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A B S T R A C T

Supervisory control theory provides means to synthesize supervisors for systems with discrete-event behavior
from models of the uncontrolled plant and of the control requirements. The applicability of supervisory
control theory often fails due to a lack of scalability of the algorithms. This paper proposes a format for
the requirements and a method to ensure that the crucial properties of controllability and nonblockingness
directly hold, thus avoiding the most computationally expensive parts of synthesis. The method consists of
creating a control problem dependency graph and verifying whether it is acyclic. Vertices of the graph are
modular plant components, and edges are derived from the requirements. In case of a cyclic graph, potential
blocking issues can be localized, so that the original control problem can be reduced to only synthesizing
supervisors for smaller partial control problems. The strength of the method is illustrated on two case studies:
a production line and a roadway tunnel.
. Introduction

The design of supervisors for systems with discrete-event behav-
or has become a challenge as they comprise growing numbers of
omponents to control and of functions to fulfill, at the same time
eing subject to market demands requiring verified safety, decreased
osts, and decreased time-to-market. Model-based systems engineering
ethodologies can help in overcoming these difficulties.

The supervisory control theory of Ramadge and Wonham (1987,
989) provides means to synthesize supervisors from a model of the un-
ontrolled plant and a model of the control requirements. This synthesis
tep, in which controllable events that lead to violations of require-
ents are disabled, guarantees by construction that the closed-loop

ehavior of the supervisor and the plant adheres to all requirements, is
ontrollable, nonblocking, and maximally permissive. In this context,
ontrollable means that only controllable events are disabled, and non-
locking that special (marked) system states remain reachable. That the
upervisor is maximally permissive means that it restricts the controlled
ehavior as little as absolutely necessary to fulfill the other properties.

It has been shown in Gohari and Wonham (2000) that synthesis is
P-hard, which means that any algorithm computing a supervisor will

n the worst case have exponential time and memory complexity. Thus,
upervisor synthesis is a tough problem. However, as was also noted
y Gohari and Wonham (2000), by observing real-world problems more
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closely one could discover instances of supervisory control problems
that are computationally easier. No suggestions were included in that
paper of what these instances might be or how to find them, though.

Analyzing a number of models of industrial-size applications, in-
cluding the recently published (Moormann et al., 2020; Reijnen et al.,
2018, 2017, 2020), one discovers that the synthesized supervisors do
not impose any additional restrictions on the system, i.e., the provided
set of requirement models is already sufficient to control the plant such
that the closed-loop behavior is controllable, nonblocking, and maxi-
mally permissive. That is, requirements do not disable uncontrollable
events and do not violate nonblocking. Therefore, time and computing
resources could have been saved, as the synthesis step turned out to be
unnecessary for these cases.

When developing the kind of large infrastructural systems consid-
ered in e.g. Moormann et al. (2020) and Reijnen et al. (2017, 2020),
due to their safety-criticality, engineers tend to follow a strictly struc-
tured development process based on failure mode analysis (Stamatis,
2003). This process includes decomposing the system into components,
resulting in a modular plant where no events are shared between
components. Furthermore, requirement specifications are formulated in
a specific way, where an actuator action is guarded by requirements
on the states of other components, typically sensors but also other
actuators. So the requirements models are formulated as state-based
expressions (Ma & Wonham, 2005; Markovski et al., 2010). As shown
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in this paper, this specific formulation is beneficial for supervisor
synthesis: it can be determined beforehand that synthesis will not
impose additional restrictions on the system. Thus, engineers of safety-
critical systems working with the specific formulation obtain a powerful
tool to gain confidence in the obtained supervisor. This is a crucial
aspect for the supervisory control theory, which after 30 years of aca-
demic research with impressive results, still has not gained wide-spread
industrial acceptance.

This paper takes a different approach compared to an often used
methodology in supervisory control synthesis, where particular struc-
tures of systems are used to ease synthesis and which are applicable
to any given discrete-event system model. Examples of such methods
include local modular synthesis (de Queiroz & Cury, 2000), incremental
synthesis (Brandin et al., 2004), compositional synthesis (Mohajerani
et al., 2014), and coordination control (Komenda et al., 2014). Ex-
perimenting with applying several of these synthesis methods directly
on the full models of Moormann et al. (2020) and Reijnen et al.
(2017) shows that applying the wrong algorithm is fatal in the sense
of running out of memory. Thus, knowing beforehand that synthesis is
not necessary will save computational time and effort.

This paper brings three contributions, all aimed at easing the syn-
thesis effort necessary for large-scale industrial supervisory control
problems. First, it is shown that if the plant is formulated modularly
and the requirements specifications are expressed in a way standard
to some engineering practices, and in addition follow some simple and
easily checked rules called CNMS (laid out in detail in Section 3), then
the synthesis step is altogether unnecessary : the plant and the requirement
models already form a controllable, nonblocking, and maximally per-
missive supervisor. Knowing this beforehand is a huge benefit, as for
such large-scale models state-of-the-art synthesis algorithms may take
a long time, or may even not be able to synthesize a supervisor at all
due to memory or time constraints.

However, the CNMS rules are rather conservative. Examples are
nown that do not fulfill the rules, but for which synthesis is still
ot necessary. Thus, the second contribution relaxes CNMS into RC-
MS. Dependencies between the modular plant models based on the

equirements are captured with a dependency graph (which does not
eed enumerating the actual state-space), where vertices relate to the
lant models and the edges to the requirement models. By analyzing
dependency graph, it can be determined for RCNMS rules whether

ynthesis will be necessary or not. If there are no cycles, then the
ynthesis step is unnecessary: the plant and the requirement models
lready form a controllable, nonblocking, and maximally permissive
upervisor. Note that, instead of using the more common suggestions
ound in the SCT literature to analyze the dependencies between plant
odels (e.g., shared events in Flordal and Malik (2009), Komenda et al.

2013)), the dependencies within the combined set of plant models
nd the requirement models is analyzed, as also suggested in Feng and
onham (2006) and Goorden et al. (2020).
In general, the dependency graph has cyclic parts, though. The third

ontribution of this paper shows that synthesis can then be section-
lized, so as to be performed only for those plant and requirement
odels that are involved in the strongly connected components of those

ycles. The other parts need no synthesis for the same reason as above.
his results in modular supervisors, where a collection of supervisors
ontrols the plant together. This contribution reduces the synthesis
ffort significantly, such that supervisors could now be synthesized for
ontrol problems where state-of-the-art synthesis algorithms fail (as
emonstrated in Section 8).

The proposed method is most effective for plant models that are
oosely coupled, often the result of using the input/output perspec-
ive (Balemi, 1992). Several case studies with real-life applications,
uch as Moormann et al. (2020) and Reijnen et al. (2018, 2017, 2020),
ave loosely coupled plant models, and experiments show that these
odels benefit greatly from the described approach. Even though some

ell-known examples (van der Sanden et al., 2015; Su et al., 2010; i

2

Wonham & Cai, 2019) are hard to fit in the presented framework, the
key point is that if a system is modeled with the specific formulation
described in this paper, then a reduction in synthesis effort can be
achieved.

This paper builds upon preliminary results published in Goorden
and Fabian (2019). While the CNMS model properties proposed in that
paper capture the essence of some models of industrial applications,
this paper generalizes the approach by providing relaxed conditions to
determine that synthesis is not necessary.

Related work is Feng and Wonham (2006), where inspiration is
taken from systems with shared resources, such as flexible manufac-
turing systems. In Feng and Wonham (2006), control-flow nets are
introduced to analyze dependencies in the system and subsequently
abstract away those parts of the system that will not contribute to
a potential blocking issue. Control-flow nets are defined for shuffle
systems with server and buffer specifications, which limits their appli-
cability. In this paper, a notion similar to a shuffle system for the plant
is used, while the specifications are in terms of state-based expressions,
see Ma and Wonham (2005) and Markovski et al. (2010). Nevertheless,
both works complement each other as they identify different classes of
discrete-event systems for which synthesis is easy.

The structure of this paper is as follows. In Section 2, the prelim-
inaries are provided. The CNMS properties as proposed in previous
work (Goorden & Fabian, 2019) are presented in Section 3, and it is
shown that for models satisfying these properties, synthesis is unnec-
essary. Section 4 introduces the dependency graph used to analyze the
control problems. In Section 5, the result is established that synthesis is
unnecessary when the dependency graph is acyclic. Section 6 extends
the analysis to cyclic dependency graphs to reduce the original control
problem into a set of smaller control problems. Sections 7 and 8 provide
two case studies, related to a production line and to a roadway tunnel,
to demonstrate the proposed analysis method. Section 9 concludes the
paper.

2. Preliminaries

This section provides a brief summary of concepts related to au-
tomata, supervisory control theory, and directed graphs relevant for
this paper. The concepts related to automata and supervisory control
theory are taken from Cassandras and Lafortune (2008) and Wonham
and Cai (2019). The concepts related to directed graphs are taken
from Diestel (2017).

2.1. Automata

An automaton is a five-tuple 𝐺 = (𝑄,𝛴, 𝛿, 𝑞0, 𝑄𝑚), where 𝑄 is the
(finite) state set, 𝛴 is the alphabet of events, 𝛿 ∶ 𝑄 × 𝛴 → 𝑄 the
partial transition function, 𝑞0 ∈ 𝑄 the initial state, and 𝑄𝑚 ⊆ 𝑄
the set of marked states. The alphabet 𝛴 = 𝛴𝑐 ∪ 𝛴𝑢 is partitioned
into two disjoint sets containing the controllable events (𝛴𝑐) and the
uncontrollable events (𝛴𝑢), and 𝛴∗ is the set of all finite strings of
events in 𝛴, including empty string 𝜀.

The notation 𝛿(𝑞, 𝜎)! denotes that there exists a transition from state
𝑞 ∈ 𝑄 labeled with event 𝜎, i.e., 𝛿(𝑞, 𝜎) is defined. The transition
function can be extended in a natural way to strings as 𝛿(𝑞, 𝜀) = 𝑞 for the
mpty string 𝜀, 𝛿(𝑞, 𝑠𝜎) = 𝛿(𝛿(𝑞, 𝑠), 𝜎) where 𝑠 ∈ 𝛴∗, 𝜎 ∈ 𝛴, and 𝛿(𝑞, 𝑠𝜎)!
f 𝛿(𝑞, 𝑠)! ∧ 𝛿(𝛿(𝑞, 𝑠), 𝜎)!. The language generated by the automaton 𝐺 is
(𝐺) = {𝑠 ∈ 𝛴∗

| 𝛿(𝑞0, 𝑠)!} and the language marked by the automaton
is 𝑚(𝐺) = {𝑠 ∈ (𝐺) | 𝛿(𝑞0, 𝑠) ∈ 𝑄𝑚}.
A path 𝑝 of an automaton is defined as a sequence of alternating

tates and events, i.e., 𝑞1𝜎1𝑞2𝜎2 … 𝜎𝑛−1𝑞𝑛𝜎𝑛𝑞𝑛+1 s.t. ∀𝑖 ∈ [1, 𝑛], 𝛿(𝑞𝑖, 𝜎𝑖) =

𝑖+1. A path can also be written in the infix notation 𝑞1
𝜎1
←←←←←←←←←←→ 𝑞2

𝜎2
←←←←←←←←←←→

𝜎𝑛−1
←←←←←←←←←←←←←←←←←←→ 𝑞𝑛

𝜎𝑛
←←←←←←←←←←→ 𝑞𝑛+1.

A state 𝑞 of an automaton is called reachable if there is a string 𝑠 ∈
∗ with 𝛿(𝑞0, 𝑠)! and 𝛿(𝑞0, 𝑠) = 𝑞. The automaton 𝐺 is called reachable
f every state 𝑞 ∈ 𝑄 is reachable. A state 𝑞 is coreachable if there is a
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string 𝑠 ∈ 𝛴∗ with 𝛿(𝑞, 𝑠)! and 𝛿(𝑞, 𝑠) ∈ 𝑄𝑚. The automaton 𝐺 is called
coreachable if every state 𝑞 ∈ 𝑄 is coreachable. An automaton is called
onblocking if every reachable state is coreachable. An automaton

is called trim if it is reachable and coreachable. Notice that a trim
automaton is nonblocking, but a nonblocking automaton may not be
trim, since it may have unreachable states.

An automaton is called strongly connected if from every state all
other states can be reached, i.e., ∀𝑞1, 𝑞2 ∈ 𝑄,∃𝑠 ∈ 𝛴∗ s.t. 𝛿(𝑞1, 𝑠) = 𝑞2,
ee Ito (1978).

Two automata can be combined by synchronous composition.

efinition 1. Let 𝐺1 = (𝑄1, 𝛴1, 𝛿1, 𝑞0,1, 𝑄𝑚,1), 𝐺2 = (𝑄2, 𝛴2, 𝛿2, 𝑞0,2,
𝑄𝑚,2) be two automata. The synchronous composition of 𝐺1 and 𝐺2 is
defined as

𝐺1 ∥ 𝐺2 = (𝑄1 ×𝑄2, 𝛴1 ∪ 𝛴2, 𝛿1∥2, (𝑞0,1, 𝑞0,2), 𝑄𝑚,1 ×𝑄𝑚,2)

where

𝛿1∥2((𝑥1, 𝑥2), 𝜎) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(𝛿1(𝑥1, 𝜎), 𝛿2(𝑥2, 𝜎)) if 𝜎 ∈ 𝛴1 ∩ 𝛴2, 𝛿1(𝑥1, 𝜎)!, and 𝛿2(𝑥2, 𝜎)!
(𝛿1(𝑥1, 𝜎), 𝑥2) if 𝜎 ∈ 𝛴1 ⧵ 𝛴2 and 𝛿1(𝑥1, 𝜎)!
(𝑥1, 𝛿2(𝑥2, 𝜎)) if 𝜎 ∈ 𝛴2 ⧵ 𝛴1 and 𝛿2(𝑥2, 𝜎)!
undefined otherwise.

Synchronous composition is associative and commutative up to reo-
rdering of the state components in the composed state set.

A composed system  is a collection of automata, i.e.,  = {𝐺1,
… , 𝐺𝑚}. The synchronous composition of a composed system , de-
noted by ∥ , is defined as ∥  = 𝐺1 ∥ … ∥ 𝐺𝑚, and the synchronous
composition of two composed systems 1 ∥ 2 is defined as ∥ (1 ∪ 2).
A composed system  = {𝐺1,… , 𝐺𝑚} is called a product system if the
alphabets of the automata are pairwise disjoint, i.e., ∀𝑖, 𝑗 ∈ [1, 𝑚], 𝑖 ≠
𝑗, 𝛴𝑖 ∩ 𝛴𝑗 = ∅ (Ramadge & Wonham, 1989).

Finally, let 𝐺 and 𝐾 be two automata with the same alphabet 𝛴. 𝐾
is said to be controllable with respect to 𝐺 if, for every string 𝑠 ∈ 𝛴∗ and
𝑢 ∈ 𝛴𝑢 such that 𝛿𝐾 (𝑞0,𝐾 , 𝑠)! and 𝛿𝐺(𝑞0,𝐺 , 𝑠𝑢)!, it holds that 𝛿𝐾 (𝑞0,𝐾 , 𝑠𝑢)!.

2.2. Supervisory control theory

The objective of supervisory control theory (Cassandras & Lafor-
tune, 2008; Ramadge & Wonham, 1987, 1989; Wonham & Cai, 2019)
is to design an automaton called a supervisor which function is to
dynamically disable controllable events so that the closed-loop system
of the plant and the supervisor obeys some specified behavior. More
formally, given a plant model 𝑃 and requirement model 𝑅, the goal is to
synthesize supervisor 𝑆 that adheres to the following control objectives.

• Safety : all possible behavior of the closed-loop system 𝑃 ∥ 𝑆
should always satisfy the imposed requirements, i.e., (𝑃 ∥ 𝑆) ⊆
(𝑃 ∥ 𝑅).

• Controllability : uncontrollable events may never be disabled by
the supervisor, i.e., 𝑃 ∥ 𝑆 is controllable with respect to 𝑃 .

• Nonblockingness: the closed-loop system should be able to reach a
marked state from every reachable state, i.e., 𝑃 ∥ 𝑆 is nonblock-
ing.

• Maximal permissiveness: the supervisor does not restrict more be-
havior than strictly necessary to enforce safety, controllability,
and nonblockingness, i.e., for all other supervisors 𝑆′ it holds that
(𝑃 ∥ 𝑆′) ⊆ (𝑃 ∥ 𝑆).

Monolithic supervisory control synthesis results in a single supervisor
𝑆 from a single plant model and a single requirement model (Ramadge
& Wonham, 1987). There may exist multiple automata representations
of the safe, controllable, nonblocking, and maximally permissive super-
visor. Without loss of generality it is assumed that 𝑆 = 𝑃 ∥ 𝑆. When the
plant model and the requirement model are given as a composed system
 and , respectively, the monolithic plant model 𝑃 and requirement
3

Fig. 1. An example of the synchronous composition of an automaton and a state-event
invariant expression. In this and subsequent figures, (marked) locations are depicted
with (concentric) circles, the initial location with an incoming arrow, and transitions
with labeled edges.

model 𝑅 are obtained by performing the synchronous composition of
the models in the respective composed system.

For the purpose of supervisor synthesis, requirements can be mod-
eled with automata and state-based expressions (Ma & Wonham, 2005;
Markovski et al., 2010). The latter is useful in practice, as some control
engineers tend to formulate requirements based on states of the plant.
To refer to states of the plant, the notation 𝑃 .𝑞 is introduced that refers
to state 𝑞 of plant 𝑃 . State references can be combined with the Boolean
iterals 𝐓 and F and logic connectives to create predicates.

In this paper, state-event invariant expressions are considered. A
state-event invariant expression formulates conditions on the enablement
of an event based on states of the plant, i.e., the condition should
evaluate to true for the event to be enabled. A state-event invariant
expression is of the form 𝜎 𝐧𝐞𝐞𝐝𝐬 𝐶 where 𝜎 is an event and 𝐶 a
predicate stating the condition. In general, event 𝜎 can be a controllable
or an uncontrollable event. Let 𝑅 be a state-event invariant expression,
then 𝑒𝑣𝑒𝑛𝑡(𝑅) returns the event used in 𝑅 and 𝑐𝑜𝑛𝑑(𝑅) returns the
condition predicate. The synchronous composition of a plant 𝑃 with
a state-event invariant expression 𝑅, denoted with 𝑃 ∥ 𝑅, is defined by
altering the transition function 𝛿.

Definition 2. Let 𝑃 = (𝑄,𝛴, 𝛿, 𝑞0, 𝑄𝑚) and 𝑅 = 𝜇 𝐧𝐞𝐞𝐝𝐬 𝐶. Then the
synchronous composition of 𝑃 and 𝑅 is defined as

𝑃 ∥ 𝑅 = (𝑄,𝛴, 𝛿′, 𝑞0, 𝑄𝑚)

where 𝛿′(𝑞, 𝜎) = 𝛿(𝑞, 𝜎), unless 𝜎 = 𝜇 and 𝐶
|𝑃 .𝑞 = 𝐅, where 𝐶

|𝑃 .𝑞
indicates that all state references 𝑃 .𝑞 in 𝐶 are substituted by 𝐓 and
all state references 𝑃 .𝑟, 𝑟 ∈ 𝑄, 𝑟 ≠ 𝑞 in 𝐶 replaced by 𝐅. In the latter
case 𝛿′(𝑞, 𝜎) is undefined.

An example to illustrate the synchronous composition between an
automaton and a state-event invariant expression is provided in Fig. 1.
This definition can be easily extended to a set of state-event invariant
expressions  = {𝑅1,… , 𝑅𝑛}.

Given a composed system representation of the plant  = {𝑃1,… ,
𝑃𝑚} and a collection of requirements  = {𝑅1,… , 𝑅𝑛}, the tuple ( ,)
is defined as the control problem for which a supervisor needs to be
synthesized. The following assumptions are made about this control
problem:

•  ≠ ∅, while  can be the empty set.
• For all 𝑃 ∈  , it holds that 𝑃 is an automaton where 𝑄𝑃 and 𝛴𝑃

are nonempty.
• For all 𝑅 ∈ , it holds that

– if 𝑅 is an automaton, then 𝑄𝑅 and 𝛴𝑅 are nonempty, and
𝛴𝑅 ⊆ 𝛴 where 𝛴 =

⋃

𝑃∈ 𝛴𝑃 ,
– if 𝑅 is a state-event invariant expression, then 𝑒𝑣𝑒𝑛𝑡(𝑅) ∈

𝛴 , and for each state reference 𝑃 .𝑞 in 𝑐𝑜𝑛𝑑(𝑅) it holds that
𝑃 ∈  and 𝑞 ∈ 𝑄𝑃 .

Modular supervisory control synthesis uses the fact that often the
desired behavior is specified with a collection of requirements  (Won-
ham & Ramadge, 1988). Instead of first transforming the collection of
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requirements into a single requirement, as monolithic synthesis does,
modular synthesis calculates for each requirement a supervisor based
on the plant model. In other words, given a control problem ( ,)
with  = {𝑅1,… , 𝑅𝑛}, modular synthesis solves 𝑛 control problems
( , {𝑅1}),… , ( , {𝑅𝑛}). Each control problem ( , {𝑅𝑖}) for 𝑖 ∈ [1, 𝑛]
results in a safe, controllable, nonblocking, and maximally permissive
supervisor 𝑆𝑖. The collection of supervisors  = {𝑆1,… , 𝑆𝑛} can be
conflicting, i.e., 𝑆1 ∥ … ∥ 𝑆𝑛 can be blocking. A nonconflicting check
can verify whether  is nonconflicting (Mohajerani et al., 2016). In the
case that  is nonconflicting,  is also safe, controllable, nonblocking,
and maximally permissive for the original control problem ( ,). In
the case that  is conflicting, an additional coordinator 𝐶 can be
synthesized such that  ∪ {𝐶} is safe, controllable, nonblocking, and
maximally permissive for the original control problem ( ,) (Su et al.,
2009).

2.3. Directed graphs

Definitions and notations of directed graphs are taken from Diestel
(2017). A directed graph is a tuple (𝑉 ,𝐸) of sets of vertices 𝑉 (or nodes)
and edges 𝐸 (or arcs), together with two functions init ∶ 𝐸 → 𝑉 and
ter ∶ 𝐸 → 𝑉 . The function init assigns to each edge 𝑒 an initial vertex
init(𝑒) and the function ter assigns to each edge 𝑒 a terminal vertex
ter(𝑒). An edge 𝑒 is said to be directed from vertex init(𝑒) to vertex ter(𝑒).
If init(𝑒) = ter(𝑒), the edge 𝑒 is called a loop. A directed graph is called
self-loop free if no edge is a loop. A directed graph 𝐺′ = (𝑉 ′, 𝐸′) is a
subgraph of 𝐺 = (𝑉 ,𝐸), denoted by 𝐺′ ⊆ 𝐺, if 𝑉 ′ ⊆ 𝑉 and 𝐸′ ⊆ 𝐸.

A path in directed graph 𝐺 = (𝑉 ,𝐸) is a sequence of its vertices
𝑝 = 𝑥0𝑥1 … 𝑥𝑘, 𝑘 ≥ 0 such that for each step 𝑖 ∈ [0, 𝑘 − 1] there exists
an edge 𝑒𝑖 ∈ 𝐸 with init(𝑒𝑖) = 𝑥𝑖 and ter(𝑒𝑖) = 𝑥𝑖+1. The path 𝑝 is also
called a path from 𝑥0 to 𝑥𝑘. Two paths 𝑝1 = 𝑥0 … 𝑥𝑘 and 𝑝2 = 𝑦0 … 𝑦𝑙
can be concatenated into path 𝑝1𝑝2 = 𝑥0 … 𝑥𝑘 … 𝑦𝑙 if 𝑥𝑘 = 𝑦0. A cycle is
a path 𝑐 = 𝑥0 … 𝑥𝑘𝑥0 with 𝑘 ≥ 1, i.e., a cycle is a path from 𝑥0 to itself
with at least one other vertex along the path (a loop is not considered
to be a cycle). A directed graph is called cyclic if it contains a cycle,
otherwise it is called acyclic.

A directed graph is called strongly connected if there is a path
between each pair of vertices. A strongly connected component of a
directed graph is a maximal strongly connected subgraph.

3. Skipping synthesis for models with CNMS properties

This section describes first some characteristics of several appli-
cations where synthesis does not add any restrictions besides those
implied by the requirements. Then, it provides properties that guar-
antee controllable, nonblocking, and maximally permissive supervisors
that are together nonconflicting.

3.1. Characteristics of models

First, as the supervisors synthesized for the applications presented
in Reijnen et al. (2018, 2017, 2020) are intended to be implemented
on control hardware, the input–output perspective of Balemi (1992)
is used. This entails that each sensor is modeled by uncontrollable
events, while actuators are modeled by controllable events. Each event
represents a change of the state of such a component. This modeling
paradigm results in a collection of numerous small plant models that
do not share any events. Therefore, the plant model is a product system.

In the rest of this paper, an automaton is called a sensor automaton if
its alphabet has only uncontrollable events, i.e., 𝛴 = 𝛴𝑢, and an actuator
automaton if its alphabet has only controllable events, i.e., 𝛴 = 𝛴𝑐 .

Second, both sensors and actuators have cyclic behavior, often
resulting in a trim and strongly connected plant model. For example,
all sensors and actuators are modeled in this way in the production
line in Reijnen et al. (2018). Furthermore, unreachable states in an
uncontrolled plant represent states that are impossible to reach and are

often not modeled or removed from the model.

4

Finally, requirements for applications often originate from safety
risk analysis (Modarres, 2016) and failure mode and effect analy-
sis (Stamatis, 2003). States are identified in which some actuator
actions would result in unsafe behavior. For example, the safety speci-
fications of a waterway lock that need to be fulfilled by the supervisor
are mentioned in Section 4.191 of Rijkswaterstaat (2015). Each of
the 16 requirements given over there describes a state of the system
and the disablement of certain actuator actions for that state. It is
shown in Reijnen et al. (2017) that these textual specifications can be
described with state-event invariant expressions.

3.2. Properties

The following properties together guarantee that the control prob-
lem itself is a modular globally controllable and nonblocking system.

Definition 3 (CNMS). A control problem ( ,) satisfies CNMS (Con-
trollable and Nonblocking Modular Supervisors properties) if it has the
following properties:

1.  is a product system.
2. For all 𝑃 ∈  holds that 𝑃 is a strongly connected automaton

with at least one marked state.
3. For all 𝑅 ∈  holds

a. 𝑅 is a state-event invariant expression 𝜇 𝐧𝐞𝐞𝐝𝐬 𝐶.
b. 𝜇 ∈ 𝛴𝑐 .
c. There exists no other requirement for this event 𝜇.
d. 𝐶 is in a disjunctive normal form (see Davey and Priestley

(1990)) where each atomic proposition (or variable) is of
the form 𝑃 .𝑞 with 𝑃 ∈  .

e. Each conjunction contains at most one reference to each
𝑃 ∈  .

f. When 𝑃 ∈  only has a single state, the literal ¬𝑃 .𝑞 is not
allowed in 𝐶.

g. Each 𝑃 ∈  mentioned in 𝐶 is a sensor automaton.

The intuition behind the fact that a system satisfying CNMS is
controllable and nonblocking is as follows. Properties 1 and 2 ensure
that the plant is already nonblocking in the open loop setting, i.e. with-
out controller, and exhibits cyclic behavior. Furthermore, they ensure
that individual plant models behave independently of the other plant
models, i.e. an individual plant model can take a transition while the
state of each of the other plant models remains the same.

Requirements satisfying Property 3 will not introduce blocking or
controllability issues. There is no controllability issue, as there may
not exist a requirement restricting the enablement of uncontrollable
events. The reason why the controlled system is still nonblocking can
be explained as follows. First, a sensor automaton can always go to
a marked state with Properties 1, 2 and 3.b. For a plant automaton
with one or more controllable events, it is known from Properties 1
and 2 that from each state there exists a path to a marked state. For
any controllable event along the path that is being restricted by a
requirement, the condition of that requirement needs to be satisfied
for the enablement of the controllable event. As only states of sensor
automata are used in a condition and sensor automata can always reach
each state without affecting other plant models, there exists a path in
the sensor automata to satisfy the condition and subsequently enable
the controllable event. By repeating the process of locally changing
states in sensor automata, non-sensor automata can reach marked states
if the requirements act as the supervisor.

The following theorem states that for a control problem satisfying
CNMS synthesis can be skipped, i.e., the plant models and requirement
models together already form controllable and nonblocking modular
supervisors. In that case, the modular supervisor represented by the
plant models and requirement models is by definition also maximally
permissive. The proof of this theorem can be found in Appendix A.
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Fig. 2. The dependency graph 𝐺𝑐𝑝 of control problem ({𝑃1 , 𝑃2 , 𝑃3}, {𝑅}) with 𝑅 =
𝐧𝐞𝐞𝐝𝐬 𝑃2 .𝑞1 ∨ ¬𝑃3 .𝑞1 and 𝜇 ∈ 𝛴𝑃1

. This graph has three vertices 𝑃1 , 𝑃2, and 𝑃2 and
wo edges 𝑒1 and 𝑒2.

heorem 1 (CNMS Goorden & Fabian, 2019). Let ( ,) be a con-
rol problem satisfying CNMS. Then no supervisor synthesis is necessary,
.e.,  ∥  is controllable and nonblocking, hence also maximally permis-
ive.

. Dependency graphs of control problems

As indicated in Goorden and Fabian (2019), there exist published
ontrol problems that do not satisfy CNMS, but still do not require
ynthesis. In this section, the CNMS properties are relaxed.

.1. Observations from models

The main reason the control problems of Reijnen et al. (2018,
017, 2020) do not satisfy the CNMS properties is the violation of
roperty 3.g. In these control problems, there exist requirements that
estrict the behavior of controllable events based on the behavior of
lant models other than sensor automata, which in turn may also be
estricted by other requirements. Several causes of this violation are
escribed below.

As pointed out in Zaytoon and Carre-Meneatrier (2001), it may be
esired to model the physical interaction between actuator and sensor
omponents, because a supervisor that is proven to be deadlock-free for
model without interactions may deadlock after implementation on the
hysical system with interactions. Adding shared events to model the
nteractions will violate Property 1, as it is no longer a product system.
ransforming this new model into a product system representation, the
ctuator and sensor models are combined into one due to the shared
vents. Therefore, requirements no longer refer only to states of sensor
utomata (violating Property 3.g).

Second, sometimes a requirement needs to refer explicitly to the
tate of an actuator to guarantee correct behavior of the system. For
xample, consider a hydraulic arm that has one actuator to extend it
nd one actuator to retract it. In this case, the modeler could express
hat it is undesired that both actuators are on at the same time, resulting
n two requirements each expressing that one actuator may only be
ctivated if the other actuator is deactivated.

Finally, timer-based requirements violate Property 3.g. A timer
s typically modeled with a controllable event to activate it and an
ncontrollable event to indicate the timeout of the timer. Therefore,
he model of a timer is neither a sensor automaton nor an actuator
utomaton. If a timer is needed, typically two requirements associated
ith it express when it can be activated (the controllable events of

he timer model are used) and what should happen when the timer
as timed out (the state of the timer model is used). Service calls
n a server–client architecture are modeled in the same way, see for
xample (Loose et al., 2018), where service calls are modeled with
ontrollable events and responses with uncontrollable events.

.2. Dependency graph

Control problems ( ,) satisfying all properties of CNMS except
roperty 3.g are called to satisfy the Relaxed Controllable and Non-
locking Modular Supervisors properties (RCNMS). For control prob-
ems satisfying CNMS or RCNMS, a directed graph can be constructed
5

Fig. 3. A dependency graph 𝐺𝑐𝑝 of a control problem with five plant models satisfying
CNMS where 𝑃4 and 𝑃5 are sensor automata.

ndicating the dependencies between plant models from  based on
he requirement models from . In this directed graph, each vertex
epresents a plant model from the control problem. For each require-
ent in the control problem, a set of edges is present in the graph

uch that the initial vertex of each edge is the plant model containing
he event that is restricted by the requirement. Furthermore, for each
lant model used in the condition of the requirement there is an edge
aving this plant model as terminating vertex. For example, consider
he control problem ({𝑃1, 𝑃2, 𝑃3}, {𝑅}) with 𝑅 = 𝜇 𝐧𝐞𝐞𝐝𝐬 𝑃2.𝑞1 ∨ ¬𝑃3.𝑞1

and 𝜇 ∈ 𝛴𝑃1 . The dependency graph of this control problem is shown in
Fig. 2. It has three vertices 𝑃1, 𝑃2 and 𝑃3. For requirement 𝑅, two edges
𝑒1 and 𝑒2 are present such that init(𝑒1) = init(𝑒2) = 𝑃1, as the restricted
vent of 𝑅 originates from 𝑃1, ter(𝑒1) = 𝑃2, as 𝑃2 is mentioned in the
ondition of 𝑅, and ter(𝑒2) = 𝑃3, as 𝑃3 is mentioned in the condition of
. This example also shows that there may be multiple, but isomorphic,
ependency graphs for the same control problem.

More formally, let the dependency graph of control problem ( ,)
e a directed graph 𝐺𝑐𝑝 = ( , 𝐸) s.t. ∀𝑅 ∈  a set of edges 𝐸𝑅 ⊆ 𝐸 is
onstructed s.t. ∀𝑒 ∈ 𝐸𝑅, init(𝑒) = 𝑃𝑖 ∈  ∧ 𝑒𝑣𝑒𝑛𝑡(𝑅) ∈ 𝛴𝑃𝑖 , and ∀𝑃𝑗 ∈ 

used in 𝑐𝑜𝑛𝑑(𝑅) ∃𝑒 ∈ 𝐸𝑅 with ter(𝑒) = 𝑃𝑗 , and finally 𝐸 =
⋃

𝑅∈ 𝐸𝑅.
A control problem satisfying CNMS results in an acyclic bipartite

dependency graph.

5. Skipping synthesis with dependency graphs

Fig. 3 shows the dependency graph of a control problem satisfying
RCNMS, but not CNMS. Plant models 𝑃2 and 𝑃3 have both incoming
and outgoing edges, which indicate that the enablement of one or more
events in each plant model is restricted by a requirement and that
one or more states of each plant model are used in the condition of
a requirement. Therefore, this model does not satisfy Properties 3.g of
CNMS. This example demonstrates why the control problem underlying
this graph still requires no synthesis.

For the CNMS property, it is shown with Theorem 1 that, essen-
tially, no edge is permanently disabled. As the properties ensure that in
a controlled system each sensor automaton can always reach each state,
the condition of each state-event invariant expression can be eventually
satisfied, enabling the controllable event of each state-event invariant
expression. Therefore, each non-sensor plant model can reach all states
from each state.

This argument can be used inductively to show that a control
problem satisfying RCNMS still requires no synthesis. As the behavior
of plants 𝑃2 and 𝑃3 in Fig. 3 only depends on sensor plants 𝑃4 and 𝑃5,
it holds that 𝑃2 and 𝑃3 can reach all states from each state. Since the
behavior of 𝑃1 only depends on the plant models 𝑃2, 𝑃3, and 𝑃5, and it
is already known that all these models can reach all states from each
state, it can conclude that 𝑃1 also can reach all states from each state.
Therefore, the complete control problem is controllable, nonblocking,
and maximally permissive. This is formalized in Theorem 2. The proof
of this theorem can be found in Appendix B. The result of this theorem
is that if a control problem satisfies RCNMS, then no synthesis is
needed.
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Fig. 4. Both control problems 𝐶𝑃 1 = ({𝑃1 , 𝑃2}, {𝑅1 , 𝑅2}) and 𝐶𝑃 2 = ({𝑃1 , 𝑃2}, {𝑅3 , 𝑅4})
result in cyclic dependency graphs, but the first contains a blocking issue while the
second one does not.

Theorem 2 (Acyclic RCNMS). Let ( ,) be a control problem satisfying
RCNMS. If the dependency graph 𝐺𝑐𝑝 of ( ,) is acyclic and self-loop
free, then  ∥  is controllable and nonblocking, hence also maximally
permissive.

6. Sectionalizing control problems

For the case that a dependency graph is cyclic, supervisory con-
trol synthesis may be needed as  ∥  could be blocking. Fig. 4
shows two control problems 𝐶𝑃 1 = ({𝑃1, 𝑃2}, {𝑅1, 𝑅2}) and 𝐶𝑃 2 =
({𝑃1, 𝑃2}, {𝑅3, 𝑅4}), both based on the same set of plant models {𝑃1, 𝑃2}.
Those control problems result in the same cyclic dependency graph.
However, 𝐶𝑃 1 is blocking, while 𝐶𝑃 2 is nonblocking.

Similarly, a dependency graph with a self-loop might also indicate
that  ∥  is blocking. Consider again control problem 𝐶𝑃 1, but now
requirement 𝑅2 is replaced by 𝑑 𝐧𝐞𝐞𝐝𝐬 𝑃2.𝑞3. This results in a self-loop
in the dependency graph and the control problem is blocking. Yet, if
requirement 𝑅2 is replaced by 𝑑 𝐧𝐞𝐞𝐝𝐬 𝑃2.𝑞4, the dependency graph still
has a self-loop, but the control problem is nonblocking.

So, a dependency graph containing cycles or self-loops may or
may not require synthesis to obtain a controllable, nonblocking, and
maximally permissive supervisor. In the remainder of this section it is
shown that in case of a cyclic dependency graph the original control
problem can be reduced to partial control problems containing the
cycles.

6.1. Control problem reduction

From the dependency graph, all strongly connected components
containing a cycle are identified. For each strongly connected com-
ponent, the set of vertices (plant models) is denoted by 𝜙, and the
collection of these sets is denoted by 𝛷 = {𝜙1,… , 𝜙𝑚}. From the
definition of strongly connected components, it follows that they are
non-overlapping. Fig. 5 shows control problem 𝐶𝑃 , with its dependency
graph 𝐺𝐶𝑃 shown in Fig. 6. 𝐺𝐶𝑃 contains two cycles 𝑐1 = 𝑃1𝑃2𝑃1 and
𝑐2 = 𝑃3𝑃4𝑃3, and the strongly connected components of these two cycles
are 𝜙1 = {𝑃1, 𝑃2} and 𝜙2 = {𝑃3, 𝑃4}.

This example also shows plants whose behavior depends on the
behavior of these strongly connected components. Requirement 𝑅5
restricts the behavior of component model 𝑃5 based on the behavior of
component models 𝑃2 and 𝑃3. In this example, a supervisor is needed, as
any synthesized supervisor for requirements 𝑅1, 𝑅2, 𝑅3, and 𝑅4 would
make states 𝑃2.𝑞4 and 𝑃3.𝑞6 unreachable in the closed-loop system, and
therefore requirement 𝑅5 never enables event 𝑗. A supervisor is needed
to disable event 𝑖 to prevent component 𝑃5 from being blocked in state
𝑞10. Therefore, it is insufficient to only analyze the strongly connected
components in isolation.

As a next step, vertices are added recursively to these strongly
connected components. A vertex is added to a set of vertices if there
exists an edge such that this edge originates in this added vertex and
terminates in one of the vertices already in the set. Eventually, the
strongly connected component is enlarged with those vertices from
6

Fig. 5. A control problem 𝐶𝑃 = ({𝑃1 ,… , 𝑃6}, {𝑅1 ,… , 𝑅6}).

Fig. 6. The dependency graph of the control problem shown in Fig. 5.

which there exists a path to a vertex in the strongly connected compo-
nent. Formally, the extended set of vertices for each strongly connected
component with a cycle 𝜙𝑖, denoted by 𝑉𝜙𝑖 , is defined as 𝑉𝜙𝑖 = {𝑃 ∈

| ∃𝑝 = 𝑥0𝑥1 … 𝑥𝑘, 𝑘 ≥ 0, 𝑝 ∈ 𝑃𝑎𝑡ℎ(𝐺𝐶𝑃 ) s.t. 𝑥0 = 𝑃 ∧𝑥𝑘 ∈ 𝜙𝑖}, and V =
𝑉𝜙1 ,… , 𝑉𝜙𝑚}, with 𝑃𝑎𝑡ℎ(𝐺𝐶𝑃 ) the set of all paths in 𝐺𝐶𝑃 . The extended
ets of vertices for the example are calculated as 𝑉𝜙1 = {𝑃1, 𝑃2, 𝑃5, 𝑃6}
nd 𝑉𝜙2 = {𝑃3, 𝑃4, 𝑃5, 𝑃6}.

Still, it is insufficient to only analyze each extended vertex set 𝑉𝜙𝑖 .
wo extended vertex sets may share vertices. This sharing could be
roblematic. In the running example, 𝑉𝜙1 and 𝑉𝜙2 share vertices 𝑃5 and
6.

Shared vertices between extended sets 𝑉𝜙𝑖 and 𝑉𝜙𝑗 will not always
mply that it is necessary to analyze the partial control problem repre-
ented by 𝑉𝜙𝑖 ∪𝑉𝜙𝑗 . Sometimes, it is still sufficient to analyze the partial
ontrol problems of 𝑉𝜙𝑖 and 𝑉𝜙𝑗 separately. For the control problem
𝑃 of Fig. 5, 𝑉𝜙1 and 𝑉𝜙2 should be combined, as the edges 𝑒5 and
6 relate to the same requirement 𝑅5. The evaluation of the condition
f requirement 𝑅5 requires the result of the analysis of both strongly
onnected components 𝜙1 and 𝜙2. If requirement 𝑅5 is replaced by,
or example, the two requirements 𝑅′

5 ∶ 𝑗 𝐧𝐞𝐞𝐝𝐬 𝑃2.𝑞4 and 𝑅′′
5 ∶

𝐧𝐞𝐞𝐝𝐬 𝑃3.𝑞6, the extended sets 𝑉𝜙𝑖 and 𝑉𝜙𝑗 do not need to be merged
or analyzing the cycles. While the dependency graph remains the same,
dges 𝑒5 and 𝑒6 are now induced by different requirements.

Unfortunately, the above reasoning cannot be generalized. The
ontrol problem in Fig. 5 is modified again. An additional transition
s added to plant model 𝑃5 from state 𝑞10 to 𝑞9 labeled with 𝑗′.

Requirement 𝑅5 is replaced by two requirements 𝑅′
5 ∶ 𝑗 𝐧𝐞𝐞𝐝𝐬 𝑃2.𝑞4

and 𝑅′′ ∶ 𝑗′ 𝐧𝐞𝐞𝐝𝐬 𝑃 .𝑞 . Again, the dependency graph in Fig. 6
5 3 6
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remains unchanged. The controllable, nonblocking, and maximally
permissive supervisor 𝑆1 synthesized for the partial control prob-
lem ({𝑃1, 𝑃2, 𝑃5, 𝑃6}, {𝑅1, 𝑅2, 𝑅′

5, 𝑅6}) would disable the transition la-
eled with event 𝑗, and the controllable, nonblocking, and maximally
ermissive supervisor 𝑆2 synthesized for the partial control problem
{𝑃3, 𝑃4, 𝑃5, 𝑃6}, {𝑅3, 𝑅4, 𝑅′′

5 , 𝑅6}) would disable the transition labeled
ith event 𝑗′. Now, 𝑆1 ∥ 𝑆2 is blocking, because plant 𝑃5 deadlocks in

tate 𝑞10, as the supervisors together disable both event 𝑗 and event 𝑗′.
Therefore, two extended sets of vertices need to be merged once

hey share a vertex. Let ∼ ⊆ V ×V be a relation between extended sets
f vertices. (𝑉𝜙𝑖 , 𝑉𝜙𝑗 ) ∈ ∼ if and only if 𝑉𝜙𝑖 ∩ 𝑉𝜙𝑗 ≠ ∅, i.e., they share
t least one vertex, or (𝑉𝜙𝑖 , 𝑉𝜙𝑘 ) ∈ ∼ and (𝑉𝜙𝑘 , 𝑉𝜙𝑗 ) ∈ ∼ for some 𝑉𝜙𝑘 ,

i.e., they share a vertex with a common extended set of vertices. From
this definition, it follows directly that ∼ is an equivalence relation, as
it is reflexive, symmetric, and transitive.

Now, the partition W of V is the set of all equivalence classes of V
with equivalence relation ∼, i.e., W = V∕ ∼ is the quotient set of V by
∼. For the example shown in Fig. 6, the partition W is {{𝑃1,… , 𝑃6}}.

A simplified partial control problem (𝑃 ′
𝑠 , 𝑅̃𝑠) represented by a subset of

ertices 𝑃 ′
𝑠 ⊆  is constructed as follows. First, 𝑅′

𝑠 = {𝑅 ∈  | ∃𝑃 ∈
′
𝑠 s.t. 𝑒𝑣𝑒𝑛𝑡(𝑅) ∈ 𝛴𝑃 }. Subsequently, the condition of each requirement
n this set is adjusted where each literal containing reference to a state
f a plant not in 𝑃 ′

𝑠 is replaced by the boolean literal 𝐓, resulting in the
et of adjusted requirements 𝑅̃𝑠.

Theorem 3 contains the main result of this section: based on the
ependency graph, synthesizing a supervisor can be performed fol-
owing a modular approach which guarantees (global) controllability,
onblockingness, and maximal permissiveness. This theorem can be
sed to reduce the computational complexity of supervisor synthesis.
he proof of this theorem can be found in Appendix C.

heorem 3 (Cyclic RCNMS). Let ( ,) be a control problem satisfying
CNMS and let 𝐺𝑐𝑝 be its dependency graph. For each 𝑊 ∈ W, let 𝑆𝑊
e a controllable, nonblocking, and maximally permissive supervisor for
he simplified partial control problem represented by ⋃

𝑉 ∈𝑊 𝑉 . Then  ∥
∥ (∥𝑊 ∈W 𝑆𝑊 ) is a modular, controllable, nonblocking, and maximally

ermissive supervisor of ( ,).

Theorem 3 shows for which partial control problems synthesis might
till be needed and for which part of the system no synthesis is needed.
n the worst-case situation, the original control problem is the only
ingle equivalence class in W and no reduction can be achieved with
he presented method. Sections 7 and 8 show that there exist industrial
ystems for which the control problem can be reduced. There are two
ptions available for those partial control problems that might need
ynthesis: either synthesize a supervisor with an existing synthesis
lgorithm, like monolithic (Ramadge & Wonham, 1989), composi-
ional (Mohajerani et al., 2014), and incremental synthesis (Brandin
t al., 2004), or reason with an additional method that synthesis is still
ot needed (as it is known for the case studies in Reijnen et al. (2018,
017, 2020) that no synthesis is needed). The second option is left open
or future work.

. Case study 1: FESTO production line

In this section, the proposed method is demonstrated with a case
tudy. For this case study, a small-scale production line consisting of
ix workstations has been considered, see Fig. 7. The hardware of
he system is produced by Festo Didactic for vocational training in
he field of industrial automation. This system has been previously
odeled in Reijnen et al. (2018). In the remainder of this section,

irst a description of this production line is provided. Subsequently,
wo workstations in isolation are analyzed to demonstrate Theorems 1
nd 2. Finally, the complete production line is analyzed to demonstrate

heorem 3.

7

Fig. 7. Overview of the FESTO production line.

7.1. Case description

While no real production is taking place, all movements, velocities,
and timings are as if it were. In total, the production line consists of
28 actuators, like DC motors and pneumatic cylinders, and 59 sensors,
like capacitive, optical, and inductive ones.

The intended controlled behavior is as follows. Products enter the
production line through the distribution station where they have been
placed in three storage tubes. For each storage tube, a pusher is able
to release a new product. The second workstation, the handling station,
transports products from the distribution station to the testing station
in two steps. First, a pneumatic gripper transports released products
to an intermediate buffer. From this buffer, a transfer cylinder picks
them up and places them in the testing station where the product
height is tested. Correct products are moved by an air slide to the next
station while rejected products are stored in a local buffer. In the fourth
station, the buffering station, products can be held on a conveyor belt. A
separator controls the release of products from the conveyor belt. At the
next station, the processing station, products are processed. A turntable
with six places rotates products through this station. After entering the
processing station, the product is moved to a testing location where
the orientation of the product is checked. Subsequently, at the next
location a hole is drilled in the product only if the orientation is correct.
At the fourth location, processed products are ejected to the sorting
station. The last two locations can be used to correct the orientation
if needed, and in that case the product can be processed again. In the
final workstation, the sorting station, products are stored on one of the
three slides, depending on color and the material of the product. Two
pneumatic gates can be used to divert the product to the correct slide.

In Reijnen et al. (2018), a model of the production line is presented,
which is slightly modified for this case study to have exclusively state-
event invariant expressions; adjustments are indicated by comments in
the model. The model contains 75 plant models and 214 requirement
models, which can be accessed at a GitHub repository.1

Performing monolithic synthesis on this model reveals that the
synthesized supervisor does not impose any additional restrictions to
ensure controllable and nonblocking behavior, i.e., the control problem
can already act as a modular, controllable, nonblocking, and maximally
permissive supervisor.

7.2. Distribution station

The distributed construction of the model of the production line
eases the individual analysis of workstations. To start with, the distri-
bution station is analyzed.

Fig. 8 shows the dependency graph of the distribution station.
To prevent cluttering of names, numbers are displayed in this and
subsequent figures instead of the actual plant names in the model. The
readme file in the model repository explains how the actual names can
be obtained. Plant models 1 through 10 are sensor automata, i.e., they
only have uncontrollable events in their alphabet, plant models 11, 12,

1 https://github.com/magoorden/NonblockingModularSupervisors.

https://github.com/magoorden/NonblockingModularSupervisors
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Fig. 8. The dependency graph of the distribution station. For readability, numbers are
used as nodes instead of the actual names from the model.

Fig. 9. The dependency graph of the sorting station.

and 13 are actuator automata, i.e., they only have controllable events in
their alphabet. As each edge in this dependency graph has an actuator
automaton as initial vertex and a sensor automaton as terminal vertex,
Theorem 1 applies. This indicates that, if a supervisor is only needed
for this workstation, synthesis can be skipped and the control problem
already represents the supervisor.

7.3. Sorting station

Fig. 9 shows the dependency graph of the sorting station. In this
workstation, plant models 1 through 7 are sensor automata, plant
models 8 through 11 are actuator automata and plant model 12 con-
tains both controllable and uncontrollable events. This graph already
indicates that Theorem 1 does not apply: there are edges (representing
requirements) that have a non-sensor automaton as a terminal vertex.
In particular, plant models 11 and 12 have both incoming and outgoing
edges, which indicates a violation of Property 3.g of the CNMS prop-
rties. Fortunately, as the model satisfies the RCNMS properties and
he control dependency graph is acyclic, Theorem 2 applies. Therefore,
ynthesis can be skipped.

.4. Production line

Fig. 10 shows the dependency graph of the complete production
ine. Cycles in this graph are indicated in red. Clearly, both Theorems 1
nd 2 are not applicable for the control problem of the complete
roduction line.

With the help of Theorem 3, the problem of synthesizing a mono-
ithic supervisor can be reduced to analyzing smaller control prob-
ems based on the identified cycles. In the dependency graph, five
trongly connected components containing cycles can be identified:
1 = {𝑃21, 𝑃22}, 𝜙2 = {𝑃25, 𝑃26}, 𝜙3 = {𝑃36, 𝑃37}, 𝜙4 = {𝑃47, 𝑃48}, and
5 = {𝑃58, 𝑃59, 𝑃60, 𝑃61, 𝑃62}. Next, these sets need to be extended to

nclude all plant models from which there exists a path to one of the
lants in that particular strongly connected component. This is only the
ase for 𝜙 , as from 𝑃 there exists a path from 𝑃 to 𝑃 (and 𝑃 ).
1 23 23 21 22

8

Fig. 10. The dependency graph of the complete production line. Red color indicates
cycles. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

Therefore, 𝑉𝜙1 = {𝑃21, 𝑃22, 𝑃23}, while 𝑉𝜙2 = 𝜙2, 𝑉𝜙3 = 𝜙3, 𝑉𝜙4 = 𝜙4,
and 𝑉𝜙5 = 𝜙5. In this case, there is no overlap between these extended
sets, so 𝑊𝑖 = 𝑉𝜙𝑖 for 𝑖 ∈ [1, 5].

Finally, five supervisors, 𝑆1,… , 𝑆5 are synthesized, one for each
simplified partial control problem represented by ⋃

𝑉𝜙𝑖∈𝑊
𝑉𝜙𝑖 . From

Theorem 3 it follows that  ∥  ∥ 𝑆1 ∥ 𝑆2 ∥ 𝑆3 ∥ 𝑆4 ∥ 𝑆5 is a modular,
controllable, nonblocking, and maximally permissive supervisor for the
production line.

Table 1 shows the results of applying Theorem 3 on the production
line model. For each control problem solved, the uncontrolled and
controlled state-space size is provided. The control problems for syn-
thesizing automaton-based supervisors 𝑆1,… , 𝑆5 are tiny compared to
monolithic synthesis, i.e., obtaining these supervisors can be done even
manually. In future research, a full experimental analysis of potential
computational effort reduction with respect to other synthesis algo-
rithms can be performed. Inspecting the synthesized supervisors con-
firms the observation from Section 7.1 that no additional restrictions
are imposed to ensure controllable and nonblocking behavior.

8. Case study 2: Roadway tunnel

In this section, the applicability of the proposed method is demon-
strated on an industrial large-scale system. For this demonstration,
the case study of synthesizing a supervisory controller for the ‘Eerste
Heinenoord Tunnel’, a tunnel located south of Rotterdam, the Nether-
lands, is used. The model of this system is described in Moormann et al.
(2020).

8.1. Case description

Nowadays, each tunnel is equipped with a supervisory controller
that ensures correct cooperation between the tunnel subsystems, such
as ventilation, lighting, boom barriers, and emergency detection sen-
sors. For example, when an emergency is detected by several sensors,
the supervisor has to automatically close off the tunnel for traffic.
Fig. 11 shows the ‘Eerste Heinenoord Tunnel’ (EHT) on the right and
the ‘Tweede Heinenoord Tunnel’ (THT) on the left. The EHT is a two-
tube roadway tunnel, which was initially opened in 1969. The THT,
which was added in 1999, is only accessible for slow traffic such as
cyclists and agricultural traffic. Rijkswaterstaat, the executive body
of the Dutch ministry of Infrastructure and Water Management, is
currently in the preparation and planning phase of renovating the EHT.
In the renovation project, both the physical tunnel components and the
tunnel supervisory controller are being renewed.

The model of the EHT in Moormann et al. (2020) contains 540
plant models and 1668 requirement models, which can be accessed at a
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Table 1
Results of supervisory control synthesis for the production line.

Model Uncontrolled state-space size Controlled state-space size Synthesis duration [s]

Monolithic 5.9 ⋅ 1026 2.2 ⋅ 1025 370
𝑆1 8 6 <1
𝑆2 4 3 <1
𝑆3 4 3 <1
𝑆4 6 6 <1
𝑆5 512 76 <1
Fig. 11. The Eerste Heinenoord Tunnel (right) and the Tweede Heinenoord Tunnel
(left). Image from https://beeldbank.rws.nl, Rijkswaterstaat.

Fig. 12. The dependency graph of the EHT. Red color indicates the five strongly
onnected components, purple color the nodes and edges added in the extended strongly
onnected components, and blue color the nodes and edges that can be omitted from
ynthesis according to Theorem 3. (For interpretation of the references to color in this
igure legend, the reader is referred to the web version of this article.)

itHub repository.2 This large number of component models results in
he uncontrolled state-space size of 1.87 ⋅ 10226, for which a monolithic

supervisor can no longer be calculated by the CIF tooling (van Beek
et al., 2014).

8.2. Results

The model of the EHT satisfies RCNMS, but it does not satisfy
CNMS. Therefore, Theorem 1 does not apply. Fig. 12 shows the depen-
dency graph of this model. Again, extended cycles are indicated in red
in the figure. Since the dependency graph is cyclic, Theorem 2 does
not apply too. Therefore, Theorem 3 is used to reduce the synthesis
problem.

With the help of Theorem 3, instead of using the complete model
as input for synthesis, the model can be significantly reduced. The

2 https://github.com/magoorden/NonblockingModularSupervisors.
9

dependency graph of the EHT model contains five strongly connected
components, which transforms into one large subgraph of the five ex-
tended sets of vertices. Now, according to Theorem 3, all blue vertices
(and edges) can be removed before synthesis is started on the control
problem represented by the red and purple edges and vertices.

Table 2 shows the results of the analysis of the EHT. In the most-
refined product representation, the EHT model contains 492 plant
models and 1668 requirements. Theorem 3 reduces the synthesis prob-
lem to only 157 plant models and 1312 requirement models. This is
a reduction of 68% of the plant models and 21% of the requirement
models. Now the reduced model can be used as input for any synthe-
sis method, e.g. monolithic, modular, and compositional synthesis, to
obtain a supervisor. Monolithic synthesis is applied to verify whether a
supervisor can be synthesized for the reduced control problem without
running into memory issues. For the reduced control problem, a mono-
lithic supervisor can be synthesized in 19.4 s. This shows that reducing
the control problem is beneficial for synthesis.

As a subsequent experiment, multilevel synthesis (Goorden et al.,
2020; Komenda et al., 2016) and compositional synthesis (Mohajerani
et al., 2014) are applied on the original model of the EHT. For mul-
tilevel synthesis, the implementation in CIF (van Beek et al., 2014)
is used; for compositional synthesis, the implementation in Suprem-
ica (Malik et al., 2017) is used. Multilevel synthesis is able to synthesize
supervisors on average in 220 seconds.3 This is without performing a
nonconflicting check on the synthesized supervisors. Both the mono-
lithic BDD-based nonconflicting check in CIF and the compositional
nonconflicting check in Supremica run out of memory (4 GB available).
Compositional synthesis is not able to synthesize a supervisor, because
it runs out of memory (4 GB available). This experiment shows that
it is currently sometimes necessary to reduce the control problem
before performing state-of-the-art synthesis algorithms on models of
large-scale applications.

9. Conclusion

This paper presents contributions to determine, based on model
properties, whether synthesis is unnecessary for a given set of modular
plant models and requirement models, building upon preliminary re-
sults presented in the conference paper of Goorden and Fabian (2019).
These contributions result in the following effective three-step method
for synthesizing supervisors. First, it is checked whether a control
problem satisfies the CNMS properties. If it does, then the synthesis
step is altogether unnecessary: the plant and the requirement models
already form a controllable, nonblocking, and maximally permissive
supervisor. If not, the second step is to check whether the control
problem satisfies the relaxed RCNMS properties and to construct its
dependency graph, where vertices relate to the plant models and the
edges to the requirement models. If the dependency graph is acyclic,
then the synthesis step is still unnecessary. If it has cycles, the third
step is to reduce the original control problem to a collection of smaller
partial control problems, one for each strongly connected component
in the dependency graph. This results in modular supervisors which
control the plant together.

3 With clustering settings of 𝛼 = 2, 𝛽 = 5.0, and 𝜇 = 2.0.

https://beeldbank.rws.nl
https://github.com/magoorden/NonblockingModularSupervisors
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Table 2
Results of supervisory control synthesis for the EHT. Monolithic synthesis has been used.

Model Original control problem Reduced control problem

Number of plant models 492 157
Number of requirement models 1668 1312
Uncontrolled state-space size 1.87 ⋅ 10226 1.48 ⋅ 1087

Controlled state-space size – 2.55 ⋅ 1081

Synthesis duration [s] – 19.4
𝛴

e
s
c
𝛿

𝑄

Two industrial cases studies demonstrate that the method presented
n this paper generates useful results in practice by significantly reduc-
ng the synthesis effort. The tunnel case study even shows that model
eduction is necessary, because state-of-the-art synthesis tools are not
ble to provide supervisors for the original model.

The infrastructural systems encountered in the project with Ri-
kswaterstaat, like waterway locks (Reijnen et al., 2017), movable
ridges (Reijnen et al., 2020), and tunnels (Moormann et al., 2020),
atisfy RCNMS. This is a motivation to further investigate the applica-
ility of the proposed model properties and analysis method to systems
rom other domains, like manufacturing and automotive systems.

Future work also includes the identification of special cases to
e able to conclude that the synthesis step is unnecessary for some
f the partial control problems identified by the strongly connected
omponents. Monolithic supervisors of the partial control problems
f the production line case still indicate that the synthesis step is
nnecessary, but it is yet unclear how this conclusion could be obtained
ithout having performed synthesis. Another direction is to investigate

he applicability of the presented method if the supervisors are not
equired to be maximally permissive, i.e., if the goal is to synthesize
ontrollable, and nonblocking supervisors that achieve something but
ot necessarily everything possible.
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ppendix A. Proof of Theorem 1

The proof of Theorem 1 as presented in this section originates
rom the conference proceedings (Goorden & Fabian, 2019). In order
o prove that a control problem satisfying CNMS does not require

synthesis (Theorem 1), the following five lemmas are first proved.
The first two lemmas show that when a plant model is provided

as a product system and each individual automaton is trim or strongly
connected, then the synchronous composition of these automata is also
trim or strongly connected, respectively.

Lemma 1. Let  = {𝑃1,… , 𝑃𝑚} be a product system where each individual
𝑃𝑖 ∈  is trim. Then 𝑃1 ∥ … ∥ 𝑃𝑚 is trim.
10
Proof. Denote 𝑃 = 𝑃1 ∥ … ∥ 𝑃𝑛, 𝑃 = (𝑄,𝛴, 𝛿, 𝑞0, 𝑄𝑚), and 𝑃𝑖 = (𝑄𝑖,
𝑖, 𝛿𝑖, 𝑞0,𝑖, 𝑄𝑚,𝑖). It is shown that 𝑃 is reachable and coreachable.

Firstly, assume that 𝑞 = (𝑞1,… , 𝑞𝑛) is a state in 𝑃 . As each individual
𝑃𝑖 is trim, it follows that there exists a string 𝑠𝑖 ∈ 𝛴∗

𝑖 such that
𝛿𝑖(𝑞0,𝑖, 𝑠𝑖) = 𝑞𝑖. From the definition of synchronous composition and the
fact that  is a product system, it follows that 𝛿((𝑟1,… , 𝑞0,𝑖,… , 𝑟𝑚), 𝑠𝑖) =
(𝑟1,… , 𝑞𝑖,… , 𝑟𝑚) for any state 𝑟𝑗 ∈ 𝑄𝑗 , 𝑗 ≠ 𝑖. Therefore, it holds that
𝛿((𝑞0,1,… , 𝑞0,𝑛), 𝑠1𝑠2 … 𝑠𝑛) = 𝑞 in 𝑃 . As the state 𝑞 is chosen arbitrarily,
it follows that 𝑃 is reachable.

Secondly, assume again that 𝑞 = (𝑞1,… , 𝑞𝑛) is a state in 𝑃 . As
ach individual 𝑃𝑖 is trim, it follows that there exists a string 𝑠𝑖 ∈ 𝛴∗

𝑖
uch that 𝛿𝑖(𝑞𝑖, 𝑠𝑖) = 𝑞𝑖,𝑘 ∈ 𝑄𝑚,𝑖. From the definition of synchronous
omposition and the fact that  is a product system, it follows that
((𝑟1,… , 𝑞𝑖,… , 𝑟𝑚), 𝑠𝑖) = (𝑟1,… , 𝑞𝑖,𝑘,… , 𝑟𝑚) for any state 𝑟𝑗 ∈ 𝑄𝑗 , 𝑗 ≠ 𝑖.

Therefore, it holds that 𝛿(𝑞, 𝑠1𝑠2 … 𝑠𝑛) ∈ 𝑄𝑚 in 𝑃 . As state 𝑞 is chosen
arbitrarily, it follows that 𝑃 is coreachable. □

Lemma 2. Let  = {𝑃1,… , 𝑃𝑚} be a product system where each individual
𝑃𝑖 ∈  is a strongly connected automaton. Then 𝑃1 ∥ … ∥ 𝑃𝑚 is a strongly
connected automaton.

Proof. Denote 𝑃 = 𝑃1 ∥ … ∥ 𝑃𝑛, 𝑃 = (𝑄,𝛴, 𝛿, 𝑞0, 𝑄𝑚), and 𝑃𝑖 =
(𝑄𝑖, 𝛴𝑖, 𝛿𝑖, 𝑞0,𝑖, 𝑄𝑚,𝑖). It is shown that for any two states 𝑥 = (𝑥1,… , 𝑥𝑚) ∈
, 𝑦 = (𝑦1,… , 𝑦𝑚) ∈ 𝑄 there exists a string 𝑠 ∈ 𝛴∗ such that 𝛿(𝑥, 𝑠) = 𝑦.

As each individual 𝑃𝑖 is strongly connected, it follows that there
exists a string 𝑠𝑖 ∈ 𝛴∗

𝑖 such that 𝛿𝑖(𝑥𝑖, 𝑠𝑖) = 𝑦𝑖. From the definition
of synchronous composition and the fact that  is a product system,
it follows that 𝛿((𝑟1,… , 𝑥𝑖,… , 𝑟𝑚), 𝑠𝑖) = (𝑟1,… , 𝑦𝑖,… , 𝑟𝑚) for any state
𝑟𝑗 ∈ 𝑄𝑗 , 𝑗 ≠ 𝑖. Therefore, it holds that 𝛿(𝑥, 𝑠1𝑠2 … 𝑠𝑛) = 𝑦 in 𝑃 . As states
𝑥 and 𝑦 are chosen arbitrarily, it follows that 𝑃 is a strongly connected
automaton. □

The following lemma expresses that when a control problem with a
single requirement satisfies CNMS, then always eventually a state can
be reached such that the condition of this requirement evaluates to true,
thus enabling the guarded event.

Lemma 3. Let ( , {𝑅}) be a control problem with a single requirement
satisfying CNMS. Denote 𝑅 = 𝑒 needs 𝐶. Then, from any state 𝑞, there
exists a string 𝑠 ∈ 𝛴∗ such that a state 𝑟 is reached and 𝐶(𝑟) = 𝐓.

Proof. As  is a product system (Property 1), there is only a single
plant component 𝑃𝑘 such that 𝑒 ∈ 𝛴𝑘. From the combination of
Properties 3.b, 3.d, and 3.g, it follows that plant component 𝑃𝑘 is not
used in condition 𝐶, as it has to be an actuator model. Therefore, the
state of 𝑃𝑘 does not matter.

Furthermore, observe that  ⧵ {𝑃𝑘} ≠ ∅ and ∥ ( ⧵ {𝑃𝑘}) =∥
( ⧵{𝑃𝑘}) ∥ 𝑅. From Property 2 and Lemma 2 it follows that ∥ ( ⧵{𝑃𝑘})
is a strongly connected automaton, thus ∥ ( ⧵ {𝑃𝑘}) ∥ 𝑅 is also a
strongly connected automaton. Therefore, if there exists a state 𝑟 that
satisfies 𝐶, i.e., 𝐶(𝑟) = 𝐓, then there also exists a string 𝑠 ∈ 𝛴∗ such
that 𝛿(𝑞, 𝑠) = 𝑟. So it remains to be proven that such a state 𝑟 exists.

As 𝐶 is in disjunctive normal form (Property 3.d), it follows that
if 𝑟 satisfies 𝐶, it satisfies one of the conjunctions. From Properties
3.e and 3.g it is known that there is at most one reference to each
𝑃𝑖 ∈  ⧵{𝑃𝑘} in each conjunction. If there is no reference to 𝑃𝑖, then all
states of this automaton satisfy this conjunction. If 𝑃𝑖 is mentioned in
this conjunction, then, from Properties 3.d and 3.f, there exists at least
one state 𝑞𝑖 ∈ 𝑄𝑖 that satisfies this conjunction. Thus there exists a state
𝑟 such that 𝐶 is satisfied. □
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Now the following two lemmas are proven: the first one shows that
under the given conditions, synthesis is not needed to be performed
locally, and the second one shows that under the given conditions the
supervisors are globally nonblocking. In the rest of this section, the
notation sup𝐶𝑁(𝑃 ,𝑅) is the function that constructs the controllable,
nonblocking, and maximally permissive supervisor given plant 𝑃 and
requirement 𝑅.

Lemma 4. Let ( ,) be a control problem satisfying CNMS. For each
𝑅𝑗 ∈ , 𝑃 ∥ 𝑅𝑗 is a controllable, nonblocking, and maximally permissive
supervisor for plant 𝑃 =∥  and requirement 𝑅𝑗 .

Proof. In the case that  = ∅, no supervisor is synthesized. It follows
from Properties 1 and 2 and Lemma 1 that 𝑃 is trim, so there is indeed
no need for a supervisor. In the remainder of the proof it is assumed
that  ≠ ∅.

For each individual supervisor 𝑃 ∥ 𝑅𝑗 it is shown below that 𝑃 ∥ 𝑅𝑗
is controllable with respect to plant 𝑃 and that 𝑃 ∥ 𝑅𝑗 is nonblocking.
The fact that 𝑃 ∥ 𝑅𝑗 is controllable follows directly from Property 3.b.
It remains to be proven that 𝑃 ∥ 𝑅𝑗 is nonblocking. From Property 3.a it
follows that an event 𝑒𝑗 = 𝑒𝑣𝑒𝑛𝑡(𝑅𝑗 ) is associated with this requirement
𝑅𝑗 . As  is a product system (Property 1), there is only a single plant
component 𝑃𝑘 such that 𝑒𝑗 ∈ 𝛴𝑘. Now the set of plant component
models is partitioned into {𝑃𝑘}, 𝑃𝑠𝑚 = {𝑃𝑖 ∈  | 𝑃𝑖 is a sensor model},
and 𝑃𝑜 =  ⧵ ({𝑃𝑘} ∪ 𝑃𝑠𝑚). Observe that the behavior of the plant
components in 𝑃𝑠𝑚 and 𝑃𝑜 is not restricted by requirement 𝑅𝑗 , so
Lemmas 1 and 2 apply to the sets 𝑃𝑠𝑚, 𝑃𝑜, and 𝑃𝑠𝑚 ∪ 𝑃𝑜, i.e, 𝑃𝑠𝑚 ∥ 𝑅𝑗 ,
𝑃𝑜 ∥ 𝑅𝑗 , and (𝑃𝑠𝑚 ∪ 𝑃𝑜) ∥ 𝑅𝑗 are all trim and strongly connected
automata.

To show that 𝑃 ∥ 𝑅𝑗 is nonblocking, it is shown next that for each
reachable state 𝑞 there exists a string 𝑠 ∈ 𝛴∗ such that a marked state
𝑞𝑚 ∈ 𝑄𝑚 can be reached. Consider automaton 𝑃𝑘 with current state
𝑞𝑘. As automaton 𝑃𝑘 is trim (Property 2), there exists a path labeled
with string 𝑠𝑘 ∈ 𝛴∗

𝑘 by which a state 𝑞𝑚,𝑘 ∈ 𝑄𝑚,𝑘 can be reached from
state 𝑞𝑘. It is shown that this path is still possible under the influence
of requirement 𝑅𝑗 , i.e., it is still a path in 𝑃𝑘 ∥ 𝑅𝑗 . Consider two cases
for this path.

• If 𝑠𝑘 does not contain event 𝑒𝑗 , then the path labeled with 𝑠𝑘 is
trivially possible in 𝑃𝑘 ∥ 𝑅𝑗 .

• If 𝑠𝑘 contains event 𝑒𝑗 , then requirement 𝑅𝑗 may remove event 𝑒𝑗
from the enabled event set and prevents 𝑃𝑘 ∥ 𝑅𝑗 from reaching a
marked state. For each transition labeled with event 𝑒𝑗 , Lemma 3
expresses that there exists a path in 𝑃 reaching a state 𝑟 such that
𝐶(𝑟) = 𝐓. Therefore, there always exists a path in 𝑃 such that 𝑒𝑗 is
enabled. Thus, the path labeled with 𝑠𝑘 is still possible in 𝑃𝑘 ∥ 𝑅𝑗 .

Combining the above observation for 𝑠𝑘 and the fact that (𝑃𝑠𝑚∪𝑃𝑜) ∥ 𝑅𝑗
is trim, it follows that a string 𝑠 exists by which a marked state 𝑞𝑚 is
reached from state 𝑞. As 𝑞 is arbitrarily chosen, it follows that 𝑃 ∥ 𝑅𝑗
is nonblocking. □

Lemma 5. Let ( ,) be a control problem satisfying CNMS. Construct the
set of modular supervisors  = {𝑆1,… , 𝑆𝑛} such that each supervisor 𝑆𝑗 =
sup𝐶𝑁(𝑃 ,𝑅𝑗 ) is the controllable, nonblocking, and maximally permissive
supervisor for plant 𝑃 = 𝑃1 ∥ … ∥ 𝑃𝑚 and requirement 𝑅𝑗 ∈ 𝑅. Then  is
nonconflicting.

Proof. For  to be nonconflicting, it should hold that 𝑆1 ∥ … ∥ 𝑆𝑛
is nonblocking. From Lemma 4 it follows that each 𝑆𝑗 = 𝑃 ∥ 𝑅𝑗 .
Therefore, 𝑆1 ∥ … ∥ 𝑆𝑛 = (𝑃 ∥ 𝑅1) ∥ … ∥ (𝑃 ∥ 𝑅𝑛) = 𝑃 ∥ 𝑅1 ∥ … ∥
𝑅𝑛. Partition the set of plant models  into the set of sensor models
𝑃𝑠𝑚 = {𝑃𝑖 ∈  | 𝑃𝑖 is a sensor model}, the set of restricted models
𝑃𝑟 = {𝑃𝑖 ∈  | ∃𝑅𝑗 ∈  s.t. 𝑒𝑣𝑒𝑛𝑡(𝑅𝑗 ) ∈ 𝛴𝑖}, and the other plant models
𝑃𝑜 =  ⧵ (𝑃𝑠𝑚 ∪ 𝑃𝑟).

Clearly, no plant model in 𝑃𝑜 is affected by the requirements, so

Lemmas 1 and 2 apply, i.e., 𝑃𝑜 ∥  is a trim and strongly connected
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Fig. B.13. The forest of dependency graph 𝐺𝑐𝑝 from Fig. 3.

automaton. Furthermore, from Property 3.b and the definition of a
sensor model it follows that also no plant model in 𝑃𝑠𝑚 is affected by
the requirements, thus by Lemmas 1 and 2 it follows that 𝑃𝑠𝑚 ∥  is a
trim and strongly connected automaton. Again using Lemmas 1 and 2
yields that 𝑃𝑜 ∥ 𝑃𝑠𝑚 ∥  is a trim and strongly connected automaton.

For 𝑃𝑜 ∥ 𝑃𝑠𝑚 ∥ 𝑃𝑟 ∥  to be nonblocking, it should hold that from
every reachable state 𝑞 ∈ 𝑄 there exists a string 𝑠 ∈ 𝛴∗ such that
𝛿(𝑞, 𝑠) ∈ 𝑄𝑚. As 𝑃𝑟 is trim (Lemma 1) it follows that there exists a string
𝑠𝑟 ∈ 𝛴∗

𝑟 such that 𝛿(𝑞𝑟, 𝑠𝑟) ∈ 𝑄𝑚 in 𝑃𝑟. For 𝛿(𝑞𝑟, 𝑠𝑟) ∈ 𝑄𝑚 in 𝑃𝑟 ∥  to
exist, each event in 𝑠𝑟 should be enabled along its path. There are two
cases for each event 𝜎 in string 𝑠𝑟 to consider following Definition 2 of
synchronous composition with a state-event requirement.

• If there does not exist a requirement 𝑅𝑗 ∈  such that 𝑒𝑣𝑒𝑛𝑡(𝑅𝑗 ) =
𝜎, then 𝜎 is enabled.

• If there does exist a requirement 𝑅𝑗 ∈  such that 𝑒𝑣𝑒𝑛𝑡(𝑅𝑗 ) = 𝜎,
then 𝑅𝑗 is also the only requirement in  such that 𝑒𝑣𝑒𝑛𝑡(𝑅𝑗 ) = 𝜎
(Property 3.c). As the condition 𝐶𝑗 = 𝑐𝑜𝑛𝑑(𝑅𝑗 ) only depends on
plant components from 𝑃𝑠𝑚 and not plant components from 𝑃𝑟
or 𝑃𝑜 (Property 3.g), it follows from Lemma 4 that there exists
a string in 𝑃𝑠𝑚 such that the reached state 𝑟 satisfies 𝐶𝑗 . No
transition in plant components from 𝑃𝑟 and 𝑃𝑜 are needed as all
states from these plant components are irrelevant in satisfying the
condition 𝐶𝑗 . Therefore, there exists a path in 𝑃 such that 𝜎 is
enabled.

From the above observation, it can be concluded that always a string
(including the empty string) such that 𝜎 is enabled can be found. As
𝜎 is chosen arbitrarily along the path in 𝑃𝑟 labeled with 𝑠𝑟, it follows
that 𝛿(𝑞𝑟, 𝑠𝑟) ∈ 𝑄𝑚,𝑟. Finally, combining this with the fact that 𝑞𝑟 is
chosen arbitrarily and that 𝑃𝑜 ∥ 𝑃𝑠𝑚 ∥  is trim, it follows that
𝑃𝑜 ∥ 𝑃𝑠𝑚 ∥ 𝑃𝑟 ∥  is nonblocking. □

Now Theorem 1 is proven.

Proof of Theorem 1. From Lemmas 4 and 5 it follows that a set
of supervisors  = {𝑆1,… , 𝑆𝑛} can be constructed such that 𝑆𝑗 =
sup𝐶𝑁(𝑃 ,𝑅𝑗 ) = 𝑃 ∥ 𝑅𝑗 and  is nonconflicting. The antecedent follows
directly from combining these last two facts. □

Appendix B. Proof of Theorem 2

Before Theorem 2 is proven, the following lemma is introduced
which transforms an acyclic dependency graph into a forest of trees.
A tree is an acyclic directed graph where each vertex has at most one
incoming edge, i.e., for each vertex 𝑣 there is at most one edge 𝑒 such
that ter(𝑒) = 𝑣. A forest is a set of trees. A forest can be constructed from
an acyclic directed graph recursively. Assume that a subgraph 𝑇 having
vertex 𝑣 as root node is already a tree. Then for each incoming edge into
𝑣 subgraph 𝑇 is duplicated and set to the terminating vertex of that
edge. Fig. B.13 shows the forest with a single tree of the dependency
graph as shown in Fig. 3. As vertex 𝑃5 has two incoming edges, the
directed graph 𝐺𝑐𝑝 is not a tree. By duplicating vertex 𝑃5, the tree in
Fig. B.13 is constructed.
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From a dependency (sub)graph, the control problem it represents
can be reconstructed as follows. The control problem ( ,′) repre-
sented by a dependency graph ( , 𝐸) is the one where ′ = {𝑅 ∈
 | ∃𝑒 ∈ 𝐸 s.t. 𝑒𝑣𝑒𝑛𝑡(𝑅) ∈ 𝛴init(𝑒) ∧ ter(𝑒) ∈ 𝑐𝑜𝑛𝑑(𝑅)}.

Lemma 6. Let 𝐺𝐶𝑃 = ( , 𝐸) be an acyclic dependency graph of control
problem 𝐶𝑃 = ( ,) satisfying RCNMS, and let 𝐹 be the forest con-
structed from 𝐺𝐶𝑃 . Then 𝑆 is a controllable, nonblocking, and maximally
permissive supervisor of 𝐶𝑃 if and only if 𝑆 is a controllable, nonblocking,
and maximally permissive supervisor of the control problem represented by
𝐹 .

Proof. In the construction of the forest 𝐹 from 𝐺𝐶𝑃 , subgraphs are
duplicated. Duplicating plants and requirements results in the same
controllable, nonblocking, and maximally permissive supervisor, i.e., 𝑆
is a controllable, nonblocking, and maximally permissive supervisor for
( ′ ∥  ′) ∥ (′ ∥ ′) if and only if 𝑆 is a controllable, nonblocking,
and maximally permissive supervisor for  ′ ∥ ′, where  ′ ⊆  and
′ ⊆  are sets of plant models and requirement models, respectively.
As forest 𝐹 is constructed recursively in this manner, the result holds
for the complete forest. □

The proof of Theorem 2 follows now.

Proof of Theorem 2. For 𝐶𝑃 = ( ,), 𝐶𝑃 ′ = ( ′,′) is a partial
control problem of 𝐶𝑃 , denoted by 𝐶𝑃 ′ ⪯ 𝐶𝑃 , if  ′ ⊆  and ′ ⊆ .
From Lemma 6 it follows that the forest 𝐹 constructed from 𝐺𝑐𝑝 can
be analyzed instead of 𝐺𝑐𝑝 directly. Therefore, it is shown next that no
synthesis is needed if (each tree in) the forest is acyclic by induction
on the depth of each tree in forest 𝐹 .

Base case Let subgraph ( ′, ∅) ⊆ 𝐹 with  ′ ⊆  be a tree of
depth zero, i.e., it only contains leaf nodes. Then the partial control
problem ( ′, ∅) represented by this subgraph is trivially controllable
and nonblocking, and  ′ is strongly connected.

Induction hypothesis Assume the set of trees {𝑇1,… , 𝑇𝑘} each with
depth at most 𝑛 such that for each tree ( 𝑖, 𝐸𝑖), 𝑖 ∈ [1, 𝑘] the partial
control problem ( 𝑖,𝑖) represented by this subgraph is controllable
and nonblocking, and  𝑖 ∥ 𝑖 is strongly connected.

Inductive step Denote  ′ = 1 ∪ ⋯ ∪ 𝑘 the set of all vertices
and 𝐸′ = 𝐸1 ∪ ⋯ ∪ 𝐸𝑘 the set of all edges of the trees with depth
at most 𝑛, and the control problem ( ′,′) represented by subgraph
( ′, 𝐸′). Let 𝑃 ∈  ⧵  ′ be a vertex not yet in any tree of depth at
most 𝑛 such that for all edges 𝑒 ∈ 𝐸 with init(𝑒) = 𝑃 , which is assigned
to 𝐸𝑃 , it holds that ter(𝑒) ∈  ′. With other words, 𝑃 is selected if
each of its outgoing edges enter a tree with depth at most 𝑛. Note
that each edge in 𝐸𝑝 has a different terminal vertex, because 𝐹 is a
forest. Let  = {𝑅 ∈  | 𝑒𝑣𝑒𝑛𝑡(𝑅) ∈ 𝛴𝑃 } contain all requirements
restricting the behavior of 𝑃 . It is shown below that the partial control
problem represented by tree ( ′ ∪ {𝑃 }, 𝐸′ ∪ 𝐸𝑃 ) of depth at most 𝑛 + 1
is controllable and nonblocking, and strongly connected.

From the induction hypothesis it follows that the control problem
represented by subgraph ( ′, 𝐸′) is strongly connected, i.e.,  ′ ∥ ′

is strongly connected. Therefore, similarly to Lemma 3 of Goorden
and Fabian (2019), for each requirement 𝑅 ∈  there exists a string
such that state 𝑟 of  ′ is reached that satisfies the condition 𝑐𝑜𝑛𝑑(𝑅),
thus enabling controllable event 𝑒𝑣𝑒𝑛𝑡(𝑅). Analogously to the proof of
Lemma 4 of Goorden and Fabian (2019), it holds that a string can be
constructed in  ′ such that for each path in plant 𝑃 all controllable
events are enabled. Therefore, the partial control problem ( ′∪{𝑃 },′∪
) represented by subgraph ( ′ ∪ {𝑃 }, 𝐸′ ∪ 𝐸𝑃 ) of depth at most 𝑛 + 1
is controllable and nonblocking, and for each 𝑃𝑖 ∈  ′ ∪ {𝑃 } all states
can be reached from each state. This concludes the inductive step. □
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Appendix C. Proof of Theorem 3

Proof of Theorem 3. First, let  ′ be the set of all vertices not contained
in W, i.e.,  ′ =  ⧵ (

⋃

𝑊 ∈W
⋃

𝑉 ∈𝑊 𝑉 ). From the definition of 𝑉 it
follows that for each vertex 𝑃 ∈  ′ there does not exist a path to a
cycle. Therefore, the subgraph ( ′, 𝐸′) with 𝐸′ = {𝑒 ∈ 𝐸 | init(𝑒) ∈  ′}
is acyclic. From Theorem 2 it directly follows that control problem
( ′,′) represented by this acyclic graph is already controllable and
nonblocking, i.e., synthesis can be skipped for this part. Furthermore,
from the proof of that theorem it follows that  ′ ∥ ′ is also strongly
connected.

Now, consider 𝑊 ∈ W. The simplified partial control problem
(𝑃𝑊 , 𝑅̃𝑊 ) represented by 𝑃𝑊 =

⋃

𝑉 ∈𝑊 𝑉 may contain requirements
where the condition is simplified by replacing some state references
𝑃 .𝑞 by 𝐓. As W is the quotient set of V by ∼, it follows from the
definition of ∼ that each plant 𝑃 of those replaced state references is
from  ′. As it is already shown in the previous paragraph that  ′ ∥ ′

is strongly connected, it is always possible to reach state 𝑃 .𝑞, which
justifies the replacement of this state reference by 𝐓. Therefore, if 𝑆𝑊
is a controllable, nonblocking, and maximally permissive supervisor of
the simplified partial control problem (𝑃𝑊 , 𝑅̃𝑊 ), then  ′ ∥ ′ ∥ 𝑆𝑊 is a
controllable, nonblocking, and maximally permissive supervisor for the
partial control problem ( ′∪𝑃𝑊 ,′∪𝑅𝑊 ), with 𝑅𝑊 the non-simplified
requirements of 𝑅̃𝑊 .

From the definition of W = V∕ ∼, it follows that no vertex is
shared between two distinct 𝑊1,𝑊2 ∈ W,𝑊1 ≠ 𝑊2, i.e., (⋃𝑉 ∈𝑊1

𝑉 ) ∩
(
⋃

𝑉 ∈𝑊2
𝑉 ) = ∅. Let 𝑆𝑊1

and 𝑆𝑊2
be the controllable, nonblocking, and

maximally permissive supervisors for the simplified control problems
represented by 𝑊1 and 𝑊2, respectively. Then the supervisors do not
share events and it holds trivially that 𝑆𝑊1

∥ 𝑆𝑊2
is a controllable,

nonblocking, and maximally permissive supervisor.
Finally, combining the above observations for each 𝑊 ∈ W it

follows that  ′ ∥ ′ ∥ (∥𝑊 ∈W 𝑆𝑊 ) =  ∥  ∥ (∥𝑊 ∈W 𝑆𝑊 ) is a
controllable, nonblocking, and maximally permissive supervisor. □
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