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Abstract: Burkholderia cenocepacia is among the important pathogens isolated from cystic fibrosis
(CF) patients. It has attracted considerable attention because of its capacity to evade host immune
defenses during chronic infection. Advances in systems biology methodologies have led to the
emergence of methods that integrate experimental transcriptomics data and genome-scale metabolic
models (GEMs). Here, we integrated transcriptomics data of bacterial cells grown on exponential
and biofilm conditions into a manually curated GEM of B. cenocepacia. We observed substantial
differences in pathway response to different growth conditions and alternative pathway suscep-
tibility to extracellular nutrient availability. For instance, we found that blockage of the reactions
was vital through the lipid biosynthesis pathways in the exponential phase and the absence of
microenvironmental lysine and tryptophan are essential for survival. During biofilm development,
bacteria mostly had conserved lipid metabolism but altered pathway activities associated with several
amino acids and pentose phosphate pathways. Furthermore, conversion of serine to pyruvate and
2,5-dioxopentanoate synthesis are also identified as potential targets for metabolic remodeling during
biofilm development. Altogether, our integrative systems biology analysis revealed the interactions
between the bacteria and its microenvironment and enabled the discovery of antimicrobial targets
for biofilm-related diseases.

Keywords: Burkholderia cenocepacia; biofilm; genome-scale metabolic models; synthetic lethality;
transcriptomics; omics integration

1. Introduction

Cystic fibrosis (CF) is the most common form of the autosomal recessive disease
in Caucasians and affects 1 in every 3000–3500 births in Europe and United States [1].
CF Foundation’s National Patient Registry reports the median age of survival is 33.4 years
and respiratory diseases are the leading cause of early mortality in people with CF [2].
Many risk factors are implicated in the development and progression of CF lung disease,
such as chronic infections by biofilm-forming pathogens. Complex metabolic responses in
biofilms may have a fundamental role in the pathogenesis of this chronic disease [3].

Burkholderia cepacia complex (Bcc) emerged as important pathogens in the airways of
immunocompromised humans, especially those with CF. The treatment of Bcc infections is
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challenging because of the natural resistance to various classes of antibiotics and long-term
colonization, and the ability to adapt to nutrient-deficient biofilm microenvironment [4].
There is an urgent need to develop efficient drugs to improve and preserve lung function
early on in patients’ life since chronic infection with Bcc is an independent predictor
associated with poor prognosis [5]. The eradication of Bcc remains challenging, and there
are large gaps in our current understanding of the underlying biochemical and molecular
mechanisms involved in the persistence of biofilms.

Revealing the pathogen and microenvironment interactions requires an analysis of
large reaction networks, which can be identified through the use of systems biology ap-
proaches. Systems biology is an integrative discipline that assembles experimental data
with computational methods to describe the sophisticated biological processes of cells,
tissues, and microorganisms [6]. Genome-scale metabolic models (GEMs) are denominators
of systems biology and are defined as the computational reconstruction of entire biochemi-
cal reactions known to occur in an organism [7]. These models have been used to integrate
experimentally derived knowledge to reveal the underlying molecular mechanisms of
interrelated metabolic processes associated with a condition (e.g., the biofilm formation
that directs antimicrobial resistance and chronic infections) [8–10].

In this study, we investigated the metabolic interactions between B. cenocepacia with
its microenvironment based on the metabolic modeling and flux balance analysis (FBA)
approach. Next, we examined the influence of uptake reactions, which involve substrate
exchange with the extracellular space, not only on bacterial growth rates but also on flux
distribution across intracellular pathways based on synthetic lethality analysis. Afterward,
gene expression data from two different conditions (exponential and biofilm) were inte-
grated with the GEM of B. cenocepacia to investigate the effect of environmental conditions
on bacterial metabolism.

2. Methods
2.1. Genome-Scale Metabolic Model of Burkholderia Cenocepacia

The GEM of Burkholderia cenocepacia J2315 (iPY1537) was downloaded in SBML format
from the authors’ website (https://bme.virginia.edu/csbl/Downloads1-Burkholderia-
cepacia.html, Access Date: 29 October 2019) [11]. Details regarding the metabolic model of
the microorganism are provided in Table S1. We performed model refinement by manual
curation to enable more consistent data with biological functionality. The COBRA Toolbox
(Constraint-Based Reconstruction and Analysis Toolbox) was used to design, analyze,
and predict the perturbations on the models [12]. Biomass production was defined as the
objective function to predict the proportion of metabolic pathway usage through the FBA.
The COBRA Toolbox was implemented in MATLAB 2019a (The MathWorks, Inc., Natick,
MA, USA), and academic licenses of IBM CPLEX v12.10.1 (IBM, Armonk, NY, USA) were
used to solve linear optimization problems in this study.

2.2. Synthetic Lethality Analysis

We performed the simulation of single and double synthetic lethal reactions by con-
straining upper and lower bounds of the fluxes to zero and selecting the constraint that
would make the objective function unfeasible. Individual reactions that inhibit the objective
function considered as single lethal reactions. Constraining the model by removing one pair
of reactions at a time (excluding single lethal reactions), which resulted in no cell growth,
was determined as double lethal reactions. Exchange reactions were settled by available
COBRA functions and were constrained individually, and were paired by setting these
fluxes to zero. Biomass formation was used as the objective function. Essential exchange
reactions were defined as those in which the absence of nutrients by inhibition of these
reactions eventually leads to cell death. Cellular metabolic pathways were determined
from enclosed subsystems of the model, and unassigned pathways were disregarded.

https://bme.virginia.edu/csbl/Downloads1-Burkholderia-cepacia.html
https://bme.virginia.edu/csbl/Downloads1-Burkholderia-cepacia.html
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2.3. Differential Expression Analysis of RNA-Seq Data

The raw RNA sequencing data of wild type B. cenocepacia J2315 isolates under expo-
nential and biofilm conditions were downloaded from ArrayExpress (accession number:
E-MTAB-5526, ENA Project Number: PRJEB19669) [13]. Six RNA-seq datasets include three
biological replicates of exponential and biofilm grown B. cenocepacia. Sample accession
numbers of the transcripts are accessible in Table S2.

We quantified gene expression levels with the alignment-free pipeline Kallisto
(v0.46.1) [14], which determines the compatibility of high-throughput sequencing reads
with target sequences by using k-mer-based counting algorithms. We used RNA-seq fastq
read data and transcriptome reference fasta data of B. cenocepacia J2315 [15]. Initially, binary
index from cDNA transcripts in FASTA format was built by using index function. Then, esti-
mation of the transcripts’ abundances was performed with quant function. The abundance
estimates were reported in transcripts per million (TPM).

Gene level differential expression data were analyzed with the DESeq2 package
(v1.22.2) [16] in the R platform (v3.5.3). This method estimates the variance–mean de-
pendence in count data from high-throughput sequencing assays and test for differential
expression based on a model using the negative binomial distribution. Raw counts of
sequencing reads in the form of a matrix of integer values were obtained with a phenodata
file describing the experimental groups. The output of this analysis was the significantly
differentially expressed genes.

2.4. Integrating RNA-Seq Data with the Genome-Scale Metabolic Model

We integrated transcriptomics data with the GEM of B. cenocepacia by the Metabolic
Adjustment for Differential Expression (MADE) algorithm using Toolbox for Integrating
Genome-Scale Metabolic Models, Expression Data, and Transcriptional Regulatory Net-
works (TIGER) package [17,18]. This is a consistent platform for algorithm development
and extending existing GEMs with regulatory networks and high-throughput data. This al-
gorithm accounts for the expression state of a gene with a weighted consideration of the
statistical significance of the gene expression changes. TIGER converts a gene–protein
relation (GPR) and additional regulatory rules into an equivalent mixed integer linear
program (MILP). The MILP constraints are added to a COBRA metabolic model to create
a TIGER model that combines metabolism, GPR associations, and transcriptional regu-
lation. Condition-specific models were generated for the exponential and biofilm phase
of B. cenocepacia. To understand how the transition from exponential phase to biofilm
phase impacts the intracellular metabolic fluxes and growth of B. cenocepacia, we performed
the flux variability analysis of all fluxes reaching the optimal solution. Constraints were
defined according to synthetic cystic fibrosis sputum medium (SCFM), a medium designed
to replicate the environment of the cystic fibrosis lung [19]. Minimum and maximum
fluxes were calculated for all reactions through the built-in flux variability analysis (FVA)
function of the TIGER package. The defined subsystems on the model iPY1537 were used
to identify the most deregulated pathways within the transition from exponential to biofilm
conditions (Figure 1).
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Figure 1 

Figure 1. Study design for integration of transcriptomics data of Burkholderia cenocepacia into a
manually curated genome-scale metabolic network. (A) Differential expression analysis of RNA
sequencing data of bacterial isolates grown on exponential and biofilm conditions was performed
using Kallisto and DESeq2. (B) Schematic representation of COBRA model for Burkholderia cenocepacia
(iPY1537). (C) High-throughput gene expression data was integrated with genome scale model by the
Metabolic Adjustment for Differential Expression (MADE) algorithm using Toolbox for Integrating
Genome-Scale Metabolic Models, Expression Data, and Transcriptional Regulatory Networks (TIGER)
package. (D) Schematic representation of minimum and maximum fluxes which were calculated for
all reactions through the in-built flux variability analysis (FVA) function of the TIGER package. Red
lines represent fluxes in exponential phase and green lines biofilm environment.
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3. Results
3.1. In Silico Identification of Reaction Essentialities and Affected Pathways

To assess the in silico identification of different growth requirements, we retrieved
GEM of B. cenocepacia (iPY1537), which contained 1667 reactions and 1513 genes. We eval-
uated the influence of a reaction without flux on the entire known metabolic network
through the synthetic lethality analysis approach (Figure 2A). This allowed for identify-
ing 174 single essential reactions and 115 combinations of reaction pairs excluding single
lethal reactions (Figure 2B). Reactions involved in lipid metabolism constitute the majority
(n = 103, 59.2%) of the single lethal reactions; among these lipid metabolism reactions,
fatty acid biosynthesis (n = 62, 60.2%) was most frequently found. In remaining 71 sin-
gle lethal reactions, glycan metabolism reactions were the most common (n = 37, 52.1%)
(Figure 2B, Table S1).

Response to microenvironment nutrient status changes was evaluated by blocking
exchange or transport reactions (n = 162) of the model. Notably, as the exchange and
transport reactions in the model of Burkholderia cenocepacia J2315 have been extensively
curated based on medium information, we grouped them together in our essentiality
analysis to investigate the potentially important metabolites in the environment for the
growth of bacteria. Exchange of oxygen and O2 transport via diffusion were identified as
single lethal exchange/transport reactions (Figure 2C, Table S1).

Considering pathways in all lethal pairs, reactions belonging to the pyrimidine
metabolism (n = 43) were most commonly responsible for pairs becoming lethal and
were found in 26.1% of the pairs (Figure 2B, Table S1). ATP nucleoside-diphosphate phos-
photransferases were dominant enzymes of pyrimidine metabolism related lethal reaction
pairs. In all model, different types of phosphotransferases were involved in 44% of all
lethal reaction pairs (Table S1).

The model of B. cenocepacia presented 67 pairs of lethal combinations with at least
one exchange or transport reaction (Figure 2C). Reactions in phenylalanine, tyrosine,
and tryptophan biosynthesis (n = 22, 32.8%) were most common in lethal pairs with at
least one exchange/transport reaction, and paired with tryptophan supply of the cell
(Figure 2B, Table S1). Tryptophan is a member of aromatic amino acids and has been linked
to various metabolic functions involved in the maintenance of redox homeostasis and
NAD+ biosynthesis [20]. Valine, isoleucine, cytidine, and deoxyguanosine were the other
frequent compounds that absence with an additional reaction inhibits the entire metabolic
network (Figure 2C, Table S1).

3.2. Condition-Dependent Metabolic Models of B. cenocepacia

We analyzed the physiology of B. cenocepacia during adaptation to the biofilm environ-
ment based on transcriptomics data [13] of cells collected in exponential phase and biofilm
phase. To integrate the comparative gene-expression data from exponential versus biofilm
conditions into iPY1537, we produced contextualized metabolic models for the exponential
phase and the biofilm environment. The 602 (72.1%) out of a total of 835 differentially
expressed genes could be consistently included in MADE. Our analysis indicated that
228 genes were upregulated, 216 genes were downregulated, and 158 genes were constant
in the transition from exponential to biofilm phase. Objective fluxes were calculated as
11.66 and 11.60 mmol/gDW/h for exponential and biofilm conditions after expression data
was applied.

Flux variability analysis results revealed that 590 reactions had flux at least one
condition. Among those, 303 reactions (51.4%) were in the same directionality, and 287 re-
actions (48.6%) were altered between conditions. We found that a total of 176 unique
exchange/transport reactions, 79 (44.9%) reactions were common, and 97 (55.1%) reac-
tions varied across two different conditions (Table S2). Reactions involved in glycerolipid
synthesis (100%), lipopolysaccharide biosynthesis (100%), fatty acid biosynthesis (98.4%),
and glycerophospholipid metabolism (90.4%) were the most conserved reactions in both
conditions (Figure 3, Table S2).
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2 

 

Figure 2 Figure 2. (A) Study design for synthetic lethality analysis. (B) Single lethal reactions, lethal reaction
pairs, and related pathways. Blue circle plot shows numbers of single lethal reactions (Single),
lethal reaction pairs (Pairs) and all reactions in the model (All). Chart bar of single lethal reactions
shows numbers of involved reactions in each pathway. Chart bar of reactions in lethal pairs shows
numbers of individual reactions in each pathway. (C) Single lethal exchange/transport reactions,
exchange/transport reactions in lethal reaction pairs and related metabolites. Brown circle plot shows
numbers of single lethal exchange/transport reactions (Single), exchange/transport reactions in
lethal reaction pairs (Pairs), and all exchange/transport reactions in the model (Exchange/Transport).
Bar chart of single lethal reactions shows numbers of exchange/transport reactions and related
metabolites. Bar chart of lethal reaction pairs shows numbers of individual exchange/transport
reactions and related metabolites.
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Figure 3 

Figure 3. Balloon plot represents the percentage of altered reactions in pathways when transition from exponential phase to
biofilm phase.

Metabolism of amino acids with 59 (31%) altered reactions scored as the most varied
pathway when we excluded exchange/transport reactions. This was followed by car-
bohydrate metabolism reactions with 52 (27%) and purine and pyrimidine metabolism
with 29 (15%) reactions that introduced changes. Vitamin metabolism was the fourth
most altered pathway with 20 (11%) changing reactions in total for ascorbate and aldarate
metabolism, folate metabolism, and pantothenate and CoA biosynthesis (Table S2).

In detail, pathways in arginine and proline metabolism (100%) and glycine, serine,
and threonine metabolism (100%) and ascorbate and aldarate metabolism (100%) were
the pathways, in which all the reactions are altered between two conditions (Figure 4).
This is followed by alanine, aspartate, and glutamate metabolism (91%) and valine, leucine,
and isoleucine metabolism (77%), in which most of the reactions are changed in biofilm
conditions (Figure 4). The model predicted that direct conversion of serine to pyruvate and
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conversion of glutamate to 2-oxaloacetate through producing phosphoserine is only active
in biofilm conditions. 

4 

 

Figure 4 
Figure 4. Detailed schematization of all altered reactions by using results of FVA. Red and blue colors
represent the fluxes with positive and negative values, respectively. Gray represents no flux. Min 1,
minimum flux in exponential condition; Max 1, maximum flux in exponential condition; Min 2,
minimum flux in biofilm condition; Max 2, maximum flux in exponential biofilm. Highly altered
pathways are highlighted in blue boxes; n is the number of reactions of the pathway that had flux for
at least one condition.

We also examined the regulation of vitamin metabolism and the subsequent effect on
various physiological functions in the system during biofilm conditions. We found that
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both arginine proline metabolism and the ascorbate aldarate pathway are connected to the
citrate cycle through 2,5-dioxopentanoate synthesis.

Condition-specific models had fluxes on 119 and 157 exchange/transport reactions
for exponential and biofilm conditions, respectively. In both phases, a total of 97 fluxes
were unchanged. According to the altered exchange/transport reactions, more amino acids
were consumed when the cells were at the biofilm phase: 3 and 14 additional amino acid
intakes were predicted in addition to common exchange/transport reactions in exponential
and biofilm conditions, respectively (Table S2). As the carbohydrate reserve was depleted,
amino acid breakdown outweighs, and, eventually, the accessible nutrients were obtained
from the dead bacteria. To sustain growth in these circumstances, bacteria should adjust to
an elevated energy cost for the catabolism of the biomolecules from the bacterial debris.

4. Discussion

In this study, the systems biology approach for model perturbation and data integra-
tion allowed us to evaluate how environmental conditions affect the metabolic pathways
of B. cenocepacia J2315. Altered metabolic fluxes were identified from the synthetic lethality
analysis as well as condition-specific models based on gene expression profile. The models
predicted tendencies to exclusive pathways in the biofilm development when comparing
exponential conditions.

First, we provided a comprehensive analysis of essential reactions and affected path-
ways in B. cenocepacia under exponential conditions. The influence of different conditions
on synthetic lethal interactions was adjusted by perturbing the model based on reaction
constraints. According to the synthetic lethality analysis, reactions involved in fatty acid
biosynthesis were most frequently found in single lethal reactions. Control at the level
of fatty acid biosynthesis is crucial for membrane homeostasis, because the biophysical
properties of membranes are determined by the composition of the fatty acids that are pro-
duced by de novo biosynthesis. Since lipids are the cell’s primary structural components,
the enzymes of bacterial fatty acid biosynthesis are attractive targets for antimicrobial
drug discovery [21]. To this extent, various inhibitors of bacterial fatty acid biosynthesis
were developed; however, only two of those (e.g., isoniazid and triclosan) are in clinical
usage [22]. We claim that a combination of rational drug design methodologies with GEM
predictions of distinct metabolic pathways will have more success on selectively targeted
drug development.

Reactions involved in phenylalanine, tyrosine, and tryptophan biosynthesis were
most frequently found in lethal pairs with at least one exchange/transport reaction when
we excluded single lethal reactions. Tryptophan exchange was responsible for 36% of those
reaction pairs becoming lethal. In this manner, Zhang et al. showed that the absence of
exogenous tryptophan caused an immediate killing on auxotrophic mycobacterium species,
which is consistent with our findings [23]. Since tryptophan is not synthesized by human
cells, biosynthetic pathways of this amino acid provide excellent targets for the discovery
of new antimicrobial agents [24].

Second, to obtain a holistic understanding of the interactions between B. cenocepacia
with its environment and how the metabolic network is regulated as a result of biofilm
development, we integrated the transcriptomics data of exponential and biofilm phases
into the iPY1537. Our results highlighted that glycerolipid synthesis, lipopolysaccharide
biosynthesis, fatty acid biosynthesis, and glycerophospholipid metabolism were least
affected when the conditions are altered. Bacterial lipid metabolism is responsible for
producing structural molecules and biological energy storage, and the biosynthesis of the
extracellular polymeric substances that are crucial for biofilm formation [25]. Phospholipid
biosynthesis is an essential component for the formation and maintenance of the membrane,
which is initiated with the synthesis of the fatty acids. Although fatty acid synthesis is a
complex and energy-intensive process, there are no alternate aspects to fulfill their central
roles in membrane formation. Therefore, the fundamental process of lipid metabolism is
highly conserved in bacteria among different life conditions [25]. The encouraging results
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obtained in this study facilitate the understanding of the mechanisms that regulates the
pathway usage across conditions.

While earlier studies have prospected the organization of amino acid and carbohy-
drate metabolism of microorganisms under different environmental conditions [26,27], the
GEM reconstruction of B. cenocepacia allowed us to investigate these features in the context
of the metabolic modeling. Integration of transcriptomic data of the biofilm conditions
revealed that bacteria tend to uptake more amino acids from the environment for growth,
and reactions of the pentose-phosphate pathway are activated. These in silico predictions
are compatible with the fact that throughout exponential growth, carbohydrates are first
consumed as the main supply of carbon and energy but are promptly exhausted, and addi-
tional fuel molecules such as lipids and proteins are utilized to maintain survival [28].

Pathway-based analysis also unveiled which fluxes in amino acid metabolism were
most affected by biofilm conditions. Glycine, serine, and threonine metabolism and argi-
nine and proline metabolism were the two subsystems in which all of the reactions were
altered between conditions. In particular, the glycine, serine, and threonine pathway is
closely related to central metabolism. The amino acid serine is an indispensable biological
molecule, either a basic constituent for protein synthesis or as a precursor of other amino
acids, nucleotides, and phospholipids [29]. In parallel, Greenwich et al. revealed that serine
levels declined in the stationary phase compared to the exponential phase, and expression
of genes involved in the serine biosynthesis downregulated when Bacillus subtilis entered
the stationary phase [30]. They also showed that the deletion of the serine deaminase gene
resulted in a deceleration in biofilm organization, which endorsed the idea that serine
levels are essential for biofilm formation. Other previous studies have also indicated that
serine is consumed more rapidly than other amino acids in Escherichia coli and almost
complete depletion of serine in the stationary phase [31–34]. Despite the biochemical
processes that occur within serine metabolism are widely established, many aspects of the
regulation of the serine homeostasis and major mechanisms to maintain the intracellular
serine concentrations in bacteria remain incompletely defined. Our model calculations
(e.g., direct conversion of serine to pyruvate and conversion of glutamate to 2-oxaloacetate
through producing phosphoserine are only active in biofilm conditions but not in the expo-
nential phase) agree with these literature findings and provide mechanistic explanations
for the association between serine homeostasis and biofilm development in B. cenocepacia.
It can be assumed that serine is first converted to pyruvate, then used for gluconeogenesis
or channeled into the Krebs cycle for energy production. Therefore, antimetabolite for
serine can be potentially used to block these serine related metabolic pathways and inhibit
the growth or biofilm formation, which should be evaluated in future studies.

Several reactions in ascorbate and aldarate metabolism, folate metabolism, and pan-
tothenate biosynthesis were altered, based on our metabolic analysis. These reactions are
involved in various biological processes as the energy supply for growth and survival. In
this manner, the role of the 2,5-dioxopentanoate and related pathways offer targets for
understanding the aspects of microbial biofilm metabolism.

In this study, we performed computational analysis to reveal the interactions between
the global properties of B. cenocepacia with its microenvironment and predicted the physi-
ology during adaptation to the biofilm condition, which allowed us prior knowledge to
provide testable hypotheses regarding the functionality of metabolic pathways. We pointed
out considerable properties in metabolic response to extracellular nutrient availability and
pathway susceptibility to altered growth conditions. These predictions can guide further
experimental validation in the context of characterizing essential linkages of the bacteria
with their microenvironment and discovery of potential targets for biofilm-based infections.
As the metabolic models only focused on metabolic genes (i. e. regardless of genes involved
in regulatory processes), future studies may integrate the metabolic models together with
other biological systems, such as regulatory, signaling, and protein–protein interaction
networks to enable more comprehensive understanding of the biofilm formation process
and pathogenic role of the bacteria.
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