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Abstract: Copper is vital for numerous cellular functions affecting all tissues and organ systems
in the body. The copper pump, ATP7A is critical for whole-body, cellular, and subcellular copper
homeostasis, and dysfunction due to genetic defects results in Menkes disease. ATP7A dysfunction
leads to copper deficiency in nervous tissue, liver, and blood but accumulation in other tissues.
Site-specific cellular deficiencies of copper lead to loss of function of copper-dependent enzymes in
all tissues, and the range of Menkes disease pathologies observed can now be explained in full by
lack of specific copper enzymes. New pathways involving copper activated lysosomal and steroid
sulfatases link patient symptoms usually related to other inborn errors of metabolism to Menkes
disease. Additionally, new roles for lysyl oxidase in activation of molecules necessary for the innate
immune system, and novel adapter molecules that play roles in ERGIC trafficking of brain receptors
and other proteins, are emerging. We here summarize the current knowledge of the roles of copper
enzyme function in Menkes disease, with a focus on ATP7A-mediated enzyme metalation in the
secretory pathway. By establishing mechanistic relationships between copper-dependent cellular
processes and Menkes disease symptoms in patients will not only increase understanding of copper
biology but will also allow for the identification of an expanding range of copper-dependent enzymes
and pathways. This will raise awareness of rare patient symptoms, and thus aid in early diagnosis of
Menkes disease patients.

Keywords: ATP7A; Menkes disease; symptomatology; copper enzyme; copper trafficking

1. ATP7A-Related Copper Disorders

ATP7A-related X-linked genetic disturbances exhibit dysfunction of multiple copper-
dependent processes resulting in a broad spectrum of disease phenotypes. Three clinical
groups are described: Menkes disease (MNK), occipital horn syndrome (OHS), and X-
linked distal spinal muscular atrophy 3 (SMAX3) but overlapping intermediate forms
(Table 1) confuse grouping [1,2]. MNK is characterized by neurodegeneration, fair skin,
kinky hair, connective tissue abnormalities, and short life span. OHS presents with connec-
tive tissue symptoms, develops pathognomonic occipital bony exostosis (horns), and has
reduced life expectancy. SMAX3 comprises a yet limited group of adult-onset progressive
motor neuron disease, minimal copper disturbance, normal fertility, and long lifespan.
Grouping into three phenotypes is arbitrary, and the spectrum is better described as a
clinical continuum from severe disease with many affected enzyme systems to very mild
affection with few enzyme systems involved. The best nosology should refer to ATP7A-
related disturbances as the main pointer [2]. To best explain patients’ symptoms, we have
here focused on the severest form, i.e., MNK.
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Table 1. Clinical Phenotypes of ATP7A-linked Disorders.

Clinical Type * Abreviation OMIM Age of Onset Diagnostic Pointer Connective Tissue
Involvement Motor Function * Mental Function * Age of Death §

Menkes Disease MNK 309400 0–8 months

Kinky Hair; floppy infant;
mimicry of severe metabolic
disorders of lysosomes,
mitochondria, and
peroxisomes; dysautonomia

Severe; osteoporoses;
hemorrhages; bladder
and bowel
diverticulae

Poor mobility; no
head control

Severe mental
retardation <3 years

Long Surviving
Menkes LS 309400 0–8 months

Hair changes; dysautonomia;
floppy; initial symptoms
similar to MNK

Severe to moderate
Poor mobility;
limited head
control

Severe mental
retardation <15 years

Moderate
Menkes MOD 309400 3–12 months

Coarse hair; dysautonomia;
initial course milder; clinical
diagnosis difficult

Present, but not
obvious; skeletal
dysplasia may occur

Wheelchair bound;
cannot sit
unsupported

Mentally retarded <40 years

Mild Menkes MILD 309400 2–3 years
Coarse hair; dysautonomia;
initial course mild; clinical
diagnosis difficult

Minimal to moderate;
skeletal dysplasia;

Walk with
difficulty and with
use of aid

Moderately
retarded; Slow and
dull

>40 years

Occipital Horn
Syndrome # OHS 304150 Childhood

Coarse hair; X-linked family
history; connective tissue
problems; muscle affection;
dysautonomia,

Exostoses on occipital
bones; skeletal
dysplasia; cutis laxa;
hyperextensible joints;
vascular
complications

Walk
independently;
appear clumsy

Slow or dull to
normal IQ 40–60 years

X-linked distal
spinal muscular
atrophy 3

SMAX3 300489 Adulthood

X-linked family history of
muscle wasting;

dysautonomia with prevalent
adrenergic involvement

Minor connective
tissue involvement;
minor occipital horns
may occur

Walk
independently;
progressive distal
motor neuropathy

Normal IQ; normal
fertility <80 years

* clinical types are poorly delineated with overlapping symptoms and functions within and between groups; # occipital horns depend on head control and can occur from two years; § connective tissue
complications shorten lifespan; Cu treatment prolongs lifespan.
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The basic defect in MNK is deficient copper transfer to secretory pathway, the intra-
cellular sorting station for proteins, which affects metalation and trafficking of copper-
dependent enzymes and diminishes copper extrusion from cells. Insufficient functional
ATP7A results in abnormal body copper distribution with high values in tissues, but
severe lack in blood, brain, and liver [1]. Current understanding of copper dependent
processes does not account for all neurological symptoms [3], and a broad update is needed.
Substrates are included with each enzyme to better define key symptoms in MNK.

Clinical features found in MNK patients can be explained by deficiencies of copper-
dependent enzymes, amine oxidases (biodegradation of histamine and polyamines), lysyl
oxidases (cross-linking of elastin, collagen, and collectin), cytochrome c oxidase (energy for-
mation), peptidyl α-amidating enzyme (activation of neurohormones and neuropeptides),
dopamine β-hydroxylase (catecholamine production), tyrosinase (pigment formation and
free radical defense), superoxide dismutase (free radical detoxification), and ferroxidase
(iron mobilization and free radical defense). In addition, newly discovered copper-activated
enzymes, including several lysosomal and steroid sulfatases, provide further insight into
MNK pathophysiology [4] and will be discussed herein.

2. Copper Enzymes

Copper serves as redox cofactor in a wide range of reactions including electron transfer,
oxidation, reduction, and disproportionation [4] (Table 2). Copper is regulated by redox
shifts at several cellular and subcellular membranes and is further implicated in redox
shifts of iron. In addition, copper acts as allosteric regulator at binding sites spatially apart
from catalytic centers (Table 2). In enzymes, copper acts as integral electron modulator, but
roles in formation and coupling of cofactors are important for understanding MNK clinical
spectrum [4] and copper chaperone activation of enzymes without catalytic copper sites is
emerging [5]. Copper enzymes contain active centers shuttling electrons from one molecule
to another, and copper changes reversibly between oxidation states during catalytic cycles.
Nature uses a variety of copper centers to facilitate electron transfer, and enzymes are
grouped accordingly. Often catalytic metal sites are made up of metal coordinating residues
located far apart in primary structure, but in the folded structure, they create a cluster of
closely spaced amino acids forming metal-binding sites. The protein’s tertiary structure is
often stabilized by coordination of the metal [6,7].

Copper enzymes are widely distributed both intracellularly and extracellularly. Intra-
cellular copper enzymes are located in subcellular compartments and organelles such as
cytoplasm, secretory pathway, peroxisomes, nucleus, and mitochondria, and metalation
occurs at different sites. It is an important question to ask when and where the polypep-
tide meets the metal for copper-dependent enzymes. Newly synthesized apoenzymes
are directed to the secretory pathway, and during passage from endoplasmic reticulum
(ER) to trans-Golgi Network (TGN), maturation, assembly, glycosylation, and metalation
occur. Copper transfer uses different mechanisms involving specific copper chaperones
and combine metal coordination chemistry with protein-protein interactions for donor-
acceptor docking. Specific copper chaperones for all copper-dependent enzymes have
not been identified, and additional ones are likely to be discovered in the future. Cellular
copper redox states and concentrations are strictly controlled, and free copper ions are
kept at low, non-toxic levels. Within secretory pathway pH is gradually shifted towards
an acidic environment and from oxidizing to reducing milieu changing the strength of
copper binding [8,9]. Centers with tight metal coordination are preserved during secretory
passage, while centers with low avidity can lose copper, and chaperones may be needed to
protect their lability. Several copper enzymes possess labile copper sites, such as SOD1,
SOD3, DBH, PAM, and TYR, while CP and HEPH have more stable copper sites.

This review centers on function and biogenesis of copper-dependent enzymes, which are
activated/matured by copper loading at various sites in cells, which relates to protein trafficking.
Cellular copper homeostasis is extensively covered in other reviews, e.g., [10–12], and will not
be discussed here unless pertinent for understanding activation of copper enzymes.
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Table 2. Copper-dependent Enzymes and basic properties.

Enzyme OMIM EC-no. Cofactor Cu Donor Cu Loading
Site

Cu
Chaperone

Subcellular
Localization

ATP7A-Linked Cu Deficiency Symptoms

ATOX1
regulated
Copper Pumps

ATP7A 300011 7.2.2.8 Mg; ATP
Cu-ATOX1
allosteric

ATOX1
Cu-GSH

Cytosol ATOX1
piggy-backing

SP, TGN, PM Cu storage in tissues, low in brain, liver, plasma;
S-Cu diagnostic after 1.5 mo

ATP7B 606882 7.2.2.8 Mg; ATP
Cu-ATOX1
allosteric

ATOX1
Cu-GSH

Cytosol ATOX1
piggy-backing

SP, TGN,
secretory
vesicles

Low activity in brain and liver; Fe accumulation;
icterus, steatosis

Copper
Reductases

STEAP1 604415 1.16.1.- Heme; NAD Cu-His EC redox NAp PM,
endosomes

Cu and Fe accumulation on plasma membranes
and vesicles; hypochromic anemia

STEAP2 605094 1.16.1.- Heme; NAD Cu-His EC redox NAp PM, Golgi
STEAP3 609671 1.16.1.- Heme; NADP Cu-His EC redox NAp PM,

endosomes
STEAP4 611098 1.16.1.- Heme; NADPH Cu-His EC redox NAp PM, ER, Golgi

endosomes
nucleus, MIT

CYBDR 605745 1.-.-.- Heme; ascorbate Cu-His EC redox NAp PM

Copper
Oxidases

CP 117700 1.16.3.1 Cu; ascorbate ATP7B ERGIC NK EC CP low in plasma; diagnostic after 1 1
2 month; Cu

and Fe storage
FV+VIII 612309

300841
1.16.3.1 Cu; ascorbate ATP7B ERGIC NK EC Mild clotting deficiency

HEPH 300167 1.16.3.1 Cu; ascorbate ATP7A ERGIC NK Vesicles Cu and Fe intracellular storage; AMD
HEPH1L 618455 1.16.3.1 Cu; ascorbate ATP7A ERGIC NK cis-Golgi Cutis laxa
COX

CuA (II)

CuB (I)

516040

516030

1.9.3.1

Cu

Cu;Heme

Redox
SCO1;
SCO2;
COA6
COX11

IMS

IMS

COX17

COX17

IMM Low COX in brain and liver due to low Cu
availability; High lactate in blood;
Leigh-like symptoms; COX defects; ragged red
fibers; hypotonia
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Table 2. Cont.

Enzyme OMIM EC-no. Cofactor Cu Donor Cu Loading
Site

Cu
Chaperone

Subcellular
Localization

ATP7A-Linked Cu Deficiency Symptoms

Copper
Quinone
Amine
Oxidases

LOX 153455 1.4.3.1 Cu; LTQ ATP7A cis-Golgi HEPH1L
redox

EC Numerous connective tissue abnormalities:
tortuous vessels, aortic aneurisms, and
dissections, umbilical or inguinal hernias,
bladder and bowel diverticulae, loose joint and
skin, osteoporosis, lymphedema, lung infections;
collectin defects with protein trafficking
problems, and deficient activation of
complement pathway; NAI-like; cataract

LOXL1 153456 1.4.3.1 Cu; LTQ ATP7A cis-Golgi Redox loading
#

EC

LOXL2 606663 1.4.3.1 Cu; LTQ ATP7A cis-Golgi Redox loading
#

ER, nucleus *

LOXL3 607163 1.4.3.1 Cu; LTQ ATP7A cis-Golgi Redox loading
#

ER, nucleus *

LOXL4 607318 1.4.3.1 Cu; LTQ ATP7A cis-Golgi Redox loading
#

EC

AOC1 104610 1.4.3.22 Cu; TPQ ATP7A cis-Golgi Redox loading
#

EC Ichthyosis, alopecia, inflammation, conjunctivitis,
atopy, photophobia, keratitis, diarrhoea,
gastrointestinal polypsAOC2 602268 1.4.3.21 Cu; TPQ ATP7A cis-Golgi Redox loading

#
PM

AOC3 603735 1.4.3.21 Cu; TPQ ATP7A cis-Golgi Redox loading
#

PM

FGly
Generation

SUMF1 607939 1.8.3.7 Cu; Ca ATP7A ER SUMF2 SP GAG accumulation in tissues and urine;
metachromasia, Alder Reilly anomaly;
overlapping clinical features of multiple
sulfatase deficiency (MSD) mimicking
metachromatic leukodystrophy,
mucopolysaccharidosis (MPS), mucolipidosis
(MLP), chondrodysplasia punctata,
hydrocephalus

FGly
Activated
Sulfatases

ARSA 607574 3.1.6.8 FGly; Ca NAp NAp NAp Lysosomes
ARSB 611542 3.1.6.12 FGly; Ca NAp NAp NAp Lysosomes
ARSD 300002 3.1.6.- FGly; Ca NAp NAp NAp Lysosomes
ARSF 300003 3.1.6.- FGly; Ca NAp NAp NAp EC
ARSE 300180 3.1.6.- FGly; Ca NAp NAp NAp Golgi
ARSG 610008 3.1.6.1 FGly; Ca NAp NAp NAp Lysosomes
ARSH 300586 3.1.6.- FGly; Ca NAp NAp NAp PM
ARSI 610009 3.1.6.- FGly; Ca NAp NAp NAp EC
ARSJ 610010 3.1.6.- FGly; Ca NAp NAp NAp EC
ARSK 610011 3.1.6.- FGly; Ca NAp NAp NAp EC
GALNS 612222 3.1.6.4 FGly; Ca NAp NAp NAp Lysosomes
GNS 607664 3.1.6.14 FGly; Ca NAp NAp NAp Lysosomes
IDS 300823 3.1.6.13 FGly; Ca NAp NAp NAp Lysosomes
STS 300747 3.1.6.2 FGly; Ca NAp NAp NAp ER ichthyosis, seborrhoea, hair changes
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Table 2. Cont.

Enzyme OMIM EC-no. Cofactor Cu Donor Cu Loading
Site

Cu
Chaperone

Subcellular
Localization

ATP7A-Linked Cu Deficiency Symptoms

Copper Amine
Oxidases

DBH 609312 1.14.17.1 Cu; ascorbate ATP7A ER MOXD1# Vesicles; EC High DA/NE; vomiting, hypotension,
hypothermia, hypoglycemia

PAM
PHM
PAL

170270
1.14.17.3
4.3.2.5

Cu; ascorbate
Zn; Ca ATP7A

NAp
TGN
NAp

NK
NAp

Golgi Vesicles Pain, seizure, anxiety, impaired wakening,
temperature, weight and fluid balance

TYR 606933 1.14.18.1 Cu; ascorbate ATP7A ER TYRP1
TYRP2

Melanosomes Albinism, visual and hearing problems

MOXD1 609000 1.14.17.- Cu; ascorbate ATP7A ER - ER ~DBH deficiency

Cu/Zn
Superoxide
Dismutases

SOD1 147450 1.15.1.1 Cu; Zn
Cu-CCS
allosteric

GSH
ATP7A
matrix
NK

Cytosol
ER
IMS
NK

CCS redox
and
piggy-backing
CCS redox
CCS

Cytosol
peroxisomes
IMS
nucleus

Low SOD1 activity in nerve tissue and liver due
to poor Cu availability; peroxisomal pathologies;
motor neuron disease

SOD3 185490 1.15.1.1 Cu; Zn ATP7A SP NK EC Lung disease, angiopathy
CCS 603864 NA Cu;Zn GSH

ATP7A
matrix
nucleus

Cytosol
ER
IMS
nucleus

NAp Cytosol
peroxisomes
IMS
nucleus

Purkinje cell pathologies; ALS-like phenotype

APP 104760 NA Cu; Zn NK SP NK EC Senecense, cerebral angiopathy
APLP1 104775 NA Cu; Zn NK SP NK EC
APLP2 104776 NA Cu; Zn NK SP NK EC

Cu-CCS
Regulated
Enzyme

BACE1 604252 3.4.23.46 Cu-CCS
allosteric

CCS SP CCS TGN Poor neuronal growth

#: indicated; *: histone biology; EC: extracellular; ER: endoplasmic reticulum; ERGIC: ER–Golgi intermediate compartment; GAG: glycoamino glycans; GHS: glutathione; IMM: inner mitochondrial membrane;
IMS: intra mitochondrial space; MIT: mitochondria; NA: not assigned; NAI: non-accidental injuries; NAp: not applicable; NK: not known; PM: plasma membrane; SP: secretory pathway; TGN: trans-Golgi
network.
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3. Copper-Dependent ATPases

Copper-transporting ATPases, α (ATP7A) and β (ATP7B), are homologous P-type
ATPases utilizing energy for pumping copper across a membrane. They are ion gated
channels crucial for cellular and whole-body copper homeostasis. They have similar but
distinct functions, and supplement and complement each other to fine tune equilibrium by
transporting copper in different tissues and by coordinating activity in specific cells [11,13].
Both enzymes pump copper from cytoplasm into compartments with higher copper con-
centration [14]. ATP7A moves copper out of cytosol and across the basolateral membrane
in extra-hepatic tissues [15], while ATP7B moves copper out of cytosol and across the apical
membrane in liver, brain, and kidney [11,16]. ATP7A controls transport across the gut
mucosa and the blood–brain barrier (BBB).

ATP7A and ATP7B are multi-domain enzymes that undergo profound changes during
pumping [17]. They share highly conserved domain structure and basic mechanism
with other P-type ATPases. Eight membrane-spanning helices constitute a pore-forming
transmembrane domain for copper translocation. The channel is linked to three cytoplasmic
ATP hydrolytic domains plus six metal binding domains (MBD) with copper-specific
motifs (GMXCXXC) [18]. MBD’s initiate pumping through ATOX1 copper activation [11].
Each MBD possesses a compact fold linked by a flexible loop, enabling independent and
cooperative action [19]. During pumping conformation undergoes a flip-flop movement
with sequential changes allowing unidirectional transfer of copper from the entry site,
through the channel by two embedded sites, and release from an exit site. A kinked
transmembrane segment at the cytosolic interface forms an electronegative platform for
electrostatic ATOX1 docking, initiating opening of the entry gate [11,20].

Pump domain interactions depend on conformation and position during the catalytic
cycle, and energy for pumping stems from ATP-dependent transient phosphorylation of
the cytoplasmic part [13]. Disruption of the cycle at any point reduces copper transfer.

Regulatory mechanisms are slowly unraveled. ATP7A/B pumping activity is via
MBD’s controlled by copper. Docking of ATOX1 on the kinked platform, filling and
packing of MBD’s serve as metal sensor besides allosteric regulation. Exact molecular
mechanisms that modulate ATP7A/B activity still remain unclear [21].

ATP7A/B trafficking is copper regulated. At basic homeostatic levels copper is
pumped into the secretory pathway, but at high levels the pumps relocate to excrete surplus.
At low copper, a high free GSH pool secure glutathionylation of MBD’s and retention, while
high copper results in low glutathionylation and trafficking [22,23]. ATP7A/B contain
a histidine and methionine rich lumenal loop located between TM1 and TM2 that may
function as ER retention signal [20,24–26]. Ca-pumps possess similar regulatory motifs at
corresponding locations to secure Ca-guided ER retention [27]. The ATP7A loop motif may
act as copper donor in metalation of certain enzymes [28]. ATP7A and ATP7B show distinct
copper transport kinetics, where ATP7A is faster than ATP7B [11,29], but underlying
reasons for differences are not clear [21].

3.1. Copper-Transporting ATPase 1 (ATP7A)

ATP7A regulates tissue copper levels and is expressed in most tissues except postnatal
liver. At basal levels ATP7A transports copper into lumen of secretory pathway to load
secreted and vesicular copper enzymes. At standard tissue culture conditions ATP7A reside
in TGN and when exposed to excess copper, the pump relocates to the plasma membrane
to export copper [30]. Some enzymes require metalation in ER, and removal of TGN signal
by skipping of the alternatively spliced exon 10 retains the protein in ER [20,24] and may
be of functional significance. ATP7A is rate limiting in gut uptake and import to the brain.

ATP7A interacts with a range of adaptor molecules, some affect nerve develop-
ment [31]. ATP7A contains several N-glycosylation sites [32] and need ERGIC trafficking
by a carbohydrate-recognition domain (CRD) and an adaptor complex like LMAN1 [33].
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3.2. Copper-Transporting ATPase 2 (ATP7B)

ATP7B regulates whole-body copper homeostasis by excreting surplus into bile [34].
ATP7B is expressed in numerous tissues, and plays a role in copper regulation in liver, brain,
placenta, and kidneys [4]. ATP7B supplies copper in liver to ceruloplasmin, and clotting
factors V and VIII. Gene defects cause Wilson disease (WND) with copper accumulation in
liver and brain.

ATP7B is not N-glycosylated [32] and not sugar sorted to the apical canalicular mem-
brane but uses a subset of secretory lysosomes. Trafficking is directed by a motif of aromatic
amino acids between MBD4 and MBD5 with loose copper binding [15,35] requiring an
acidic milieu to secure high free copper for activation. Consistently ATP7B uses an acidic
lysosomal pool for excretion. Inactivation of the trafficking signal directs ATP7B to the
sinusoidal membrane [35] to mobilize hepatic stores into circulation [36]. In the brain,
ATP7B likely traffics by other mechanisms, though not described. ATP7B is also regulated
by alternative splicing of the loop motif [13,37].

4. Redox Shifting Enzymes

Intracellularly cupro ions, Cu(I) predominate, while higher extracellular oxidation
potential results in cupric ions, Cu(II) [11,38]. A redox shift is needed at copper uptake
and export, and organelle membranes likely also require copper redox shifts for transfer.
This mimics conclusions for iron transport [39] and at sites the two metals share redox
enzymes [40,41]. Copper and iron are reduced at plasma membranes by a heme reduc-
tase [42]. Before release iron uses a multicopper oxidase also having copper oxidizing
capacity [43]. Iron has higher reduction potential than copper, while copper is superior
in oxidative reactions [44,45]. Iron prosthetic groups are involved in a broad range of
biological processes. Iron utility depends on careful control of redox state, and specific
redox enzymes are found widespread also at subcellular levels. Iron–copper interactions
have emerged as crucial, and copper is critical for normal handling of iron [46].

Mitochondria have significant iron and copper stores, securing biogenesis of two iron
prosthetic groups, heme and iron-sulfur (Fe-S). Heme is tightly interconnected with copper
metabolism and dependent on Fe-S availability [47]. Fe-S clusters are found at several
subcellular sites including mitochondrial respiratory chain. Fe-S biogenesis is complex
involving numerous steps, some occur in mitochondrial matrix, others in cytoplasm. Fe-S
biosynthesis is interconnected with heme biosynthesis [48]. Iron trafficking is not well
understood [49], and redox changes critical in organelle metal homeostasis are less known.
Copper deficiency leads to low heme-iron which in turn gives insufficiency of enzymes
needed for mitochondrial iron membrane translocation [50]. Deficient heme affects copper
through dysfunction of membrane uptake, conferring a gatekeeping role for copper in
translocation of both iron and copper.

4.1. Heme Copper Reductases

Six-transmembrane epithelial antigen of prostate (STEAP) comprises a family of
metalloreductases with ability to reduce iron and copper [51]. STEAP4 shows physiological
Km values for both metals [52]. Reducing sites use heme and cofactors like NAD, NAD(P)H,
and ascorbate as electron donor [53,54]. The STEAP family is widely expressed [51], but
tissue-specific expressions suggest distinct roles [53]. STEAP proteins locate at plasma
membrane for copper and iron uptake but are also implicated in trafficking by modulating
redox states in endocytotic and secretory pathway, and in mitochondria. STEAP1 acts
at tight junctions, gap junctions, and cellular adhesion, and is hormone regulated [53].
STEAP2 regulates iron and copper absorption in gastrointestinal tract [53] and flux across
BBB [55]. STEAP2 is expressed in most tissues primarily at plasma membrane and Golgi
complex, possibly regulating metal availability in secretory pathway [53]. STEAP3 is
an endosomal reductase required for efficient iron uptake into erythroid precursor cells.
STEAP3 is highly expressed in liver, placenta, and bone marrow [53], and is located
at plasma membrane, near nucleus, and in vesicular tubular structures [53]. STEAP4
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is ubiquitously expressed at plasma membrane, ER, and TGN, suggesting a trafficking
role [53,56]. STEAP4 also localizes at early endosomes and mitochondria [57,58], and splice
variants localize to nucleus [59].

Cytochrome B reductase 1 (CYBRD1) is a di-heme reductase with iron and copper
reducing capacity located at intestinal brush border to reduce iron and copper for mucosal
uptake [60]. It may act also as a reductase in airway epithelium. CYBRD1 reduces iron and
copper, uses ascorbate, and possesses 6TM, hence naturally grouped among STEAP.

4.2. Multicopper Oxidases

Multicopper oxidases (blue copper oxidases) contain six copper in two complex sites
with different redox properties, oxidizing sequentially without formation of free radicals.
Cupro and ferro ions are strong pro-oxidants, and multicopper oxidases scavenge radicals
by preventing Fenton chemistry [11,43].

4.2.1. Ceruloplasmin (CP)

Ceruloplasmin (CP) is a major redox buffer in blood converting highly toxic ferro
ions to less toxic ferri ions. CP mobilizes iron from stores in liver and other tissues, and
copper by securing oxidation state [11,61], not by moving copper from one binding site to
another; CP is not part of the exchangeable copper pool. Fet3p, a yeast homologue, exhibits
cuproxidase activity at same site having ferroxidase activity [61]. CP is synthesized in liver,
but a glycosylphosphatidylinositol-linked form (GPI-CP) is found in astrocytes and choroid
plexus [62,63]. GPI is attached in ER and serves as O-glycosylation signal for trafficking to
the apical membrane [62,64]. CP is ascorbate dependent and has two deeply embedded
catalytic centers [6,65,66], copper loaded in liver by ATP7B, and released to circulation
from the sinusoidal membrane. Apo-CP passes to Golgi though exact metalation site is
not identified [65,67]. The apoform is secreted into blood, but rapidly degraded [68]. It
lacks ferroxidase activity [65], and cannot be copper activated later [66], underlining that
CP is not a transport form for tissue copper exchange [11]. Aceruloplasminemia leads
to iron accumulation in brain and Parkinson-like ataxia and progressive dementia [69].
In ATP7A-related disturbances, CP metalation is not affected, but low hepatic copper
results in low plasma holoenzyme activity. Ferroxidase activity is also low in other tissues,
especially brain GPI-CP. Low plasma CP is well-documented in MNK, and some patients
show moderate hypochromic anemia, and iron accumulates in kidney and nerve tissue [70].
Poor glycosylation may contribute to poor hepatic secretion, and MNK plasma CP is
lower (half) than nutritional copper deficiency and WND [71]. Low ceruloplasmin is a
well-established marker for MNK, OHS, and intermediate forms, though less depressed in
OHS; but it is not applicable for diagnosis of SMAX3 [2].

4.2.2. Hephaestin (HEPH)

Hephaestin (HEPH) is a membrane-anchored homologue oxidizing iron before release
with main role in gut and BBB [64]. Copper oxidizing capacity is likely [11]. The iron
metabolome contains large functional redundancy and potentially CP and HEPH can
substitute for each other [72], and CP may in absence of HEPH promote iron efflux from
enterocytes [73].

HEPH and CP both appear critical for CNS-iron homeostasis [74], and HEPH is
abundantly expressed in neurons [75]. CP and HEPH are co-expressed in retina [76] and
combined loss lead to age-related macular degeneration (AMD) [72]. Double-knockout
Heph and Cp mice, but neither alone, lead to kidney iron deposition and toxicity [77], and
iron accumulation in liver, brain, pancreas, and adipocytes [74,78,79], with significant
deficiencies in serum and neurons [80]. Knockout mice exhibit neurodegeneration and
retinal degeneration similar to aceruloplasminemic patients. HEPH sites have similar
architecture as CP but are loaded by ATP7A [43]. The apoform is rapidly degraded, and by
analogy cannot be loaded after biosynthesis [81]. HEPH is regulated by copper and iron;
iron induces translocation from intracellular sites to basolateral membrane [82]. HEPH is
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ubiquitously expressed, most strongly in small intestine followed by kidney [43]. HEPH is
N-glycosylated [81], sorted and anchored to vesicles at basolateral membrane [64,81,83].

4.2.3. Hephaestin-Like Protein 1 (HEPHL1)

Hephaestin-like protein 1 (HEPHL1) is a membrane-bound homologue (zyklopen)
with similar oxidation functions [84]. Immunostaining shows expression in brain, kidney,
testes, and retina, but not liver and intestine [84]. Further expressed in placenta, repro-
ductive tract, and mammary glands and suggested to act in placental iron transport [84].
HEPHL1 requires copper for stability [84], but is less investigated [41,43,64]. Molecular
modeling on CP crystal structure indicates preserved HEPHL1 copper sites [84], and by
analogy likely involved in copper mobilization. Recent proof is gained by a compound
heterozygous patient with abnormal hair, joint laxity, and developmental delay (HJDD) [85].
Hair changes (pili torti and trichorrhexis nodosa) are similar to MNK, and muscular affec-
tion similar to SMAX3 [85]. LOX deficiency explains connective tissue involvement and
indicates disturbed copper metabolism. HEPHL1 likely acts as redox chaperone in LOX
cofactor formation and metalation. Lack of copper affects N-linked glycosylation sites, but
none of the O-linked, indicating that copper is loaded before N-glycosylation [85].

4.2.4. Factor V+VIII Clotting Factors

Factor V+VIII clotting factors belong to blue copper oxidases with complex catalytic
sites requiring ascorbate as cofactor [86,87]. Both are glycoproteins loaded by ATP7B before
secretion to circulation. Within ER, FV and FVIII are guided by mannose binding lectin 1
(LMAN1) for trafficking and secretion [86,88,89]. LMAN1 receptor complex defects cause
combined FV+VIII deficiency and mild coagulation disorder [90], underlining importance
of mannose binding lectins in glycosylated protein trafficking. LMAN1 is a collectin
requiring LOX activation, and in MNK low hepatic copper can affect maturation and
trafficking leading to mild clotting deficiency [91].

4.3. Cytochrome c Oxidase

Cytochrome c oxidase (COX) uses copper and heme for reduction of oxygen, making
mitochondrial copper and iron homeostasis indispensable for life. COX is the terminal
oxidase of the electron transport chain comprising four complexes (numbered I, II, III,
and IV), each with increasing reduction potential. The inner membrane contains respi-
ratory complexes and copper chaperones; inter-membrane space (IMS) contains Cu/Zn
superoxide dismutase 1 and soluble copper chaperones; matrix stores a mobilizable copper
pool [92,93]. Copper delivery to COX requires an elaborate machinery of cytoplasmic
guiding molecules, outer and inner membrane translocators, and embedded membrane
chaperones [94]. Soluble and membrane anchored copper chaperones take different routes:
(1) direct uptake via outer membrane into IMS using the redox import machinery [93],
and (2) via matrix and redirection. Uptake of complex IV assembly factors is covered in
reviews [94–96]. Matrix copper is routed to IMS for metalation and activation of enzymes
and chaperones. Knowledge about copper exchange between mitochondrial compartments
with different redox potentials is limited [97,98]. ATP7A dysfunction affects mitochon-
drial redox balance [99], and in MNK with low copper in liver and brain, COX deficiency
becomes severe. COX is a multimeric complex containing two catalytic copper centers,
CuA/heme and CuB, requiring assembly of numerous subunits. Formation of catalytic
sites takes place within mitochondria and requires uptake of copper (and iron) into IMS
from matrix pools, making insertion after biosynthesis unlikely. Assembly is complicated
and assisted by several factors and copper chaperones [93–96]. The COX assembly will not
be covered in detail. However, SCO1, SCO2, and COA6 are inner membrane embedded
thiol-disulfide oxidorectases utilizing copper to modulate redox state, before delivery to
CuA and CuB [100–102]. These copper chaperones are yet examples of redox-dependent
copper transfer.
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Respiratory chain secures cellular energy production, and disruption affects high
energy-demanding tissues like CNS, liver, heart, and skeletal muscles. MNK shows numer-
ous clinical signs of compromised mitochondrial activity [103–105]. Patients are hypotonic
and floppy, often leading to suspicion of mitochondrial disturbance, and milder cases show
myopathy. High lactate in blood or cerebrospinal fluid further strengthens a suspicion.
Late disease stages develop deficiency of several respiratory chain complexes [105,106],
and muscle ragged red fibers, a sign of mitochondrial dysfunction [103,106].

5. Copper-Catalyzed Cofactor Containing Enzymes

This enzyme group needs copper for cofactor activation. Each subclass has its unique
activation, some are formed using copper during enzyme biogenesis, while others are
attached to holoenzymes by a copper dependent process. SUMF1 dependent enzymes
comprise a large new group of mainly lysosomal enzymes only recently joined with copper
homeostasis

5.1. Copper Quinone Amine Oxidases

Copper quinone amine oxidases contain two subgroups, lysyl oxidases and copper
amine oxidases, based on their specific internal cofactors that are formed
post-translationally [107,108]. Copper-dependent monoamine oxidases are covered sepa-
rately below, as they do not use an internal copper cofactor for catalysis. Notably, MAO A
and B are not copper catalyzed.

5.1.1. Lysyl Oxidases (LOX)

Lysyl oxidases (LOX) comprise amine oxidases initiating extracellular matrix (ECM)
formation by catalyzing oxidative deamination of an epsilon-amino group in lysine and
hydroxylysine residues in first step of elastin and collagen cross-linking [108]. Impor-
tantly LOX cross-links a variety of triple helical proteins including collectins, significantly
expanding LOX functions [109].

All members share a highly conserved catalytic site made up of three His [110] in close
proximity to a cofactor created by copper catalyzed cross-linking of two internal amino
acids [107,111]. Formation of the internal cofactor, LQT is described as an autocatalytic
process, but new evidence points to a need for a redox process [85]. Copper LOX metala-
tion occurs before N-glycosylation [85], and failure to acidify Golgi affects glycosylation
resulting in cutis laxa [112,113].

Collagens (COL) and elastin (ELN) provide stability and connectivity among tissues
and organs, and fiber building by trimerization and intra- and intermolecular cross-linking
is crucial. Other components of ECM, mucopolysaccharides and mucolipids interact
with fibers to form connective tissue. Lack of fiber tensile strength affects flexibility and
integrity, and results in connective tissue disorders. Tissues affected are bones, tendons,
ligaments, joints, muscles, blood vessels, heart, and eyes, with symptoms spanning from
osteoporosis, loose joints, lung emphysema, aneurysms, glaucoma to pelvic organ prolapse
or rupture [114]. New collectin symptoms are emerging. Numerous COL proteins exist, but
type I is most abundant. Clinical defects span from osteogenesis imperfecta to osteoporosis
and Ehlers-Danlos syndrome. ELN provides flexibility to fibers that rapidly expand and
return to original shape. Deficiency results in joint laxity, wrinkling of skin, aneurysms
and emphysema. Gastrointestinal and bladder diverticulae are common. Gly-X-Y triple
repeats, hallmarks of COL are versatile and widespread in proteins adapted to a range
of functions [115], and an increasing number of proteins with COL-like domains are
identified [109]. Trimerization is crucial and needs LOX [115–117].

Amongst triple repeat proteins is complement Q1 (C1q), first member of the
complement-cascade. Dysregulation of C1q is characterized by recurrent skin lesions,
susceptibility to infections, increased risk of autoimmune disease, and chronic kidney
disease [118,119]. C1q belongs to collectins [109,120] comprising a superfamily of lectins
with a COL-like stretch fused with CRD. Collectins are present in plasma and on cell
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surfaces acting in first line of defense [109]. Lung surfactant collectins lubricate alveoli,
besides being acute phase reactants.

A well described CRD receptor protein is mannose-binding lectin (lectin mannose
binding 1) (LMAN1) that triggers the lectin pathway of complement activation. LMAN1
(often named ERGIC-53) is membrane bound and cycles between ER, ERGIC, and cis-
Golgi [121–123]. LMAN1 and related proteins form complexes with lectin chaperones and is
a rate-limiting step in maturation of secreted glycoproteins [89]. Compromised glycoprotein
trafficking leads to incorrect localization, and mutations in LMAN1 receptor complex
lead to combined deficiency of FV+VIII and hepatic accumulation of α-1-antitrypsin [90].
LMAN1 deficiency leads to susceptibility to meningitis and infections of upper respiratory
tract, and as a trafficking factor for neuroreceptors will lead to CNS dysfunction [124,125].
More LMAN1 substrates are being identified also affecting immunobiology [123].

Numerous effector proteins exist, we include only a few here that are most important
for MNK. Collagen-like tail of endplate acetylcholinesterase (COLQ) is acetylcholinesterase
with a triple-helical membrane anchor to rapidly regulate muscle activation. If deficient,
neuromuscular signaling causes muscle weakness [126]. Clinical signs are muscle fatigua-
bility affecting limb muscles, ocular muscles (ptosis and ophthalmoplegia), and facial
and mouth musculature (poor sucking and swallowing) as seen in MNK. Collagen and
calcium binding EGF domains 1 (CCBE1) protein is important for lymphatic vessel forma-
tion, and deficiency results in lymphedema, and mutations in CCBE1 causes Hennekam
syndrome [127]. MNK often encounter severe puffiness of face and feet, and a dough-like
skin. Collectin defects are accompanied by susceptibility to infections [109], and distinctive
facial features also seen in MNK, including widely spaced eyes (hypertelorism), narrow-
ing of eye opening (blepharophimosis), droopy eyelids (ptosis), and high arched (cupid)
eyebrows [128,129].

The LOX family is important in relation to MNK and contains five members, lysyl
oxidase (LOX) and four lysyl oxidase-like (LOXL) enzymes working on different biological
substrates [108,130,131]. LOX is secreted and cross-links ELN and COL. The proenzyme
is activated attached to its extracellular substrates [131]. LOX plays a role in aortic wall
formation, and deficiency predisposes to aortic aneurisms and dissections [132,133], a
prevalent cause of death in MNK. Copper is loaded during Golgi passage, before final
N-glycosylation, and a redox step is required [85]. LOX structure has been determined
by homology modeling using LOXL2 [134] demonstrating copper coordination by three
His and LQT oxygen [110] explaining a redox need in formation of the active center [85].
LOXL1 preferably cross-links ELN [135] and is linked to glaucoma, cataract [136,137], and
lens zonule weakness eventually leading to lens subluxation. It is a major risk factor
for pseudoexfoliation syndrome. Preferred substrate for LOXL2 is Type IV COL [138],
a basement membrane component scaffolding other ECM molecules [130,139]. LOXL2
oxidizes histone and localizes in pericentromeric region [140]. Defects are associated with
diseases of muscle, neural, ocular, cutaneous, vascular, lung and kidney tissues [141,142].
Substrates of LOXL3 are not clearly defined, but defects have been associated with early
onset myopia [143] and Stickler syndrome that is a group of connective tissue defects
with variable facial features, eye abnormalities, hearing loss, and joint problems [144].
LOXL3 localizes in nucleus and is involved in histone biology [145]. LOXL4 is expressed in
cartilage and many tissues, the highest levels found in skeletal muscle, testis, and pancreas.

MNK shows numerous LOX and LOXL deficiency symptoms [146,147], and non-
accidental injury (NAI) is often suspected [148–150], and an important differential diagnosis.
LOX deficiency is also well established in OHS [1].

5.1.2. Copper-Containing Amine Oxidases (AOC)

Copper-containing amine oxidases (AOC) comprise a family of both diamine (DAO)
and polyamine (PAO) oxidases. AOC participates together with numerous transporters
and enzymes to precisely regulate polyamine pathways in CNS and periphery. Functions
regulated are wakefulness, inflammation, and neurotransmitter release [108]. In addition,
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a catalytic role, copper is required for biogenesis of the internal topaquinone cofactor
(TPQ) [108]. By analogy, a copper oxidase is likely required for formation of the active
catalytic site where copper bridges three His and oxygen of TPQ. Histamine (monoamine),
putrescine (diamine), spermidine (triamine), and spermine (tetramine) are ubiquitous
AOC regulated amines, involved in proliferation, differentiation, and apoptosis, and in
modulation of neurotransmitter receptors [151]. Polyamines play important roles in rapidly
dividing cells like immune cells and enterocytes, and in regulation of membrane potentials
in excitable tissues. Interactions with ligand-gated ion channels and tight-junctions are
emerging as crucial polyamine regulated functions [151,152].

Polyamines are stable compounds present in mM amounts as free (minor), bound,
and conjugated forms. Polyamine homeostasis is precisely regulated by de novo synthesis,
extracellular catabolic control by AOC, intracellular regulatory feed-back loops, and mem-
brane transfer by solute carriers (SLC) to balance intracellular and extracellular pools [153].
Physiological functions of charged polycations are not fully understood [153]. We focus on
accumulation of specific polyamines, the result of deficient AOC catabolic control.

Histamine is the best studied amine, expressed at numerous sites including mast
cells, gastrointestinal tract, and neurons [154]. Histamine regulates gastric acid secretion
and CNS neurotransmission, in addition to a range of inflammatory reactions [155,156]
mediated by specific histamine receptors [156,157].

Abnormal spermidine catabolism results in skin (ichthyosis), hair (alopecia), and eye
(conjunctivitis) problems [158,159]. Allergic reactions (atopy), light intolerance (photo-
phobia), and cornea inflammation (keratitis) may occur. High polyamine levels trigger
persistent diarrhea with gastrointestinal polyps [154]. All these symptoms are found in
MNK patients.

Humans have three AOC: AOC1, diamine oxidase, histaminase, or amiloride-binding
protein 1 (ABP1), is mainly expressed in kidney, placenta, intestine, thymus, and seminal
vesicles [108], and released at plasma membranes in response to external stimuli. AOC2, or
retina-specific amine oxidase, is expressed on cell surfaces in many tissues with a particular
high expression in retina [160]. AOC3, also named vascular adhesion protein 1 (VAP1), is
widely distributed with highest expression in peripheral lymph nodes, hepatic endothelia,
appendix, lung, and small intestine [108]. AOC3 has been implicated in lung inflammation,
asthma, psoriasis, and vascular stroke [108]. Expression is also high in white fat tissue
where it may be implicated in adipocyte differentiation and metabolism [161].

5.2. Formylglycine Activated Sulfatases

Sulfation/desulfation regulate numerous pathways, and sulfatases are responsible
for break down and recycling of both complex sulfated sugars and hormones [162,163].
Sulfatases share a post-translationally formed internal cofactor, FGly essential for activ-
ity [164,165]. Cofactor generation requires sulfatase-modifying factor 1 (SUMF1) or formyl-
glycine generating enzyme (FGE) [163,166]. SUMF1 oxidises cysteine in target enzymes
using a highly conserved sequence, CXPSR [166,167], and recently copper was found to
be required [167]. SUMF1 is an ER located soluble glycoprotein acting on native sulfatase
polypeptides [168]. ER resident SUMF2 [169,170], a non-copper binding paralog acts as
chaperone and retains SUMF1 by heterodimerization while activating sulfatases [171].
SUMF1 interacts with numerous trafficking factors including LMAN1, and lack of activa-
tion and trafficking leads to proteasomal degradation of SUMF1 [172]. Sulfatases localize to
subcellular sites such as lysosomes, Golgi, and ER [170], where they break-down complex
mucopolysaccharides, mucolipids, and steroid hormones. Lysosomal glycosaminoglycan
(GAG) sulfatases comprise a major group [173]. GAGs are complex sugar polymers and
important components of bone and cartilage, joint lubricants, and cell surface initiating
growth factor activity and first line of defense against microorganisms. Recycling of GAGs
starts by removal of sulfated groups and defective recycling results in GAG accumulation.
Deficiencies present as mimicry of mucopolysaccharidoses (MPS) and mucolipidoses (MLP)
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affecting multiple organ systems [162,170,173]. Sulfatation/desulfatation are crucial for
cartilage formation, and defects are often accompanied by bone dysplasias [173].

Most steroids, e.g., cholesterol, pregnenolone, and estrone, are sulfated after biosyn-
thesis [162], and sulfatation is vital for endocrine function. Cholesterol is crucial for
neurotransmission, myelination, and synaptogenesis [174], and desulfatation provides a
copper link. Dysregulation is associated with numerous pathologies, including faulty regu-
lation of GABA receptor function [175,176]. Niemann-Pick C disease may be accompanied
by copper disturbance likely secondary to poor steroid sulfatase activity and disrupted
trafficking of cholesterol [177].

Combined impairment of all sulfatases, multiple sulfatase deficiency (MSD), are
clinically heterogeneous disorders caused by mutations in SUMF1 or SUMF2 [169,170].
Symptoms present features of metachromatic leukodystrophy, mucopolysaccharidosis,
chondrodysplasia punctata, hydrocephalus, ichthyosis, neurological deterioration, and
developmental delay.

ATP7A-related disturbances may mimic MSD and present with overlapping clinical
features from a complex interplay between SUMF1 and the LOX family. Sulfated molecules
build up in lysosomes, resulting in necrosis and metachromasia, a sign noted early in
MNK [178], but forgotten when the copper disturbance was discovered. Morphologic
changes with vacuoles in myeloid cells, termed Alder Reilly anomaly are seen in patients
with mucopolysaccharidoses (MPS) and have also been reported in MNK [179,180]. Skin
problems in MNK may be related to deficient steroid sulfatase (ichthyosis) [181,182] also
affecting keratinocyte biogenesis and hair development [183]. Build-up of cholesterol
sulfate in the outermost layer of epidermis causes hyperkeratosis with scaling [184].

6. Copper-Dependent Mono-Amine Oxidases

Copper monooxygenases catalyze reactions in catecholamine and hormone pathways.
The group consists of four enzymes that are free or membrane attached within vesicles
of same embryonic origin: adrenal chromaffin vesicles (DBH), synaptic vesicles of the
sympathetic nervous system (DBH), secretory vesicles of the pituitary gland (PAM), and
melanocytes in periphery and CNS (TYR). Enzymes travel to their final destination, but
trafficking is not completely understood and depend on metalation and N-glycosylation.
Crystal structure of DBH shows two copper sites, one (CuH) coordinated by three His, the
other (CuM) by two His and one Met [185]. Topology is similar to PAM, and also shows
likeness to TYR [185,186]. All sites have similar copper avidity [28].

6.1. Dopamine β-Hydroxylase (DBH)

Dopamine β-hydroxylase (DBH) is an ascorbate-dependent monooxygenase convert-
ing dopamine (DA) to norepinephrine (NE) [187,188]. DBH localizes in synaptic vesicles in
noradrenergic and adrenergic nerve terminals of central and peripheral nervous system,
as well as adrenal medulla [189]. DBH is targeted to secretory granules by ER glycosyla-
tion [185].

DBH contains three N-glycosylation sites [185], and may show trafficking prob-
lems [190], and misfolding is suggested to cause DBH deficiency [190]. ATP7A supplies
copper to DBH both centrally and in the periphery [191–193] and is needed during for-
mation and maturation of the holoenzyme, though copper can likely be loaded later.
Met-His-rich lumenal loop of ATP7A can experimentally transfer copper to DBH [28]. NE
controls mood, attention, and overall arousal, as well as stress, learning, and memory [185],
and the adrenal system is important in maintaining blood pressure, glucose, and sodium
levels [194]. Congenital NE deficiency shows profound autonomic failure [188], and perina-
tal period may be complicated by vomiting, dehydration, hypotension, hypothermia, and
severe hypoglycemia all seen in early MNK. Later symptoms are dizziness upon standing
(orthostatic hypotension), blurred vision, and difficulty in exercising. Other symptoms
are droopy eyelids (ptosis), nasal congestion, muscle pain, and weakness, symptoms well
recognized in MNK. DA/NE ratio is increased in plasma and CSF, and dopaminergic
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imbalance is an early discriminatory marker for MNK [195], and milder forms also show
abnormal values [2].

6.2. Peptidyl α-Amidating Enzyme (PAM)

Peptidyl α-amidating enzyme (PAM) activates a vast amount of neuroendocrine hor-
mones involved in regulation of numerous processes. PAM is a bifunctional enzyme,
consisting of two distinct catalytic domains working sequentially, peptidylglycine α-
hydroxylating monooxygenase (PHM) and peptidyl–α-hydroxyglycine α-amidating lyase
(PAL). Copper containing PHM catalyzes hydroxylation of a glycine, subsequently cleaved
by PAL to generate C-terminal amidation in activated peptide hormones. PHM has copper-
binding sites similar to DBH and also requires ascorbate as cofactor [185,186]. Lack of
metalation does not alter passage through secretory pathway, and the apoenzyme is not
degraded [196], though not directed to correct vesicular location [186]. Copper required
for enzyme activity is not tightly bound [7] and can be lost, but secreted apoenzyme can be
activated [197]. This likely also apply for trafficking and metalation of related enzymes,
DBH and TYR. The first luminal loop of ATP7A involved in release of copper contains an
amino acid stretch rich in His and Met acting as potential copper donor for metalation of
PAM in secretory pathway [186]. Functionally PAM and DBH overlap, and neuropeptides
and neurotransmitters participate in a large number of processes related to feeding and
body weight, fluid balance, pain, anxiety, memory, circadian rhythms, and reward [186,198].
PAM is essential for activation of numerous neuroendocrine peptide hormones such as
cholecystokinin, gastrin, vasoactive intestinal peptide, thyrotropin-releasing hormone,
calcitonin, corticotropin-releasing hormone, and vasopressin [186].

Biological significance of PAM is not fully understood, but deficiency results in
widespread effects. Brindled mice, a genetic model of ATP7A-related copper disturbances,
fail to produce normal levels of α-amidated peptides [198,199]. PAM deficient mice show
CNS problems, e.g., impaired vasoconstriction and thermoregulation, increased seizure
susceptibility, anxiety, and increased response to noise [198].

6.3. Monooxygenase, DBH-Like 1 (MOXD1)

Monooxygenase, DBH-like 1 (MOXD1) is structurally similar to other ascorbate requir-
ing copper-containing monooxygenases, but with unknown substrate. MOXD1 lacks signal
sequence and localizes throughout ER in both endocrine and non-endocrine cells [200].
MOXD1 is membrane-associated and oligomerize. MOXD1 is predicted to hydroxylate a
substrate in ER, and possibly acts as enzyme chaperone for DBH [200].

6.4. Tyrosinase (TYR)

Tyrosinase (TYR) catalyzes the first two steps in melanogenesis from tyrosine to DOPA
and to dopaquinone. Tyrosine oxidation is rate-limiting followed by ER polymerization
reactions [201,202] catalyzed by two members of tyrosinase-related proteins TYRP1 and
TYRP2 [203].

TYR is membrane anchored and possesses two copper centers resembling DBH though
entirely made up of His [185,204]. Copper is acquired during maturation in secretory
pathway, but apo-TYR can be activated later by addition of copper [205,206]. TYR localizes
to specialized endosomes termed melanosomes and undergoes maturation and sorting
before reaching integration site [207,208]. Intracellular sorting and polymerization steps
from ER through Golgi to melanosomes is tightly regulated including metalation and
N-glycosylation [203,209,210]. During sorting in ER, TYR interacts with lectins normally
associated with LMAN1 [207,209]. Metalation likely occurs in ER before action of TYRP1
and TYRP2, but can take place later in melanosomes, and TYR becomes fully functional only
at its final destination [210,211]. TYRP1 and TYRP2 belong to the same protein family and
have similar metal binding sites though using zinc. TYR substrates play a conformational
role as molecular chaperones to enhance folding and ERGIC trafficking [208]. The Met-His-
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rich first luminal loop of ATP7A possibly metalates TYR [28]. TYR may lose copper during
passage of acidic TGN but is reloaded in melanosomes with neutral pH [210,212].

Melanosomes originate from distinct, though related, embryonic stem cells: (1) neural
tube derived retinal pigment epithelium and pineal gland melanocytes; (2) neural crest
derived melanocytes of inner ear, skin, hair-bulbs, and iris [213]. Highest TYR expression
is in pigment epithelium of retina. Skin melanosomes are transferred to keratinocytes
where melanins protect against UV sun radiation [214]. Melanins are negatively charged,
polymerized and hydrophobic pigments working as capacitor to absorb and dissipate
energy to neutralize radiation. In case of high energy absorption, output occurs as heat
and reactive oxygen species (ROS), eventually resulting in sun burn and necrosis. Complex
neuromelanins are synthesized mainly in dopaminergic neurons of substantia nigra and no-
radrenergic neurons of locus coeruleus [215]. Midbrain catecholaminergic neurons of basal
ganglia network are crucial for brain cognitive functions. Biosynthesis and regulation of
neuromelanins are poorly understood [216,217] as is their role in smell, vision, and hearing.
Deficient development of inner ear melanocytes causes deafness [218,219]. TYR mutations
result in hypopigmentation disorders and sensitivity to UV radiation, visual problems like
nystagmus, strabismus, and reduced visual acuity with photophobia [220]. Transduction
overload may lead to local oxidative stress and accumulation of waste products in central
and peripheral ganglions and increased risk of melanoma [217]. Pigment and cell debris
accumulation in CNS may increase susceptibility to Parkinson [217].

In MNK visual problems are early onset nystagmus, iris trans-luminescence, hypo-
pigmented fundus, and reduced visual acuity [221]. Hearing may be impaired, but often not
investigated. In accord with above, copper replacement therapy in MNK shows darkening
of hair and skin [206].

7. Copper/Zinc-Containing Superoxide Dismutases (Cu/Zn-SODs)

Superoxides are products of normal aerobic metabolism and crucial in oxidative burst
of innate immune responses [222], but in need of strict control. Superoxide dismutase (SOD)
disproportionate the reactive radicals into molecular oxygen and less reactive hydrogen
peroxide. Uncontrolled, ROS will attack unsaturated fatty acids, and SOD is of particular
importance for a healthy brain, and of the most abundant enzymes underlining importance
of ROS control. SOD1 is compartmentalized into distinct cellular and minor extracellular
pools. SOD3 is attached to extracellular matrix, and often named extracellular SOD (EC-
SOD). SOD1 activity is copper regulated at protein level, while SOD3 activity is copper
regulated at gene level. Amyloid-β precursor protein (APP) family consists of Cu/Zn
proteins with a SOD-like structure and possible dismutase activity [223] and is copper
regulated through Cu-CCS activated cleavage of β-secretase 1 (BACE1). A manganese form
(SOD2) in mitochondrial matrix is interconnected with IMS-SOD1 [224] and SOD3 [225].

7.1. Superoxide Dismutase 1 (SOD1)

Superoxide dismutase 1 (SOD1) is the master SOD and sole cytosolic and peroxiso-
mal cuproenzyme. SOD1 mainly localizes in cytosol, an almost equal fraction in peroxi-
somes [226], and minor pools in mitochondrial intermembrane space (IMS), and nucleus.
SOD1 comprise a large copper pool, earlier viewed as copper buffer [227], substantiated
by labile metal binding by a cluster of four imidazole groups [11]. Some cell types secrete
SOD1 [228]. SOD1 is unusual by having a labile copper site in cytoplasm abundant in
GSH, and likely needs shielding by vesicular structures [229]. Copper chaperone for SOD1
(CCS) participates in maturation and activation of SOD1 at all subcellular locations. CCS
is a member of the Cu/Zn-SOD family and acts as an enzyme chaperone to catalyze an
intramolecular disulfide bond, stabilizing correct SOD1 conformation for incorporation of
copper and zinc. CCS also functions as molecular chaperone and contains three domains
having different roles: N-terminus possesses a copper binding site (MXCXXC), similar
to ATOX1 [230], also with potential allosteric role in copper activation. The homologous
middle part interacts with SOD1, and C-terminus contains a copper catalytic CXC site
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needed for intramolecular S-S bridge formation [231,232]. Nascent SOD1 and CCS polypep-
tides devoid of metal enter IMS individually and with essential sulfides reduced while
traversing outer mitochondrial membrane [93,233]. In IMS, SOD1 meets CCS, and is folded
and activated as in cytosol, hereby retained in IMS as functional enzyme. SOD1 and CCS
are both taken up by the CHCHD4 (~MIA40) redox import machinery [234].

Peroxisomes enclosed by a single lipid bilayer use special import of membrane pro-
teins and matrix enzymes [235]. Most contains a peroxisomal targeting signal (PTS) and
are taken up via peroxin (PEX) membrane receptors [236,237] and delivered through direct
contact between ER and peroxisomes. Folded, co-factor bound, and oligomeric proteins
can be imported [238]. A major SOD1 route through ER has been discovered, securing
high peroxisomal matrix content [239]. SOD1 does not contain PTS and is piggy-backed
into peroxisomes by its chaperone [237,239]. CCS-PTS is in ER recognized by PEX5 recep-
tor, shuttling CCS-SOD1 into peroxisomal matrix [235]. SOD1 rapidly enters nucleus in
response to increased H2O2 levels and is potentially piggy-backed via ER by CCS. Peroxi-
somes are present in all tissues catalyzing a wide range of anabolic and catabolic reactions.
SOD1 generates H2O2, and catalase uses H2O2 to oxidize substrates. SOD1 dysfunction
leads to ROS accumulation that eventually damage the peroxisomal membrane, and release
catalase to cytosol [240]. Severe pathologies result from peroxisomal dysfunction showing
multi-systemic symptoms referred to as peroxisome biogenesis disorders (PBD). Neuro-
logical dysfunction is prominent usually accompanied by brain malformations, myelin
abnormalities, and neuronal degeneration [241]. Systemic manifestations often include
dysmorphic features, liver dysfunction, and skeletal abnormalities [241].

In MNK brain, both CCS and SOD1 polypeptides are taken up into mitochondrial IMS,
but SOD1 is not properly folded and activated due to lack of copper. ROS are expectedly
high, and matrix SOD2 induced as compensation [224]. The ER-peroxisomal route is also
compromised creating a deficit of peroxisomal matrix SOD1 and enhanced peroxisomal
stress in turn affecting nerve development. Still CCS accumulates [224,242] indicating
faulty heterodimerization when copper is low. Deficiencies affect cerebellar maturation
and axonal integrity, and lead to Purkinje cell pathologies with “weeping willow”, a well-
recognized sign in MNK [242,243]. Low hepatic copper results in low SOD1, and oxidative
stress plays a role in the pathogenesis of steatosis.

If nascent SOD1 is not correctly processed, it will remain inactive, potentially misfold,
dimerize or tetramerize, as is the case in some neurodegenerative diseases [244]. Genetic
disturbances of SOD1 lead to motor neuron disease, amyotrophic lateral sclerosis (ALS).
Most SOD1 mutations affects heterodimerization and piggy-backing into peroxisomes [245].
Like MNK, lack of peroxisomal uptake of SOD1 will in ALS lead to oxidative stress and
development of varying motor neuron affection as part of the PBD spectrum.

7.2. Superoxide Dismutase 3 (SOD3)

Extracellular superoxide dismutase (SOD3) is anchored to heparan sulfate in ECM [246].
SOD3 is structurally closely related to SOD1 and also contains copper in its catalytic center
and zinc to stabilize structure. The central part of SOD3 is homologous to SOD1, the metal
binding sites preserved and with similar copper avidity, but structures vary at ends. SOD3
contains a signal peptide plus three N-glycosylation sites for GAG guidance [247]. The
enzyme is copper loaded in secretory pathway, but no specific copper chaperone has been
identified. ATOX1 regulates protein expression through copper dependent binding to
SOD3 promoter [248]. C-terminus contains a heparan binding domain securing attachment
to ECM [246]. After secretion SOD3 forms tetramers stabilized by intermolecular disulfide
bonds. SOD3 is secreted by fibroblasts and glial cells and protects cell membranes against
ROS; about 1% is free in plasma, lymph, and cerebrospinal fluid [249]. SOD3 levels are
high in vasculature, heart, lungs, kidney, and placenta [250]. Low SOD3 activity is linked to
lung disease such as acute respiratory distress syndrome or chronic obstructive pulmonary
disease [251] and deficiency may result in angiopathy.
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8. Cu/Zn-SOD-Related Proteins Regulated by β-Secretase 1 (BACE1)

Amyloid-β precursor protein (APP), and amyloid-like proteins APLP1 and APLP2
contain a dismutase fold resembling Cu/Zn-dismutases and are regulated by copper
through protease cleavage [11,224]. They bind copper and zinc primarily through His
coordination [252] but an enzymatic role has not been established, though APP redox
capacity has been demonstrated [253,254]. APP and its processed forms appear to have a
growth-factor-like role and promotes neuronal proliferation and division [255]. Thus, the
APP family is important for synaptic development and plasticity of central and peripheral
nervous systems [256]. We will point to the relationship between the APP family and the
Cu/Zn-SOD family to emphasize remote regulation by CCS-Cu.

β-secretase 1 (BACE1) is a membrane-bound protease, catalyzing first step of extra-
cellular release of soluble amyloid β peptide (Abeta) from APP. BACE1 is rate-limiting
in neuronal Abeta generation and also cleaves numerous other substrates important in
formation of myelin. BACE1 contains a CCS-Cu regulatory site spatially separated from the
protease site [5,11]. N-terminal CCS-MXCXXC binds to a cysteine rich area in C-terminal
cytoplasmic tail of BACE1 regulating numerous brain functions including PAM [257].
BACE1 is expressed at high levels in brain and pancreas. Expression is highest in sub-
stantia nigra, locus coeruleus and medulla oblongata [258]. Abrogated cleavage in BACE1
knockout mice shows a role in neuronal migration, axonal growth, and muscle spindle
function [259]. BACE1 is N-glycosylated [260] implying poor ERGIC trafficking in addition
to poor protease activity secondary to low brain copper in MNK.

9. Conclusions

The main objective of this review is tying enzymes, substrates, and key symptoms
together in a unified hypothesis to explain Menkes disease symptoms and pathologies
(Table 3). We also wish to shed light on crucial steps in biogenesis of copper-dependent
enzymes (dysfunctional in MNK) by focusing on metalation sites in cells, metal chaperoning
and trafficking of enzymes in the secretory pathway.

ATP7A disturbances result in complicated copper disorders starting by poor uptake
at intestinal brush border, aggravated by poor release from enterocytes, further affecting
all barriers in the body, underlining that the basic defect is not a simple copper insuf-
ficiency. Defects in reduction (STEAP) before cellular uptake and in oxidation (HEPH)
before release contribute to a complex copper transport defect resulting in complex clinical
traits. Intracellular organelle deficiencies develop, combined with copper accumulation in
unavailable pools. Copper pumping into secretory pathway and enzyme metalation are
clinically significant, and ERGIC enzyme trafficking is also emerging as a copper regulated
step (LOX). MNK diagnosis is often missed until hair changes are obvious, and the delay
may leave many undiagnosed cases. To improve diagnostic awareness, focus should be
shifted from hair as the main diagnostic pointer to more subtle symptoms. We found
no evidence of a copper specific sulfhydryl oxidase, and hair and skin changes likely
result from combined lack of steroid sulfatase (SUMF1), copper amine oxidase (AOC), and
defective mitochondrial Fe-S biogenesis. SUMF1 is a new player in Menkes disease linking
faulty cholesterol biology to the clinical picture and a whole new group of GAG sulfatases,
which may lead to mimicry of lysosomal storage disorders (Table 3).

Symptoms secondary to LOX dysfunction have been expanded and shed light on their
role in activation of receptor and adapter collectin molecules. Though important, it is an
overlooked component of Menkes disease pathology. In liver, LMAN1 deficiency affects
coagulation factors V+VIII and alpha-1-antitrypsin, and in brain leads to poor trafficking of
numerous neuroreceptors explaining nervous symptoms in MNK. Other receptors with a
collagen-like stretch, COLQ and CCBE1, explain muscle weakness and lymphedema. Cq1
deficiency add problems with innate immunity, and lung surfactant defects. Unexpectedly
the peroxisomal SOD1 pool requires ER for metalation, and Zellweger-like symptoms are
becoming part of the MNK symptom spectrum. Interestingly, motor neuron disease is a
characteristic of the mildest disease form, SMAX3.
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Trafficking and post-translational modifications of copper enzymes, including met-
alation begin in the endoplasmic reticulum (ER) and continues in Golgi before proteins
are sorted and sent to their final destinations. Sugar tags guide enzymes during folding,
proof-reading, refolding, and holoenzyme trafficking [261]. In ER nascent polypeptides
are core glycosylated, and the added sugar tags are used for cargo receptor recognition by
LMAN1 and other lectins. Adaptor sugar recognition is important for correct folding and
trafficking, and GAG defects lead to multiple tissue and organ failures as well as abnormal
physiognomy. Proteins with a CRD domain constitute a distinct class of adaptor molecules
of which collectins [109] require LOX for correct conformation and stability.

At present, the extent of glycosylation and trafficking defects in Menkes disease is
unclear, and coppers significance for sugar sorting is an emerging field. LMAN1 is one
of several homologous mannose binding adapter molecules securing protein trafficking
in the secretory pathway. Further glycosylation modifications occur in the Golgi complex
where an array of enzymes modifies the sugar tags for their final destination but may
require metalation to expose N-glycosylation sites correctly [261]. Lack of copper can result
in distorted conformation and lead to normally unexposed N-glycosylation sites being
exposed or the opposite, resulting in integration at wrong membrane sites [261].

Copper metalation is most often cited as taking place in TGN, but we found clear
evidence in the literature of metalation in ER. Possibly ATP7A delivers copper in ER, in
ERGIC, and in Golgi. SUMF1 is resident and metalated in ER and requires an ER-resident
homologue devoid of copper, SUMF2 as molecular chaperone. Strong indication exists that
TYR and DBH are metalated in ER, also making ER-metalation of PHM likely. TYR sites
have low avidity and if pH is low, often loses copper, but is reloaded in melanocytes with
a neutral pH. Potentially ATP7A also provides copper here. TYR uses related molecules,
TYRP1 and TYRP2 as molecular chaperones. TYRP1 and TYRP2 contain zinc and are both
ER located. DBH is suggested to use the ER-resident homologue, MOX1D as molecular
chaperone.

Blue copper oxidases (CP, HEPH, and HEPHL1) appear to be metalated in cis-Golgi.
Cofactor formation of LOX and AOC happens by use of a redox process, before N-
glycosylation in Golgi, though the process is normally cited as autocatalytic. However,
required reactions will likely not rely on chance, but is facilitated by an enzyme reaction.
HEPHL1 is needed for metalation of LOX, and AOC likely use the same or a similar redox
chaperone.

SOD1 is metalated at several cellular sites and depends on ER for metalation of the
peroxisomal pool. CCS does not load SOD1 but is needed as redox chaperone to form S-S
bridges stabilizing the conformation for proper metalation and subsequent piggy-backing
of the CCS-SOD1 complex to peroxisomes. CCS provides allosteric regulation of SOD1 and
BACE1, similarly to ATOX1 that allosterically regulates MBDs to initiate ATP7A/B pump
activity.

ATP7A contains a Golgi localization signal and locates in ER when the signal is
removed by alternative splicing. The first lumenal loop may help retain the protein in
ER by binding of copper to Met-His-rich sequences similar to calcium ATPases using
corresponding sites for calcium regulated ER retention.Metalation of DBH, PAM, and TYR
may be facilitated by the Met-His-rich lumenal loop of ATP7A.

At experimental tissue culture conditions, ATP7A is found in TGN. However, most
tissue culture experiments use fibroblasts, and the principal enzyme in this cell type is LOX,
which is metalated in the late secretory pathway. Fet3 models will misinterpret ER activity
as it is a CP/HEPH homologue metalated in Golgi. Thus, experiments using tissue culture
may not represent the full picture of what takes place in vivo. We hypothesize that if ER
metalation is diminished, all enzymes including downstream metalated enzymes may be
affected leading to the severest phenotype. Milder phenotypes may preserve ER metalation
of enzymes but show Golgi metalation problems. However, enzymes with low copper
avidity may lose the metal during Golgi passage, and the enzyme may integrate at a faulty
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site resulting in deficient function, as may be the case for, e.g., DBH and TYR. Notably, all
ATP7A-related phenotypes except SMAX3 show pale skin color and dysautonomia.

Table 3. Menkes Disease Symptoms.

Birth and Neonatal Period Enzyme Deficiency Comments

Preterm AOC (histaminase) One-third before 37 weeks

Premature rupture of fetal membranes LOX

Weight - One-third less than 2500 g

Length -

Head circumference -

Apgar score - Quick test at 1 and 5 min, in rare cases, also 10 min after birth

Denver scale - Developmental score for milestones in young children
according to age

Bayley score - Cognitive, language, and motor developmental infants and
toddlers score

Hydrops fetalis LOX Severe swelling (oedema)

Intrauterine growth retardation LOX, SUMF1 Small for gestational age

Decreased fetal movements -

Neonatal onset - Rarely recognized before hair changes at 2–3 month

Neonatal death -

Early death - Usually before three years

Failure to thrive -

Feeding difficulties DBH, LOX Poor sucking and swallowing

Floppy infant COX, LOX

Poor head control COX

Dysautonomy DBH

Infantile spasms COX Shivers or a small jerks in series

Irritability DBH, PAM, SUMF1

Babinski reflex DBH, PAM, SUMF1 Upward movement of the big toe sign of pyramidal dysfunction

Anxiety DBH, PAM, SUMF1

Increased response to noise DBH, PAM, SUMF1

Lethargy DBH, PAM, SUMF1 Decreased alertness

Respiratory distress LOX, SOD3

Icterus/jaundice CP, LOX Photo therapy resistant

External features

- Head and neck

Face lacking in expression DBH Low mimic

Pallor TYR Light skin color

Hypertelorism LOX, SUMF1 Widely spaced eyes

Nystagmus DBH, LOX, TYR Difficulty in controlling eye movements

Blepharophimosis LOX Narrowing of eye opening

Photophobia AOC, TYR Light intolerance

Keratitis AOC, LOX Cornea inflammation

Conjunctivitis AOC, LOX Eye inflammation
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Table 3. Cont.

Birth and Neonatal Period Enzyme Deficiency Comments

Ptosis DBH, LOX Droopy eyelids

Miosis DBH Excessive constriction of pupils

High arched (cupid) eyebrows LOX, SUMF1

Ophthalmoplegia DBH, LOX

Cherubic appearance LOX, SUMF1

Microcephaly LOX, SUMF1 <2 SD for age

Brachycephaly LOX, SUMF1

Frontal bossing LOX, SUMF1

Occipital bossing LOX, SUMF1

Long philtrum LOX, SUMF1

High forehead LOX, SUMF1

High-arched palate LOX, SUMF1

Small chin LOX, SUMF1

Pudgy cheeks SUMF1

Flat central face LOX, SUMF1

Depressed nasal bridge LOX, SUMF1

Nasal congestion LOX

Hypoplastic mandibles LOX, SUMF1

Micrognathia LOX, SUMF1

Retrognathia LOX, SUMF1

Drooping jaws SUMF1

Low set ears LOX, SUMF1

Large ears LOX, SUMF1

Occipital exostoses LOX Calcified exostoses palpable from occiput, uncommon

Internal jugular phlebectasia LOX

- Chest

Pectus excavatum LOX

Pectus carinatum LOX

Neurological symptoms

Corpus callosum agenesis SUMF1 Absence of brain structure that connects the two hemispheres

Dysautonomia DBH

Cerebellar hypoplasia LOX

Mental retardation COX, PAM, SOD1

Motor retardation COX, PAM, SOD1

Loss of milestones - Progressive neurologic defects

Hypothermia DBH, PAM Subnormal body temperature

Hypoglycemia DBH, PAM Subnormal sugar values

Nasal congestion DBH

West syndrome COX Epileptic encephalopathy

Seizures COX Refractory and early onset
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Table 3. Cont.

Birth and Neonatal Period Enzyme Deficiency Comments

Clonic seizures COX

Myoclonic seizures COX

Tonic seizures COX

Motor dysfunction DBH

Ataxia DBH, PAM, SOD1,
SUMF1

Spasticity COX

Hypertonia DBH

Hypotonia DBH

Eye symptoms

Cataract LOX

Myopia LOX

Nystagmus DBH, LOX, TYR Difficulty in controlling eye movements

Strabismus TYR

Blepharophimosis LOX Narrowing of eye opening

Photophobia AOC, TYR Light intolerance

Keratitis AOC, LOX Cornea inflammation

Conjunctivitis AOC, LOX

Ptosis DBH, LOX Droopy eyelids

Miosis DBH Excessive constriction of pupils

Reduced visual acuity TYR

Optic discs palor TYR

Optic atrophy TYR Abnormal electroretinogram (ERG)

Visual loss TYR Visual evoked potential (VIP)

Retinal and iris depigmentation TYR

Iris trans-luminescence TYR

Iris microcysts SUMF1, TYR

Hypopigmented fundus TYR Fundoscopy

Ear symptoms

Hearing loss LOX, PAM, TYR Brain stem auditory evoked potential (BAEP)

Hair and skin symptoms

Fine, silvery and brittle hair AOC, TYR, SUMF1 Short, stubby, friable

Depigmented scalp hair TYR, SUMF1 Lusterless, silvery, steel wool

Sparse hair AOC, SUMF1 Rubbing against pillow may feel like unshaven stubbles

Alopecia AOC, SUMF1 Lack of hair

Fetal hair may be unaffected - Soft

Pili torti SUMF1 Hair twisted about their own axis

Trichorhexis nodosa SUMF1 Frying and splitting of hair ends

Monilethrix SUMF1 Varying diameters of the shafts

Cupid eyebrows LOX, SUMF1 Eyebrows with a high arch

Sparse eyebrows AOC, SUMF1 Look like old man’s eyebrows
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Table 3. Cont.

Birth and Neonatal Period Enzyme Deficiency Comments

Sparse eyelashes AOC, SUMF1 Breaks easily

Seborrhea AOC, SUMF1 Dry and scaly skin

Erythroderma AOC, SUMF1 Generalized exfoliative dermatitis with redness and scaling

Cutis laxa HEPHL1, LOX Lax and wrinkled skin may give a progeria like appearance

Pale skin PAM, TYR Almost like an albino

Anhydrosis DBH, LOX Inability to sweat normally

Doughy skin LOX Swelling of subcutaneous tissue

Lymphedema LOX Swelling due to poor lymphatic system

Dentation

Hyperplastic gums LOX Prominent gums

Dental abnormalities LOX

Enamel defects LOX

Delayed eruption LOX

Biconically shaped incisors LOX

Lung symptoms

Acute respiratory distress syndrome AOC, LOX, SOD3,
SUMF1

Chronic obstructive pulmonary disease AOC, LOX, SOD3,
SUMF1

Emphysema LOX, SOD3, SUMF1 Damaged air sacs (alveoli) with breathing difficulty

Cardiovascular symptoms

Congenital heart disease COX, LOX About 5%

Angiopathy AOC, APP, LOX,
SOD3 Disease of arteries, veins, and capillaries

Tortuous blood vessels LOX Twisted with frayed and split inner walls

Bleeding tendency FV+VIII, LOX

Mild coagulation deficiency FV+VIII

Hematomas LOX

Subdural hematomas LOX

Intracranial hemorrhage LOX

Cephalohematomas LOX Prevalent at birth

Gastrointestinal symptoms

Chronic diarrhea AOC

Vomiting AOC

Bowel dysfunction AOC

Gastrointestinal polyps LOX

Hiatal hernia LOX

Hepatic symptoms

Hepatomegaly COX, SOD1, SUMF1 Low hepatic copper gives low enzymatic activity

Icterus CP, ATP7B Yellowish color of skin and eyes

Steatosis COX, SOD1 Fatty liver
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Table 3. Cont.

Birth and Neonatal Period Enzyme Deficiency Comments

Genitourinary symptoms

Bladder diverticula LOX

Bladder rupture LOX

Ureteral obstruction LOX

Glomerulonephritis LOX

Urinary tract infection LOX

Vesico-ureteral reflux LOX

Hydronephrosis LOX Partial urinary tract blockage

Diaphragmatic hernia LOX

Umbilical hernias LOX

Inguinal hernia LOX

Cryptorchidism LOX, SUMF1 Undescended t esticles

Connective tissue symptoms

Loose/hypermobile joints LOX

Tortuous vessels LOX

Wrinkled and loose/extensible skin LOX

Soft skin / edema LOX

Musculoskeletal symptoms

- Skeletal—neck and chest

Cervical spine anomalies LOX Mimics non-accidental lesions

Short, broad clavicles LOX

Flaring of the ribs LOX

Short, broad ribs LOX

Pectus excavatum LOX Sunken breastbone

Pectus carinatum LOX Protruding breastbone; “pigeon chest”

- Skeletal—limbs

Congenital bone fractures LOX Symmetrical uncommon in “battered child”/NAI

Long-bone fractures LOX

Metaphyseal spurring LOX Can resemble scurvy

Diaphyseal periosteal reaction LOX

Cortical thickening LOX

Short humeri LOX

- Skeletal—others

Wormian bones LOX Intrasutural supernumerary bones, not found in child abuse

Spondylolysis LOX, SUMF1 Fractures of vertebra

Osteroporosis LOX, SUMF1 Brittle bones

Osteopenia LOX, SUMF1

Cartilage malformation LOX, SUMF1

Joint laxity LOX

Limb dislocations LOX
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Table 3. Cont.

Birth and Neonatal Period Enzyme Deficiency Comments

Metaphyseal widening LOX

Osteochondrodysplasia LOX, SUMF1

Occipital horn exostoses LOX Uncommon in MNK, but can be observed from 2 years

- Muscles

Motor neuron disease SOD1, LOX

Investigations Activity measured

MR MRI and MRA Neuroimaging Magnetic Resonance and computerized tomography; cerebral
atrophy, cortical areas of low density, diffuse cerebral and
cerebellar volume loss, white-matter, and basal ganglia changesCT Neuroimaging

EEG Brain activity Hypsarrhythmia, diffuse, multifocal spike activity

Radiography Bone

Symmetrical metaphyseal flaring and spurring of ribs, and
cervical fractures may mimic non-accidental trauma, but these
are not symmetrical; skull wormian bones are not seen in child
abuse

Arteriography Vasculature Elongated and tortuous cerebral and systemic vessels

Ultrasonography Bladder, bowel Diverticulae and polyps

Light Microscopy Hair examination Pili torti, trichorexis nodosa, monilethrix

Echocardiography Heart Heart murmur

ERG Electroretinogram Optic atrophy

VIP Visual evoked
potential Loss of vision; retinal and macular degeneration

Fundoscopy Eye background,
macula Hypopigmented

BAEP Brain stem auditory
evoked potential Hearing loss

Cell culture Radioactive copper
test Increased accumulation and retention

Tissue copper ICPMS; AA Increased in CVS, placenta, muscle; liver low

Biomarkers

Boy ATP7A X-linked

Family history of male infant death ATP7A X-linked

Hyperbilirubinemia ATP7B Transient, but prolonged and light therapy resistant

Low plasma copper ATP7A Diagnostic from 4–6 weeks

Low free Cu ATP7A Diagnostic from birth

Low ceruloplasmin CP Diagnostic from 4–6 weeks

High RBC (Red Blood Cells) Cu SOD1 Erythrocyte SOD1 in neonates

Anemia HEPH, CP May be hypochrome

Neutropenia LOX Decreased neutrophils

Thromboembolism FV+VIII Blood clot breaking loose and plugs other vessels

Urinary Cu low to normal ATP7A MT

Low liver Cu ATP7A Diagnostic from birth

High placenta Cu ATP7A Diagnostic from birth; CVS diagnostic prenatally

High metallothionein levels ATP7A MT1 and MT2 (diagnostic?)
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Table 3. Cont.

Birth and Neonatal Period Enzyme Deficiency Comments

Plasma DA/NE ratio increased DBH Diagnostic from birth

Urinary HVA/VMA ratio increased DBH Diagnostic from birth

Hypoglycemia SUMF1, PAM, DBH Transient

High blood lactate COX CSF, intermittent

Pyruvate COX Intermittent

Hyperammoniemia COX Intermittent

High plasma glutamic acid COX Intermittent, alpha-ketogluterate conversion

Respiratory chain deficiencies COX Indicative

Intracellular Cu accumulation ATP7A Diagnostic, tissue culture

Molecular screening of ATP7A ATP7A Definitive diagnosis

Pathology

Purkinje cell pathologies SOD1 Faulty arborization and “weeping willow”

Ragged red fibers COX Subsarcolemmal aggregates of mitochondria in muscle fiber

Alder Reilly anomaly SUMF1 Vacuolization of blood cells; observed in GAG deficiencies

Metachromasia SUMF1 Color staining change of accumulated tissue sugar sulfatides

Pili torti SUMF1 Hair twisted about their own axis

Trichorhexis nodosa SUMF1 Frying and splitting of hair ends

Monilethrix SUMF1 Varying diameters of the shafts

Differential diagnosis:

NAI LOX Non-accidental injuries; >10% symmetric changes think MNK

Osteogenesis imperfecta LOX Brittle bones and bone dysplasias

Mitochondrial disorder COX Compromised energy production affecting all organs and
tissues

Organic acid uria COX Defective mitochondrial matrix metabolism

Cutis laxa LOX Loose and wrinkled skin in an infant

Progeria LOX, SUMF1 Old age syndrome in young people

Syndromes with hair abnormalities SUMF1, AOC

Glutamine defects COX Defective mitochondrial matrix metabolism

MSD SUMF1 Multiple sulfatase deficiency

MPS SUMF1 Mucopolysaccaridoses

MLP SUMF1 Mucolipidoses

Leukodystrophy SUMF1 E.g., metachromatic leukodystrophy

DBH deficiency, congenital DBH CNS Cu deficiency

10. Future Directions

Numerous copper chaperones and adaptor molecules regulate copper-dependent
enzyme passage in the secretory pathway, but the specific guiding molecules are only
known for a fraction of copper enzymes. We hypothesize that more copper-dependent
enzymes need specific copper chaperones for metal activation, and chaperoning roles
may emerge for copper binding proteins for which today there is no known function. For
example, the APP family may act as redox-active copper chaperones similarly to CCS.
More copper-dependent enzyme reactions are likely to be unraveled, e.g., mitochondrial
enzymes controlled by lipoic acid may also depend on copper. Finally, the iron–copper
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connection needs to be further explored on molecular, cellular, and organelle levels. Despite
the new cellular/molecular connections outlined here for copper-dependent processes, the
Menkes disease enzyme puzzle, linking consequences of ATP7A dysfunction in cells and
tissue to MNK patients’ clinical symptoms, is not yet complete.
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Abbreviations

ABP1 Amiloride-binding protein 1
ALS Amyotrophic lateral sclerosis
AMD Age-related macular degeneration
AOC Copper-containing amine oxidases
APP Amyloid-β precursor protein
APLP Amyloid-like protein
ARS Arylsulfatase
ATOX1 Antioxidant 1 copper chaperone
ATP Adenosine triphosphate
ATP7A Copper-transporting ATPases, α
ATP7B Copper-transporting ATPases, β
BACE1 β-secretase 1
BBB Blood–brain barrier
C Cysteine
C1q Complement Q1
CCBE1 Collagen and calcium binding EGF domains 1
CCS Copper chaperone for SOD1
CHCHD Coiled-coil-coiled-coil domain
CNS Central Nervous System
COA6 COX Assembly Factor 6
COL Collagen
COLQ Collagen-like tail of endplate acetylcholinesterase
COX Cytochrom c Oxidase
CP Ceruloplasmin
CRD Carbohydrate-recognition domain
CSF Cerebrospinal Fluid
Cu Copper
Cys Cysteine
CYBRD1 Cytochrome b reductase 1
DA Dopamine
DAO Diamine Oxidase
DBH Dopamine β-hydroxylase
DOPA Dihydroxyphenylalanine
ECM Extracellular Matrix
EC Extracellular
ELN Elastin
ER Endoplasmic reticulum
ERGIC ER–Golgi intermediate compartment
FAD Flavin adenine dinucleotide
FV+VIII Clotting factors V and VIII
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Fe-S Iron sulfur site
FGE Formylglycine generating enzyme
FGly Formylglycine
G Glycine
GABA Gamma aminobutyric acid
GAG Glycosaminoglycan
GALNS Galactosamine-6-sulfate sulfatase
Gly Glycine
GMXCXXC Amino acid sequence of ATP7A/B MBD
GNS N-acetylglucosamine-6-sulfatase
GPI Glycosylphosphatidylinositol
GSH Glutathione
HEPH Hephaestin
HEPHL1 Hephaestin-like protein 1
His Histidine
H2O2 Hydrogen peroxide
IDS Idurunate 2-sulfatase
IMM Inner mitochondrial membrane
IMS Inter-membrane space
LMAN Lectin mannose binding
LOX Lysyl oxidase
LOXL Lysyl oxidase-like
LTQ Lysine tyrosylquinone
M Methionine
MNK Menkes disease
MBD Metal binding domain
MXCXXC Amino acid sequence of CCS-MBD
Met Methionine
MIA40 Mitochondrial IMS assembly 40
MND Motor neuron disease
MLP Mucolipidose
MPS Mucopolysaccharidose
MSD Multiple sulfatase deficiency
MOXD1 Monooxygenase, DBH-Like 1
NAD(P)H Nicotinamide adenine dinucleotide phosphate
NE Norepinephrine
NLS Nuclear localization sequence
OHS Occipital horn syndrome
OMIM Online mendelian inheritance in man
PAL Peptidyl–α-hydroxyglycine α-amidating lyase
PAM Peptidyl α-amidating enzyme
PAO Polyamine oxidase
PEX Peroxin
PHM Peptidylglycine α-hydroxylating monooxygenase
PTS Peroxisomal targeting signal
ROS Reactive oxygen species
SCO Synthesis of COX
SMAX3 X-linked distal spinal muscular atrophy 3
SOD Superoxide dismutase
SP Secretory pathway
S-S Disulfide bridge
STEAP Six-transmembrane epithelial antigen of prostate
STS Steroid sulfatase
SUMF Sulfatase-modifying factor
TGN: Trans Golgi Network
TM Transmembrane
TPQ Trihydroxyphenylalanine quinone
TYR Tyrosinase
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TYRP Tyrosinase related protein
VAP-1 Vascular adhesion protein 1
PBD Peroxisome biogenesis disorders
Zn Zinc
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