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THE MAXIMAL OPERATOR OF A NORMAL

ORNSTEIN–UHLENBECK SEMIGROUP IS OF WEAK TYPE (1, 1)

VALENTINA CASARINO, PAOLO CIATTI, AND PETER SJÖGREN

Abstract. Consider a normal Ornstein–Uhlenbeck semigroup in R
n, whose co-

variance is given by a positive definite matrix. The drift matrix is assumed to have
eigenvalues only in the left half-plane. We prove that the associated maximal op-
erator is of weak type (1, 1) with respect to the invariant measure. This extends
earlier work by G. Mauceri and L. Noselli. The proof goes via the special case
where the matrix defining the covariance is I and the drift matrix is diagonal.

1. Introduction

Let Q be a real, symmetric and positive definite n×n matrix, and B a real n×n
matrix whose eigenvalues have negative real parts; here n ≥ 1. One defines the
covariance matrices

Qt =

∫ t

0

esB QesB
∗

ds , t ∈ (0,+∞],

and the family of Gaussian measures in R
n

dγt(x) = (2π)−
n
2 (detQt)

− 1
2 e−

1
2
〈Q−1

t x,x〉dx , t ∈ (0,+∞].

Here γ∞ is the unique invariant measure.
On the space Cb(Rn) of bounded continuous functions, we consider the Ornstein–

Uhlenbeck semigroup
(
HQ,B

t

)
t>0

, explicitly given by the Kolmogorov formula

HQ,B
t f(x) =

∫
f(etBx− y)dγt(y) , x ∈ R

n ,

(see [5]). The relevance of this semigroup is due to the fact that
(
HQ,B

t

)
t>0

is the
transition semigroup of the Ornstein-Uhlenbeck process

X (t, x) = etBx+

∫ t

0

e(t−s)BdW (s)
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on R
n, where W denotes an n-dimensional Brownian motion with covariance matrix

Q. This process describes the random motion of a particle subject to friction; cf.
[11] or [3].

Among its various properties, we only recall here that
(
HQ,B

t

)
t>0

is strongly con-

tinuous in C0(Rn) and in Lp(Rn) for all 1 ≤ p <∞ [2, 6, 1], while strong continuity
fails to hold in the space of bounded, uniformly continuous functions in R

n endowed
with the supremum norm ([2, Lemma 3.2], [14]).
We consider the maximal operator

HQ,B
∗ f(x) = sup

t>0

∣∣HQ,B
t f(x)

∣∣ , t > 0, (1.1)

which is an essential tool in the study of the almost everywhere convergence of
HQ,B

t f as t→ 0 for f ∈ Lp(γ∞), 1 ≤ p <∞.

The boundedness properties of HQ,B
∗ are essentially known when

(
HQ,B

t

)
t>0

is

symmetric, i.e., whenHQ,B
t is self-adjoint on L2(γ∞) for all t > 0. Indeed, for 1 < p ≤

∞, the boundedness of HQ,B
∗ on Lp(γ∞) then follows from the general Littlewood–

Paley–Stein theory for symmetric semigroups of contractions on Lebesgue spaces
[13].
G. Mauceri and L. Noselli [7] addressed the nonsymmetric case, assuming only

that
(
HQ,B

t

)
t>0

is normal, i.e., that HQ,B
t is for each t > 0 a normal operator on

L2(γ∞). Then, by generalizing Stein’s results to a semigroup of normal contractions
whose infinitesimal generator is a sectorial operator of angle less than π/2, they were
able to prove that HQ,B

∗ is bounded on Lp(γ∞), for all 1 < p ≤ ∞.
Since the operator HQ,B

∗ is always unbounded on L1(γ∞), one is led to analyze
the weak type (1, 1) of the maximal operator. This means seeking an estimate of
the form

γ∞{x ∈ R
n : HQ,B

∗ f(x) > α} .
‖f‖1
α

,

holding for all α > 0 and all f ∈ L1(γ∞). In the special case Q = I and B = −I,
which is symmetric, this was proved by B. Muckenhoupt in the one-dimensional case
[10] and by the third author in higher dimension [12]; the proof in [12] was then
simplified by T. Menárguez, S. Pérez and F. Soria [8]. Another simple argument is
given in [4].
In [7] Mauceri and Noselli applied a factorization known from [9], saying that an

arbitrary normal Ornstein–Uhlenbeck semigroup
(
HQ,B

t

)
t>0

can be written as the
product of more elementary semigroups, called building blocks. Each building block
is an Ornstein–Uhlenbeck semigroup with Q = I and B = −λ(I − R), for some
positive λ and a real skew-adjoint matrix R. Mauceri and Noselli were able to prove
that for such a building block the truncated maximal operator, defined by taking
the supremum in (1.1) only over 0 < t ≤ T < ∞, is of weak type (1, 1). If, in
addition, R generates a periodic group, they proved that the full maximal operator
HQ,B

∗ is of weak type (1, 1). The case when the semigroup involves several building
blocks seems not to have been considered as yet. Indeed, Mauceri and Noselli write
“already the case where B is a diagonal matrix with at least two different eigenvalues
seems to require new ideas”.
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In this paper, we give the complete solution of the problem studied in [7], as
follows.

Theorem 1.1. The maximal operatorHQ,B
∗ of an arbitrary normal Ornstein–Uhlenbeck

semigroup
(
HQ,B

t

)
t>0

is of weak type (1, 1) with respect to the invariant measure γ∞.

We first consider the special case when Q = I and B = diag
(
− λ1,−λ2, . . . ,−λn

)
,

with λj > 0 for j = 1, . . . , n, and state in Theorem 2.1 the weak type (1, 1) of HQ,B
∗ .

The proof of this result involves some geometry and occupies most of this paper.
Theorem 2.1 already extends the results in [7], and forms the basis of the proof of
Theorem 1.1.

The paper is organized as follows. In Section 2 we introduce the notation, in
particular for the relevant Mehler kernel Kt(x, u), and state the intermediate result
Theorem 2.1. Sections 3, 4, 5, and 6 are devoted to the proof of Theorem 2.1. More
precisely, in Section 3 we introduce a localization procedure for those coordinates in
which the variables x and u are close to each other. In Section 4, we consider the
remaining variables, and reduce the problem to an ellipsoidal annulus. A system of
polar-like coordinates is also introduced. Then we prove in Section 5 the weak type
(1, 1) for that part of the maximal operator given by large t. Section 6 is devoted to
the more delicate part corresponding to small t. Finally, in Section 7 we consider the
building blocks of an arbitrary normal Ornstein–Uhlenbeck semigroup, and deduce
Theorem 1.1 from Theorem 6.3, which is a slight generalization of Theorem 2.1.

In the following, we shall use the symbols c and C with 0 < c , C <∞ to denote
constants which are not necessarily equal at different occurrences. They depend
only on the dimension and the parameters of the semigroup considered. The symbol
≃ between two positive expressions means that their ratio is bounded above and
below by such constants. For two positive quantities a and b, we write a . b instead
of a ≤ Cb and a & b for b . a. The symbol |E| will denote the Lebesgue measure
of a measurable set E. By N we mean the set of all nonnegative integers. Finally,
we write ⌊x⌋ to denote the greatest integer smaller than or equal to x ∈ R.

2. Restriction to a special case

In this and the following four sections, we consider the case when Q = I and

B = diag
(
− λ1,−λ2, . . . ,−λn

)
, (2.1)

with λj > 0 for j = 1, . . . , n. We set λmax = maxλj and λmin = minλj.
Then the covariance matrices and the Gaussian measures are given by

Qt = diag

(
1

2λ1
(1− e−2λ1t),

1

2λ2
(1− e−2λ2t), . . . ,

1

2λn
(1− e−2λnt)

)

and

dγt(x) = π−n
2

√
Πn

j=1λj√
Πn

j=1(1− e−2λjt)
exp

(
−

n∑

j=1

λj
1− e−2λjt

x2j

)
dx1 . . . dxn.
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The invariant measure is

dγ∞(x) = π−n
2

√
Πn

j=1λj exp
(
−

n∑

j=1

λjx
2
j

)
dx1 . . . dxn.

We denote the Ornstein–Uhlenbeck semigroup simply by Ht, suppressing the in-
dices Q,B. It may be written as

Htf(x) = π−n
2

√
Πn

j=1λj√
Πn

j=1(1− e−2λjt)

∫
f(e−tλ1x1 − y1, . . . , e

−tλnxn − yn)

× exp
(
−

n∑

j=1

λj
1− e−2λjt

y2j

)
dy1 . . . dyn.

A straightforward computation leads to

Htf(x) =
exp

(∑n
j=1 λjx

2
j

)

√
Πn

j=1(1− e−2λjt)

×
∫
f(u1, . . . , un) exp

(
−

n∑

j=1

λj
1− e−2λjt

(xj − e−λjtuj)
2
)
dγ∞(u1, . . . , un).

We write this as

Htf(x) =

∫
Kt(x, u) f(u) dγ∞(u) ,

where Kt denotes the Mehler kernel, given by

Kt(x, u) =
exp

(∑n
j=1 λjx

2
j

)

√
Πn

j=1(1− e−2λjt)
exp

(
−

n∑

j=1

λj
1− e−2λjt

(xj − e−λjtuj)
2
)

for x, u ∈ R
n. It is clearly the tensor product of the one-dimensional kernels

Kt,j(xj , uj) =
exp(λjx

2
j )√

1− e−2λjt
exp

(
− λj

1− e−2λjt
(xj − e−λjtuj)

2
)
. (2.2)

The maximal operator is

H∗f(x) = sup
t>0

∣∣Htf(x)
∣∣.

We will prove the following special case of Theorem 1.1.

Theorem 2.1. If Q = I and B is diagonal and given by (2.1), then H∗ = HI,B
∗ is

of weak type (1, 1) with respect to the invariant measure γ∞.

In the proof of this theorem, we distinguish between global and local variables.
For k ∈ {0, . . . , n} we define

Mk = {(x, u) ∈ R
n × R

n : |xj − uj| >
1

1 + |xj |
, j = 0, . . . , k ,
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and |xj − uj| ≤
1

1 + |xj |
, j = k + 1, . . . , n }.

If k = 0 or k = n, this means that the second or the first inequality, respectively,
applies to all j. We call the inequalities |xj − uj| > 1

1+|xj |
and |xj − uj| ≤ 1

1+|xj |
the

global and the local condition, respectively. If (x, u) ∈ Mk for some k ∈ {0, . . . , n},
we write

x = (ξ, xloc), with ξ = (x1, . . . , xk) and xloc = (xk+1, . . . , xn).

Thus x = xloc for k = 0 and x = ξ for k = n. We use similar notation for u and
write

u = (η, uloc), with η = (u1, . . . , uk) and uloc = (uk+1, . . . , un).

Then let

Hk
∗f(x) = sup

t>0

∣∣
∫
Kt(x, u)χMk

(x, u) f(u) dγ∞(u)
∣∣ ,

where k ∈ {0, . . . , n}.
Observe that H0

∗ is the local part of H∗. To prove Theorem 2.1, it is for obvious
symmetry reasons enough to show that each Hk

∗ , k = 0, . . . , n, is of weak type (1, 1)
with respect to γ∞. The proof is quite long and will be divided in several steps.

3. The localization procedure

We start by proving a simple estimate for the local coordinates.

Lemma 3.1. If for some j ∈ {1, . . . , n} the point (xj , uj) ∈ R×R satisfies the local
condition |xj − uj| ≤ 1/(1 + |xj |), then

∣∣Kt,j(xj , uj)
∣∣ .

exp
(
λjx

2
j

)

(
min(1, t)

)1/2 exp
(
− c

(xj − uj)
2

min(1, t)

)
, t > 0.

Proof. The following argument is well known, see e.g. [7, proof of Lemma 5.3]. We
have

(xj − e−λjtuj)
2

1− e−2λjt
=

(xj − uj + uj − e−λjtuj)
2

1− e−2λjt

≥ (xj − uj)
2 − 2|uj| |xj − uj|(1− e−λjt)

1− e−2λjt

≥ (xj − uj)
2

1− e−2λjt
− 2|xj | |xj − uj|

1 + e−λjt
− 2(uj − xj)

2

1 + e−λjt

≥ (xj − uj)
2

1− e−2λjt
− 2|xj|

1 + |xj |
− 2

(1 + |xj |)2

≥ (xj − uj)
2

1− e−2λjt
− 4. (3.1)

Inserting this in (2.2), one obtains the desired conclusion. �
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Next, we simplify the problem by means of a localization process for the local
variables, covering R

n−k with suitable rectangles. Assume 0 ≤ k < n. First we split
the real line into pairwise disjoint intervals of the type

Is =

(
s− 1

1 + |s| , s+
1

1 + |s|

]
.

Clearly, this can be done with values of s in an increasing sequence
(
s(ν)
)
ν∈Z

. We
claim that for each s

s′ ∈ Is, |s′′ − s′| ≤ 1

1 + |s′| ⇒ s′′ ∈ 3Is, (3.2)

where 3Is denotes the concentric scaling of Is by a factor 3. Indeed, since |s′ − s| ≤
1/(1 + |s|),

1 + |s| ≤ 1 + |s′|+ 1

1 + |s| ≤ 2(1 + |s′|) ,

and it follows that

|s′′ − s| ≤ |s′′ − s′|+ |s′ − s| ≤ 1

1 + |s′| +
1

1 + |s| ≤
3

1 + |s| .

Observe also that the scaled intervals 3Is(ν), ν ∈ Z, have bounded overlap.
Next, we apply this in each variable in R

n−k, assuming k < n. Denoting by
ν = (νk+1, ..., νn) ∈ Z

n−k a multiindex, we split Rn−k into closed rectangles

Cν =

n∏

j=k+1

[
s(νj) − 1

1 + |s(νj)| , s
(νj) +

1

1 + |s(νj)|

]
, ν ∈ Z

n−k,

with centers sν = (s(νj))nj=k+1. A consequence of (3.2) is that

(x, u) ∈Mk, xloc ∈ Cν ⇒ uloc ∈ C̃ν ,

where C̃ν = 3Cν is the concentric scaling. This implication assures that the values
of Hk

∗f in R
k × Cν only depend on the restriction of f to R

k × C̃ν . Further, the
rectangles Cν are pairwise disjoint except for boundaries, and the C̃ν have bounded
overlap.
In each set Rk × C̃ν the Gaussian density varies little with the local coordinates,

in the following way.

Lemma 3.2. Let ν ∈ Z
n−k, k ∈ {0, . . . , n− 1}. Then for any uloc ∈ C̃ν,

exp

(
n∑

j=k+1

λju
2
j

)
∼ exp(Dν),

where Dν =
∑n

j=k+1 λj(s
(νj))2.

Proof. This is a well-known and simple fact (see, for example, [12, p. 74]). �
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To prove Theorem 2.1, it suffices to show for each k ∈ {0, 1, . . . , n} and each

ν ∈ Z
n−k that Hk

∗ maps L1(Rk × C̃ν ; dγ∞) boundedly into L1,∞(Rk × Cν ; dγ∞),
uniformly in ν. Indeed, the bounded overlap of the C̃ν will then allow summing in
ν. In the case k = n, there is no need for the Cν and C̃ν .
With ν fixed, Lemma 3.2 then makes it natural to replace dγ∞ by the measure

dγk∞(x) = π− k
2

√
Πk

j=1λj exp
(
−

k∑

j=1

λjx
2
j

)
dx1 . . . dxk dxloc,

where dxloc = dxk+1 . . . dxn. Observe that dγn∞ = dγ∞.
We are now led to the kernel

Kk,ν
t (x, u) =

exp
(∑k

j=1 λjx
2
j

)

√
Πn

j=1(1− e−2λjt)

× exp
(
−

n∑

j=1

λj
1− e−2λjt

(xj − e−λjtuj)
2
)
χMk

(x, u)χCν(xloc), (3.3)

which vanishes for uloc 6∈ C̃ν , and to the operator

Hk,ν
∗ f(x) = sup

t>0

∣∣
∫
Kk,ν

t (x, u) f(u) dγk∞(u)
∣∣. (3.4)

As easily verified by means of a small computation, Theorem 2.1 can be rephrased
as follows.

Theorem 3.3. Let k ∈ {0, . . . , n}. For all functions f ∈ L1(γk∞)

γk∞{x : Hk,ν
∗ f(x) > α} .

1

α
‖f‖L1(γk

∞
), α > 0, (3.5)

uniformly in ν ∈ Z
n−k.

We first show that Theorem 3.3 holds in the (entirely local) case k = 0.

Proposition 3.4. The maximal operator H0,ν
∗ is of weak type (1, 1), uniformly in

ν.

Proof. Lemma 3.1 implies that for (x, u) ∈M0, x ∈ Cν and u ∈ C̃ν
∣∣K0,ν

t (x, u)
∣∣ . 1

(
min(1, t)

)n/2 exp
(
− c

|x− u|2
min(1, t)

)
, t > 0.

Standard methods now allow us to estimate H0,ν
∗ f in L1,∞(Cν) in terms of the norm

of f in L1(C̃ν). For further details, see for example [4, Section 3]. �

When proving Theorem 3.3 for k > 0, we can assume that f is nonnegative,
supported in R

k × C̃ν and normalized in the sense that

‖f‖L1(γk
∞
) = 1.

The level set in (3.5) is contained in R
k×Cν , and γk∞(Rk×Cν) . 1. We may assume

that α is large, since (3.5) is trivial in the opposite case. The meaning of “large” here
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will be specified later and will depend only on the dimension and the parameters of
the semigroup.

4. Some elliptic geometry

4.1. Reduction to an ellipsoidal annulus. We simplify the proof of Theorem 3.3
by restricting the global variables to an ellipsoidal annulus, defined in terms of the
quadratic form

R(ξ) =
k∑

j=1

λjx
2
j , (4.1)

where ξ = (x1, . . . , xk). Fixing a large α, we shall see that it is not restrictive to
assume that x = (ξ, xloc) in (3.5) is such that ξ is in the set

E = {ξ ∈ R
k :

1

2
logα ≤ R(ξ) ≤ 2 logα }. (4.2)

We first consider the set of points not verifying the inequality R(ξ) ≤ 2 logα, which
satisfies

γk∞{(ξ, xloc) ∈ R
k × Cν : R(ξ) > 2 logα} .

∣∣Cν
∣∣
∫

R(ξ)>2 logα

exp(−R(ξ))dξ

. (2 logα)(k−2)/2 exp(−2 logα)

.
1

α
; (4.3)

to get the second inequality here, one uses polar coordinates after the change of
variables x′j = xj

√
λj.

Further, we claim that for any (x, u) ∈Mk,

R(ξ) <
1

2
logα ⇒ Kk,ν

t (x, u) . α. (4.4)

This requires a lemma which will also be useful later.

Lemma 4.1. If (x, u) ∈Mk and 0 < t ≤ 1, then

1

(1 + |ξ|)2 . t2|ξ|2 +
k∑

1

(xj − e−λjtuj)
2.

Proof. From the definition of Mk we have

1

1 + |ξ| ≤
k∑

1

|xj − uj| =
k∑

1

|(1− eλjt)xj + eλjtxj − uj|

. t

k∑

1

|xj|+
k∑

1

eλjt|xj − e−λjtuj| . t|ξ|+
k∑

1

|xj − e−λjtuj|.

The lemma follows. �
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To verify (4.4), we first assume that t > 1. Then because of (3.3)

Kk,ν
t (x, u) . eR(ξ) <

√
α ≤ α,

since α is large. In the case when t ≤ 1, we have

Kk,ν
t (x, u) .

eR(ξ)

tn/2
exp

(
− c

k∑

j=1

(xj − e−λjtuj)
2

t

)
.

It follows from Lemma 4.1 that

t2 &
1

(1 + |ξ|)4 or

k∑

j=1

(xj − e−λjtuj)
2

t
&

1

(1 + |ξ|)2t .

The first inequality here implies that

Kk,ν
t (x, u) . eR(ξ) (1 + |ξ|)n . e2R(ξ) < α.

If the second inequality holds, we have

Kk,ν
t (x, u) .

eR(ξ)

tn/2
exp

(
− c

(1 + |ξ|)2t
)
. eR(ξ) (1 + |ξ|)n,

and the same estimate follows. Thus (4.4) is verified.
Replacing α by Cα for some C, we see from (4.3) and (4.4) that we can assume

ξ ∈ E in the proof of Theorem 3.3.

4.2. Polar-like coordinates in R
k. Fix β > 0 and consider the ellipsoid

Eβ = {ξ ∈ R
k : R(ξ) = β}.

We introduce the anisotropic dilations

eλs ξ = (eλj s xj)
k
j=1.

Then each ξ ∈ R
k \ {0} may be written in a unique way as ξ = eλs ξ̃ with s ∈ R and

ξ̃ = (ξ̃j)
k
j=1 ∈ Eβ. Thus x = (ξ, xloc) ∈ R

n is given by

x = (eλsξ̃, xloc) . (4.5)

The Lebesgue measure dξ in R
k satisfies

dξ ≃ |eλsξ̃| ds dS(ξ̃), (4.6)

where dS is the area measure of the ellipsoid Eβ. Indeed, we will see in the next

subsection that the curve s 7→ eλsξ̃ is transverse to the family of ellipsoids defined
by R(ξ).
In the following result, we estimate the distance between two points in terms of

the coordinates s, ξ̃.

Lemma 4.2. Let ξ(0), ξ(1) ∈ R
k \ {0} and assume R(ξ(0)) > β/2. Write ξ(0) =

eλs
(0)
ξ̃(0) and ξ(1) = eλs

(1)
ξ̃(1) with s(0), s(1) ∈ R and ξ̃(0), ξ̃(1) ∈ Eβ.

(a) Then

|ξ(0) − ξ(1)| ≥ c |ξ̃(0) − ξ̃(1)|. (4.7)
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(b) If also s(1) ≥ 0, then

|ξ(0) − ξ(1)| ≥ c
√
β |s(0) − s(1)|. (4.8)

Proof. Let Γ : [0, 1] → R
k be a differentiable curve with Γ(0) = ξ(0) and Γ(1) = ξ(1).

It is clearly enough to bound the length of any such curve from below by the right-
hand sides of (4.7) and (4.8).

For each τ ∈ [0, 1], we write Γ(τ) = eλs(τ) ξ̃(τ) with ξ̃(τ) = (ξ̃j(τ))
k
1 ∈ Eβ, so that

s(0) = s(0) and s(1) = s(1). The tangent vector is

Γ′(τ) =
(
s′(τ) λj e

λj s(τ) ξ̃j(τ) + eλj s(τ) ξ̃′j(τ)
)k
j=1

,

and

|Γ′(τ)|2 =

k∑

1

e2λj s(τ)
(
s′(τ) λj ξ̃j(τ) + ξ̃′j(τ)

)2

≥ min
j
e2λj s(τ) |s′(τ) λ ξ̃(τ) + ξ̃′(τ)|2,

where λ ξ̃(τ) denotes the vector (λj ξ̃j(τ))
k
j=1. This vector is normal to Eβ at ξ̃(τ)

and so orthogonal to the tangent vector ξ̃′(τ), and we conclude that

|Γ′(τ)|2 ≥ min
j
e2λj s(τ)

(
s′(τ)2 |λ ξ̃(τ)|2 + |ξ̃′(τ)|2

)
. (4.9)

We need a lower estimate of s(0). If s(0) < 0, the assumption R(ξ(0)) > β/2
implies that

β/2 <
∑

j

λje
2λj s(0)(ξ̃

(0)
j )2 ≤ e2λmin s(0)R(ξ̃(0)) = e2λmin s(0) β .

Thus we always have

s(0) > −s̃,
where s̃ = log 2/(2λmin).
Assume now that s(τ) > −2s̃ for all τ ∈ [0, 1]. Then the minimum in (4.9) stays

away from 0 and we get

|Γ′(τ)| & |s′(τ)| |λ ξ̃(τ)| &
√
β |s′(τ)|

and

|Γ′(τ)| & |ξ̃′(τ)|.
Integrating each of these two estimates with respect to τ in [0, 1], we see that the
length of Γ is bounded below by the right-hand sides of (4.8) and (4.7).
If instead s(τ) ≤ −2s̃ for some τ ∈ [0, 1], the image s([0, 1]) contains the interval

[−2s̃,max(s(0), s(1))]. Then we can find a closed subinterval I ⊂ [0, 1] such that for
τ ∈ I

−2s̃ ≤ s(τ) ≤ max(s(0), s(1))
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and, moreover, equality holds in the left-hand inequality here at one endpoint of I
and in the right-hand inequality at the other endpoint. For the length of Γ, we now
have, in view of (4.9),
∫ 1

0

|Γ′(τ)| dτ ≥
∫

I

|Γ′(τ)| dτ &
√
β

∫

I

|s′(τ)| dτ ≥
√
β
(
max (s(0), s(1)) + 2s̃

)
.

Since s(0) > −s̃, the last quantity here is larger than
√
β |s̃| &

√
β ∼ diamEβ . Thus

the length of the curve is bounded below by the right-hand side of (4.7). If we also
assume s(1) ≥ 0, the same is true with (4.7) replaced by (4.8), since then

max(s(0), s(1)) + 2s̃ ≥ |s(0)− s(1)|.
The proof of the lemma is complete. �

4.3. The Gaussian measure of a tube. We will need a geometric, k-dimensional
lemma. In R

k we write points as ξ = (xj)
k
j=1 and use the measure

dµR(ξ) = e−R(ξ) dξ ,

where R(ξ) was defined in (4.1). Recall that eλt ξ = (eλjt xj)
k
j=1 and that α > 0 is

large.
We fix β with 1

2
logα ≤ β ≤ 2 logα and consider a spherical cap of the ellipsoid

Eβ, centered at some point ξ(1) ∈ Eβ. Explicitly, we define

Ω = {ξ ∈ R
k : R(ξ) = β, |ξ − ξ(1)| < a}

with a > 0. Observe that |ξ| ≃
√
β for ξ ∈ Ω. Then we define the tube

Z = {eλs ξ : s > 0, ξ ∈ Ω}. (4.10)

Lemma 4.3. The µR measure of Z satisfies

µR(Z) .
ak−1

√
β
e−β.

Proof. For s ≥ 0 the set

Ωs = {eλs ξ : ξ ∈ Ω}
is a slice of Z. The selfadjoint linear map

Fs : ξ 7→ eλsξ

is a bijection between Ω and Ωs. To estimate µR(Z), we need an estimate of the
area

∣∣Ωs

∣∣ of the (k − 1)-dimensional surface Ωs.

A normal vector to Ω0 = Ω at the point ξ ∈ Ω is v = (λjxj)
k
j=1, and the tangent

hyperplane at ξ is v⊥. For s > 0 the tangent hyperplane of Ωs at the point Fs(ξ)
is Fs(v

⊥). Thus a normal to Ωs at the same point is w = F−1
s (v) = (e−λjsλjxj)

k
j=1.

The angle ψ(s, ξ) between w and Fs(v) = (eλjsλjxj)
k
j=1 is given by

cosψ(s, ξ) =
w · Fs(v)

‖w‖ ‖Fs(v)‖
=

∑k
1 λ

2
jx

2
j√∑k

1 e
−2λjsλ2jx

2
j

√∑k
1 e

2λjsλ2jx
2
j

.
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We remark that this shows that cosψ(s, ξ) stays away from zero; this yields the
transversality mentioned in the preceding subsection.
Since Fs(v) = ∂Fs(ξ)/∂s, the distance from a point Fs(ξ) ∈ Ωs to Ωs+h in the

normal direction is, for small h > 0, essentially

h|Fs(v)| cosψ(s, ξ).
Thus the Lebesgue measure in Z is given by |Fs(v)| cosψ(s, ξ) dSs ds, where dSs

denotes the (k − 1)-dimensional area measure of Ωs. It follows that

µR(Z) =

∫ ∞

0

∫

Ωs

|Fs(v)| cosψ(s, ξ) e−R(eλsξ) dSs ds. (4.11)

To evaluate this, we must first estimate the area |Ωs|. The area of Ω can be
approximated by that of a union of small (k − 1)-dimensional simplices, i.e. small
convex k-gons, tangent to Ω. Similarly, that of Ωs is approximated by the images
under Fs of these simplices. Let S be such a simplex, situated in the tangent
hyperplane of Ω at the point ξ ∈ Ω and containing ξ. We shall compare its area |S|
with the area |Fs(S)| of its image. With v as before and ε > 0, the convex hull of S
and the point ξ + εv is a k-dimensional simplex Sε. Its volume is |Sε| = ε|S||v|. Its
image Fs(Sε) is spanned by Fs(S) and Fs(ξ)+ εFs(v), and so has volume |Fs(Sε)| =
ε|Fs(S)||Fs(v)| cosψ(s, ξ).
On the other hand, the quotient |Fs(Sε)|/|Sε| equals the Jacobian of Fs, which is

exp(
∑k

1 λνs). Combining, one finds that

|Fs(S)|
|S| =

exp
(∑k

1 λνs
)
|v|

|Fs(v)| cosψ(s, ξ)
= exp

(
k∑

1

λνs

) √∑k
1 e

−2λjsλ2jx
2
j√∑k

1 λ
2
jx

2
j

=

√∑k
j=1 exp

[
2(
∑k

ν=1 λν − λj)s
]
λ2jx

2
j√∑k

1 λ
2
jx

2
j

.

It follows that

1 ≤ |Fs(S)|
|S| ≤ e(k−1)λmax s.

Summing over small simplices, we conclude that also

1 ≤ |Ωs|
|Ω| ≤ e(k−1)λmax s, (4.12)

for any s > 0.
Next, we estimate the factors in (4.11), still assuming s > 0. First, |Fs(v)| ≤

eλmax s|v| and |v| ≃ |ξ| ≃
√
β, so that

|Fs(v)| . eλmax s
√
β.

Further,

R(eλsξ) =
∑

j

λje
2λjs x2j ≥

∑

j

λj(1+2λmin s) x
2
j = (1+2λmin s)R(ξ) = (1+2λmin s)β,
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since R(ξ) = β.
Inserted in (4.11), these two estimates lead to

µR(Z) .
√
β e−β

∫ ∞

0

eλmax s−2λmin βs

∫

Ωs

dSs ds.

The inner integral here is |Ωs|, so we can use (4.12) and observe that |Ω| . ak−1, to
get

µR(Z) .
√
β e−β ak−1

∫ ∞

0

e(kλmax−2λmin β)s ds.

We can assume that α is so large that λmin β > kλmax, and then the last integral
will be less than 1/(λmin β) ∼ 1/β, which proves the assertion. �

5. The case of large t.

We prove part of Theorem 3.3, considering the supremum in (3.4) taken only over
t > 1.

Proposition 5.1. Let k ∈ {1, . . . , n}. Then the maximal operator

sup
t>1

∣∣
∫

Rn

Kk,ν
t (x, u) f(u) dγk∞(u)

∣∣

is of weak type (1, 1) with respect to the invariant measure γk∞, uniformly in ν ∈
Z
n−k.

Proof. As before, f is nonnegative, supported in R
k ×C̃ν and normalized in L1(γk∞).

We need only consider points x = (ξ, xloc) ∈ E × Cν and u = (η, uloc) ∈ R
k × C̃ν .

Moreover, we shall use for both x and u the coordinates introduced in (4.5) with
β = logα, that is,

ξ = eλsξ̃, η = eλs
′

η̃,

where ξ̃, η̃ ∈ Elogα and s, s′ ∈ R. Then (3.3) and the fact that t > 1 imply

Kk,ν
t (x, u) . exp(R(ξ)) exp

(
−

k∑

j=1

λj(xj − e−λjtuj)
2
)
.

Since ξ ∈ E and e−λtη = eλ(s
′−t)η̃, we can apply Lemma 4.2 (a) getting

k∑

j=1

λj(xj − e−λjtuj)
2 ≥ λmin

∣∣ξ − e−λtη
∣∣2 &

∣∣ξ̃ − η̃
∣∣2,

so that

Kk,ν
t (x, u) . exp(R(ξ)) exp

(
− c

∣∣ξ̃ − η̃
∣∣2).

By integrating we obtain
∫
Kk,ν

t (x, u)f(u) dγk∞(u) . exp
(
R(eλs ξ̃)

) ∫
exp

(
− c

∣∣ξ̃ − η̃
∣∣2) f(u) dγk∞(u).



14 VALENTINA CASARINO, PAOLO CIATTI, AND PETER SJÖGREN

The right-hand side here is increasing in s, and therefore the inequality

exp
(
R(eλs ξ̃)

) ∫
exp

(
− c

∣∣ξ̃ − η̃
∣∣2) f(u) dγk∞(u) > α (5.1)

holds if and only if s > sα(ξ̃) for some sα(ξ̃), with equality for s = sα(ξ̃). Since

α > 1 and the last integral is less than ‖f‖L1(γk
∞
) = 1, it follows that sα(ξ̃) > 0.

We see that the set of x where the supremum in the statement of Proposition 5.1
is larger than α is contained in the set Ak,ν(α) of points (ξ, xloc) ∈ E × Cν satisfying
(5.1).

Applying (4.6), where now
∣∣eλsξ̃

∣∣ ≃
√
logα and β = logα, and observing that∣∣C̃ν

∣∣ . 1, we conclude that

γk∞(Ak,ν(α)) .
√
logα

∫

Elogα

∫

s>sα(ξ̃)

exp
(
−

k∑

j=1

λje
2λj sξ̃2j

)
ds dS(ξ̃).

To estimate the integrand here, we observe that the inequality

e2λj s = e2λj sα(ξ̃) e2λj (s−sα(ξ̃)) ≥ e2λj sα(ξ̃)
(
1 + 2λj(s− sα(ξ̃))

)

implies that for s > sα

exp
(
−

k∑

j=1

λje
2λj sξ̃2j

)
≤ exp

(
−

k∑

j=1

λje
2λj sα(ξ̃)ξ̃2j

)
exp
(
− 2

k∑

j=1

λ2je
2λj sα(ξ̃)(s− sα(ξ̃))ξ̃

2
j

)

≤ exp
(
− R(eλ sα(ξ̃) ξ̃)

)
exp

(
− 2λmin(s− sα(ξ̃))R(ξ)

)

≤ exp
(
− R(eλ sα(ξ̃) ξ̃)

)
exp

(
− c (s− sα(ξ̃)) logα

)
,

because R(ξ) ≃ logα.
Thus

γk∞(Ak,ν(α)) .
√

logα

∫

Elogα

∫

s>sα(ξ̃)

exp
(
−R(eλ sα(ξ̃) ξ̃)

)
exp

(
− c (s− sα(ξ̃)) logα

)
ds dS(ξ̃)

.
1√
logα

∫

Elogα

exp
(
− R(eλ sα(ξ̃) ξ̃)

)
dS(ξ̃).

Next we combine this estimate with the case of equality in (5.1). Changing then the
order of integration, we finally get

γk∞(Ak,ν(α)) .
1

α
√
logα

∫

Elogα

∫
exp

(
− c

∣∣ξ̃ − η̃
∣∣2) f(u) dγk∞(u)dS(ξ̃)

.
1

α
√
logα

∫ ∫

Elogα

exp
(
− c

∣∣ξ̃ − η̃
∣∣2)dS(ξ̃) f(u) dγk∞(u)

.
1

α
√
logα

∫
f(u) dγk∞(u) ,

proving Proposition 5.1. �
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6. The case of small t

The following proposition, combined with Proposition 5.1, will complete the proof
of Theorem 3.3.

Proposition 6.1. Let k ∈ {1, . . . , n}. Then the maximal operator

sup
t≤1

∣∣
∫

Rn

Kk,ν
t (x, u) f(u) dγk∞(u)

∣∣

is of weak type (1, 1) with respect to the invariant measure γk∞, uniformly in ν ∈
Z
n−k.

Proof. We fix the multiindex ν ∈ Z
n−k. As before, f ∈ L1(γk∞) is nonnegative, sup-

ported in R
k×C̃ν and normalized, and we write η = (uj)

k
j=1 and e

−λtη =
(
e−λjtuj

)k
j=1

.

For m1, m2 ∈ N and 0 < t ≤ 1, we introduce regions Sm1,m2
t , depending also on ν.

If m1, m2 > 0, let

Sm1,m2
t = {(x, u) ∈ R

n × R
n : 2m1−1

√
t < |ξ − e−λtη| ≤ 2m1

√
t ,

2m2−1
√
t < |xloc − uloc| ≤ 2m2

√
t , xloc ∈ Cν , uloc ∈ C̃ν }.

If m1 = 0, we replace the condition 2m1−1
√
t < |ξ− e−λtη| ≤ 2m1

√
t by |ξ− e−λtη| ≤√

t. Analogously, if m2 = 0, the inequalities 2m2−1
√
t < |xloc − uloc| ≤ 2m2

√
t are

replaced by |xloc−uloc| ≤
√
t. Observe that for any fixed t these sets form a partition

of (Rk × Cν)× (Rk × C̃ν).
In the set Sm1,m2

t we can apply (3.3), and also (3.1) for the local coordinates, to
get

Kk,ν
t (x, u) .

exp(R(ξ))

tn/2
exp

(
−c22m1 − c22m2

)
.

Thus for all (x, u) ∈ R
n × R

n and t > 0,

Kk,ν
t (x, u) .

∑

m1,m2

Km1,m2
t (x, u) ,

where we define

Km1,m2
t (x, u) =

exp(R(ξ))

tn/2
exp

(
−c22m1 − c22m2

)
χS

m1,m2
t

(x, u), (6.1)

omitting the indices ν and k.
Therefore, we need only show that

γk∞
{
x ∈ R

n : sup
t≤1

∫
Km1,m2

t (x, u)f(u)dγk∞(u)> α
}
.

1

α
exp(−c22m1− c22m2), (6.2)

since this will allow summing in m1, m2 in the space L1,∞.
Observe that Km1,m2

t (x, u) 6= 0 implies (x, u) ∈ Mk and |ξ − e−λtη| ≤ 2m1
√
t, and

then Lemma 4.1 yields

1 . (1 + |ξ|)4t2 + (1 + |ξ|)222m1t ≤ ((1 + |ξ|)222m1t)2 + (1 + |ξ|)222m1t.

From this it follows that
(1 + |ξ|)222m1t & 1 (6.3)
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as soon as there exists a point u with Km1,m2
t (x, u) 6= 0, and then t ≥ ε > 0 for some

ε > 0. We conclude that the supremum in (6.2) can as well be taken over ε ≤ t ≤ 1,
and that this supremum is a continuous function of x ∈ E × Cν .
To verify (6.2), our idea is to construct a finite sequence of pairwise disjoint sets(

B(ℓ)
)ℓ0
ℓ=1

in R
n and a sequence of sets

(
Z(ℓ)

)ℓ0
ℓ=1

in R
n, called forbidden zones, which

will contain the level set in (6.2). We will show that

{x = (ξ, xloc) ∈ E × Cν : sup
ε≤t≤1

∫
Km1,m2

t (x, u) f(u) dγk∞(u) ≥ α} ⊂
ℓ0⋃

ℓ=1

Z(ℓ), (6.4)

and that for each ℓ

γk∞(Z(ℓ)) .
1

α
exp

(
−c22m1 − c22m2

)∫

B(ℓ)

f(u) dγk∞(u). (6.5)

Since the B(ℓ) will be pairwise disjoint, we could then conclude

γk∞

( ℓ0⋃

ℓ=1

Z(ℓ)
)
.

1

α
exp

(
−c22m1 − c22m2

) ℓ0∑

ℓ=1

∫

B(ℓ)

f(u) dγk∞(u)

.
1

α
exp

(
−c22m1 − c22m2

)
‖f‖L1(γk

∞
).

This would imply (6.2) and finish the proof of Proposition 6.1.

The sets B(ℓ) and Z(ℓ) will be defined recursively, by means of points x(ℓ), ℓ =
1, . . . , ℓ0. To find the first point x(1), we consider the minimum of the quadratic
form R(ξ) in the set

{x ∈ E × Cν : sup
ε≤t≤1

∫
Km1,m2

t (x, u) f(u) dγk∞ ≥ α}.

(Should this set be empty, (6.2) is immediate.)

By continuity this minimum is attained at some point x(1) =
(
ξ(1) , x

(1)
loc

)
of the

set. Moreover, there is some t, called t1, in [ε, 1] for which the supremum is attained,
so that ∫

Km1,m2
t1 (x(1), u) f(u) dγk∞(u) ≥ α.

Because of the expression (6.1) for the kernel Km1,m2
t and the definition of Sm1,m2

t ,
this implies

α ≤ R(ξ(1)) t
−n/2
1 exp

(
−c22m1 − c22m2

)∫

B(1)

f(u) dγk∞(u), (6.6)

where the set B(1) is defined by

B(1) = {
(
η, uloc

)
∈ R

k × C̃ν : |ξ(1) − e−λt1η| ≤ 2m1
√
t1 , |x(1)loc − uloc| ≤ 2m2

√
t1 }.

Next we introduce the first forbidden zone (the terminology is taken from [12])

Z(1) = {
(
eλsη, uloc

)
∈ R

k × C̃ν : s > 0, R(η) = R(ξ(1)), |η − ξ(1)| < A23m1
√
t1 ,

|uloc − x
(1)
loc| < B22m1+m2

√
t1},
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for some A,B > 0 to be determined, depending only on the dimension and the
parameters of the semigroup.
The construction now proceeds by recursion. Assume that we have selected x(h),

B(h) and Z(h) for h = 1, . . . , ℓ − 1. The definition of the point x(ℓ) is analogous to
that of x(1) above, except that the forbidden zones Z(h), h = 1, . . . , ℓ − 1, are now
excluded. More precisely, if the set

{x ∈ (E × Cν) \
ℓ−1⋃

h=1

Z(h) : sup
ε≤t≤1

∫
Km1,m2

t (x, u) f(u) dγk∞(u) ≥ α} (6.7)

is nonempty, we choose x(ℓ) =
(
ξ(ℓ), x

(ℓ)
loc

)
as a point minimizing R(ξ) in this set. But

if the set is empty, the process stops at ℓ0 = ℓ − 1, and we shall soon see that this
actually occurs. If x(ℓ) can be chosen, there is some tℓ ∈ [ε, 1] for which

∫
Km1,m2

tℓ
(x(ℓ), u) f(u) dγk∞(u) ≥ α.

We observe that (6.3) applies to tℓ and x
(ℓ), so that

|ξ(ℓ)|222m1tℓ & 1. (6.8)

Further, we define

B(ℓ) ={
(
η, uloc

)
∈ R

k × C̃ν : |ξ(ℓ) − e−λtℓη| ≤ 2m1
√
tℓ , |x(ℓ)loc − uloc| ≤ 2m2

√
tℓ} ,

and the associated forbidden region is

Z(ℓ) = {
(
eλsη, uloc

)
∈ R

k × C̃ν : s > 0, R(η) = R(ξ(ℓ)), |η − ξ(ℓ)| < A23m1
√
tℓ,

|uloc − x
(ℓ)
loc| < B22m1+m2

√
tℓ}.

In analogy with (6.6) we have

α ≤ exp
(
R(ξ(ℓ))

)
t
−n/2
ℓ exp

(
−c22m1 − c22m2

) ∫

B(ℓ)

f(u) dγk∞(u). (6.9)

We now verify that the sets B(ℓ) and Z(ℓ) have the required properties.

Lemma 6.2. The collection of sets B(ℓ) is pairwise disjoint.

Proof. We prove that any two sets B(ℓ) and B(ℓ′) with ℓ < ℓ′ are disjoint. Since
∣∣ξ(ℓ) − e−λtℓη

∣∣ =
∣∣e−λtℓ

(
eλtℓξ(ℓ) − η

)∣∣ ≥ e−λmaxtℓ
∣∣eλtℓξ(ℓ) − η

∣∣

for t ≤ 1, the projection of B(ℓ) in R
k is contained in a ball with center eλtℓξ(ℓ)

and radius 2m1eλmax
√
tℓ. Moreover, the projection of B(ℓ) in R

n−k is contained in

a ball with center x
(ℓ)
loc and radius 2m2

√
tℓ. The projections of B(ℓ′) have analogous

properties.
Thus it is enough to prove that the centers of these balls in R

k and R
n−k are far

from each other; more precisely, that
∣∣eλtℓξ(ℓ) − eλtℓ′ ξ(ℓ

′)
∣∣ ≥ 2m1eλmax(

√
tℓ +

√
tℓ′), (6.10)

or ∣∣x(ℓ)loc − x
(ℓ′)
loc

∣∣ ≥ 2m2(
√
tℓ +

√
tℓ′). (6.11)
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Using the coordinates from Subsection 4.2 with β = R(ξ(ℓ)), we write

ξ(ℓ
′) = eλsξ̃(ℓ

′)

for some ξ̃(ℓ
′) with R(ξ̃(ℓ

′)) = R(ξ(ℓ)) and some s ∈ R. Here s ≥ 0, because R(ξ(ℓ
′)) ≥

R(ξ(ℓ)). Since x(ℓ
′) is not in the forbidden zone Z(ℓ), we must have

|ξ̃(ℓ′) − ξ(ℓ)| ≥ A23m1
√
tℓ (6.12)

or

|x(ℓ′)loc − x
(ℓ)
loc| ≥ B22m1+m2

√
tℓ. (6.13)

Assume first that tℓ′ ≥ M24m1tℓ, for some M ≥ 2 to be chosen. Together with
Lemma 4.2 (b), this assumption implies

∣∣eλtℓξ(ℓ) − eλtℓ′ ξ(ℓ
′)
∣∣ =

∣∣eλtℓξ(ℓ) − eλ(tℓ′+s)ξ̃(ℓ
′)
∣∣ & |ξ(ℓ)| (tℓ′ + s− tℓ) & |ξ(ℓ)| tℓ′.

Applying the assumption again and then (6.8), we get
∣∣eλtℓξ(ℓ) − eλtℓ′ ξ(ℓ

′)
∣∣ & |ξ(ℓ)|

√
M 22m1

√
tℓ
√
tℓ′

&
√
M 2m1

√
tℓ′

&
√
M 2m1 (

√
tℓ′ +

√
tℓ).

Fixing M conveniently, depending on the implicit constants, we obtain (6.10).
In the remaining case tℓ′ < M24m1tℓ, we have

√
tℓ >

2−2m1−1

√
M

(
√
tℓ′ +

√
tℓ).

Applying this to (6.12) or (6.13), we arrive at (6.10) or (6.11) by choosing A =

2eλmax
√
M and B = 2

√
M . �

We next verify that the sequence (x(ℓ)) is finite. For ℓ < ℓ′, we have as in the
preceding proof (6.12) or (6.13). In the case of (6.12), Lemma 4.2 (a) implies

∣∣ξ(ℓ′) − ξ(ℓ)
∣∣ & A23m1

√
tℓ.

Since tℓ ≥ ε, we see that in both cases the distance
∣∣x(ℓ′) − x(ℓ)

∣∣ is bounded below

by a positive constant. But all the x(ℓ) are contained in the bounded set E × Cν , so
they are finite in number. Thus the set considered in (6.7) must be empty for some
ℓ− 1 = ℓ0. This implies (6.4).
We now prove (6.5) . Observe that the global component of the forbidden zone

Z(ℓ) corresponds to some region Z, as defined in (4.10), where a = A23m1
√
tℓ and

β = R(ξ(ℓ)). By applying Lemma 4.3 and taking also the local component into
account, we get

γk∞(Z(ℓ)) .

(
A23m1

√
tℓ
)k−1

√
R(ξ(ℓ))

exp
(
−R(ξ(ℓ))

) (
B22m1+m2

√
tℓ
)n−k

.
1√
logα

(
A23m1

)k−1 (
B22m1+m2

)n−k
t
(n−1)/2
ℓ exp

(
−R(ξ(ℓ))

)
,
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since |ξ(ℓ)| ≃
√
logα. Estimating the exponential here by means of (6.9), we obtain

γk∞(Z(ℓ)) .
1

α
√
tℓ logα

(A23m1)k−1
(
B2m2+2m1

)n−k
e−c22m1−c22m2

∫

B(ℓ)

f(u)dγk∞(u).

Applying also (6.8), we finally conclude

γk∞(Z(ℓ)) .
2m1

α

(
A23m1

)k−1 (
B22m1+m2

)n−k
exp(−c22m1 − c22m2)

∫

B(ℓ)

f(u) dγk∞(u)

.
1

α
exp(−c22m1 − c22m2)

∫

B(ℓ)

f(u) dγk∞(u).

This proves (6.5) and ends the proof of Proposition 6.1. �

Finally, combining Proposition 3.4, Proposition 5.1, and Proposition 6.1, we com-
plete the proof of Theorem 3.3, and therefore also that of Theorem 2.1.

In the next section, we will need a variant of Theorem 2.1, where the Mehler kernel
is slightly modified. The proof of Theorem 2.1 also yields the following result.

Theorem 6.3. Let κ > 0. The maximal operator associated with the kernel

exp
(∑n

j=1 λjx
2
j

)

√
Πn

j=1(1− e−2λj t)
exp

(
− κ

n∑

j=1

λj
1− e−2λjt

(xj − e−λjtuj)
2
)
, t > 0, (6.14)

is of weak type (1, 1) with respect to the invariant measure γ∞.

7. The building blocks

We go back to the setting of Section 1 and prove Theorem 1.1. Thus we assume
that the semigroup

(
HQ,B

t

)
t>0

is normal. Its infinitesimal generator is given by

LQ,Bf =
1

2
tr
(
Q∇2f

)
+ 〈Bx,∇f〉 , f ∈ S(Rn),

and S(Rn) is a core of LQ,B. Here Q∇2f denotes the product of Q and the Hessian
matrix of f .
According to a procedure introduced in [9, Lemma 2.2] and developed in [7, Sec-

tion 2], we can restrict ourselves to the case where Q = I and Q∞ is diagonal.
For the sake of completeness, we briefly recall the main steps of this approach.
First, we take a real matrix M1 such that M1QM

∗
1 = I. Since M1Q∞M

∗
1 is sym-

metric and positive definite, one can also find an orthogonal matrix M2 such that
M2M1Q∞M

∗
1M

∗
2 = diag(µ1, . . . , µn) =: Dµ, for some µj > 0, j = 1, . . . , n. Let

M =M2M1. We set moreover

B̃ = −1

2
D1/µ +R ,

where D1/µ = diag(1/µ1, . . . , 1/µn) and

R =MBM−1.
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Since the semigroup is normal, R is skew-adjoint, i.e., R + R∗ = 0 (see Proposition

2.1 in [7]). The invariant measure for the semigroup
(
HI,B̃

t

)
t>0

generated by LI,B̃ is

dγ̃∞(x) = (2π)−n/2(detDµ)
−1/2e−

1
2
〈D−1

µ x,x〉dx.

The operators LQ,B and LI,B̃ are conjugated by the similarity transformation ΦM :
S(Rn) → S(Rn) given by ΦMf(x) = f(M−1x). Indeed

LQ,B = Φ−1
M LI,B̃ΦM .

Since also γ̃∞(E) = γ∞(M−1E) for all Borel sets E ⊂ R
n, it follows that the maximal

operators HQ,B
∗ and HI,B̃

∗ have the same Lp and weak Lp boundedness properties,

with respect to γ∞ and γ̃∞, respectively. Thus it suffices to analyze HI,B̃
∗ .

Observe that we can split LI,B̃ as

LI,B̃ = L0 +R ,

where L0 = 1
2
∆ − 1

2
〈D1/µx,∇〉 and R = 〈Rx,∇〉 are the symmetric and the anti-

symmetric parts of LI,B̃, respectively.
Following [7], we denote by α1, . . . , αN the distinct eigenvalues of Dµ and write

the spectral resolution of Dµ as

Dµ = α1P1 + . . .+ αNPN .

Here Pj are projections onto mutually orthogonal subspaces PjR
n = R

nj of dimen-
sion nj , and R

n is the product of these subspaces. The Laplacian and the gradient
in PjR

n are defined by ∆jf = tr(Pj∇2f) and ∇jf = Pj∇f , respectively. We then
have, as in [9] and [7],

LI,B̃ =

N∑

j=1

L(αj, Rj) , (7.1)

where

L(αj, Rj) =
1

2
∆j −

1

2αj
〈(I − Rj)x,∇j〉. (7.2)

Here Rj = 2αjRPj is a skew-adjoint matrix. The semigroup
(
HI,B̃

t

)
t>0

is the prod-

uct of the commuting semigroups
(
etL(αj ,Rj)

)
t>0

generated by L(αj, Rj) and called

building blocks of
(
HI,B̃

t

)
t>0

.

In [7] Mauceri and Noselli study the semigroup generated by one operator of the
type (7.2), defined in R

d. In other words, they consider the case of covariance I and
drift matrix B = − 1

2α
(I−R), where α > 0 and R is a real d×d skew-adjoint matrix.

They further simplify the problem by fixing α = 1/2, and denote by ht(x, u) the
kernel of the semigroup generated by L = 1

2
∆− 〈(I −R)x,∇〉. The symmetric part

1
2
∆− 〈x,∇〉 generates a semigroup with kernel

h0t (x, u) =
exp(|x|2)
(1− e−2t)d

exp
(
− |x− e−tu|2

1− e−2t

)
.

To deal with the antisymmetric part, Mauceri and Noselli introduce a number of
two-dimensional subspaces. After an orthogonal change of coordinates in R

d, these
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subspaces are spanned by the variables Xk = (x2k−1, x2k), k = 1, 2, · · · , ⌊d/2⌋.
Then R

d will be the direct sum of these two-dimensional subspaces and, when d is
odd, the one-dimensional subspace generated by xd. The same change of coordinates
is carried out for u, and we write Uk = (u2k−1, u2k).
In [7, Theorem 3.1] it is proved that these coordinates can be chosen in such a

way that for each k there exists an angle θk ∈ [0, 2π) such that

ht(x, u) = h0t (x, u)

⌊d/2⌋∏

k=1

hθk,t(Xk, Uk).

Here the factors hθk,t(Xk, Uk) are two-dimensional kernels given by

hθk,t(v, w) = exp
(
− e−t

1− e−2t

(
(1− cos(tθk))〈v, w〉+ sin(tθk)v ∧ w

))
,

where

v ∧ w = v1w2 − v2w1 ,

for all v, w ∈ R
2, v = (v1, v2), w = (w1, w2). Notice that hθk,t(v, w) = 1 if θk = 0.

In our setting, we now apply the above to each subspace PjR
n. We then have

distinct eigenvalues αj > 0 and write λj = 1/(2αj). The coordinates in PjR
n are

x(j) = (x
(j)
1 , . . . , x

(j)
nj ), and we let X

(j)
k = (x

(j)
2k−1, x

(j)
2k ) for k = 1, . . . , ⌊nj/2⌋. Further,

u(j) and U
(j)
k are analogous.

As a result, we get the following expression for the kernel of the building block(
etL(αj ,Rj)

)
t>0

.

Lemma 7.1. Fix j ∈ {1, . . . , N}. The kernel K̂j
t of the semigroup generated by the

operator L(1/(2λj), Rj), defined in (7.2), is given, for x(j), u(j) ∈ R
nj , by

K̂j
t (x

(j), u(j)) =
exp

(
λj |x(j)|2

)

(1− e−2λjt)nj/2
exp

(
− λj

1− e−2λjt
|x(j) − e−λjtu(j)|2

)
(7.3)

× exp
(
− λje

−λjt

1− e−2λjt

⌊nj/2⌋∑

k=1

(
(1− cos(tλjθk)

)
〈X(j)

k , U
(j)
k 〉+ sin(tλjθk)X

(j)
k ∧ U (j)

k

)
.

Here | · | denotes the nj-dimensional Euclidean norm.

For k ∈ {1, . . . , ⌊nj/2⌋} there is a two-dimensional factor in (7.3), which equals

K̂j
t,k(X

(j)
k , U

(j)
k ) =

exp
(
λj|X(j)

k |2
)

1− e−2λjt
exp

(
− λj

1− e−2λjt
|X(j)

k − e−λjtU
(j)
k |2

)

× exp

(
− λje

−λjt

1 − e−2λjt

(
(1− cos(tλjθk)

)
〈X(j)

k , U
(j)
k 〉+ sin(tλjθk)X

(j)
k ∧ U (j)

k

))
.

Observe that K̂j
t is the product over k of these factors and, if nj is odd, also of a

one-dimensional factor.
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Proposition 7.2. For k = 1, . . . , ⌊nj/2⌋ and t > 0, one has

K̂j
t,k(X

(j)
k , U

(j)
k ) ≤ exp

(
λj|X(j)

k |2
)

1− e−2λjt
exp

(
− 1

2

λj|X(j)
k − e−λjtU

(j)
k |2

1− e−2λj t

)
. (7.4)

Proof. We fix k and write λjt = s, X
(j)
k

√
λj = (v1, v2) and U

(j)
k

√
λj = (w1, w2).

Then

K̂j
t,k(v, w) =

exp
(
|v|2
)

1− e−2s
exp

(
− |v − e−sw|2

1− e−2s

)

× exp
(
− e−s

1− e−2s

(
(1− cos(sθk))〈v, w〉+ sin(sθk) v ∧ w

))
.

After a rotation, we can assume that v = (r, 0), so that v ∧ w = rw2 and

K̂j
t,k(v, w) =

exp (r2)

1− e−2s
exp

(
− e−2s

1− e−2s
|esv − w|2

)

× exp
(
− e−s

1− e−2s

(
(1− cos(sθk))rw1 + sin(sθk)rw2

))

=
exp (r2)

1− e−2s
exp

(
− F (r, θk, s, w)

1− e−2s

)
,

where

F (r, θ, s, w) = e−2s
(
(esr − w1)

2 + w2
2 + es(1− cos(sθ))rw1 + es sin(sθ)rw2

)
.

Next, by setting
z = w − esv ,

we have

F (r, θ, s, w) = e−2s
(
z21 + z22 + esr(1− cos(sθ))(esr + z1) + res sin(sθ) z2

)

= e−2s
[
|z|2 + e2sr2(1− cos(sθ)) + esr 〈

(
1− cos(sθ), sin(sθ)

)
, z〉
]

≥ e−2s|z|2 + r2(1− cos(sθ))− e−sr
∣∣〈
(
1− cos(sθ), sin(sθ)

)
, z〉
∣∣.

Now

r
∣∣〈(1− cos(sθ), sin(sθ)) , z〉

∣∣ ≤ r
√
(1− cos(sθ))2 + (sin(sθ))2

∣∣z
∣∣

= r
√
2− 2 cos(sθ)

∣∣z
∣∣

≤ 1

2
e−s|z|2 + esr2(1− cos(sθ)) ,

so that

F (r, θ, s, w) ≥ e−2s|z|2 + r2(1− cos(sθ))− 1

2
e−2s|z|2 − r2

(
1− cos(sθ)

)

=
1

2
e−2s|z|2 ,

and also

K̂j
t,k(v, w) ≤

exp (r2)

1− e−2s
exp

(
− 1

2

e−2s|z|2
1− e−2s

)
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=
exp |v|2
1− e−2s

exp
(
− 1

2

|v − e−sw|2
1− e−2s

)
,

concluding the proof. �

Then, taking a product over k in (7.4) and inserting the one-dimensional factor
when nj is odd, we have

K̂j
t (x

(j), u(j)) ≤
exp

(
λj|x(j)|2

)

(1− e−2λj t)nj/2
exp

(
− 1

2

λj
1− e−2λj t

|x(j) − e−λjtu(j)|2
)
.

Finally, from (7.1) we deduce the following bound by taking the product in j.

Proposition 7.3. The kernel of the semigroup
(
HI,B̃

t

)
t>0

is bounded by

exp
(∑N

j=1 λj |x(j)|2
)

ΠN
j=1(1− e−2λjt)nj/2

exp
(
− 1

2

N∑

j=1

λj
1− e−2λjt

|x(j) − e−λjtu(j)|2
)
.

Observing now that the last expression coincides with the kernel given by (6.14)
with κ = 1/2 , we conclude the proof of Theorem 1.1 using Theorem 6.3.
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