exhibits a coherent critical temperature at T? = 400 K. In the temperature
range between TS and T, coherent phase coexistence is not possible, and if no defects
are formed, the system must transition from « to f without coexistence between the two
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Figure 6.2: Phase diagram for Pd—H with incoherent (green) and coherent (orange) phase bound-
aries, as well as spinodals (purple). The coherent phase boundary closes at the coherent critical
temperature at approximately 400 K, whereas the critical temperature for the phase transition is
T, = 540 K (within 20 K of the experimentally estimated critical temperature [50]). If the system
stays fully coherent, phase transition with @ + f coexistence will only occur below the coher-
ent critical temperature. Between the coherent critical temperature and T, the phase transition
will proceed with a spatially homogeneous hydrogen distribution. The spinodals mark the limits
where this phase transition becomes spontaneous.

phases, i.e., the system maintains a spatially homogeneous concentration throughout
the full phase transition.

Finally, we show that temperature-dependent interface free energies can be calcu-
lated using extrapolation of the free energies of simulation cells with decreasing length.
The results show that among {100}, {110} and {111} interfaces, {100} has the highest inter-
face energy and {111} the lowest. This energetic ordering is opposite to the one obtained
for the strain energy, which is the lowest for {100} interfaces. Interface energy and strain
energy thus favor different orientations for phase separation, but since the coherent in-
terface energies are very small, they will for most systems play only a minor role.
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Paper IV
WulffPack: A Python package for Wulff constructions

Even though the Wulff construction is conceptually simple, there have been no readily
available and versatile Python implementations, which is unfortunate given the preva-
lence and increasing popularity of Python in scientific computing to date. This paper
presents WULFFPACK, a Python package that fills this gap. The core of WULFFPACK cre-
ates a Wulff construction based on the algorithm described in Sect. 3.2.1, given input
in the form of surface energies and the symmetry elements of the relevant point group.
These symmetry elements are deduced using sPGLIB [161] from the crystal structure pro-
vided by the user. WULFFPACK also creates icosahedra, decahedra and Winterbottom
constructions, which are internally created in the same way as standard Wulft construc-
tions, with the only difference being a reduction of the symmetry. Visualization of the
Waulff shapes is handled by MATPLOTLIB [162]. The shapes can be analyzed with regard
to, for example, the area fraction of each facet (see Fig. 6.5 for an example). Using the
Atomic Simulation Environment [158], WULFFPACK also supports creation of atomistic
representations.

WULFFPACK is open source and its documentation, including a user manual, is avail-
able at https://wulffpack.materialsmodeling.org. A web application that interac-
tively creates Wulff constructions for the case of cubic symmetry has been developed
and is available at https://sharc.materialsmodeling.org/wulff__construction.

Paper V
Beyond magic numbers: Atomic scale equilibrium nanoparticle shapes for any size

This paper introduces an algorithm for predicting atomistic nanoparticle structures in
a wide size range. At its core, it is a straight-forward application of MC simulations to
the binary metal-vacancy system. As mentioned in Sect. 2.1.3, this system is immis-
cible, and the SGC ensemble fails to stabilize any composition but pure vacuum and
bulk. It thus provides an attractive use case for the VCSGC ensemble (Sect. 5.6.5). The
algorithm is based on simulated annealing coupled to a sequential sweep of the concen-
tration driving parameter ¢ of the VCSGC ensemble. MC trial steps changing atoms to
vacancies or vice versa are regularly interrupted for atomic relaxation and the lowest en-
ergy structure for each number of atoms is recorded. The algorithm relies on an a priori
definition of a structural “lattice”, in this case single-crystalline, decahedral, or icosa-
hedral. Atoms are only allowed to relax locally from this lattice, such that the energy
minimum search remains close to the a priori defined structural motifs.

Our algorithm successfully identifies previously reported high-symmetry nanopar-

67


https://wulffpack.materialsmodeling.org
https://sharc.materialsmodeling.org/wulff_construction

Chapter 6. Summary of papers

Infraction [ |Dhfraction [l TO fraction

Ag

I

200 600 1000 2000 4000 6000 8000 10000

Number of atoms

Figure 6.3: Distribution of structural motifs in thermodynamic equilibrium at 300 K, assuming
at each atom count N a standard distribution of particle sizes of 0.05N. Icosahedral particles
(orange) dominate around their magic numbers, but only at small sizes. For larger particles,
decahedral (white) and truncated octahedral (purple) particles prevail. Note, however, that there
is more than one shape at almost any size. Approximate nanoparticle diameters are indicated
at the top of each subpanel.

ticles of all three structural motifs, indicating that the algorithm is stable and capable
of identifying ground state structures. Interestingly, for single crystalline and decahe-
dral particles our algorithm finds particles with energy on par with the energy of the
magic number particles for any number of atoms. The primary reason is that both of
these motifs provide ample opportunity for slight modifications of facet areas, shapes
and asymmetries, which all have a very small impact on the total energy. For icosahe-
dral particles, however, this is not the case. Non-magic icosahedral particles are almost
always stepped yielding an energy often substantially higher than the magic number
particle energy.

The map of nanoparticle size to energy anywhere in the range from 100 to 10,000
atoms is a first of its kind, and the paper concludes with a quantification of the con-
sequences for Ag, Au, Pd and Cu as calculated with EAM potentials. Further analysis
reveals that thermodynamic equilibrium ensembles almost always include more than
one structural motif (Fig. 6.3). The primary reason is that the different particle sizes in
a polydisperse ensemble will usually not all have the same ground state structural mo-
tif, since the rapid variations in ground state energy with particle size imply multiple
crossovers in energy between the three motifs considered.
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Figure 6.4: Filling of Cu in an icosahedral Ag—Cu particle with 561 atoms. The simulations were
performed on the atomic scale, but only the surface of the particle (transparent grey) and the
“surface” of the Cu segregate (red) are shown here (the figures were created with the oviTo soft-
ware [163]). The tetrahedra that build up the icosahedron are filled sequentially (a—b) until a
complete Cu ring of ten tetrahedra has been formed (c). Each column show the same particle
from different angles.

Paper VI

Understanding chemical ordering in bimetallic nanoparticles from atomic-scale simulations:
The competition between bulk, surface, and strain

In this paper, the attention is turned to nanoalloys. Specifically, the paper contrasts
the chemical ordering in Au—Pd and Ag—Cu particles. The computational method is
hybrid MD-MC simulations with energies calculated with EAM potentials. The paper
focuses on results from simulated annealing, but simulations run at room temperature
yield practically identical results.

We invoke bulk-like interactions, surfaces and strain to explain differences in chemi-
cal ordering. Au—-Pd mixes in all proportions in the bulk, whereas Ag—Cu has a wide mis-
cibility gap. Our results indicate, as do the great majority of previous theoretical studies
in the nanoalloy field, that this general mixing behavior is preserved at the nanoscale.
The presence of a surface, however, causes interesting phenomena. For Au—Pd, where
the surface energies of the pure constituents differ substantially, there is a pronounced
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surface segregation. The favorable Au-Pd bond, however, causes an excess of Pd in the
subsurface layer. In the Ag—Cu system in which bonds between like atoms are favorable,
there is no such enrichment in the subsurface layer. Although this observation may ap-
pear obvious, it is important to keep in mind for an experimentalist who measures sur-
face composition with a technique that probes more than just the topmost surface layer.

Furthermore, the Au-Pd and Ag—Cu systems respond differently to strain. The in-
crease in strain when going from a single crystalline particle to an icosahedron via a
decahedron, provides a playground to test this effect. Au—Pd has a small size mismatch
and the difference in chemical ordering between the three motifs is consequently small.
For Ag—Cu, however, which has a large size mismatch, there is a pronounced differ-
ence between the motifs. The arguably most intriguing consequence is the sequential
filling of the tetrahedra in an icosahedron, which gives rise to a previously not reported
sandwich-like structure at intermediate compositions (Fig. 6.4).

Paper VI

Computational assessment of the efficacy of halides
as shape-directing agents in nanoparticle growth

Paper V and VI considered the energetics of nanoparticles in vacuum. A more realis-
tic situation is that the nanoparticles are in contact with either a gas or a liquid. This
is of particular importance in the case of colloidal synthesis, in which nanoparticles are
grown in a complex aqueous environment, the nature of which determines the outcome
of the nanoparticle growth. In this field, halide ions, such as Br ™, are widely used as so-
called shape-directing agents due to their ability to direct the nanoparticle growth to
certain shapes. These ions bind to metal surfaces, but the strength of the bond depends
on the faceting of the metal, and the equilibrium shape of the nanoparticle—the Wulff
construction—is thereby altered.

In this paper, a model to accurately describe the energetics of halide absorption on
metal surfaces in aqueous environments is formulated. The water is here treated implic-
itly, as explicit inclusion of water molecules would render the computations much too
expensive. The model is applied to binding of F~, C1™ and Br~ to different Au and Pd
facets. Based on this data, we use WULFFPACK (Paper IV) to create Wulff constructions
(regular and decahedral) as a function of concentration of halides in the solution.

The results show that qualitative changes in nanoparticle shape occur as the halide
concentration in the solution is varied. For example, the calculations predict that Au
nanoparticles in low concentrations of Br~ show a large proportion of {311} facets, but
when the concentration increases, the {311} facets gradually give way for other facets,
most notably {100} (Fig. 6.5). These results underscore the need for careful modeling of
nanoparticle shapes in aqueous environments.
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Figure 6.5: Equilibrium shapes of Au nanoparticles immersed in (a) pure aqueous solution and
(b—d) aqueous solution with 0.1 M halides. (b) F~ adsorption on Au is endothermic and does
therefore not induce a shape change. (c) Cl™ and (d) Br™, on the other hand, have a large impact
on the nanoparticles by promotion of {311}, {111}, and {100} facets.

Furthermore, bromides in particular are commonly used in nanoparticle synthesis
to promote growth into cubes and rods. Our results indicate that these shapes do not
appear as thermodynamic ground states even in presence of Br™ . Instead, we argue
that their emergence in experiment is the result of an interplay with kinetics, possibly
due to blocking of certain facets by high coverage of adsorbates.

Paper VIl
Alibrary of late transition metal alloy dielectric functions for nanophotonic applications

The optical response of nanoparticles and systems of nanoparticles can often be mod-
eled with good accuracy using the finite-difference time-domain method to numerically
solve Maxwell’s equation for specific geometries. A crucial ingredient in these calcula-
tions are dielectric functions. For noble metals, the dielectric functions are often taken
from experimental measurements performed in the 1970s. While gold is every bit as
much gold as it was in the 70s, by comparing different experimental measurements
(as is done in the supplementary material of this paper) one observes a wide spread
in the experimental data. This spread may be caused by differences in microstructure,
surface structure, and purity of the measured samples, as well as systematic errors in
the measurements [164]. Furthermore, different experimental techniques cover differ-
ent photon-energy ranges, and to obtain dielectric functions covering a wide spectrum,
data from different experiments need to be patched together. These aspects are partic-
ularly unfortunate when comparing materials using electrodynamic modeling, because
it may be unclear if perceived differences are caused by the actual properties of the ma-
terials or if they are the consequence of differences in the experiments that assessed
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Figure 6.6: Imaginary part of the dielectric functions of ten alloys as calculated with linear-
response TDDFT.

them. Furthermore, the dielectric functions of alloys, which are becoming increasingly
widespread in nanoscience, have only been partially explored [96, 165-167].

To provide the community with a self-consistent set of dielectric functions of experi-
mentally relevant alloys, we used linear-response TDDFT to calculate the dielectric func-
tions of the ten binary alloys formed by combinations of Ag, Au, Cu, Pd, and Pt (Fig. 6.6).
In this set of data, we highlight the position of the d band with respect to the Fermi level
as one of the most important descriptors of the optical response, and we find that the
shift of the d band upon alloying is largely linear for isovalent alloys (such as Ag—Au)
but strikingly non-linear for non-isovalent alloys (such as Au—Pd). We benchmark our
results by electrodynamic simulation and experimental measurement of the optical ex-
tinction spectra of nanoalloys of four of these alloys. Our hope is that this library of data
will be a complement to experimental measurements of the same quantities [165, 166],
and be useful to scientists who seek to understand or optimize nanoplasmonic systems,
or other optical systems with alloys.

For simpler access and exploration of this fairly large data set, we developed a web
application in which the dielectric function of these alloys at any composition can be
obtained and compared in multiple ways
(https://sharc.materialsmodeling.org/alloy_ dielectric_ functions).
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Qutlook

The purpose of this thesis has been to develop and apply computational tools to better
understand materials, in particular those related to plasmonic sensing of hydrogen with
palladium-based nanoalloys. As with most scientific investigations, it is not the end
of the road. This chapter will briefly suggest future extensions of the present work, in
particular with regard to its methodologies.

Some of the methods employed here should be fairly easy to combine. For example,
the algorithm developed for the study of nanoparticle shapes in Paper V can be used to-
gether with an alloy cluster expansion in which one of the species is vacancies. There
are examples of such cluster expansions in the literature [125, 168] and some steps have
already been taken in this direction with 1CET. In such calculations, it is important to
define a priori what the targets of the simulations are. Based on experience accumu-
lated during the work in this thesis, it is fair to say that size-dependent trends of the
polynomial kind discussed in Sect. 3.1 are usually very easy to capture with cluster ex-
pansions or indeed any physically reasonable model. The finer details, such as the small
differences in energy between nanoparticles with the same number of atoms but differ-
ent structure, are much more challenging to describe accurately. The cluster expansion
approach is typically also unable to capture strain, which, as we have seen, is often sub-
stantial in nanoparticles, especially small ones. The constituent strain approach taken
in Paper III is not easily applicable to the metal-vacancy system, because vacuum is
not elastic. Some version of concentration-dependent ECIs might be a path forward
[116, 169, 170], but one needs to be careful not to equate the concentration of metal in
the metal-vacancy system with nanoparticle size, because they are only equivalent if
the cell size is kept fixed.

The calculation of dielectric functions using SQS and linear-response TDDFT is easily
generalizable to other materials. The stage is thus set for calculation of dielectric func-
tions for Pd—Au-H and if combined with the thermodynamics elucidated in this thesis,
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this would give us an almost complete model for the optical response of Pd—Au hydrogen
sensors. This model would in fact be first-principles in the sense that no experimental
input is required for its construction. Such a model would, for example, give an atomic-
scale understanding of how the sensitivity of Pd—Au sensors varies with composition.

A limitation in Paper V and Paper VI is that the nanoparticles were in contact with
nothing but vacuum. In Paper VII, on the other hand, we studied monoelemental nano-
particles in aqueous environments with halides. The approach in this case was Wulft
constructions, and it is non-trivial to transfer the methodology to atomistic models. To
do so, models that incorporate the interaction with the environment would be required.
While interatomic potentials such as EAM might be used, it is an arduous task to make
models for many different materials and adsorbates, and high-throughput calculations
would most likely be out of the question. Here, machine learning might come to the res-
cue [171, 172]. An alternative approach can be alloy cluster expansions, since they are in
general more straight-forward to construct than off-lattice models. There are two dif-
ferent approaches to fit an alloy cluster expansion that incorporates adsorbate effects:
include the adsorbates explicitly as another chemical species, or exclude the adsorbates
from the cluster expansion but include their effect implicitly by training the cluster ex-
pansion with energies from calculations where they were included. There are examples
of both approaches in the literature [125, 131, 173-175]. A challenge in either case is that
it is rarely clear a priori which sites are energetically the most favorable for a given ad-
sorbate and a given facet. This aspect makes it difficult to automatize the calculations
to a sufficient extent, although machine learning approaches can simplify the problem
somewhat [176].

Machine learning and artificial intelligence might also be useful in conjunction with
the library of dielectric functions from Paper VIII. Currently, computational optimiza-
tion of nanoplasmonic systems would typically require a trial-and-error approach, in
which material (i.e., dielectric function) and geometry are chosen and an electrodynam-
ic simulations are performed, and these steps are iterated until the desired optical re-
sponse is obtained. It might be possible, for example, to train a neural network to take
shortcuts between the choice of material/geometry and the optical response, and per-
haps even automatically optimize material and geometry for a particular desired optical
output.

For the hydrogen sensors specifically, there are multiple real-world challenges that
have not been addressed in this thesis. For example, grain boundaries tend to medi-
ate diffusion and thereby provide faster kinetics for hydrogen absorption. Together
with variations in nanoparticle size and shape, this makes every nanoparticle unique
in terms of its hydrogen absorption characteristics [12]. Another important aspect is
that the sensors need to operate over long periods of time in the very challenging en-
vironment we know as air. The sensors will be exposed to, for example, moisture and
reactive molecules such as CO that easily bind to the surface and block hydrogen uptake
and release. Oxidation is a similar issue. Some of these challenges can be tackled by
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embedding the nanoparticles in plastic using 3D printing techniques [177, 178] while CO
poisoning can be mitigated by alloying with Cu [7]. Long-term operation can, however,
be particularly challenging for multi-component alloys, since, for example, surface seg-
regation can occur over time, changing the response of the material to both hydrogen
exposure and light. Detailed atomic-scale understanding of the Pd—Au—-Cu-H system
is thus desirable, preferably in terms of both its thermodynamics [131] and its optical
properties at the nanoscale and in bulk. This is by no means an easy task, but hopefully
the work presented in this thesis can lead the way. The alloy at the end of the rainbow is

within reach.
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