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Abstract
The key to providing high performance and energy-efficient execution for hard real-
time applications is the time predictable and efficient usage of heterogeneous mul-
tiprocessors. However, schedulability analysis of parallel applications executed on
unrelated heterogeneous multiprocessors is challenging and has not been investigated
adequately by earlier works.

The unrelated model is suitable to represent many of the multiprocessor platforms
available today because a task (i.e., sequential code) may exhibit a different work-
case-execution-time (WCET) on each type of processor on an unrelated heterogeneous
multiprocessors platform. A parallel application can be realistically modeled as a
directed acyclic graph (DAG), where the nodes are sequential tasks and the edges are
dependencies among the tasks. This thesis considers a sporadic DAG model which is
used broadly to analyze and verify the real-time requirements of parallel applications.
A global work-conserving scheduler can efficiently utilize an unrelated platform by
executing the tasks of a DAG on different processor types. However, it is challenging
to compute an upper bound on the worst-case schedule length of the DAG, called
makespan, which is used to verify whether the deadline of a DAG is met or not. There
are two main challenges. First, because of the heterogeneity of the processors, the
WCET for each task of the DAG depends on which processor the task is executing on
during actual runtime. Second, timing anomalies are the main obstacle to compute
the makespan even for the simpler case when all the processors are of the same type,
i.e., homogeneous multiprocessors. To that end, this thesis addresses the following
problem: How we can schedule multiple sporadic DAGs on unrelated multiprocessors
such that all the DAGs meet their deadlines.

Initially, the thesis focuses on homogeneous multiprocessors that is a special
case of unrelated multiprocessors to understand and tackle the main challenge of
timing anomalies. A novel timing-anomaly-free scheduler is proposed which can
be used to compute the makespan of a DAG just by simulating the execution of the
tasks based on this proposed scheduler. A set of representative task-based parallel
OpenMP applications from the BOTS benchmark suite are modeled as DAGs to
investigate the timing behavior of real-world applications. A simulation framework is
developed to evaluate the proposed method. Furthermore, the thesis targets unrelated
multiprocessors and proposes a global scheduler to execute the tasks of a single DAG
to an unrelated multiprocessors platform. Based on the proposed scheduler, methods
to compute the makespan of a single DAG are introduced. A set of representative
parallel applications from the BOTS benchmark suite are modeled as DAGs that
execute on unrelated multiprocessors. Furthermore, synthetic DAGs are generated to
examine additional structures of parallel applications and various platform capabilities.
A simulation framework that simulates the execution of the tasks of a DAG on an
unrelated multiprocessor platform is introduced to assess the effectiveness of the
proposed makespan computations. Finally, based on the makespan computation of a
single DAG this thesis presents the design and schedulability analysis of global and
federated scheduling of sporadic DAGs that execute on unrelated multiprocessors.
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Chapter 1

Introduction

1.1 Background

More and more everyday life devices are getting digitized by incorporating some
computing system to enhance the device’s functionalities. The computing system
understands the device’s environment by using sensors and reacts to it with some
mechanical actuators. For example, a car’s braking assistant system based on the
sensor inputs adapts how it is working to improve the safety of the passengers and
the pedestrians around it. As more functionalities are automated, the software that
controls the device becomes more complex, and it needs to compute more data. For
example, avionics software size has increased significantly over the last years [1, 2].
Also, more advanced sensors based on radar and vision technologies [3, 4] are used to
get a better understanding of the environment but generate a large amount of data that
the computing system needs to process.

A hard real-time system is a computing system embedded in some device that needs
to interact with its environment within strict time constraints. Hard real-time systems
can be found, for example, in space applications, avionics, automotive, telecommu-
nication, industrial manufacture technologies, and medical equipment [5] and they
represent a significant share of the semiconductor industry revenue [2]. More formally,
a hard real-time system, illustrated in Figure 1.1, is a system which is composed of
(i) a software application that is embedded on a known hardware platform — embed-
ded system and (ii) by a quantitative timing analysis for the embedded system that
rigorously proves that the application completes its execution before a given deadline.

Heterogeneous multiprocessor platforms can provide the necessary performance
and energy gains for parallel applications [7–14]. To be able to use heterogeneous mul-
tiprocessors for hard real-time systems, however, we need to ensure time predictability;
one has to guarantee the timeliness of a real-time parallel application that is executed
on a heterogeneous platform by designing an effective scheduling algorithm and doing
the offline schedulability analysis.

Related work on scheduling real-time parallel applications for heterogeneous mul-
tiprocessors has focused on restricted application models [15–20] or platform [21–27]
which limit their applicability to practical problems. A parallel application that is
modeled as a directed acyclic graph (DAG), where the nodes represent sequential
tasks and edges represent dependencies among the tasks, is suitable to model many
real-time control and monitoring applications because it represents the parallelism and
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2 CHAPTER 1. INTRODUCTION

Figure 1.1: The left part of the figure are the levels of transformation for an application
and with the dashed rectangle we present the embedded system. The right part of the
figure presents the timing analysis needed to check the timing requirements of a hard
real-time system. The deadline is determined by the problem and the algorithm. The
WCET and schedulability analysis verify that the hard real-time system can meet its
deadline. The figure is based on Fig. 1.6, in [6].

its limitations (e.g., data dependencies) that exist in the application. The unrelated
heterogeneous multiprocessor model associates the worst-case execution time (WCET)
of each task with each processor type, and it can model many of the available heteroge-
neous multiprocessors. Under a global (dynamic) work-conserving scheduler for the
tasks of a DAG, a processor is never idle if there are available tasks to execute. Then,
it is possible to efficiently utilize unrelated multiprocessors by avoiding processor load
imbalance issues that partitioned (static) scheduling approaches suffer from. However,
the timing analysis is challenging.

First, during runtime, a task can execute on any processor type, and it is not
clear offline what WCET we need to consider for each task in order to determine the
worst-case schedule length of a DAG, called makespan. Second, even if we assume
that there is one processor type in the multiprocessor platform which means that it is a
homogeneous platform, the execution time of a globally scheduled parallel application
may increase when some tasks take less time than their WCETs at runtime. This is
known as an execution-time-based timing anomaly [28–30], which comprises one of
the main obstacles to minimize the pessimism for the calculation of the makespan
when we consider any work-conserving scheduler. Previous work on homogeneous
multiprocessors [31] that compute the makespan introduce a closed-form, analytical
formula which in order to avoid timing anomalies assumes that no task can run in
parallel with the tasks that belong to the critical path of the DAG. This is pessimistic
and leads to an overestimation of the makespan. Finally, no previous work computes
the makespan of a globally scheduled DAG on unrelated multiprocessors, to the best
of my knowledge. Without knowing how to compute the makespan of a single DAG,
we cannot analyze a hard real-time system that is modeled using the broadly adopted
sporadic DAGs model [32, 33] for unrelated multiprocessors. This limits the use of
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heterogeneous multiprocessors to hard real-time systems.

1.2 Problem statement
This thesis first investigates the problem of how we can improve the makespan compu-
tation of a globally scheduled DAG that executes on a homogeneous multiprocessor
such that we reduce the pessimism of the estimation that is needed to avoid timing
anomalies. This problem is addressed in Paper I. Next, we approach the problem of
how we can schedule multiple DAGs on an unrelated multiprocessor platform such
that we can guarantee the schedulability of the DAGs, i.e., all the DAGs meet their
deadlines. First, Paper II finds an approach to compute the makespan of a single
DAG on an unrelated heterogeneous platform. Next, we need to find a way to schedule
multiple DAGs that are sharing the unrelated platform by upper bounding the longest
time that a DAG can be delayed by other DAGs, such that we can check if all the
DAGs meet their deadlines. To address the last problem, two approaches are proposed
in Paper III and Paper IV.

1.3 Contributions
This thesis, that is based on four papers, makes the following contributions:

• Paper I: This paper introduces a scheduler, called Lazy , to execute the tasks
of a DAG on a homogeneous platform that is proven to be execution-time-
based timing-anomaly free. Based on the time predictable execution of the
tasks, a novel approach that simulates the execution of a DAG to compute the
makespan is introduced that provides a tighter and more scalable estimation of
the makespan, with respect to the number of processors, in comparison with the
state-of-the-art in [31].

• Paper II: This paper presents a scheduler, called GHE , to execute the tasks of a
single DAG on unrelated multiprocessors. The scheduler has proven to possess
a property called the greediness property that allows us to find the minimum
processing capability and the maximum processing wastage for an unrelated
platform that executes a parallel application modeled as a DAG. We use the
greediness property of the scheduler to introduce two approaches that make
a trade-off between computational complexity and tightness when computing
a safe upper bound on the makespan of a DAG that executes on unrelated
multiprocessors. The homogeneous and related (uniform) multiprocessors are
special cases of the unrelated multiprocessor model, and the proposed methods
specialize in the makespan computations presented in the state-of-the-art [28]
and [23]. Finally, the makespan computation applies to any static- or dynamic-
priority-based work-conserving scheduler that has the greediness property.

• Paper III: This paper introduces a global scheduler for multiple DAGs that
are executed on an unrelated multiprocessor platform. Similar to Paper II the
scheduler has the greediness property. Based on the greediness property, we
introduced the concept of inflated workload to incorporate the quality of hetero-
geneity of a multiprocessor platform in our proposed schedulability analysis.
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We use the inflated workload to compute the response time of globally scheduled
sporadic DAGs that are executed on unrelated multiprocessors.

• Paper IV: This paper introduces the concept of processor value for a DAG with
respect to meeting its deadline on an unrelated heterogeneous platform. The
paper uses the scheduler of Paper II and introduces a simple and elegant method
to compute the makespan of a DAG that executes on unrelated multiprocessors.
The processor value and the makespan of a single DAG are used to develop a
federated scheduling algorithm that statically allocates a DAG to a dedicated
subset of unrelated processors such that all the sporadic DAGs meet their
deadlines. The advantage of federated scheduling is that, by assigning dedicated
processors to a DAG, there is no interference from the other DAG. However, the
challenge is to find the right subset of dedicated processors for each DAG.

1.4 Thesis organization
Chapter 2 presents the summary of the papers included in the thesis, and Chapter 3
concludes the thesis and discusses future research directions.



Chapter 2

Summary of papers

2.1 Paper I
Title: “ Timing-Anomaly Free Dynamic Scheduling of Task-Based Parallel Applications”

2.1.1 Background
Homogeneous multicore architectures can provide a high time-predictable performance
through parallel processing [34–39] of parallel applications [40, 41] that are modeled
as DAGs. However, any global (dynamic) work-conserving scheduler can suffer
from execution-time-based timing-anomalies [28–30]. The state-of-the-art method
to compute the makespan of a DAG that executes on homogeneous multiprocessors
[28,31,42] is a closed-form, analytical approach that is applicable for work-conserving
scheduling under any priority-ordering of the tasks, for example, earliest-deadline-
first (EDF), rate monotonic (RM), depth-first search (DFS) and breadth-first search
(BFS). The state-of-the-art, closed-form formula to compute an upper bound on the
makespan of a DAG that executes on a homogeneous platform [28,31,42] is presented
in Eq. (2.1).

TM ≤ W∞ +
(W1 −W∞)

M
(2.1)

where:

• M : The number of processors of a homogeneous multiprocessor platform.

• W1: The total workload of a parallel application is modeled as a directed acyclic
graph (DAG). The total workload is computed by summing the WCET of all
the tasks.

• W∞: The workload of the tasks that belongs to the critical path of the applica-
tion. The critical path is computed by summing the WCET of all the tasks that
belong to the longest source-to-sink path of the DAG (also called the critical
path in this thesis).

While Eq. (2.1) is easy to compute, the main disadvantage is the assumption that
the tasks that belong to the critical path are interfered by all the other tasks. This
assumption is pessimistic because, at runtime, there are tasks that can be executed in
parallel with the critical path’s tasks.

5
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2.1.2 Problem statement
How can we improve the makespan computation of a single globally scheduled parallel
application that is modeled as a DAG and executes on a homogeneous multiprocessors
platform?

2.1.3 Contributions
This paper contributes with the design of a timing-anomaly-free global scheduling
method, called Lazy, which is non-preemptive and non-work-conserving, in the sense
that some ready tasks may not be dispatched for execution even if some processors
are idle. Unlike all other earlier approaches where the runtime simulation of the
tasks’ execution cannot be used to find the makespan due to timing anomalies, the
proposed Lazy scheduler can determine the makespan by simply executing the tasks
of the DAG while avoiding any timing anomaly. In other words, the simulation of the
schedule of the DAG is proved to provide a safe upper bound on the makespan.

The main design idea of Lazy is that each task in the DAG is assigned a fixed
priority. The priority of a child task is assigned based on the priority of its parent with
a constant time computation. So, when a task (parent) is currently in execution, we
can compute in constant time the priorities of the tasks (children) that will spawn in
the future when the parent finishes its execution. The dispatch condition checks if all
the highest priority tasks have already been dispatched, and if not, it checks whether
there are available processors for all the higher priority tasks that may come in the
future. If it is true, a task is dispatched to an idle processor. Otherwise, a task is not
dispatched for execution even if some processor is idle, which means that Lazy is
non-work-conserving, and this property is crucial to avoid timing anomalies.

The Lazy scheduler is able to dispatch a lower-priority task — out of strict
decreasing-priority order — if there are enough processors to execute the higher
priority tasks that are ready for execution or may become ready in the future. Conse-
quently, it is guaranteed that a lower priority task during actual runtime cannot start its
execution later compared to the starting time that is used offline for the estimation of
the makespan.

To prove anomaly freedom, we compare two schedules of the DAG on the same
platform. We compare the schedule SWCET where all tasks execute exactly for their
WCET and schedule S where some tasks may execute for less than their WCET.
Note that SWCET is the schedule we use offline to compute the makespan while
schedule S mimics any arbitrary schedule at runtime. The starting time of any task
in S can be as late as the starting time in SWCET since Lazy has already dispatched
or has reserved processors for all its higher priority tasks. We have assumed that the
scheduler is non-preemptive, and consequently, the same holds for their completion
time. So the makespan of S cannot be longer than SWCET , which shows that Lazy is
a timing-anomaly free scheduler.

2.1.4 Summary of results
To assess the effectiveness of the Lazy scheduler in determining the makespan of
parallel applications, we study its performance in the dynamic scheduling of Fibonacci,
Sort, Strassen, and FFT task-based parallel OpenMP applications from the BOTS
benchmark suite [40]. As a baseline, we use the state-of-the-art given by Eq. (2.1).
We use tightness and scalability (based on Gustafson’s Law [43]) as key metrics to
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compare the effectiveness of Lazy in determining the makespan with that of using
the baseline.

For all the cases, the estimation of the makespan of the Lazy scheduler is tighter
than the state-of-the-art for each application. The worst-case assumption in Eq. (2.1)
is that the tasks that are not on the critical path do not run in parallel (i.e., always
interfere) with the tasks of the critical path. However, the structure of a DAG may
allow the tasks in the critical path to execute in parallel with tasks that are not part of
the critical path. For different applications and a different number of processors, the
simulation of the Lazy scheduler achieves on average 9% and a maximum of 36%
tighter estimation of the makespan in comparison to the state-of-the-art. Furthermore,
for all the applications, the Lazy scheduler scales better or similar to the baseline.
For the different applications and configurations, the increase in scalability of the
Lazy scheduler in comparison to the baseline is on average 14% and maximally 30%.

2.2 Paper II

Title: “ Bounding the Execution Time of Parallel Applications on Unrelated Multiprocessors”

2.2.1 Background

Heterogeneous multiprocessors can offer high performance at low energy expenditures
[7–14]. However, to be able to use them in hard real-time systems, timing guarantees
need to be provided [33]. One of the main challenges is to determine the worst-case
schedule length (also known as makespan) of a parallel application that executes
on unrelated multiprocessors. The unrelated multiprocessor is a generalization of
homogeneous multiprocessors, so the problem of timing anomalies still holds for a
globally scheduled DAG on unrelated multiprocessors.

The work in [15–20] consider the scheduling of independent and sequential tasks
on an unrelated platform. Unfortunately, sequential independent tasks cannot model
the data or other dependencies among the tasks that exist in parallel applications. Other
work [21–27] on scheduling directed acyclic graphs (DAGs) on unrelated platform
assume that a node can only execute on (i.e., is compatible with) exactly one type
of processor. Limiting the compatibility of the tasks through such modeling reduces
the actual parallelism that we can achieve for a parallel application on heterogeneous
multiprocessors [12, 13] which in turn increases the execution time of an application.
The work in [23] uses global (dynamic), work-conserving scheduling for the tasks of a
DAG. The tasks of the DAG can execute on any processor and can efficiently utilize
a heterogeneous platform. However, [23] uses the related (uniform) multiprocessor
model that associates each processor with a speed factor, meaning that all tasks of a
parallel application can benefit equally by a processor type, which is unrealistic.

The DAG model for a single parallel application in combination with the unrelated
multiprocessor platform model can realistically represent many of today’s parallel
applications and heterogeneous platforms. A global scheduler can execute the tasks
of a DAG at any processor type of a platform by efficiently utilizing a heterogeneous
platform and may complete the execution of the application relatively earlier. However,
no previous work considers determining the makespan of a parallel application on an
unrelated multiprocessor platform.
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2.2.2 Problem statement
How can we compute the worst-case schedule length, i.e., makespan, of a globally
scheduled DAG that is executed on unrelated multiprocessors?

2.2.3 Contributions
This paper introduces a global work-conserving scheduler, called GHE , that is used to
schedule the tasks of a DAG on an unrelated multiprocessor platform. The GHE sched-
uler, at each scheduling decision point, first checks if the tasks that are already in
execution can migrate to some faster processor. Next, if there are tasks in the ready
queue and there are idle processors, the GHE scheduler starts dispatching one-by-one
new task awaiting execution in the ready queue on the fastest idle processor.

Because of the dynamic nature of the scheduler, we do not know at which proces-
sor(s) a task may be executed (dispatched or migrated), so it is not clear what WCET
we need to consider to find the makespan of the DAG since the same task may have
different WCET on different processor type on an unrelated multiprocessor platform.
To model the total workload of the application and the workload of the critical path, we
use the minimum WCET of each task of the DAG to succinctly capture the workload
using only two parameters. Then we find how much a task can be delayed because
during runtime it may execute on a processor that is slower compared to the processor
that provides the minimum WCET.

The GHE scheduler is proven to have a property called the greediness property,
which enables us to identify the worst-case task-processor mapping that may happen
during run time by considering both the workload and the heterogeneity of the platform
during the schedulability analysis. We define the minimum processing capability and
the maximum processing idleness of the unrelated platform concerning the DAG
under analysis based on the greediness property. One important characteristic of the
GHE scheduler is that the greediness property is oblivious to the task priority order, so
it holds for any static- or dynamic-priority assignment of the tasks, for example EDF,
RM, DFS, and, BFS.

By combining the workloads of the application with the minimum processing
capacity and the maximum processing idleness that we can have because of the
dependencies of the DAG or due to lack of parallelism, we find the makespan with
two approaches. First, an exhaustive search-based approach, called Comb, is proposed
to find the makespan. Comb has a high computational complexity in order to find a
tighter makespan and it is suitable for small applications that have tight deadlines.
To reduce the computational complexity of the Comb, a polynomial-time approach,
denoted by Fast, is introduced that can be used to find a relatively less tight makespan
which is well suited not only for small applications but also for a large applications
with relatively less tight deadlines.

2.2.4 Summary of results
To quantitatively evaluate the proposed makespan computation, we use Fibonacci,
Sort, Strassen, and FFT task-based parallel OpenMP applications from the BOTS
benchmark suite [40] suite and synthetic DAGs. Because there is no related work
that considers the same general system model as ours, we compare the Fast to
the exhaustive approach Comb to identify how much tightness we need to sacrifice
in order to avoid the high time complexity of Comb and to compute the makespan
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in polynomial time with Fast. Next, we compare Fast to an approach based on
simulation setup, denoted by Sim, to find the pessimism of Fast compared to the
schedule length obtained under the simulation setup. Sim is simply execution of the
tasks of a DAG by forcing each task to execute for its WCET under the GHE scheduler.
The schedule length in Sim is a lower bound on the makespan of the application,
which shows the space for potential improvement that we can achieve in case we could
compute the makespan optimally.

From the simulation results of the parallel applications, we have seen that Fast over-
approximates the makespan no more than 3% compared to the exhaustive approach
Comb. Next, for the applications, the Fast is on average 19% and, at most, 62%
greater than Sim. For the synthetic DAGs, we try to explore different DAG structures
than the applications and platforms with high heterogeneity. From the results, we ob-
serve that Fastprovides, on average, 6% and at maximum 16%, less tight makespan
compared to the Comb. Compared to Sim, the Fast is, on average, 51% and up to
74% more pessimistic.

We compare this work with related works that make similar assumptions about
the application and platform models. In case all the tasks have the same WCET for
all the processors (a homogeneous multiprocessor set up), the Comb and Fast are
equal to the makespan as proposed in Eq. (2.1). If the processors have the same speed
for all the tasks (a related multiprocessor set up), the two approaches are equal to the
state-of-art for related multiprocessors [23]. Finally, by assuming that the tasks of a
DAG are compatible with only one processor type, we show that our approaches are
equivalent with typed DAGs [24].

2.3 Paper III

Title: “ Response time analysis for globally scheduled sporadic DAGs on unrelated multiprocessors”

2.3.1 Background

Hard real-time systems usually need to execute multiple applications, for example, to
process the input data of several sensors and control different actuators. The sporadic
DAG model [32,33] assumes a finite number of recurring DAGs. Each DAG potentially
generates an infinite sequence of releases (jobs). The first release can arrive at any time
instant, and any two consecutive releases are separated at least by a minimum inter-
arrival time (also called the period). Each DAG has a relative deadline that needs to be
met, and it is relative to the arrival time of every release of that DAG. The sporadic
DAG model has gained attention [22,23,31,44–50] because it is suitable to model many
real-time control and monitoring applications. A global scheduler [25,31,33,44,46,49]
can execute a task of a DAG on any processor of an unrelated platform. Because the
tasks of the DAGs compete for the same processors, they interfere with each other. We
need to establish an upper bound on the interference that the DAGs suffer from one
another and combine such interference with the makespan to compute overall response
time of each DAG task which can be used to test if all DAGs meet their deadlines
or not. No previous work has analyzed the global scheduling of sporadic DAGs on
unrelated multiprocessors to the best of our knowledge.
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2.3.2 Problem statement
How can we globally schedule a set of sporadic DAGs on an unrelated multiprocessor
platform such that we can guarantee the schedulability of the DAGs?

2.3.3 Contributions
This paper introduces a scheduler that builds upon the GHE scheduler from Paper II
and schedules the tasks of multiple sporadic DAGs. Recall that the GHE scheduler
at each scheduling decision point first allows migration of the currently executing
tasks to a relatively faster (idle) processor and then dispatches new tasks from the
ready queue. The GHE scheduler from Paper II is extended in this Paper III with
preemption capability such that a task of a DAG is allowed to preempt some other
lower-priority currently-executing task that belongs to some other DAG. Similar to
GHE , this extended scheduler has the greediness property which is oblivious to the
priority of the tasks.

One of the main challenges for analyzing the schedulability of multiple DAGs is
to account for interference that one DAG may have over another. Computing the exact
interference requires one to know the critical instance [51] which is still unknown for
global multiprocessor scheduling like the GHE scheduler. Therefore, we find an upper
bound on the interference to compute the response time of each DAG. To establish an
upper bound on the interference among the tasks of different processors, we need to
take into account the heterogeneity of the processors. This is because a higher-priority
task executing on a slow processor interferes with the other lower-priority task for a
relatively longer time duration compared to the case when the higher priority task is
executing on a relatively faster processor.

To safely upper bound the interference that is introduced by one DAG competing
for the same unrelated processors, we increase (i.e., inflate) the workload of a DAG to
capture the heterogeneity of the platform. The inflated workload is computed based
on the greediness property of the scheduler. The inflated workload encapsulates in a
single parameter the worst-case task-processor mapping of the tasks for each DAG of
the sporadic DAG set. Finally, we extend the window analysis from the homogeneous
platform setup [31, 33, 52, 53] to unrelated multiprocessor platform. The outcome
of this extended window-based analysis is to find the total interference that all the
higher-priority tasks impose on a lower-priority task under analysis.

Based on the makespan of each DAG and the interference that it can suffer by the
other DAGs, we are able to compute the response time of each DAG for any scheduler
that is work-conserving and possesses the greediness property. In other words, the
proposed response time analysis is applicable to a wide range of well-known fixed-
and dynamic- priority based schedulers for scheduling a set of sporadic DAGs on an
unrelated heterogeneous platform. To that end, we present how our general response
time analysis (RTA) is extended for fixed-priority (e.g., RM) and dynamic-priority
(e.g., EDF) based schedulers.

2.3.4 Summary of results
An experimental framework is proposed considering multiple sporadic DAGs and an
unrelated heterogeneous multiprocessor platform. The simulation results using the
experimental framework show that the specialization of the response time analysis
improves the deadline acceptance ratio compared to the response time that is oblivious
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to the priorities of the DAGs. For example, EDF achieves on average 27% and RM on
average 24% higher acceptance ratio in comparison to the scheduler that considers no
special priority ordering. Our experiments confirm that as we continue adding slower
processors to the experimental framework, the acceptance ratio decreases because
some processors are very fast for some tasks while are very slow for others. Overall,
the acceptance ratio decreases for H = 2, on average by 44%, and for H=4 on average
a 99% lower acceptance ratio compared to the case that H = 1.

There are at least two sources of pessimism that one has to consider when doing
schedulability analysis for multiple DAGs on a heterogeneous platform. First, the
variation in the heterogeneous characteristics of the processors for the makespan
computation. Second, the analysis of a general work-conserving scheduler also needs
to pessimistically consider the worst possible interference that one task suffers from
tasks from the other DAGs. The makespan computation of this paper can be improved
by using the makespan proposed in Paper II or Paper IV. The computation of the
interference takes advantage of the greediness property of the scheduler and computes
with low pessimism the interference among the DAGs.

2.4 Paper IV
Title: “ Federated scheduling of sporadic DAGs on unrelated multiprocessors”

2.4.1 Background
In this paper, we use the sporadic DAG model [32, 33], as in Paper II. In federated
scheduling [26, 44, 45, 47, 48, 50] a DAG either gets a dedicated subset of processors
(i.e., a cluster) such that it can execute in isolation without being interfered by other
DAGs or the DAG executed sequentially upon a single processor as in partitioned
scheduling. For homogeneous processors [44, 45, 47, 48, 50] and typed DAGs [26]
we need to find the number of processors that each DAG needs in order to meet its
deadline. However, for unrelated multiprocessors, we need to find the number of
processors and the right processor type for each processor that the DAG needs to meet
its deadline. No previous work has investigated the federated scheduling of sporadic
DAGs on unrelated multiprocessors to the best of our knowledge.

2.4.2 Problem statement
How can we schedule a set of sporadic DAGs on an unrelated multiprocessor platform
with federated scheduling in such a way that we can guarantee the schedulability of
the DAGs?

2.4.3 Contributions
We use the GHE scheduler from Paper II to schedule the tasks of a single DAG on
a dedicated cluster of unrelated multiprocessors, and we introduce an approach to
compute the makespan of a single DAG. For the DAGs assigned to a single processor,
we use uniprocessor preemptive EDF to schedule sequentially the tasks of the DAGs
assigned to this processor. To determine the right cluster for each DAG, such that all
the DAGs meet their deadlines, we introduce the notion of processor value for each
processor that belongs to an unrelated platform. The processor value of a processor is
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computed based on the quality of a processor in terms of meeting deadline of each
DAG under the GHE scheduler. A high processor value computed for a DAG means
that this processor can execute the DAG tasks relatively faster compared to some other
processor with a lower processor value and hence the DAG has higher likelihood of
meeting the deadline.

Based on the processor value that the DAGs have for the processors, we develop a
federated scheduling algorithm that statically allocates a DAG to a cluster of dedicated
unrelated processors. For a DAG that gets a multiprocessor cluster to execute in
isolation, based on the analysis of the GHE scheduler, we compute the makespan to
check if it meets its deadline. For the DAGs assigned to a single processor cluster,
we use a uniprocessor utilization-based schedulability test to check if all the DAGs
meet their deadlines. The federated scheduling algorithm returns success if it finds a
feasible DAG-cluster allocation for all the sporadic DAGs; otherwise, it returns failure
to schedule the sporadic DAG set.

2.4.4 Summary of results
To quantitatively evaluate the federated scheduling algorithm, we generate sporadic
synthetic DAGs with implicit deadlines. First, we test the schedulability of the pro-
posed federated scheduling by varying the number of processor types. From the simu-
lation results, we have seen that by trading more extended deadlines for cheaper/slower
processors (i.e., if someone can afford to have more extended deadlines), one can
choose a lower-cost platform and achieve on average a 6% higher acceptance ratio.

Next, we compare our approach to global scheduling for unrelated multiprocessors.
For federated scheduling, a DAG with a dedicated cluster cannot interfere with the
other DAGs. Furthermore, DAGs scheduled sequentially to a single processor can
efficiently utilize the processor because the single processor EDF for implicit deadlines
is optimal considering meeting the DAGs deadlines. In contrast, for global scheduling,
each DAG can minimize its makespan because it can use all the processors but interfere
with all the lower priority DAGs. The simulation results show that federated scheduling
has on average 80% and 120% higher acceptance ratio than EDF and RM , respectively.

Finally, we specialize the system model for related multiprocessors to compare our
approach to federated scheduling with previous work for related multiprocessors [23].
Even though our approach has a less tight makespan compared to [23] for related
multiprocessors, it has on average 87% higher acceptance ratio because our DAG-
cluster allocation takes into account the heterogeneity of the processors and assigns
suitable processors for the DAGs such that all the DAGs can meet their deadlines.
However, the main objective of [23] is to solve the underutilisation of homogeneous
multiprocessors. The processor to the DAG allocation mechanism is not aware of the
capability of the different processor types. It specifies only the number of processors
but does not determine the processor type of each processor a DAG needs to meet its
deadline. By assuming that we assign the faster processor to the DAG with the longest
makespan, the DAG-cluster assignment becomes identical to our approach. Since the
makespan of [23] is tighter, compared to the makespan computation of this paper, by
combining the two techniques, a higher acceptance ratio can be achieved.



Chapter 3

Concluding remarks and future
work

More and more functionalities of hard real-time systems are automated that require
high computational demands. This calls for parallel processing. Heterogeneous
multiprocessors provide high performance and high energy efficiency for parallel
applications. Global schedulers can efficiently utilize heterogeneous processors. How-
ever, the schedulability analysis of parallel real-time applications on heterogeneous
multiprocessors is challenging due to the heterogeneity of the processors and the
timing anomalies that may arise.

First, we consider a single parallel application that is modeled as a DAG, and
we compute the makespan. In Paper I we focus on homogeneous multiprocessors,
and a novel time predictable scheduler, called Lazy, is introduced to schedule the
tasks of a DAG. The simulation of the execution of Lazy is a safe upper bound on
the makespan, in contrast to previous approaches that suffer from timing anomalies
and use closed-form, analytical methods. Simulation results show that the proposed
approach computes a tighter and more scalable makespan, with respect to the number
of processors, than the previous approaches. In Paper II we focus on unrelated
multiprocessors, and a global, work-conserving scheduler is introduced to schedule
the tasks of a DAG. An important characteristic of the scheduler is that it allows
tasks to migrate among the heterogeneous processor such that they can enjoy a faster
execution. Based on the proposed scheduler, a method to compute the makespan is
introduced. Simulation results show that the proposed method computes the makespan
tightly compared to an exhaustive approach and with low pessimism compared to
the simulation of the execution of the DAG. This is the first attempt to compute the
makespan of globally scheduled DAGs that execute on unrelated multiprocessors, to
the best of our knowledge.

Second, we consider multiple parallel applications with real-time constraints that
are modeled with the sporadic DAG model, and they are sharing an unrelated multi-
processor platform. In Paper III a global work-conserving scheduler is introduced to
schedule the tasks of multiple DAGs. An upper bound on the interference among the
DAGs is computed by taking into account the different processing capabilities of the
unrelated processors. Based on the makespan of each DAG and the interference, we
compute the response time of each DAG, assuming any priority order of DAGs. Next,
we specialize the response time analysis for dynamic (EDF ) and static (RM ) priority-

13
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based scheduler. The simulation results show that EDF and RM schedulers achieve a
significantly larger acceptance ratio compared to the general approach where DAGs do
not have any priorities. In Paper IV, a federated scheduling algorithm is introduced
that statically assigns dedicated clusters to DAGs to avoid the interference among the
DAGs that global scheduling (Paper III) has because the DAGs are competing for the
same processors. We use the global, work-conserving scheduler presented in Paper
II to schedule the tasks of a single DAG to a cluster of unrelated processors, and
we introduce a new approach to compute the makespan. We use preemptive unipro-
cessor EDF to schedule sequentially the tasks of multiple DAGs that are assigned
to a single processor. The concept of the processor value is introduced to select the
right processor type for each cluster such that all the DAGs meet their deadlines. The
simulation results show that the proposed approach has a higher acceptance ratio than
global scheduling on unrelated multiprocessors and than previous work that focuses
on related multiprocessors.

Overall, Paper I shows that developing a scheduler to be time predictable by design
can simplify the schedulability analysis and can provide tight makespan computations.
Furthermore, from the implementation point of view, because the proposed method
is simulation-based, we do not need the whole DAG stored in some data structure.
We generate the DAG gradually as we simulate its execution that helps us to model
large applications. The unrelated model used in Paper II, Paper III, Paper IV is
very expressive and can model many available platforms today using a wide range of
processor-types and specialized application accelerators. In addition, the unrelated
model is a useful analysis tool because it is a generalization of the homogeneous and
related platform models that allows us to adapt and reuse broadly used analysis tools.
In Paper II by the modeling for unrelated multiprocessors the task-based parallel
applications from the BOTS benchmark suit, we can note that the number of tasks
(nodes in the DAG) is significantly larger than the number of processors that a platform
may have. However, each application has very few unique tasks, i.e., tasks that perform
different functions. Two tasks that are of the same unique task have the same WCET
of the processors. This observation allows us to model larger applications because we
could compute the parameters of the makespan by considering only the unique tasks.
Also, during the actual execution of the DAG, it is probable that there are many tasks
with the same processor type "preferences" (i.e., same unique task) that are executed
in parallel and compete for the same processor types, which is the main idea of the
greediness property used in Paper II, Paper III, Paper IV.

Finally, from Paper I we can see that the usage of a time predictable scheduler
can significantly reduce the pessimism of the makespan computation. An interesting
future direction would be to develop a timing anomaly-free scheduler for unrelated
multiprocessors that will let us compute the makespan by simulating the execution
of the DAG. After knowing how to compute a simulation-based makespan, we can
develop a federated scheduling algorithm, similar to Paper IV to check the schedu-
lability of multiple sporadic DAGs. A timing anomaly-free scheduler for unrelated
multiprocessors is expected to be non-work-conserving so the analysis of the interfer-
ence of Paper III cannot be used and a novel approach is needed to establish an upper
bound on the interference of the DAGs that are competing for the same processors.
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Abstract—Multicore architectures can provide high pre-
dictable performance through parallel processing. Unfortu-
nately, computing the makespan of parallel applications is
overly pessimistic either due to load imbalance issues plaguing
static scheduling methods or due to timing anomalies plaguing
dynamic scheduling methods. This paper contributes with an
anomaly-free dynamic scheduling method, called Lazy, which
is non-preemptive and non-greedy in the sense that some
ready tasks may not be dispatched for execution even if some
processors are idle.

Assuming parallel applications using contemporary task-
based parallel programming models, such as OpenMP, the
general idea of Lazy is to avoid timing anomalies by assigning
fixed priorities to the tasks and then dispatch selective highest-
priority ready tasks for execution at each scheduling point. We
formally prove that Lazy is timing-anomaly free. Unlike all
the commonly-used dynamic schedulers like breadth-first and
depth-first schedulers (e.g., CilkPlus) that rely on analytical
approaches to determine an upper bound on the makespan of
parallel application, a safe makespan of a parallel application
is computed by simulating Lazy. Our experimental results
show that the makespan computed by simulating Lazy is
much tighter and scales better as demonstrated by four
parallel benchmarks from a task-parallel benchmark suite in
comparison to the state-of-the-art.

I. INTRODUCTION

Multicore architectures can offer high and predictable
performance, through parallelism, for real-time applications.
The challenge, however, is to make a sufficiently tight
estimate of the makespan which is the longest possible
time the application may take to finish its execution. Today,
parallel applications increasingly use task-based parallel
programming models such as OpenMP 4.0. In task-based
parallel programs, dependencies between tasks are specified
by programmers. Thus, they can be viewed as a direct
acyclic graph (DAG), where nodes are tasks and edges
are dependencies between tasks. In deriving the makespan
for such DAGs, one must take into account how tasks
are scheduled onto the processors (cores) of the multicore
architecture.

While scheduling of single-threaded applications on mul-
tiprocessor systems is well researched, the literature on
predictable scheduling of parallel applications is sparse. First
of all, while some work has targeted static scheduling, i.e.,
statically pre-assigning tasks to fixed cores [17], [13], [15],
static scheduling fundamentally underutilizes hardware re-
sources due to load imbalance or communication overheads.
Dynamic scheduling, on the other hand, can significantly

improve resource utilization. However, it suffers from tim-
ing anomalies [5], [9], [16] meaning that the makespan
of the parallel application can be longer if the execution
time of some task is shorter than its estimated worst-case
execution time (WCET). Therefore, in the presence of timing
anomalies, overly pessimistic assumptions have to be made
to provide a safe upper bound on the makespan making it
challenging to enjoy a predictable speedup on a multicore
architecture. In order to determine a safe makespan for
greedy dynamic scheduling algorithms, in the presence of
timing anomalies, Melani et al. [11] assume that all tasks
can interfere with the tasks that dictate the critical path of
a parallel application making makespan estimation overly
pessimistic1.

This paper proposes, for the first time, a formally proven
timing-anomaly-free dynamic scheduling algorithm — the
Lazy Scheduler (Lazy) — that offers safe estimation of
the makespan of parallel applications by simulating the
execution of the application assuming the execution time
of each task is its designated WCET. Lazy is priority-
based, non-greedy, and non-preemptive. Each task of a
parallel application is assigned a fixed priority. The highest-
priority ready tasks are dispatched for execution on the idle
processors based on a condition. If a ready task does not
satisfy this condition, the task is not dispatched for execution
even if some processor is idle (i.e., Lazy is non-greedy).
A task that is dispatched for execution finishes its execution
without any preemption (i.e., Lazy is non-preemptive).

In order to assess the effectiveness of Lazy in de-
termining makespan of parallel applications, we study its
performance in dynamic scheduling of four task-based par-
allel OpenMP applications from the BOTS benchmark suite
[4]. These applications are widely used in many different
fields of computing (e.g., data processing, sorting, scientific
applications, image processing, etc.). We develop a sim-
ulation framework to determine the makespan of parallel
applications using Lazy. Our setup is composed of two
main parts: the task generator and the scheduler. The task
generator module models the target parallel application as a
DAG by dynamically generating the tasks/nodes of the target
parallel applications. The scheduler implements Lazy and
simulates the execution of nodes of the target application on
a multicore platform to compute the makespan assuming the
execution time of each task is its designated WCET.

1The analysis in [11] has two components: (i) analysis of a single DAG
(Eq.(5)), and (ii) analysis of multiple recurrent DAGs. The former analysis
is the state-of-the-art result for makespan estimation of a single DAG.
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As a baseline, we establish a safe upper bound of the
makespan using the analytical approaches of [11] which is
pessimistic but safely estimates the makespan of parallel
application for any greedy dynamic scheduling algorithm.
We use tightness and scalability as key metrics to compare
effectiveness of Lazy in determining the makespan of
parallel applications with the baseline. Tightness is defined
as the ratio of makespans of the baseline and Lazy using
the same number of processors whereas scalability compares
makespans of a scheduling algorithm for two different
configurations: smaller input size with smaller number of
processors and larger input size with larger number of
processors. The main contributions are the following

• We propose the Lazy scheduler which is a timing-
anomaly-free dynamic scheduling method for par-
allel applications. We formally prove that it is
timing-anomaly free. To the best of our knowl-
edge, the Lazy scheduler is the first timing-anomaly-
free dynamic scheduler which allows determining the
makespan by simulating the execution of parallel ap-
plication.

• A methodology to generate the DAG representation of
OpenMP parallel application is presented. Our simu-
lation framework can be used to empirically establish
the tightness and scalability of any dynamic scheduling
algorithm. It is shown that the Lazy scheduler is
significantly tighter and more scalable than the state-of-
the-art greedy methods. We find that Lazy scheduler is
always tighter (on average 9% and maximally 36%) and
always scales better (on average 14% and maximally
30%) in comparison to the baseline.

The makespan of a single DAG can be used to determine
whether the DAG meets some specified deadline. This
research can be applied to federated scheduling [8] of mul-
tiple recurrent constrained-deadline DAGs on M processing
cores as follows. Each DAG is assigned a fixed number
of dedicated cores on which its nodes are scheduled based
on our proposed Lazy scheduler. The minimum number of
dedicated cores to meet all the deadlines of a DAG can be
determined using bisection search in the range [1, M] such
that the makespan (computed using our approach) is not
larger than the deadline. If the sum of required number of
dedicated cores for all the DAGs is not larger than M, then
we can guarantee that all the DAGs meet their deadlines.

The rest of the paper is organized as follows. First, the
system model is presented in Section II. We then provide ex-
amples of how timing anomalies may occur in dynamically
scheduled programs in Section III. We describe Lazy and
prove its anomaly freedom in Section IV. The methodology
to model the applications as DAG is described in Section V.
The simulation framework and the evaluation metrics are
presented in Section VI. Finally, related work is presented
in Section VII before we conclude in Section VIII.

II. SYSTEM MODEL

We consider a multicore architecture with M identical
cores such that each core has a (normalized) speed of one.
A parallel application is modeled as a directed acyclic graph
(DAG) denoted G = (V,E), where V = {v1, . . . vn} is a set
of n nodes and E ⊆ (V ×V ) is a set of directed edges. Each
node vp ∈ V represents a sequential chunk of execution
(called, task) having Cp equal to its WCET. If (vp, vq) ∈ E,
then vq can start execution after node vp completes. As
this paper focuses on makespan for parallel applications,
we make the simplifying assumption that WCET of each
sequential task (i.e., a node in the DAG) is known. We define
a path of G originating at node va to node vb as a sequence
of nodes (va, . . . vb) such that (vj , vj+1) ∈ E, a ≤ j < b.

For each node vj ∈ V , we define the predecessors of vj
to be the set of nodes vk ∈ V such that there is an edge from
vk to vj . For each node vj ∈ V , we define the successors
of vj to be the set of nodes vk ∈ V such that there exists
an edge from vj to vk. For each node vj ∈ V , we define
the ancestors of vj to be the set of nodes vk ∈ V such that
there exists a path from vk to vj . Similarly, for each node
vj ∈ V , we define the descendants, of vj to be the set of
nodes vk ∈ V that there is a path from vj to vk. These sets
can be computed in linear time in the size of DAG G [3].

A node with no incoming and no outgoing edge is called
a source and sink respectively. Without loss of generality we
assume that there is exactly one source (denoted as vsrc) and
one sink (denoted as vsink) of G. If there is more than one
source/sink node, a dummy node with WCET zero as a new
source/sink node is added. The terms “node” and “task” are
used interchangeably.

III. TIMING ANOMALIES

The makespan of a dynamically scheduled parallel ap-
plication may increase when some tasks take less than
their WCETs at run-time. This is known as an execution-
time-based timing anomaly [5], [9], [16]. An example of
such an anomaly is illustrated in Figure 1. The Ci value
alongside each node is the WCET of the corresponding task
in Figure 1. The DAG is executed based on a non-preemptive
Breadth First Schedule (BFS) on two processors P0 and P1.

Figure 1: Execution time based anomaly.
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Consider, for example, the DAG and the schedule on
the left-hand side of Figure 1. The execution time of the
application is 9 units. Now consider the case when node B
does not execute for 3 units but finishes after 1 unit and
all other nodes execute according to their WCET. The DAG
and the schedule for this scenario are shown on the right-
hand side of 1. The execution time of the application is 10
units. Hence, the overall execution time of the application
is increased (from 9 to 10 units) when node B takes less
time units than its WCET. This example demonstrates an
execution-time-based timing anomaly.

A trivial approach to avoid such timing anomalies is as
follows: each node of a DAG is forced to execute for its
WCET (i.e., if it completes earlier, then it idles the core
until its WCET). However, this trivial approach has several
problems. First, the scheduler needs to know the WCETs
of all the nodes during runtime and must keep track of
the elapsed execution time of each node to determine if it
completes earlier than its WCET. It is not clear how the
WCETs (that are known offline) for all the nodes could be
made available at runtime for such comparison. In addition,
the tracking and comparison for a large number of nodes
incur overhead. Second, when a node completes earlier, a
timer needs to be programmed to implement the “idling of
core”. We may have a peculiar situation where M timers are
programmed to idle all the M cores. Moreover, managing M
different timers may not scale for large M. Third, handling
the timers’ interrupts also has overhead. Since the parallel
applications that we consider have several thousand nodes
— each of which may complete earlier — handling several
thousand timers’ interrupts is not practical.

IV. THE PROPOSED SCHEDULER: LAZY

This section first presents a policy to assign fixed priorities
to the nodes of a DAG. Second, the details of our proposed
scheduler Lazy is presented. Finally, we prove that Lazy is
free from any execution-time-based timing anomaly.

A. Priority Assignment Policy

Each node in the DAG is assigned a fixed priority. The
fixed priority of newly generated child node is assigned
based on the fixed priority of its parent. The priority of
a node vi is denoted as a pair (Li, lpi) where Li is the
level of the node in the DAG and lpi is level priority of vi
at level Li. If vi is the root node of the DAG, then vi is
assigned level 1 and level priority 1, i.e. (Li, lpi) = (1, 1).
The successor nodes of vi are assigned fixed priorities based
on the priority of their parent.

Let the maximum number of children that are generated
by any node vi with priority (Li, lpi) is (called, the max-
imum degree) D. All the D children are considered for
priority assignment based on the order in which they are
created by the parent. Let the D child nodes of parent vi are
u1, u2, . . . uD (ordered based on the creation order). The jth

child node uj , that is generated from a parent node vi with
priority (Li, lpi), is assigned level Lj = (Li + 1) and level
priority lpj = (D× lpi− (D−1)+ j) for j = 1, . . . D. The
intuition behind computing the level priority lpj is that the
structure of the DAG might ultimately look like a completely
balanced tree where each internal node has D children.

We assume that a smaller value implies higher priority.
The priorities of two nodes vi and vk are compared as
follows. First, the levels of Li and Lk are compared. If vi
has a smaller level than vk (i.e., Li < Lk), then vi has higher
priority over vk. If Li = Lk and lpi < lpk, then the node vi
has higher priority; otherwise, node vk has higher priority.

Parallel tasks generated by the same parent usually need
to synchronize their results (e.g., using taskwait pragma
in OpenMP). We model such synchronization using so
called synchronization node. Such synchronization nodes are
generally the sequential bottleneck in exploiting parallelism
at the higher level of a DAG. We assign special priorities to
such a synchronization node vs at the Kth level of the DAG.
If a parent node vi requires its child nodes to synchronize on
a node vs, then the priority (Ls, lps) of the synchronization
node vs is assigned as follows.

The level Ls = K is the level of node vs in the DAG
and the level priority lps = lpi is equal to the level priority
of node vi. Since a parent node will have a lower level-
priority value (i.e., higher fixed priority), the synchronization
nodes at a particular level of the DAG will have higher
priority over other non-synchronization nodes at the same
level. This ensures that synchronization nodes are executed
with higher priority to exploit parallelism further down the
DAG. Priorities to the tasks can be assigned during run-
time based on the policy presented above. Each node gets
the same priority even if the structure of the DAG changes,
for example, due to conditional nodes that may or may not
be generated based on the input values. Since the priority
assignment (Li, lpi) is unique for all the nodes, a unique
single priority, denoted by pi, can be produced where

pi = (DLi−1 − 1)/(D − 1) + lpi (1)

Figure 2: Example of priority assignment

For example, consider a parallel application that is imple-
mented as a collection of parallel tasks that can be modeled
as a binary tree. For such a DAG, each parent node may
generate at most two children, i.e., D = 2. Consider a parent
vi with priority (Li, lpi) = (2, 3). Let u1 and u2 are the
two children of vi. Each such child is assigned level 3 since
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(Li + 1) = 3. The child u1 is assigned a level priority
(D × lpi − (D − 1) + 1) = (2 × 3 − (2 − 1) + 1) =
6 while the other child u2 is assigned a level priority
(D × lpi − (D − 1) + 2) = (2 × 3 − (2 − 1) + 2) = 7.
The corresponding synchronization node vs appears at level
K = 4, then Ls = 4 and lpi = lps = 3. Therefore, u1,
u2 and us are assigned priorities (3, 6), (3, 7) and (4, 3)
respectively. Figure 2 shows an example of our proposed
priority assignment to a binary DAG. Note that all the nodes
are assigned different priorities.

From our priority assignment policy, it can be seen that
a new priority is assigned based on the priority level of the
parent and the maximum degree. Consequently, our priority
assignment can be used during run-time since only local
information (i.e., priority information of the parent) and no
global information (i.e., information about other nodes) of
DAG is needed. In addition, a single-valued priority pi can
also be computed based on (Li, lpi) for node vi. Such single-
valued priority pi is used by our proposed Lazy scheduler.

B. Scheduling Policy: Lazy

Lazy is a fixed-priority-based non-greedy and non-
preemptive scheduler. In Lazy, the highest-priority ready
tasks from the ready queue are dispatched for execution on
idle processors if the condition C (given below) is satisfied.
Before we present the details on how the Lazy scheduler
is implemented in our simulation, we need the following
definitions and notations.

A task is called active at time t if it has been released
and not yet completed its execution by time t. The set of
active tasks that were dispatched for execution before time
t but have not yet finished their execution is denoted by set
EXEt. Note that EXEt is a subset of the set of active tasks
since all the tasks that are dispatched before time t and have
not completed execution by time t are also active tasks at
time t. The tasks in the ready queue are those tasks that are
active at time t but have not been dispatched yet (i.e., active
tasks that are not in EXEt). We denote by RQ the set of
tasks in the ready queue awaiting execution. Therefore, the
set (RQ∪ EXE t) is the set of active tasks at time t.

We denote by vhpAct
t the task with priority phpAct

t as the
highest-priority active task in set (EXE t ∪ RQ) at time
t. Note that vhpAct

t ∈ EXEt if vhpAct
t was dispatched

before time t; otherwise vhpAct
t ∈ RQ. We also denote

phc(vhpAct
t ) the highest priority of any child node that is

generated by node vhpAct
t . For example, if node vhpAct

t gen-
erates at most 2 nodes with priorities pa and pb where
pa < pb, then phc(vhpAct

t ) = pa since pa is the highest
priority of any child node that is generated by node vhpAct

t .
The value of phc(vx) for a node vx can be computed using
the priority assignment policy in subsection IV-A.

Without loss of generality, we assume that the system
starts at time t = 0 when all the processors are idle and
the ready queue RQ only has the root of the DAG. The

Lazy scheduler takes new scheduling decisions at time t
when the following event E occurs at time t:
• Event E: When t = 0 or when some task completes

its execution while the ready queue is non-empty.
The algorithm stops when all the processors become idle

and the ready queue is empty. Given that an event E occurs
at time t, the highest-priority active task vhpAct

t at time t
is determined. Recall that vhpAct

t may be in set EXE t or
in set RQ. Since Lazy is non-preemptive scheduler, task
vhpAct
t continues its execution if it is in set EXE t. Tasks

from the ready queue RQ are dispatched by Lazy at time
t. The Lazy scheduler dispatches the highest-priority task
vi with priority pi from the ready queue RQ to an idle
processor if the following condition C is satisfied:

C: pi ≤ (phpAct
t +M − 1) or pi < phc(vhpAct

t )

where
• phpAct

t is the priority of the highest priority active task
at time t;

• M is the number of processors; and
• phc(vhpAct

t ) is the highest priority of any child node
of node vhpAct

t .
Condition C considers single-valued priority pi that can

be computed from vi’s priority (Li, lpi) using Eq. (1).

Algorithm 1 LazyDispatcher

1: procedure LAZYDISPATCHER(List < Task >RQ)
2: vhpAct

t ← highest-priority task in EXEt ∪RQ
3: while RQ �= ∅ do
4: vi ← highest priority task in RQ
5: if C is true and there is an idle processor then
6: Remove vi from RQ
7: Dispatch vi to an idle processor
8: else
9: Exit

The detailed functionality of the Lazy scheduling policy
is presented in Algorithms 1. Lazy takes as input the
RQ and it dispatches new tasks to idle processors based on
condition C. Algorithm 1 at line 2 determines the highest-
priority active task vhpAct

t which may be in EXEt or
RQ. The task vhpAct

t can be determined by comparing the
priorities of the highest-priority tasks in each set EXE t and
RQ. The while loop in line 3 iterates as long as there is at
least one ready task in the RQ. During each iteration of this
while loop, the highest-priority task from the ready queue
RQ is stored in variable vi in line 4. The highest-priority
ready task vi can be dispatched for execution on an idle
processor if the condition C in line 5 is true.

If the condition in line 5 is true (i.e., task vi satisfies C
and there is an idle processor), then task vi is removed from
the ready queue RQ (line 6) and dispatched for execution
on an idle processor (line 7). If the condition in line 5 is

365370368



false, then the while loop is exited (line 9). In such case no
more tasks from the ready queue is dispatched for execution
even if some processor is idle, which is essential to prove
that Lazy is a timing-anomaly free scheduler (Theorem 1).
After the while loop from line 9 is exited, Lazy waits for a
task-completion event where the ready queue RQ is updated
with new nodes (if generated).

The Lazy scheduler is non-preemptive since a task from
the ready queue is dispatched only if there is an idle
processor. The salient feature of condition C is that a lower-
priority task vi is possible to be dispatched if there are
enough processors to execute all the higher priority tasks
that are active at time t or may become active after time t.
This crucial feature of Lazy ensures that a lower-priority
task vi during actual runtime cannot start its execution later
than the time that is considered when estimating (offline) the
makespan of the DAG because enough cores are reserved for
all of its higher-priority tasks. Based on this feature, we will
formally prove that Lazy is timing-anomaly free.

C. Proof of execution-time anomaly freedom

To prove that Lazy is a timing anomaly free scheduler
in Theorem 1, we need Lemma 1–Lemma 3.

Lemma 1. If node va is an ancestor of node vc, then the
priority of node va is higher than the priority of vc, i.e.,
pa < pc for our priority assignment policy.

Proof: Let v1 = va, v2, . . . vk = vc be a chain of nodes
such that vi−1 is a parent node of vi for i = 2, 3, . . . k. The
jth child of node vi has priority lpj = (D×lpi−(D−1)+j).
Since j ≥ 1, D ≥ 1, we have that D×lpi−(D−1)+j > lpi.
Therefore, the child has lower priority than the priority of
its parent. Since vi−1 is a parent of vi in the path, we have
pi−1 < pi for i = 2, 3, . . . k based on Eq. (1). Consequently,
p1 = pa < p2 < p3 < . . . pk = pc. Therefore, any ancestor
of vc has higher priority than vi.

For the remainder of this section consider the time instants
in set {t1, t2, . . . te} at each of which at least one task com-
pletes during the execution of a DAG in Lazy scheduling
such that t1 = 0, t1 < t2 . . . te, and no task completes
execution in (ti, ti+1) for i = 1, 2, . . . (e− 1). Also assume
that node vi = vhpAct

t is the highest-priority active node at
time ti for i = 1, 2, . . . e.

Lemma 2. The priority of each node is unique for our
priority assignment policy.

Proof: New child nodes are generated only if some task
completes execution (i.e., event E occurs). We will prove this
lemma using induction on tk for k = 1, 2, . . . e.

The node that is generated at time t1 is the root node
with priority 1. Since there is only one root node, all the
priorities of the nodes that are generated by time t1 are
unique. Assume that the priorities of all the tasks generated
up to time tj−1 are unique for some j where j ≤ e. We will

show that all the priorities of the tasks generated up to time
tj are also unique. Note that no new node is generated in
the interval (ta, ta+1) because no task completes execution
in (ta, ta+1). After time instant tj−1, new nodes can only be
generated at time tj from the nodes that complete execution
at time tj . Let vi be such a node that completes execution
at time tj .

According to our priority assignment policy, the xth and
yth children of node vi have level priorities lpx = (D ×
lpi − (D − 1) + x) and lpy = (D × lpi − (D − 1) + y),
respectively. Since D ≥ x ≥ 1, D ≥ y ≥ 1 and x �= y, the
followings are true:

lpi �= D × lpi − (D − 1) + x

lpi �= D × lpi − (D − 1) + y (2)
D × lpi − (D − 1) + x �= D × lpi − (D − 1) + y

Therefore, the parent vi and the children nodes of vi have
unique priorities. Since the nodes that generate children at
time tj−1 have unique priorities (inductive hypothesis), the
children generated by two different parents vq and vr with
priority pq and pr at time tj also have different priorities
(follows from Eq. (2)). Therefore, all the nodes generated
by time tj have unique priorities. This lemma also holds for
singled-valued priorities that are computed using Eq. (1).

Lemma 3. All the tasks having priorities (strictly) higher
than pi must have completed their execution by time ti in
Lazy scheduling where vi is the highest priority active task
at time ti for i = 1, 2 . . . e.

Proof: We use induction on ti to prove this lemma. This
lemma trivially holds for time instant t1 when the system
starts. The highest-priority active task at time t1 is the root
node of the DAG and there exists no task having priority
higher than that of the root node (according to Lemma 1).

Assume that the lemma holds for time ti−1. We will show
that the lemma also holds for time ti. Since the lemma holds
for time ti−1, all the nodes with priority higher than pi−1

must have completed by time ti−1 (inductive hypothesis).
Recall that the highest-priority active node at time ti−1 and
ti are vi−1 and vi, respectively. Assume a contradiction that
all the nodes with priority higher than pi have not completed
by time ti. In particular, there is node vh with priority higher
than vi that has not completed its execution by time ti. Since
vh has higher priority than that of vi, we have ph < pi.

A node remains active until it completes its execution.
Since node vh has not completed its execution by time ti,
we must have either (i) vh is active at time ti, or (ii) vh
becomes active after time ti. If vh is active at time ti, then
vi cannot be the highest-priority active node at time ti since
ph < pi (a contradiction). If vh becomes active after time
ti, then there is at least one of the ancestors of vh that has
not completed its execution by time ti. If all the ancestors
of vh have completed their execution by time ti, then vh
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cannot become active after time ti. This is because a node
becomes active when all its ancestors complete execution.
In other words, at least one of the ancestors of vh is active
at time ti. Let va be the ancestor of vh that is active at
time ti. Since an ancestor has higher priority than each of
its descendants according to Lemma 1, we have pa < ph.
Since ph < pi, we have pa < pi while both va and vi are
active at time ti. Therefore, vi cannot be the highest-priority
active node at time ti (a contradiction). Therefore, all active
nodes with priorities higher than vi must have completed
their execution by time ti.

Theorem 1. The Lazy scheduler is a timing anomaly free
scheduler.

Proof: LetWS be the schedule that the Lazy scheduler
generates when each task of a DAG executes for its WCET.
Let OS be such an (arbitrary) schedule that the Lazy sched-
uler generates when some task of the DAG executes less than
its WCET. We assume that the execution of the root node
starts at time zero in bothWS and OS . We will show that no
task in OS finishes later than the time when that task finishes
is WS , which implies that Lazy is a timing-anomaly free
dynamic scheduler.

Let sWi and sOi denote the time instants when node vi
starts execution in WS and OS , respectively. Similarly, let
fWi and fOi denote the time instants when node vi finishes
its execution in WS and OS , respectively. Without loss of
generality assume that all the nodes v1, v2 . . . vn of the DAG
are indexed in decreasing priority order such that p1 < p2 <
p3 . . . < pn. Let Ci and C ′i, where C ′i ≤ Ci, be the execution
time of node vi respectively in WS and OS for each i =
1, 2, . . . n. In other words, each node takes its WCET in
WS while it may take less than its WCET in OS . Since
Lazy is non-preemptive, the following holds for all i =
1, 2, . . . n:

fWi = sWi + Ci (3)

fOi = sOi + C ′i ≤ sOi + Ci (4)

We will use mathematical induction on the index (i.e., pri-
ority) of the nodes to show that sOi ≤ sWi for i = 1, 2, . . . n.
Then it follows from Eq. (3) and Eq. (4) that fOi ≤ fWi for
i = 1, 2, . . . n.

Base Case (vi = v1): Since the root node v1 always
starts execution at time zero in both WS and OS , we have
sOi = sWi = 0. Therefore, sOi ≤ sWi for i = 1.

Inductive Step: Assume that sOj ≤ sWj for all j =
1, 2, . . . (i− 1). We will show that sOi ≤ sWi .

Since sOj ≤ sWj for all j = 1, 2, . . . (i − 1), it follows
from Eq. (3) and Eq. (4) that

fOj ≤ fWj (5)

Let actWi and actOi denote the time instants when node
vi becomes active respectively in WS and OS . We will first
show that actOi ≤ actWi . A node becomes active when all its

predecessors complete execution in Lazy scheduling. Note
that the predecessors of node vi have higher priorities than
the priority of vi according to Lemma 1. Since fOj ≤ fWj
from Eq. (5), all the higher priority tasks (including the
predecessors) of vi complete their execution in OS no
later compared to that of in WS . Therefore, node vi in
OS becomes active no later than the time when it becomes
active in WS . Therefore, actOi ≤ actWi . Since a node
cannot start its execution until it becomes active, we have
actWi ≤ sWi and actOi ≤ sOi . Because actOi ≤ actWi .
Therefore, we have

actOi ≤ actWi ≤ sWi (6)

Consider the time instant T in the OS schedule such that
T = sWi . An active node remains active until it completes
its execution. We will show that sOi ≤ sWi based on two
cases: case (i) node vi is not active at time T = sWi in OS ;
case (ii) node vi is active at time T = sWi in OS .

Case (i) If node vi is not active at time T = sWi in OS ,
then node vi has already completed its execution in OS since
it has become active in OS no later than time T = sWi
according to Eq. (6). Therefore, fOi ≤ sWi . From Eq. (4),
we also have sOi ≤ fOi . Consequently, sOi ≤ sWi .

Case (ii): In such case, node vi is active at time T = sWi
in OS . We will show that node vi in such case starts no
later than time T = sWi in OS .

Note that node vi is also an active node at time sWi in
WS since it starts execution at time sWi in WS . In addition,
an event E occurs at time sWi in WS since a scheduling
decision (i.e., dispatching of vi) is taken at time sWi . Let vh
be the highest-priority active task in WS at time sWi when
node vi is dispatched for execution in WS .

According to Lemma 3, all the tasks having priorities
higher than that of vh must have completed their execution
in WS by time sWi . Since fOj ≤ fWj for j = 1, 2, . . . (i−1)
according to Eq. (5) and vh’s priority is not smaller than the
priority of vi, all the tasks having priorities higher than that
of vh must have completed their execution also in OS by
time T = sWi . In other words, the set of active tasks at time
T = sWi in OS must have priorities lower or equal to vh.

Therefore, the following two properties A1 and A2 hold
for time T = sWi in both OS and WS schedules:

(A1) Node vi is active, and (A2) The set of active
tasks have priorities lower than or equal to vh.

Since vi was dispatched at time sWi inWS where both A1
and A2 hold at time sWi , condition C was satisfied for vi at
time sWi inWS as a prerequisite for task vi to be dispatched
according to line 5 in the algorithm in Figure 1. If an event
E also occurs at time T = sWi in OS , then node vi will
not be scheduled later than time T = sWi since condition C
must be satisfied at the latest at time T = sWi in OS .

If an event E does not occur at time T = sWi in OS , then
property A1 and A2 must hold at an earlier time instant Tx,
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where Tx < T = sWi , in OS such an event E occurs at time
Tx in OS . After all the higher-priority active ready tasks of
vi at time Tx are scheduled, there is at least one processor
idle on which node vi will be scheduled (because A1 and A2
hold at time T in WS and hold at time Tx in OS). In such
case, node vi must have been scheduled no later than time
Tx since A1 and A2 hold at time Tx (i.e., condition C will
be satisfied the latest at time Tx in OS). Therefore, node vi
is dispatched for execution at the latest by time T = sWi if
an event E occurs at time T or at the latest by time Tx < T
where an event E occurs at time Tx such that A1 and A2
hold at time Tx. Consequently, sOi ≤ sWi for this case. From
Eq. (3) and Eq. (4) follows that

fOi ≤ fWi (7)

Therefore, it is proved that no node in OS completes later
than the time when it completes in WS . Since this is also
true for the sink node, the sink node in OS never completes
later than the time when it completes in WS . Since WS is
the schedule generated by Lazy assuming each node takes
its WCET to finish its execution, the completion time of an
application cannot become larger if some node takes less
than its WCET. Therefore, Lazy is timing-anomaly free.

V. DAG MODELING METHODOLOGY

Instead of synthetically generating some arbitrary DAGs
for our experimental evaluation, we model the worst case
DAG (WCDAG) of four parallel OpenMP applications from
the BOTS benchmark suite [4]: Fibonacci, Sort, Strassen,
and FFT. The application Fibonacci is a recursive parallel
application and is a good representative of many recursive
applications where the parallel tasks form a tree-like struc-
ture. The application Sort is used in almost all fields of
computing, for example, data processing applications. The
application Strassen is a very popular and efficient technique
for matrix multiplication that is commonly used in many
scientific applications. Finally, FFT is widely used in signal
processing and image processing domains.

We assume that the applications are executed using
OpenMP flag “untied” [1], so a task can be executed on
any processor. The analysis of the OpenMP code for each
of the applications is performed manually to model the
DAG, and then implemented in our simulation framework
to automatically generate the WCDAG for any input. Note
that the nodes of the WCDAG are generated online when
some nodes finish their execution. This is because the child
nodes are generated in OpenMP dynamically during run-
time based on “pragmas” that are inserted in the code.

The first step of our manual analysis to model the
WCDAG is to identify the (i) segments of the code that
generate the parallel tasks, (ii) the segments of the code that
perform the actual work, and finally, (iii) the segments of the
code that force synchronization among the generated tasks.

The outcome of this analysis is the three following types of
nodes that we use to model the WCDAG of an application:
• Spawn node: It models the cost of generation of the

parallel work. For example, the #omp pragma task in
a loop essentially generates multiple parallel tasks. If
the loop iterates 5 times, then the spawn node models
the cost of the generating 5 parallel tasks.

• Basic Node: It models the execution time of a
sequentially-executed piece of code. In other words, it
models the actual work of the parallel application.

• Synchronization Node: It models the cost of syn-
chronization of the parallel tasks. All the (previously
generated) tasks corresponding to a synchronization
node need to complete their execution before the syn-
chronization node is allowed to execute. We use syn-
chronization nodes to model the #omp pragma taskwait.

The purpose of categorizing the three types of nodes men-
tioned above is to distinguish the different parts of the
parallel application in order to model its functionality (e.g.,
dependencies) and the cost of generating parallel tasks and
synchronization due to taskwait pragmas.

The DAG models of Fibonacci, Strassen and FFT do not
depend on the actual input data but only on the input size.
Therefore, the DAG that is generated for any of these three
applications is always the same for the same input size. The
WCDAG for such application is the DAG that is generated
only based on specific input size. In contrast, applications
Sort is composed of two parallel functions Quicksort and
Mergesort. The DAG model of Quicksort depends
only on the input size (i.e., number of elements to sort)
whereas the DAG model of Mergesort depends not only
on the input size but also on the values of the inputs (i.e.,
values of the elements to sort). Therefore, the DAG that is
generated for the same input size but with different values of
the elements to sort may be different. Such data-dependent
DAG is known as conditional DAG [2], [11]. The model
of the WCDAG of Sort for the same input size needs to
consider the DAG among all the possible DAGs that may
be generated for the same input size but with different values
of the input elements. Baruah et al. [2] proposed an approach
to transform a conditional DAG to a non-conditional (i.e.,
worst-case) DAG. We apply similar approach from [2] to
model the WCDAG of application Sort.

An example of how the DAG is generated for the Al-
gorithm 2 is presented below in Figure 3. Initially, we
manually inspect the OpenMP code and model the DAG
of an application as a C++ function that is used in our
experiment to generate the DAG for any input. Algorithm 2
presents the pseudocode of an OpenMP recursive procedure,
called f , with one branch (i.e., if-else condition in line 3),
one for loop (line 6) and takes the size (i.e., length of an
array) of its input parameter along with other parameters.

A corresponding C++ function, called Dag_Gen(f ), is im-
plemented to generate the DAG of the OpenMP procedure f
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Algorithm 2 Pseudocode of an OpenMP procedure

1: procedure f (InputSize, otherParameters)
2: threshold = 3
3: if InputSize ≤ threshold then
4: Some sequential computation
5: else
6: for i = 1; i ≤ 3; i++ do
7: #omp pragma task
8: f(InputSize− i, ...)

9: #omp pragma taskwait

for any value of InputSize. The main idea of implementing
the Dag_Gen(f ) function is depicted in Figure 3 that shows
the DAG construction of f for InputSize = 5.

Figure 3: DAG generation for Algorithm 2

1 Since the InputSize = 5 > threshold = 3
(i.e., the base condition in line 3 is false), the loop in
line 6 is executed. The Dag_Gen(f ) function models the
header of the loop as a spawn node “f(5)” in Figure 3. 2
The Dag_Gen(f ) function then generates three new nodes
“f(4)”, “f(3)” and “f(2)” as the children of the spawn node
“f(5)” with a corresponding synchronization node “S1”.
The first child node “f(4)” is a new spawn node since
the base condition will not be fulfilled when we invoke f
with InputSize = 4. The second and third child nodes,
denoted as “f(3)” and “f(2)”, are basic nodes since the base
condition in line 3 will be satisfied. Appropriate edges are
added by connecting the spawn node “f(5)” with all three
children “f(4)”, “f(3)”, and “(f2)” which in turn connect the
synchronization node “S1” to reflect the dependencies. 3
The Dag_Gen(f ) function recursively generates three basic
nodes “f(3)”, “f(2)” and “f(1)” from the spawn node “f(4)”
with a corresponding synchronization node “S2”. Edges
are updated and new edges are added to reflect the new
dependency structure of the DAG.

VI. SIMULATION FRAMEWORK AND METRICS

This section presents the simulation framework and the
results of the effectiveness of the Lazy scheduler consid-
ering the WCDAG model of applications Fibonacci, Sort,
Strassen, and FFT. The simulator used in our experiments

is introduced in VI-A. Two metrics (i.e., tightness and
scalability) and the configurations to measure them are
presented in Sections VI-B–VI-E, respectively.

A. Simulator

The simulator is event based, where an event is considered
the completion of a task. Figure 4 presents an abstract
view of the simulator. It takes as input, the number of
processors M , the root node of the DAG model of an
application, the node-generation module for different appli-
cations (denoted as “App”), the size of the input (denoted
as “Input Size”) of the application under study, and the
scheduling policy. It returns the makespan of the application
under some given scheduling policy. The “Generate Nodes”
component generates the new nodes and inserts them in
the ReadyQ. Next, based on the scheduling policy the
“Scheduler” component selects the appropriate nodes and
inserts them in the RunningQ. The maximum size of the
RunningQ is fixed and equal to the number of processors.
The node with the minimum remaining execution time of the
running nodes is considered to be completed and is removed
from the RunningQ and inserted in the FinishedQ by the
“Select Finished” component. If multiple nodes are finished
at the same time, they are all inserted in the FinishedQ.
The finished nodes are fed back to the “Generate Nodes”
component in order to release the dependencies due to the
completion of the tasks and progress to the generation of
new nodes. When all the tasks of an application complete
execution, the finish time of the last task is the makespan
reported by our simulator (denoted by TLazy

M ).

Figure 4: High level view of the experimental framework

Lazy is a fixed-priority-based scheduler that dispatches
the highest-priority ready node on an idle core if condition
C is satisfied. Therefore, the complexity of the runtime
dispatcher of Lazy is similar to that of a global fixed-
priority scheduler [11]. Because Lazy is a non-preemptive
scheduler, the total number of scheduling decisions is upper
bounded by the number of nodes in a DAG. In our exper-
iments, the simulation of Lazy finds the makespan in few
seconds for each configuration considered in this paper.

B. Configuration to Measure Tightness

To the best of our knowledge there exists no timing-
anomaly free dynamic scheduler for parallel application that
we can use to determine the makespan by simulating the
execution of the DAG and compare it with the makespan
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determined using the proposed Lazy scheduler. An analyti-
cal formula, given in Eq. (8), is derived in a recent work [11]
to determine an upper bound on the makespan of a parallel
application for any greedy dynamic scheduler:

TGreedy
M = T∞ + (T1 − T∞)/M (8)

where TGreedy
M is the (upper bound on) makespan of a

target application scheduled using any greedy (i.e., work-
conserving) dynamic scheduler on M processors; T∞ is the
makespan of the application on infinite number of processors
(i.e., it is the length of the longest path), and T1 is the
makespan of the application on one processor (i.e., it is the
total work of the application). The parameter T1 represents
the sum of the WCETs of all the tasks in the application
while the parameter T∞ represents the maximum sum of
the WCETs of the tasks in any source-to-sink path, called
the length of the longest/critical path in the DAG. The
values of T1 and T∞ can be computed in linear time in
the representation of the DAG [3].

The term (T1−T∞)/M in Eq. (8) is the maximum delay
(i.e, interference) that the nodes in the critical path suffer
due to the execution of the nodes that are not in the critical
path. Therefore, the nodes of the critical path finish their
execution no later than T∞ + (T1 − T∞)/M , which is the
makespan of the application given in Eq. (8).

To compare the makespan of a parallel application using
Lazy with that of in Eq. (8), we use a metric called
tightness. We define tightness as the ratio between the
makespan derived using Eq. (8) and the makespan generate
by simulating our proposed Lazy scheduler, denoted as
TLazy
M , where both consider the same number of processors

i.e., tightness of Lazy is TGreedy
M /TLazy

M .
It is well-know that determining the optimal (i.e., safe

and the shortest) makespan of parallel applications with
precedence constraints is intractable. However, the length
of the optimal makespan cannot be smaller than T∞ since
nodes in the longest path must execute sequentially regard-
less of the number of processors. Moreover, the length of
the optimal makespan cannot be smaller than T1/M since
T1 amount of work cannot be completed less than T1/M
time units on M processors. We denote the lower bound
on the length of the optimal schedule by TLBOPT

M where
TLBOPT
M = max{T∞, T1/M}, which is smaller than or

equal to the optimal makespan. The ratio TLazy
M /TLBOPT

M

provides an estimate of tightness of the (hypothetical) opti-
mal scheduler in comparison to Lazy scheduler.

Table I: Configurations for tightness

Fib Sort Strassen FFT
Input 20 32768 512 8192

#Nodes 32836 16043 22410 23748
T1 8756400 4403300 7843300 6221400
T∞ 8000 14900 2500 51020

Maximum level 39 71 12 137

To determine tightness (i.e., TGreedy
M /TLazy

M and
TLazy
M /TLBOPT

M ), we use the configurations presented in
Table I for applications Fibonacci, Sort, Strassen and FFT.
The second row is the input size. For Fibonacci, the input
size is also the actual input but for the other applications
it is the size (i.e., length) of the input array. Furthermore,
the number of nodes that are generated for the different
applications are presented in the third row. The WCET
of the spawn, base and synchronization nodes are set to
300, 400 and 100 time units respectively. The values of T1

and T∞ are shown for all the applications in the third and
fourth rows in Table I. The fifth row shows the maximum
level of the DAG of each application.

We believe the structures of the DAGs of the four ap-
plications that we consider in Table I are diverse enough
to compare our approach with the state-of-the-art in [11].
For example, the DAG of application “Strassen” has a
balanced 7-ary-tree like structure while the DAG of “Sort”
has a combination of balanced 4-ary-tree (quicksort part)
and unbalanced 2-ary-tree (mergesort part) like structures.
The DAGs of these applications in general have much
larger depth and much higher total number of nodes in
comparison to the synthetic DAGs evaluated in [11]. An
accurate description of these benchmarks is in [4].

C. Results: Tightness

Figure 5 presents the results for tightness for all the
applications. The horizontal axis is the number of processors
for each application. The vertical axis is the tightness. The
left bar for each application considering a particular number
of processors represents the tightness of the makespan
determined by Lazy with respect to Eq. (8) for any greedy
scheduler (i.e, value of TGreedy

M /TLazy
M ). The right bar

represents the tightness of the lower bound on the optimal
(the shortest) makespan with respect to Lazy scheduler (i.e.,
value of TLazy

M /TLBOPT
M ).

A first observation is that, for all the cases, the es-
timation of makespan of the Lazy scheduler is tighter
(i.e., TGreedy

M /TLazy
M ≥ 1) compared to Eq. (8) for each

application. The worst-case assumption in deriving Eq. (8)
is that the nodes that are not in the critical path do not run in
parallel (i.e., always interfere) with the nodes of the critical
path. However, the structure of a DAG may allow the nodes
in the critical path to execute in parallel with nodes that are
not part of the critical path. Consequently, the estimation of
the makespan of a parallel application using Eq. (8) is more
pessimistic than that of Lazy.

Second, it can be seen that for up to 16 processors, the
tightness TGreedy

M /TLazy
M of Lazy is close to 1. This is

because both the Lazy scheduler and the greedy scheduler
(Eq. (8)) has performance very close to the optimal sched-
uler. This can be verified by observing that the tightness of
TLazy
M /TLBOPT

M is also very close to 1. When the number
of processors is small, all the processors are almost always
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Figure 5: Tightness for Fibonacci, Sort, Strassen and FFT. Tightness with respect to TGreedy
M (left bar) shows the improvement

compare to state-of-the-art and the tightness with respect to TLBOPT
M (right bar) shows the potential for further improvement.

busy executing some nodes of the DAG since T1/M >> T∞
for all the applications as can be seen in Table I. Since the
amount of work normalized by the number of processors
is significantly larger than the length of the longest path,
the processors always have some node to execute when the
number of processors is relatively small. Consequently, there
is very little room for further improvement for the case when
the number of processors is small and the Lazy scheduler
performs as good as the (hypothetical) optimal scheduler.

Finally, it can be observed that the tightness of Lazy (the
left bar) increases with the increase in the number of proces-
sors for all the applications, up to the point where the length
of the longest path (T∞) is equal to the estimated makespan.
Adding more processors will not finish the execution earlier
than the length of the longest path. Note that the tightness of
the lower bound of the optimal makespan increases with the
number of processors up to the point where the makespan
becomes equal with the T∞, which means that there may
be room for further improvement if TLBOPT

M is very close
to the actual makespan. From our experiments, we have
noted that the priority assignment influences significantly the
performance of the scheduler. A priority assignment which
can relax some the restrictions that Lazy imposes while
avoiding timing anomalies can improve the performance for
large number of processors.

In summary, for different applications and different num-
ber of processors, the simulation of Lazy scheduler achieves
on average 9% and a maximum of 36% tighter estimation of
the makespan in comparison to the state-of-the-art in Eq. (8).

D. Configuration to Measure Scalability

To evaluate the scalability of the scheduler, the
Gustafson’s Law [6] is used, where the goal is to evaluate
if the execution time will be invariant as the problem size
and the number of processors increases. With this Law
one can evaluate whether the larger problem on a larger
number of processors can be executed in the same amount of
time. Given some base configuration, we need to find other
configuration by varying the input size of the application and

the number of processors so that the ratios of workload and
the number of processors for both configurations are equal.
However, based on the characteristics of the applications it
is very challenging to generate workload of an application
to maintain such proportion exactly.

We approximate the proportional increase of the work-
load with respect to the workload of a base configuration,
denoted by (T1,base,M

base), where T1,base is the estimated
makespan of the application on M base = 1 processor. To
generate a target workload T for a new configuration i,
we increase the input size of the application to generate
workload T1,i ≈ T by executing it on one processor and we
set �T1,i/T1,base� = M i as the number of processors for the
ith configuration (T1,i,M

i). The scaled speedup for Lazy,
any greedy scheduler, and infinite number of processors is
given by equations (9), (10) and (11) respectively.

SLazy
i = T Lazy

M,i /T1,base (9)

SGreedy
i = TGreedy

M,i /T1,base (10)

S∞
i = T∞,i/T1,base (11)

where T Lazy
M,i , TGreedy

M,i and T∞,i are the makespans of
an application using Lazy scheduler, any greedy scheduler,
and the length of the longest path for the ith configuration.

The outcome of the configurations for the Fibonacci, Sort,
Strassen and FFT are presented in Table II. Note that, for
Strassen, we are using up to seven configurations because
the workload of Strassen increases at a much faster rate
compared to other applications (for the seventh configuration
more than 1 million nodes are generated for Strassen).

E. Results: Scalability

Figure 6 presents the results for scalability of the applica-
tions. The horizontal axis presents the different configuration
points from Table II and the vertical axis shows the normal-
ized scalability (i.e., values of SLazy

i , SGreedy
i and S∞i ). The

different lines present the SLazy
i , SGreedy

i and S∞i .
It is evident that for all the applications, the Lazy scales
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Figure 6: Scalability for Fibonacci, Sort, Strassen and FFT

Table II: Configuration (T1,i, M i) for scalability where T1,i

is the workload in time units of an application on one
processor and M i is the number of processors for the ith

configuration to measure scalability

Fib Sort
T1,i P i #Nodes T1,i P i #Nodes

1 186000 1 697 2700 1 9
2 301200 2 1129 4500 2 15
3 487600 3 1828 16900 6 59
4 789200 5 2959 92900 30 331
5 1277200 7 4789 172900 49 619
6 2066800 12 7750 473700 147 1707
7 3344400 18 12541 896100 249 3243
8 5411600 30 20293 2304100 694 8363
9 8756400 48 32836 4403300 1212 16043
10 14168400 77 53131 10854500 3207 39595

Strassen FFT
T1,i P i #Nodes T1,i P i #Nodes

1 3300 1 10 14820 1 78
2 22900 8 66 71640 5 321
3 160100 52 458 151400 10 656
4 1120500 361 3202 319640 20 1344
5 7843300 2527 22410 673560 41 2756
6 54902900 17686 156866 1416280 86 5652
7 384320100 123800 1098058 2971480 178 11588
8 6221400 369 23748
9 13000280 766 48644
10 27116120 1586 99588

better or similar to the state-of-the-art (please see that SLazy
i

always lies below SGreedy
i ). For the different applications

and configurations the increase in scalability, measured as

(SGreedy
i /SLazy

i ), of the Lazy scheduler in comparison to
the state-of-the-art is on average 14% and maximally 30%
higher based on Gustafson’s Law. It can also be observed
that the increase in the makespan estimation with respect
to the base configuration becomes higher for configurations
with higher workload and higher number of processors. This
trend can be explained by observing the plot of S∞i that also
increases with the increase in workload. In other words, the
length of the longest path of the applications also increases
when the input size increases.

VII. RELATED WORK

A parallel program is more complex to analyze than a
sequential program due to the existence of an exponentially
growing number of interleavings with the number of threads.
Recently, architectures of time-predictable multicores have
been proposed [14], [18]. In such architectures, the upper
bound on accessing a shared hardware resource is bounded
(predictable). Time-predictable architectures are increasingly
receiving interest in analyzing timing behavior of parallel
applications [17], [13], [15], [20]. Model checking is used
in the work of Gustavsson et al. [7] by modeling spin-locks,
private and shared caches to derive the makespan of small
parallel programs. However, the approach in [7] suffers from
state space explosion as the number of tasks increases.

The work by Rochange et al. [17] considers computing
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makespan of a hard real-time parallel 3D multigrid solver
running on a time-predictable MERASA multicore proces-
sor. Similar to our approach, [17] also considers dividing the
code in parts that can execute in parallel. The main challenge
addressed in [17], however, is to estimate an upper bound
on the delay of synchronizations. Ozaktas et al. [13] also
propose techniques to compute an upper bound on the stall
time due to synchronizations.

The work in [15] proposes an approach to compute
makespan of parallel programs where sequential tasks exe-
cute on different cores and they communicate via messages.
The main idea in [15] is that the entire application is
analyzed using a graph that connects the control-flow graphs
of each task using edges used to model communication
channels across threads. However, all of these works [17],
[13], [15] assume that (i) the number of threads is no
larger than the number of cores, and (ii) each thread is
statically assigned to one core. Furthermore, [10] considers
barrier-based synchronous execution. [19] study the use of
OpenMP tasks for real-time applications. Next, [12] provides
an overview of the available WCET analysis methods of
parallel applications. There exists, however, to the best
of our knowledge, no work that considers computing the
makespan of a dynamically scheduled parallel application
based on simulation of the underlying scheduling algorithm.
The approach presented in this paper is a starting point for
bridging the advances in real-time systems with the advances
in modern task-based parallel programming models.

VIII. CONCLUSION

The paper addresses the problem of estimating the
makespan of dynamically scheduled task-based parallel ap-
plications. A priority-assignment policy for the tasks of a
parallel application is proposed. To determine the makespan
of applications while avoiding timing anomalies, the design
of the Lazy scheduler is presented and proved to be free
from execution timing anomalies. Based on the WCET of
each task, the estimation of the makespan by simulating
the Lazy scheduler provides tighter bound (on average
9%) and better scalability (on average 14%) in comparison
to the state-of-the-art technique for four parallel applica-
tions from the BOTS suite. To the best our knowledge,
the Lazy scheduler is the first dynamic scheduler that is
timing-anomaly free which offers tight estimation of the
makespan and achieves good performance for task based
parallel applications.
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Abstract Heterogeneous multiprocessors can offer high performance at low
energy expenditures. However, to be able to use them in hard real-time sys-
tems, timing guarantees need to be provided, and the main challenge is to
determine the worst-case schedule length (also known as makespan) of an ap-
plication. Previous works that estimate the makespan focus mainly on the
independent-task application model or the related multiprocessor model that
limits the applicability of the makespan. On the other hand, the directed
acyclic graph (DAG) application model and the unrelated multiprocessor model
are general and can cover most of today’s platforms and applications. In this
work, we propose a simple work-conserving scheduling method of the tasks in
a DAG and two new approaches to finding the makespan. A set of represen-
tative OpenMP task-based parallel applications from the BOTS benchmark
suite and synthetic DAGs are used to evaluate the proposed method. Based
on the empirical results, the proposed approach calculates the makespan close
to the exhaustive method and with low pessimism compared to a lower bound
of the actual makespan calculation.

Keywords Scheduling, heterogeneous, unrelated, DAG, work-conserving,
makespan

1 Introduction

There is a continuously increasing demand for computational power in hard
real-time systems, such as collision avoidance and mitigation function in au-
tomotive vehicles. Such a need for higher computing performance and energy
efficiency has turned the focus both in academia and industry to heteroge-
neous multiprocessors (Esmaeilzadeh et al., 2011; Peter Greenhalgh, 2011;
ARM, 2011). Heterogeneous multiprocessors comprise multiple computational
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cores with different performance and functional characteristics. A real-time
parallel application can exploit such parallel heterogeneous architectures to
meet challenging performance and energy efficiency demands. However, one of
the main challenges to using such an architecture in a hard real-time system
is to ensure time predictability ; one has to guarantee the timeliness of a real-
time parallel application a heterogeneous platform by designing an effective
scheduling algorithm and doing the offline schedulability analysis. This paper,
for the first time, addresses the problem of determining the worst-case schedule
length (also known as the makespan) of parallel application on heterogeneous
multiprocessor platform and proposes a scheduling algorithm.

We consider a general model of the application and the processing plat-
form, which makes the results of this paper applicable to a wide variety of
applications and hardware platforms. A parallel application is modeled as a
directed acyclic graph (DAG) where such a DAG has a collection of nodes, i.e.,
tasks and directed edges between nodes, i.e., dependencies among the tasks.
The expressive power of a DAG enables us to model various applications like a
collection of independent tasks (Baruah et al., 2015a) and synchronous parallel
tasks (Lakshmanan et al., 2010).

We consider also a general system model – unrelated heterogeneous multi-
processor platforms that consist of different processor types. On an unrelated
processing platform, a task/node τ i of a DAG may execute at a different speed
than another task τ j on a processor of the same type1. The task-to-processor
relationship in an unrelated heterogeneous platform governs how fast a par-
ticular task executes at run time. The unrelated heterogeneous multiprocessor
model is one of the most general processor models that we consider in this
paper (the homogeneous and related heterogeneous multiprocessor models are
special cases of the unrelated multiprocessor model).

Related works on scheduling real-time systems that consider the unrelated
multiprocessor model have mainly focused on independent tasks (Andersson
and Raravi, 2014; Chwa et al., 2015; Andersson and Raravi, 2016; Baruah
et al., 2019) with no dependencies and typed DAGs (Yang et al., 2016; Han
et al., 2019). Earlier works that consider a DAG as the application model have
focused mainly on the related multiprocessor model (Bender and Rabin, 2000;
Jiang et al., 2017). Our research bridges the gap between the work on the
related and the unrelated models by considering both a general application
model (DAGs) and a general processor model.

Scheduling algorithms play the central role in guaranteeing time predictabil-
ity, i.e., computing the makespan of parallel applications. Due to the specific
speed relationship that a task of the DAG has with a particular processor
type, one of the main challenges is to design an effective scheduling algorithm
that can well exploit all the computational units of a heterogeneous parallel

1 Unlike unrelated heterogeneous multiprocessors, related heterogeneous multiprocessors
(also known as uniform multiprocessors (Baruah et al., 2015a)) have a specific speed for
each processor type and all the tasks execute at that specific speed on any processor of that
particular processor type. The homogeneous multiprocessor model has exactly one processor
type, and all the tasks execute at the same speed on all processors.
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architecture. A second challenge is to perform offline schedulability analysis by
considering the execution of the tasks under the scheduling algorithm so that
a safe and tight upper bound on the worst-case schedule length (makespan)
can be computed. Such a makespan can be used, for example, to determine
whether the deadline of an application will be met or not when the system is
actually put in mission.

Many of the well-known schedulability analysis techniques for homogeneous
multiprocessors cannot be trivially applied to heterogeneous multiprocessors
(Gupta et al., 2012). One of the fundamental problems is the presence of
timing anomalies (Graham, 1969). Note that a timing anomaly is already
known to exist for the homogeneous multiprocessor model, which is a special
case of the unrelated multiprocessor model (Voudouris et al., 2017; Pathan
et al., 2018; Chen et al., 2019). Therefore, an example of a DAG — similar
to that of (Voudouris et al., 2017) can also be constructed to demonstrate
the presence of timing anomalies in the unrelated multiprocessor model. A
method to avoid such anomalies for homogeneous multiprocessors is to preserve
strictly, also at run-time, the order of start time of the execution of the tasks
that was determined at analysis time (Voudouris et al., 2017; Pathan et al.,
2018; Chen et al., 2019). Unfortunately, enforcing such an order of starting
the tasks’ execution is not enough to guarantee anomaly-freedom on unrelated
machines because of the different speed relationships that each task has with
each processor type.

This paper proposes a scheduling algorithm called the Greedy scheduler
for unrelated HEterogeneous platform (GHE) that can schedule the tasks of
a DAG on an unrelated heterogeneous platform. One of the salient features
of GHE is that it is work-conserving (a.k.a. greedy) (Graham, 1969; Brent,
1974; Blumofe and Leiserson, 1999; Melani et al., 2015; Jiang et al., 2017)
meaning that it always dispatches an available task whenever there is an idle
processor. The scheduler GHE is also very general in the sense that it does
not assume any specific policy like fixed or dynamic priority-based scheduling
used in the literature. Since many of the fixed- and dynamic-priority-based
scheduling algorithms are also work-conserving, the analysis of this paper is
also applicable for such schedulers. Another facet of GHE is that it allows the
migration of a task to some other processor to execute it at a higher speed. It
will be evident later that the fact that the scheduler is work-conserving and
the migratory nature of GHE allows us to formally derive the makespan of a
parallel application and prove its correctness.

A rigorous formal analysis is conducted in this paper to tackle and under-
stand the complex relationships the tasks of a DAG have with the unrelated
processors’ types. Two different approaches – namely Comb and Fast – are pro-
posed to determine in two different ways the makespan of a DAG executing on
an unrelated heterogeneous multiprocessor under the GHE scheduler. The two
approaches Comb and Fast mainly differ in terms of making the tradeoff be-
tween the computational complexity and tightness of the computed makespan.
The first approach, Comb, is based on an exhaustive search by considering all
the possible ways the tasks of a DAG may execute on different processors. On
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the other hand, the second approach, Fast, is based on considering one pes-
simistic worst-case regarding how the tasks can execute on the processors. The
Comb approach computes a tighter makespan in comparison to that of using
the Fast approach, but Comb has exponential time complexity while Fast can
find the makespan in polynomial time.

To evaluate the proposed approaches, Fast , and Comb , we use real-world
parallel applications from the BOTS benchmark suite (Duran et al., 2002) as
well as randomly generated synthetic DAGs. We also compare the proposed
approaches to similar work in the literature for homogeneous (Graham, 1969),
related (Jiang et al., 2017) multiprocessors, and typed DAGs (Han et al.,
2019) to demonstrate how much we pay for using more generalized models of
the application, hardware, and the scheduler with respect to that of state-of-
the-art. One of the major findings we have from this empirical study is that
the makespan computed using the efficient Fast approach is very close to that
computed using the Comb, i.e., our analysis using the polynomial-time approach
does not significantly compromise the tightness of the computed makespan.
To this end, this paper makes the following contributions:

– This paper considers a general application model using DAGs, and a gen-
eral hardware model for unrelated machines, to propose a general work-
conserving scheduler GHE . Consideration of such general models makes the
results of this paper widely applicable to a variety of real-time systems.

– Comb: An exhaustive search-based approach Comb is proposed to find the
makespan using a high computational complexity in order to find a tight
makespan. This approach is suitable for applications that have tight dead-
lines.

– Fast: In order to reduce the computational complexity to find the makespan
using the exhaustive approach of Comb, this paper proposes the polynomial-
time approach Fast that can be used to find the makespan for large appli-
cations with a less tight makespan.

– The experimental evaluation presents empirical results for real-world ap-
plications based on the OpenMP applications from the BOTS benchmark
suite (Duran et al., 2002), which shows the applicability of our approach
to practical applications. Moreover, synthetic DAGs are used to show the
sensitivity of our proposed approach to different real-world parameters.
The degree of tightness that Fast sacrifices to find the makespan of the
OpenMP applications in polynomial time is no more than 3% that of Comb,
which shows that our proposed analysis for Fast does not introduce too
much pessimism.

The rest of the paper is organized as follows: Initially, Sections 2–4 in-
troduce the system model, the details of the proposed GHE scheduler, and
necessary definitions for the makespan calculation. Next, Section 5 provides
the details of our two proposed approaches to compute makespan. Then, Sec-
tion 6 evaluates the time complexity of the proposed approaches. We then
evaluate the proposed methods in Section 7 quantitatively. Section 8 com-
pares our approach with related work that uses more specialized assumptions
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regarding the platform and application models. Section 9 presents the related
work before we conclude the paper in Section 10.

2 System Model

We consider an unrelated heterogeneous multiprocessor platform with a total
of M processors with different types of processors. Each of the M processors
belongs to exactly one of the processor types. The type of processor specifies
the specialty or uniqueness of the processor. For example, the big.LITTLE
multiprocessor chip from ARM has two different processor types with multiple
processors that belong to each such processor type (Peter Greenhalgh, 2011;
ARM, 2011). We assume that an unrelated platform can have from one up to
M processor types.

A parallel application G is modeled as a directed acyclic graph (DAG) such
that G = (V,E), where V = {τ1, . . . , τN} is a set of N nodes that designate
tasks and E ⊆ (V × V ) is a set of directed edges that designate dependencies
among tasks. If (τp, τ q) ∈ E, then τ q can start its execution only after task
τp completes. Tasks with no incoming and no outgoing edges are called source
(denoted as τsrc) and sink (denoted as τsink), respectively. We assume that
there is one source node and one sink node. If the application has multiple
sources or sinks nodes, we add dummy nodes (i.e., nodes without execution
time) to model the application.

A task is a sequential piece of code. Each task is characterized by a set
of M worst case execution times (WCET) depending on the processor the
task executes. Without loss of generality we index the processors from 1 to
M . The WCET of task τ i on the xth processor is denoted by cix. If a task
cannot execute on the xth processors, for example, due to an incompatible
instruction set architecture, then cix =∞. Because the platform has a total of
M processors, each task has M different WCETs ci1, . . . c

i
M . If the xth and yth

processors are of the same type, then cix = ciy for i = 1, . . . N where 1 ≤ x ≤M
and 1 ≤ y ≤ M . In other words, each task τ i has the same WCET on all the
processors of the same type.

We define cimin as the minimum WCET of task τ i for any of the processors
in Eq. (1) as follows:

Definition 1 Minimum WCET of τ i:

cimin :=
M

min
x=1
{cix} (1)

The workload of a task is the amount of computation that a task needs
to complete when executing from the beginning to completion and is equal to
cimin as is given in Eq. (1). The workload of a DAG G (denoted by W1) is the
sum of the workloads of all the tasks in G and is given as follows:

Definition 2 Total workload of G:

W1 :=

N∑

i=1

cimin (2)
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A source-to-sink path or simply a path γ in a DAG is a sequence of nodes
γ = (τp, τp+1,. . . , τ q−1, τ q), where (τ i, τ i+1) ∈ E such that p ≤ i < q and
τp = τsrc and τ q = τsink. Let paths be the set of all the paths in a DAG G.
The workload of a path γ is the sum of the workload of the nodes on that path
and is given as follows:

W(γ) :=
∑

τ i∈γ
cimin (3)

The path with the largest workload among all the paths is called the longest
or critical path (denoted using cp ) and is given by Eq. (4):

cp = arg max
γ∈paths

W(γ) (4)

The maximum workload of any path in G is given in Eq. (5):

Definition 3 The largest workload of any path in G:

W∞ =W(cp) (5)

While W1 represents the workload of the entire DAG, W∞ is the maxi-
mum workload of any path of the DAG. The parameters W1 and W∞ can
be computed in polynomial time in the representation of the DAG and cap-
ture two important characteristics of the DAG that we will use to derive the
makespan using our proposed approaches Comb and Fast. Since the definition
of workload considers the minimum WCET of the nodes, no DAG can finish
execution earlier than W∞ (i.e., a lower bound on the makespan of G).

The workload of a path is constant because it is determined by the mini-
mum WCET among the processors of the tasks that belong to the path. How-
ever, the duration that it will take to execute a path’s workload can change
from execution to execution at runtime. The WCET of the path’s tasks can
be larger than their minimum WCET because, during runtime, they may be
mapped to slower processors than the processors that provide the minimum
WCET. Consequently, the path with the largest workload is not necessarily the
path with the longest time duration to complete its execution. This situation
is illustrated in Fig. 1.

Fig. 1: Example of a path with the largest workload A ≺ B ≺ D ≺ E that it
is not the path with the longest time duration.
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The left-hand side of Fig. 1 shows a DAG. We use a platform with two pro-
cessors of different processor types. Thus, each node has two different WCET.
Using Eq. (3) that finds the workload of a path, the path A ≺ B ≺ D ≺ E has
workload four while the pathA ≺ C ≺ E has workload three. At the right-hand
side of the figure, we schedule the tasks based on their names’ lexicographic
order. From this example, we can see that path A ≺ C ≺ E determines the
schedule length, which has a smaller workload than A ≺ B ≺ D ≺ E. Similar
examples can be created, also for other than the lexicographic order of the
tasks. To determine the makespan of a DAG, the key is to find the worst-case
task-processor mapping (next section) that can occur during runtime for any
execution ordering of DAG tasks. We will use the worst-case processor map-
ping together with the total workload and the critical path’s workload to find
the makespan of a single DAG.

To model the capabilities of the unrelated processors to execute the work-
load of a task, we define δix given in Eq. (6) the speed that task τ i can execute
on the xth processor.

Definition 4 Speed of τ i on the xth processor for x = 1, . . .M :

δix :=

{
cimin
cix

if cix 6=∞
0 otherwise

(6)

If a task τ i cannot execute on the xth processor, we set the speed δix = 0. Note
that 0 ≤ δix ≤ 1 for any task τ i. The smaller the WCET of τ i on a particular
processor, the larger the speed that task τ i can execute on that processor is.

We define Oiy as the yth fastest speed that task τ i can execute on some

processor. For example, Oi1 for y = 1 specifies the fastest speed that task τ i

can execute (recall that the fastest speed is 1), Oi3 for y = 3 specifies the
third highest speed that task τ i can execute, and finally OiM for y = M
specifies the lowest speed that task τ i can execute on some processor. It will
be evident shortly that the design of GHE scheduler is such that it always
prefers a relatively higher speed processor to execute a task. To that end, we
specify the preference for speed of a task τ i using a sequence Oi in Definition 5.

Definition 5 Let Oi be the sequence of a non-increasing order of speeds such
that Oi =< Oi1,Oi2 . . .OiM > where Oiy is the yth fastest speed that task τ i

can execute on a processor of the platform for y = 1, . . .M .

In the next section, the scheduler will use the preference for speed (Oi) to
determine at which processor a task can execute. We will use Oiy to specify
the the minimum preference of speed, i.e., the maximum speed, at which the
task τ i can execute if all the processors that can execute task τ i with higher
speeds Oi1,Oi2, . . .Oi(y−1) are busy. The Oi is a key component of our approach
because it allows us to determine the preference of the processor for every task.
Intuitively, in contrast to homogeneous and related multiprocessors in which
all the tasks have the same view of the platform (same speeds), for unrelated
multiprocessors, the Oi shows that every task views the platform differently
because every task can have different speeds on the same processors.
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3 Scheduler GHE

We present in Section 3.1 the details of our proposed GHE scheduler. An impor-
tant property of GHE , called the Greediness Property, is stated in Lemma 1.
Finally, we use an example in Section 3.2 to illustrate the working of the
scheduler using the parameters of the system model.

3.1 Scheduler description

The GHE scheduler dispatches a new task awaiting execution in the ready
queue when some other task finishes its execution (i.e., when some processor
becomes idle). GHE is a work-conserving scheduler in the sense that it always
dispatches a ready task if there is an idle processor. More precisely, the tasks
are scheduled using GHE based on the next two steps: (i) Migration and (ii)
Dispatching.

– Step 1 - Migration: If a processor becomes idle, the GHE scheduler
first checks if the processor that becomes idle can execute some already
executing tasks at a relatively higher speed. Without loss of generality,
assume that τmig executes on the processor to which it has been migrated
at its yth fastest speed Omigy . It is necessary for migrating τmig that no

other executing task can execute at its kth fastest speed for k < y (please
note that a lower index specifies a higher speed) on that idle processor.

– Step 2 - Dispatching: If there are tasks in the ready queue and there
are idle processors, the GHE scheduler starts dispatching one-by-one new
tasks awaiting execution in the ready queue on the fastest idle processor
among all the idle processors.

The GHE scheduler is given in Algorithm 1. The scheduler is invoked each
time some tasks finish their execution. The set of ready tasks and the indices
of the processors that are idle are determined in variables readyTasksSet and
idleProcSet (line 2–3), respectively. The set of tasks currently in execution is
determined in variable potenMigTasksSet (line 4), and we consider these tasks
for migration to an idle processor so that they can enjoy a higher speed. The set
of indices of the busy processors executing the tasks in set potenMigTasksSet
is determined in variable busyProcSet (line 5).

The while loop in lines 6-27 continuously checks if any of the currently
executing tasks in set potenMigTasksSet can be migrated. If no such task can
be migrated to any idle processor so that the task enjoys a higher speed, the
while loop exits (line 24–26), and new tasks are dispatched using the second
while loop in line 28–36.

The while loop in line 7 initializes the variable anyMigration to false. Line
8 initializes a set noMigTasksSet as an empty set that will be used to store
the subset of the tasks of set potenMigTasksSet that are not selected for
migration in the current iteration of the first while loop. The for loop in line
9–23 in each iteration considers a task τmig from set potenMigTasksSet for
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migration from its current processor to an idle processor on which it would
run relatively faster.

Line 10 determines the index indexMigProc of the processor such that
task τmig is executing at its jth highest speed on that processor with index
indexMigProc. Line 12 determines the task τfind among all the potential
tasks for migration from set potenMigTasksSet that can be migrated to an
idle processor with index indexMigProc such that task τfind executes at the
kth highest speed and there is no other task from set potenMigTasksSet that
can execute at hth highest speed for some h < k. In other words, τfind can
execute on its most preferred processor in comparison to any other task in set
potenMigTasksSet.

The condition in line 14 determines if the task τmig is the same as task τfind

and τmig can be executed at higher speed after migration, then τmig is mi-
grated to the processor with index indexMigProc in line 15. The set of indices
of the idle processors is updated in line 16–17 and the flag anyMigration is set
to true to specify that migration has occurred during the current iteration of
the while loop. If the condition in line 14 is false, then task τmig is not migrated
in the current iteration of the while loop and stored in set noMigTasksSet in
line 20 to consider for migration during the next iteration of the while loop.
Regardless of whether migration occurs or not, task τmig is removed from set
potenMigTasksSet and the for loop continues to consider another task from
set potenMigTasksSet for migration. In other words, the flag anyMigration

is set to true if one or more tasks from set potenMigTasksSet are selected for
migration; otherwise, flag anyMigration will remain false.

When the for loop in line 9–23 completes, it is checked if migration oc-
curred during the current iteration of the while loop or not based on the flag
anyMigration. If the flag anyMigration is false, then the while loop is exited;
otherwise, the while loop tries to migrate another task.

After the first while loop in line 6-27 completes, the second while loop in
line 28-36 assigns the ready queue tasks to the idle processors. In line 29, an
arbitrary task τdis from set readyTasksSet is selected, and it is assigned to
the idle processor on which it would run the fastest.

In line 30, the index of the processor indexNewProc is searched such that
indexNewProc ∈ idleProcSet and task τdis executes on its kth fastest pro-
cessor and cannot execute faster on any of the processors in set idleProcSet.
Finally, we update the set of idle processors, and we remove the task from the
ready queue. One by one, a new task from set readyTasksSet is dispatched to
an idle processor as long as there are new tasks in the ready queue and there
is at least one idle processor.

Next, we present a property, called the Greediness Property, of the sched-
uler in Lemma 1. A scheduling point is a time instant when the scheduler
needs to make some new decision. Such a trivial scheduling point is at time
zero. In addition, there is a scheduling point every time some task finishes
its execution. We denote a time interval [a,b] a stable time interval such that
there is no scheduling point inside the interval except at the endpoints in [a,b].
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Lemma 1 proves the worst-case speeds that the tasks can execute during any
stable time interval [a,b] when scheduled using the GHE scheduler.

Algorithm 1: The GHE Scheduler

1 if some task completes execution then
2 readyTasksSet = Set of task that are in the ready queue
3 idleProcSet = Set of indices of processors that are idle
4 potenMigTasksSet = Set of unfinished tasks in execution
5 busyProcSet = Set of indices of processors that is currently

executing some unfinished task

6 while true do
7 anyMigration = false
8 noMigTasksSet = ∅
9 for each τmig ∈ potenMigTasksSet do

10 (j, indexCurProc) = τmig is currently executing at its jth

fastest speed on processor with index indexCurProc

11

12 (k, indexMigProc, τfind) = Find the smallest index k and

task τfind from set potenMigTasksSet such that (i) τfind

can execute on its kth highest processor that has index
indexMigProc where indexMigProc ∈ idleProcSet and
(ii) no other task in potenMigTasksSet can execute on a
processor in idleProcSet at its hth highest speed where
h < k.

13

14 if k < j and τmig = τfind then
15 Migrate task τmig from indexCurProc to indexMigProc

16 idleProcSet = idleProcSet− {indexMigProc}
17 idleProcSet = idleProcSet ∪ {indexCurProc}
18 anyMigration = true;

19 else
20 noMigTasksSet = noMigTasksSet ∪ {τmig}
21 end
22 potenMigTasksSet = potenMigTasksSet− {τmig}
23 end
24 if anyMigration == false then
25 break and exit the while loop in line 6–28
26 end

27 end
28 while idleProcSet 6= ∅ and readyTasksSet 6= ∅ do
29 τdis = any task from set readyTasksSet
30

31 indexNewProc = Find the index of the processor such that

indexNewProc ∈ idleProcSet on which task τdis would
execute fastest among all other processors in set idleProcSet

32

33 Dispatch task τdis to indexNewProc

34 idleProcSet = idleProcSet− {indexNewProc}
35 readyTasksSet = readyTasksSet− {τdis}
36 end

37 end
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Lemma 1 Greediness Property: If there are a total of p processors busy
executing some tasks during any stable time interval under the GHE scheduler,
then there is some task executing at least at its kth speed for k = 1, 2, . . . p and
1 ≤ p ≤M .

Proof Let k, where 0 ≤ k ≤ M , be the set of tasks that continues execution
from one stable time interval to the immediately next stable time interval.
Also, assume that for some n, where 0 ≤ n ≤M−k, there are n tasks that are
newly scheduled at the beginning of the next stable time interval. Let k+n = p,
where 0 ≤ p ≤ M , be all tasks that we need to consider for execution in the
new stable time interval. Let O∗x denote the xth highest speed of some task.

We will prove this lemma considering two cases: (1) all the processors are
idle, or (2) some processors are busy (i.e., some tasks from previous stable
time interval continue their execution).

Case (1) - All processors are idle: If M processors are idle (i.e., k = 0,
n = p), then the first task that we select can be scheduled to its fastest
processor that has speed one (O∗1) because all the processors are available.
Next, the second task that we select, in the worst-case, is scheduled on its
second-fastest processor (O∗2) because the first task may occupy the processor
that provides to the second task a faster speed. Finally, the pth task (τp) in
the worst-case is dispatched with speed Opp. Because all the p − 1 processors
that provide higher speed (Op1 , Op2 , . . . , Opp−1) for τp may be occupied by
other tasks. So for this stable time interval the p tasks are executing with O∗x,
1 ≤ x ≤ p, respectively.

Case (2) - Some tasks are still in execution: We separate two sub-
cases: In sub-case (2.a), the tasks that are still in execution do not migrate,
and in sub-case (2.b), some of the tasks that are in execution would migrate.

Sub-case (2.a) - No migration: In this sub-case, only the new n tasks
are scheduled on the idle processors while the k already-executing tasks con-
tinue executing on the processor on which they were executed in the previous
stable interval. The first new task is going to execute at least with speed O∗k+1

because, in the worst-case, the k faster processors are occupied. Similarly, the
remaining tasks from the n scheduled tasks are going to execute with speeds
O∗k+2, . . . , O∗k+n. Therefore, the k + n = p tasks are executing with speeds
O∗x, 1 ≤ x ≤ p in this stable time interval.

Sub-case (2.b) - Migration: Let τ i complete its execution at time a
which is at the beginning of the stable time interval [a,b]. Let τ j be among
the k tasks that still continue executing during the stable time interval [a,b].
Please recall that GHE first selects for migration the task that can enjoy its
most preferred processor compared to other tasks. Let τ j , if it migrates, has
the most preferred processor among the k tasks that are still in execution. In
the worst-case, τ i was executing before its completion on a processor that is
also for τ j a faster processor. So τ j can migrate to a processor that has at
least Ojk speed because there are k tasks that can occupy the faster processors
for τ j . By following the GHE scheduler, the speeds at which tasks would start
executing from the beginning of the stable interval in the worst case are O∗1 ,
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O∗2 , . . . , O∗k. The n tasks that we need to dispatch will have the speeds2 in the
worst-case O∗k+1, O∗k+2, . . . , O∗k+n (follows directly from the same argument
as sub-case (2.a)). Therefore, the k + n = p tasks are executing with speeds
O∗x, 1 ≤ x ≤ p in this stable time interval.

The main idea of the greediness property is that if x − 1 processors are
busy, then in the worst-case a task executes with its xth fastest speed. The
scheduler selects an arbitrary task to dispatch. We prove the scheduler’s greedi-
ness without assuming any priority of the tasks. Because greediness property is
oblivious to the priorities of the tasks, it holds for any priority assignment that
would allow us in the next section to find a makespan computation that also
holds for any priority assignment of the tasks. Finding a priority assignment
that would lead to a shorter makespan is an exciting and challenging problem.
However, we do not address it in this paper. In addition, we can preserve the
greediness property if the scheduler is extended with preemption capability by
doing the preemption before we do migration and dispatch steps because the
greediness property holds for any priority assignment. Preemptive scheduling
may improve the makespan, but we need to consider the preemption cost and
a larger number of migrations, as we explain next.

A note on migration. We assume that the cost of migrations is already
included in the WCET of the task. The total cost of migration depends on
the total number of migrations and the cost of each migration. Initially, in the
worst-case based on the GHE , the number of migrations for a task is bounded
by (M − 1) because the task can migrate from its slowest processor to its
fastest processor by migrating at most (M − 1) times. In the worst-case, a
task needs to wait for (M − 1) other tasks to migrate before it can migrate,
in case that all the tasks that are in execution also need to migrate. Thus, in
the worst case for each task we need (M − 1) · (M − 1) migrations to consider.

A note on preemption. In case the scheduler is preemptive, which is
equivalent to temporarily removing the tasks that are already in execution
and consider them all for dispatching based on some priority order, the num-
ber of migrations that we need to consider for each task is higher compare to
non-preemptive scheduling. Because when a task continues its execution after
being preempted, it may be scheduled to a slower processor compared to the
processor that was executing before it was preempted. As a result for preemp-
tive scheduling the maximum number of migrations is (N−1)·(M−1)·(M−1).
Since we can bound the maximum number of migrations, the proposed sched-
uler is suitable for worst-case timing analysis. Finding the cost of each mi-
gration for heterogeneous multiprocessors is a challenging problem that we do
not address in this paper. The migration cost is platform-dependent, and the
platform architectural characteristics are known during the WCET analysis.
We assume that each migration’s cost can be computed and included within
the task’s WCET.

2 The asterisk is used as a wildcard task executing at its preferred processor.
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3.2 An Example

This section presents an example of the application, platform, and scheduler
using the parameters that we have defined in earlier sections. We are also going
to refer to this example in later sections of this paper.

Figure 2 shows an application that we model as a DAG with six nodes A–
F and seven dependencies. We assume an unrelated multiprocessor platform
with two processors where each processor belongs to one unique type. The set
of the WCETs of the tasks are shown in Table 1. Note that c1i 6= c2i for some
(in this case for all) tasks, which implies that the types of the two processors
are different. There are two types of processors denoted as type 1 and type 2.

Fig. 2: The DAG of an application
with six nodes and seven dependen-
cies.

c1i c2i
A 1 2
B 1 10
C 10 1
D 2 1
E 1 2
F 1 2

Table 1: The
WCET of the
nodes in Figure
2 for two proces-
sors.

In Table 2, we calculate the total workload and the workload of the critical
path for three cases. The column labeled as “Both type 1” is used to specify
a homogeneous multiprocessor platform with two processors where both pro-
cessors are of type 1. Similarly, the column labeled as “Both type 2” is used
to specify a homogeneous multiprocessor platform with two processors where
both processors are of type 2. Finally, the column labeled as “Unrelated: one
type 1 and one type 2” is used to specify a heterogeneous multiprocessor plat-
form with two processors where one processor is type 1, and the other is type
2.

With Eq. (2) and Eq. (5), we calculate the total workloadW1 in the second
row and the workload of the critical pathW∞ in the third row for all the three
cases. Please note that Eq. (2) and Eq. (5) can also be applied to homogeneous
multiprocessors as there is only one WCET for homogeneous multiprocessors
that is equal to the minimum WCET. Eq. (7) is widely used in previous works
(Graham, 1969; Brent, 1974; Blumofe and Leiserson, 1999; Melani et al., 2015)
to compute the makespan for homogeneous multiprocessors of tasks that are
scheduled by a work-conserving scheduler.

TM(1) =
W1 + (M − 1) · W∞1

M
(7)
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For the platform with two homogeneous type 1 processors, we get a makespan
equal to 13.5, and for the platform with two homogeneous type 2 processors,
we get a makespan equal to 17.

Both type 1 Both type 2 Unrelated: one type 1 and one type 2
W1 16 18 6
W∞ 11 16 4

Makespan 13.5 17 to be determined

Table 2: Total workload, workload of the longest and the makespan of the
DAG are presented in Figure 2 for two homogeneous platforms and one unre-
lated platform. In Section 5, we will discover the makespan with the unrelated
multiprocessor platform is equal to 7.28.

However, Eq. (7) cannot be trivially applied to heterogeneous multiproces-
sors because it does not take into account the heterogeneity of the processors.
The related multiprocessors (Jiang et al., 2017) take into account the hetero-
geneity of the processors but assume that all the tasks can benefit equally
from the architectural characteristics of the available processors, which is not
realistic because they can benefit differently from the different processor types.

Before we determine the makespan for unrelated multiprocessors we first
analyze the simulation of the execution of the DAG at Figure 2 for three
different scenarios.

Fig. 3: Case (a) presents the simulation of the execution on the unrelated plat-
form if all the tasks execute for their WCET, case (b) presents the simulation
if τB completed its execution earlier without migration, and case (c) presents
the simulation with task migration.

Figure 3.a presents the simulations of the execution if all the tasks execute
for their WCET on the unrelated platform based on our proposed GHE sched-
uler. It can be seen that the schedule length is 4 time units. So the unrelated
multiprocessor platform can execute the tasks by taking advantage of the het-
erogeneity of the platform and can benefit from the different architectural
characteristics of the processors.

In Figure 3.b, τB completes its execution earlier than its WCET. Since the
scheduler is work-conserving, task τD is dispatched to the processor of type
1 with speed 0.5. Similarly, τE is dispatched to the processor of type 2 that
also has the speed 0.5, and schedule length is 5. This schedule does not allow
migration.
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In Figure 3.c, we assume that the scheduler migrates a task to the other pro-
cessor to enjoy faster speed. So, after the completion of τC , task τD migrates
to a type 2 processor to continue at a higher speed. Next, τE is dispatched to
type 1 to execute with speed one, and the schedule length is 4.

The simulations of the execution of Figures 3.a and 3.c show the expected
behavior of GHE . However, Figure 3.b does not represent the expected be-
havior of GHE because between time 2 to 4 task τD and τE are both execut-
ing with their second-highest speed that violates the greediness property of
Lemma (1). The simulation of the execution assuming that all tasks execute
for their WCET cannot be used to calculate the makespan because of tim-
ing anomalies. We are trying to provide a safe upper bound of the worst-case
schedule length (makespan).

4 Formal tools to compute the makespan

The schedulability analysis of DAGs on an unrelated multiprocessor platform
in contrast to homogeneous and related platforms cannot be done without
taking into account the application. We can analyze a homogeneous platform
for any DAG by knowing only the number of processors. For a related platform
that has processors of different speeds, based on (Funk et al., 2001; Jiang et al.,
2017) we need two parameters. First, the capacity of the platform is the sum of
the processors’ speeds and shows the rate that the workload of the application
is executed for a given number of processors. Second, the uniformity intuitively
shows how much the processors’ speed differs compared to a homogeneous
platform with the same number of processors. The capacity and uniformity of
a platform are fixed for any DAG for which we want to estimate the makespan.
However, for an unrelated platform, the WCET of the tasks depends on the
task-processor mapping; the platform characteristics can be different for every
DAG.

Our approach to characterize a platform is to extend the concept of capac-
ity and uniformity from (Funk et al., 2001; Jiang et al., 2017) by taking into ac-
count the scheduler and the speeds that are derived by the task-processor map-
pings. Section 4.1 presents preliminary definitions and the motivation behind
defining the minimum capacity and heterogeneity that we formally present in
Sections 4.2 and 4.3, respectively.

4.1 Motivation and preliminary definitions

Computing the actual makespan of a DAG executed on unrelated multipro-
cessors is intractable (Garey and Johnson, 2002), so we focus on computing
an upper bound on the makespan. This section presents the motivation for
formal analysis tools that we will use in the next section to find a safe upper
bound on the makespan.

Initially, let us focus on the execution of a single task τ i and visualize its
execution as rectangles. The vertical side is the speed at which the task is
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executing, and the horizontal side its execution time. The rectangle’s surface
area shows the workload of the task given by Eq. (1).

Let τ i have a workload equal to two. Figure 4 shows an abstract view of the
execution of τ i for three scenarios. First, (a) shows the cases that τ i is mapped
to a processor that provides to τ i speed one, so τ i completes its execution after
two time units. By computing the area of the rectangle, we find the workload
of τ i which is two. At (b), the τ i is mapped to a processor that offers speed 0.5
to τ i and as a result, the execution time is four, which is greater compared to
(a). Again the workload is two by computing the area of the rectangle. At (c)
τ i initially is mapped to a processor that offers speed 0.5 for two time units,
and then it migrates to a processor that provides speed one for one time unit.
The execution time for τ i for the (c) case is three time units, but again the
sum of the area of the rectangles is two, which is equal to the workload of the
τ i.

Fig. 4: Visualization of the execution of a task τ i with workload equal to
two, when (a) is mapped to a processor with speed 1, (b) with speed 0.5 and
(c) initially with speed 0.5 and then it migrates to a processor with speed 1.
Whatever is the task-processor mapping the sum of the area of rectangles for
all the cases is constant and equal to the workload.

This example illustrates that the task-processor mapping can lead to dif-
ferent execution times. However, we observe that the workload of the task
remains constant regardless of the task-processor mapping. Based on this ob-
servation, we will inflate the DAG’s workload to bound all the schedule lengths
that we can get for all the possible task-processor mappings. The inflation will
introduce pessimism to the schedule length of the DAG that captures all the
possible task-processor mappings in order to find a safe estimation of the
makespan.

Next, let us try to visualize with Figure 5 the schedule of a DAG on an
unrelated multiprocessor platform as a two-dimensional area. Let the Capacity
be the sum of the speeds based on the task-processor mapping of the tasks
that are in execution. The vertical axis shows the capacity. The horizontal axis
is the time duration the application takes to complete its execution. Let B be
the area where processors are busy executing some workload, and B̄ be the
area that the processors are idle. So the makespan is given by:

Makespan =
B + B̄

Capacity
(8)
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Fig. 5: Visualization of the B and B̄.

To compute the makespan for unrelated multiprocessors, we need to find
the terms of Eq. (8) that maximize the numerator and minimize the denomi-
nator.

First, regardless of the execution time of the application, the total workload
(W1) is equal to the area in B. At run-time, a node can run with a speed that
is lower than one (smaller vertical-value), which would have a proportionately
longer duration (larger horizontal value), as we explained in Figure 4. So, the
area of B, which is composed of the workload of all the tasks, remains constant
and is equal to the total workload of the DAG.

We can have different capacities during different stable time intervals be-
cause the speeds depend on the task-processor mapping. The largest possible
capacity of the platform is M when all the processors execute tasks with speed
one. The smallest value is one, which is the case when one task is executing,
and because the scheduler has the property of Lemma (1), it will schedule
or migrate a task to its fastest (speed equal to one) available processor. To
determine the capacity that would lead to the estimation of the makespan, we
define as S̃m the minimum capacity among all the task-processor mappings
that we can have based on scheduling decisions of GHE for m ≤M processors.

To determine B̄, we need the duration (horizontal value) that there are
idle processors and the capacity of the unused processors (vertical value).
Because we assume a work-conserving scheduler, we know that if there are
idle processors and the application is not finished, there are still tasks that we
need to execute, but they are restricted by their dependencies. Let Wγ denote
the workload of an arbitrary path of the application. The workload of any path
in the DAG can be at most the workload of the critical path. The critical path
length is different depending on the task-processor mapping of the tasks that
belong to the critical path. The shortest length of the critical path is W∞,
which is the case if all task-processor mappings have speed one. Let Õ denote
the speed that leads to the worst-case (i.e., maximum) unused capacity for all
the tasks. Thus, the W∞Õ shows the length of the critical path. Let ˜idle denote

the unused capacity, and by replacing the terms to Eq. (8), we get:
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TM ≤
W1 + ˜idle · Wγ

Õ

S̃M

=⇒ TM ≤
W1 + ˜idle · W∞Õ

S̃M

TM ≤
W1 +

˜idle
Õ · W∞
S̃M

It can be seen from Eq. (7) that the values of Õ and ˜idle for a homogeneous
multiprocessor platform are one and (M−1), respectively. However, the values
of Õ and ˜idle are unknown for unrelated multiprocessors. Because the sched-
uler is work-conserving ˜idle depends on Õ. We combine these two parameters,
and we call this expression heterogeneity. To find the maximum heterogene-
ity, we need to search among the different task-processor mappings that are
determined by the GHE scheduler. To enumerate all possible task-processor
mappings, we introduce:

Definition 6 Let π be one permutation of p tasks selected from N tasks of the
application. The set of all the permutations of size p selected from N different
tasks is denoted by σp. The total number of permutations of size p selected
from N tasks is N !

(N−p)! .

In Section 4.2, we define two ways to calculate the minimum capacity that
takes into account the processor preference order of every task determined by
the scheduler. In Section 4.3, we define heterogeneity among all the tasks and
all the processors throughout the execution.

4.2 Minimum capacity

For any stable time interval (based on Lemma (1)), if (x − 1) processors are

busy, then a task is executed at least on its xth faster processor. Let Oπ(k)k

denote the kth speed of the kth task in permutation π . During a stable time
interval when x processors are busy, we define in Eq. (9) the minimum capacity
of the platform that tasks in permutation π ∈ σx can execute with:

Definition 7 Capacity of x processors for permutation π :

S
π
x :=

x∑

k=1

Oπ(k)k (9)

The minimum capacity over all possible permutations π ∈ σM , denoted by
SM , is given by:
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Definition 8 Minimum capacity of the platform among all permutations:

SM := min
π∈σM

{SπM} (10)

The time complexity to evaluate Eq. (10) is exponential because we need to
search through all the permutations. To avoid the high complexity, we trade off
precision, and we define in Eq. (11) an alternative approach to calculating the
minimum capacity for 1 ≤ m ≤M processors. Instead of searching among all
the permutations, we search among all the tasks to find the minimum capacity.
This approach is always more or equally pessimistic compared to Eq. (10), and
the proof is presented in Appendix A.1.

Definition 9 Minimum capacity of the platform among all tasks and proces-
sors:

S
′
m :=

m∑

x=1

N
min
i=1
{Oix} (11)

While the capacity of the hardware platform for homogeneous and related
machine models does not change from one task to another, the capacity for un-
related machines changes from one DAG to another, the definitions of capacity
in Eq. (10) and Eq. (11) are measures of the unrelated platform concerning the
tasks, and they will be used in deriving the makespan of a DAG. Intuitively,
the capacity shows the minimum rate that the workload of a DAG is executed
for a given number of processors of the unrelated platform.

4.3 Heterogeneity

In this subsection, we use the notion of heterogeneity to capture how much
capacity of the platform could be wasted (recall the area of unused capacity),
which will be used to find the makespan. For a permutation π , based on
Lemma (1), if (x−1) processors are busy, a task in the worst-case will execute

with speed Oπ(x)x . Based on the GHE , the unused capacity is given by S
π
M

-S
π
x that depends on the speed Oπ(x)x . To find the maximum unused-capacity

area, for a permutation π we define with Eq. (12) the heterogeneity. It finds
for a specific permutation the maximum heterogeneity among the different
processors.

Definition 10 Heterogeneity for permutation π :

λπ :=
M

max
x=1
{S

π
M − S

π
x

Oπ(x)x

} where, Oπ(x)x 6= 0 (12)

To identify the maximum permutation-based heterogeneity (λ) we define
Eq. (13), where we search among all the permutations.

Definition 11 Maximum heterogeneity among all permutations:

λ := max
π∈σM

{λπ} (13)
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Similarly, with the permutation-based capacity, from Eq. (10), the calcu-
lation of the maximum heterogeneity, from Eq. (13), has exponential time
complexity because we need to search through all of the permutations. To
avoid the high complexity, we define heterogeneity by searching through all of
the tasks and all the processors instead of searching among all the permuta-
tions. If the workload on the critical path (W∞) is executed with speed Oix
then the unused capacity is given by Eq. (14), where Oix is the subset of Oi,
whose speed is lower than the xth fastest processors for task τ i.

Definition 12 Unused capacity if τ i is scheduled on processor x:

idleix :=
∑

y∈Oix

N
max
j=1
{Ojy} (14)

To find the heterogeneity (λ
′
), we combine Eq. (14) with its correspond-

ing busy speed Oix, and we maximize among the different tasks and different
processors. The second version of heterogeneity is always more or equally pes-
simistic compared to Eq. (15), and we present the proof in Appendix (A.2).

Definition 13 Maximum heterogeneity among all tasks and processors:

λ
′

:=
N

max
i=1
{ M
max
x=1
{ idle

i
x

Oix
}} where, Oix 6= 0 (15)

For unrelated multiprocessors, it is not clear which path of the DAG would
lead to the worst-case schedule length. However, in both approaches, to iden-
tify the heterogeneity, all the tasks and not just the tasks that belong to
the critical path are considered. So the main idea is to combine heterogene-
ity, which takes into account all the possible tasks-processor mappings, with
the critical path that has the largest workload among all the paths (Eq.(5))
to identify the maximum unused capacity area. Intuitively, the heterogeneity
shows if the unrelated platform is appropriate for a DAG concerning an ”ideal
platform” with the same number of processors that all tasks will execute for
their minimum WCET among the heterogeneous processors.

Figure 6 presents all the permutations for the application that was pre-
sented in Figure 2. For every permutation, we calculate the permutation-based
capacity and the heterogeneity based on Eq. (9) and Eq. (12), respectively. The
minimum permutation-based capacity given by Eq. (10) is 1.1 and the maxi-
mum permutation-based heterogeneity given by Eq. (13) is 0.5. To avoid the
high time complexity of enumerating all the permutations, to find the capacity
and the heterogeneity, we apply Eq. (11) and Eq. (15) to find the capacity and
the heterogeneity in polynomial time complexity, and we also get 1.1 and 0.5,
respectively. Now that we have all the parameters ready, we can move to the
proof of the calculation of the makespan (next section) that would allow us to
put all concepts together to find the makespan for unrelated multiprocessors.
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Fig. 6: Permutations and the calculation of the permutation-based capacity
and heterogeneity for the example given in Figure 2.

5 Makespan calculation

This section presents two approaches to calculate the makespan of a DAG on
unrelated multiprocessor platforms. Initially, Section 5.1 provides the proof
sketch of the proposed approaches. The first issue (Section 5.2) for both ap-
proaches is how to determine a formally proven upper bound on the execution
time of the DAG (a requirement on safety). A makespan computation must
never underestimate the length of the schedule to ensure that the real-time
constraints are satisfied. Lemma (2) presents an exhaustive search-based com-
binatorial approach to calculate such an upper bound on the makespan. A
safe upper bound on the makespan is determined by identifying all the per-
mutations of possible task-processor mappings. This approach has exponential
time complexity but provides a tight makespan estimation (as will be evident
later in our experiments). As a result, such an approach can be used only for
a small number of processors and tasks.

The second issue (Section 5.3) is to provide a tight estimation of the
makespan that avoids exhaustive approaches and can be calculated efficiently.
Theorem (1) proposes a polynomial time complexity makespan calculation.
Based on Lemma (3) and Lemma (4), it is proven that the makespan calculated
by Theorem (1) is always greater or equal than the (exhaustive) makespan
given by Lemma (2) but still quite tight. As a result, the second approach is
shown to be always a safe estimation of the makespan.

5.1 Overview

To find a safe and tight bound on the makespan, we partition an arbitrary
schedule across different time intervals such that the number of busy processors
in each such interval is constant. We use an exhaustive approach, and for every
interval, we search through all of the permutations of task-processor mappings.
To identify for every interval the permutation that leads to the worst-case
schedule length, we adapt for the unrelated model (minimum capacity and
heterogeneity) two well-known parameters used earlier in the context of related
multiprocessors (Funk et al., 2001; Jiang et al., 2017). These two parameters
that try to maximize the schedule length are combined with the total workload
and the workload of the critical path of the DAG to compute the makespan.
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The initial, exhaustive approach has exponential time complexity since
all the permutations need to be searched. As a result, it is applicable to a re-
stricted number of tasks and processors. To address this limitation, we propose
a polynomial time-complexity version of the heterogeneity and capacity that
is independent of the permutations and formally proven to be always more
pessimistic compared to the permutation-based version of the parameters.

5.2 Exhaustive search makespan

In this section, we present our first result in Lemma (2) that can be used
to compute the makespan. The final formula of the makespan uses the total
workload and the workload of the longest path presented in Section 2 and the
permutation-based minimum capacity and heterogeneity introduced in Sec-
tions 4.2 and 4.3, respectively.

Lemma 2 Exhaustive makespan (Comb): The makespan of a DAG executed
on an unrelated multiprocessor platform is given by:

T Comb

M ≤ W1 + λ · W∞
SM

(16)

Proof Let Bp denote the sum of the lengths of the time intervals where ex-
actly p processors are busy. Because GHE is work-conserving, we know that
there will always be at least one processor busy during the execution of the
application. So for the makespan T Comb

M , we have:

T Comb

M =
M∑

p=1

Bp (17)

For an application that is executed on an unrelated multiprocessor plat-
form, the different task-to-processor mappings can lead to different schedule
lengths. To describe all the task-processor mappings when exactly p processors
are busy, we introduce B

π
p , which denotes the time interval when exactly p

processors are busy by the tasks of permutation π of size p. Since we can have
different permutations that occupy p processors, it holds that:

Bp =
∑

π∈σp
B
π
p (18)

where σp is the set of all permutations of size p. If during run-time a permu-

tation π′ does not appear in the schedule, then it holds that B
π′
p = 0.

Consider an arbitrary schedule and an arbitrary busy interval B
π
p . Based

on Lemma (1), during B
π
p , the pth task belonging to π in the worst-case will

be executed with speed Oπ(p)p where Oπ(p)p 6= 0. Let W p,π(γ) denote the total

amount of workload completed at speed Oπ(p)p from task τπ(p) that belongs to
an arbitrary path γ and at the pth position of permutation π and we have:
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B
π
p · Oπ(p)p ≤ W p,π(γ)

We break up the workload of the tasks that belong to the critical path
W∞ into fragments that depend on the task-processor mappings; that is, frag-
ments that depend on permutations π of size p denoted by Wp,π

∞ . If for a
permutation π , it holds that B

π
p = 0, then it also holds that Wp,π

∞ = 0 be-
cause this permutation did not appear in the schedule, so it does not have any
workload. WithWp

∞, we denote the workload of the critical path of all permu-
tations executed by the same number of processors. To collect the workload
from all the permutations, we define:

W∞ ≥
M∑

p=1

Wp
∞ =

M∑

p=1

∑

π∈σp∧
B
π
p 6=0

Wp,π
∞ (19)

Since the critical path is cp with total workload Wp,π
∞ belonging to permu-

tation π , the actual workload is bounded as follows: W p,π(γ) ≤ Wp,π
∞ and we

have:

B
π
p · Oπ(p)p ≤ Wp,π

∞

If there is at least one processor idle (p < M) and there are still tasks that
we need to execute, then they must be restricted by their dependencies. On
unrelated multiprocessors, due to the different task-processor mappings, the
execution time of any path can vary. So it is not clear which path is going
to determine the makespan of the DAG. To identify the worst-case scenario
to find a safe upper bound on the makespan, we consider two pessimistic
but safe characteristics of the DAG. First, we consider the path with the
largest workload that will guide the length of the schedule. Second, with the
use of heterogeneity, we consider the worst-case mapping among all the tasks
that would lead to the largest unused capacity throughout the execution. The
largest unused capacity throughout the execution depends on two factors: 1)
the unused processors and 2) the duration that these processors are idle. More
precisely, to find the duration of the critical path workload, we assume, based
on Lemma (1), that a task that belongs to the critical path is executing at

speed Oπ(p)p . If Oπ(p)p is busy then the unused capacity is given by S
π
M − S

π
p .

With the heterogeneity given by Eq. (12), we can find the worst-case for a
specific permutation because it maximizes these two factors among all the

task-processor mappings. By replacing the Oπ(p)p we have:

=⇒ B
π
p ·

S
π
M − S

π
p

λπ
≤ Wp,π

∞ (20)

By Eq. (19) and since for an arbitrary π it holds that λπ ≤ λ we have:
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M∑

p=1

∑

π∈σp
B
π
p ·

S
π
M − S

π
p

λ
≤

M∑

p=1

∑

π∈σp∧
B
π
p 6=0

Wp,π
∞

M−1∑

p=1

∑

π∈σp
B
π
p ·

S
π
M − S

π
p

λ
≤ W∞

Equivalently,

M−1∑

p=1

∑

π∈σp
B
π
p · (SπM − S

π
p ) ≤ λ · W∞ (21)

During B
π
p the p processors are busy with platform capacity S

π
p , which

means that after B
π
p time units, the amount of workload that is done is B

π
p ·Sπp .

Since the application completes when no processor is busy, the total workload
is given by W1 =

∑M
p=1

∑
π∈σp B

π
p · Sπp . By adding this term in both sides in

Eq. (21), we get:

M−1∑

p=1

∑

π∈σp
[B

π
p · (SπM − S

π
p ) +B

π
p · Sπp ] +

∑

π∈σp
B
π
p · SπM ≤ W1 + λ · W∞

M−1∑

p=1

∑

π∈σp
B
π
p · SπM +

∑

π∈σp
B
π
p · SπM ≤ W1 + λ · W∞

M∑

p=1

∑

π∈σp
B
π
p · SπM ≤ W1 + λ · W∞

Based on the definition of SM , given by Eq. (10) we have S
π
M ≥ SM and

by the definition of Bp given by Eq. (18), we have:

=⇒
M∑

p=1

Bp · SM ≤ W1 + λ · W∞

M∑

p=1

Bp ≤
W1 + λ · W∞

SM

Since the scheduler is work-conserving it holds that T Comb

M =
∑M
p=1Bp and

consequently:

T Comb

M ≤ W1 + λ · W∞
SM

This completes the proof of Lemma (2).
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For the example that is given in Figure 2 we replace the parameters to the
equation given in Lemma (2) and we get the makespan T Comb

M = 7.28.

5.3 Efficient makespan

The calculation of the capacity and heterogeneity of the platform using the
permutation-based parameters has exponential time complexity. With Lem-
mas (3) and (4), we prove that the permutation-independent parameters al-
ways provide more pessimistic minimum capacity and heterogeneity. The proofs
are given in Appendix A. The final formula of the efficient makespan uses the
total workload and the workload of the longest path presented in Section 2
and the minimum capacity and heterogeneity that are independent of the per-
mutations that were presented in Sections 4.2 and 4.3, respectively.

Lemma 3 The S
′
M is always less or equal to the minimum capacity SM be-

tween the different permutations.

SM ≥ S
′
M (22)

Lemma 4 The λ
′

is always greater or equal to the maximum heterogeneity λ
between the different permutations.

λ ≤ λ′ (23)

Theorem 1 Efficient makespan (Fast): The makespan of a DAG executed on
an unrelated multiprocessor platform is given by.

T Fast

M ≤ W1 + λ
′ · W∞

S
′
M

(24)

Proof From Lemma (3) and (4) it follows that the makespan calculated by us-
ing λ

′
and S

′
M is always larger in comparison to the makespan calculated from

Lemma (2). Since the makespan T Comb

M from Lemma (2) is safe, the makespan
T Fast

M given by Eq. (24) is also safe (i.e., an upper bound).

We compare the upper bound on the makespan that we computed to the
optimal schedule length, i.e., minimum completion time, denoted by OPT to
theoretically evaluate how much pessimism is introduced to our makespan
computation compared to OPT. Finding the OPT is intractable (Garey and
Johnson, 2002), and we compute a lower bound on the OPT as follows. First,
we optimistically assume that the GHE finds a processor that provides speed
one for every task of the DAG. Thus, each task is executed for its minimum
WCET. Let an upgraded DAG, denoted by Ĝ, be an isomorphic DAG to G,
meaning that V = V̂ and E = Ê, where for every task instead of having
M WCETs, each task has only one WCET, the cimin. Because its task has
one WCET, the homogeneous setup Graham (1969); Brent (1974); Blumofe
and Leiserson (1999) can be applied. A lower bound on the optimal schedule

length is computed by LB = max{Ŵ∞, Ŵ1

M } for the upgraded DAG Ĝ, which
is also a lower bound for the original DAG G.
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Corollary 1 The makespan given by Th. 1 is (
M+λ

′

S
′
M

) times larger than the

optimal schedule length (OPT):

Proof From Eq. (24), given by Theorem (1), we have:

T Fast

M ≤ W1 + λ
′ · W∞

S
′
M

T Fast

M ≤ W1

S
′
M

+
λ
′ · W∞
S
′
M

T Fast

M ≤ M

S
′
M

· W1

M
+

λ
′

S
′
M

· W∞

By definition LB ≤ OPT, so it holds that W∞ ≤ OPT and W1

M ≤ OPT.

=⇒ T Fast

M ≤ M

S
′
M

· OPT +
λ
′

S
′
M

· OPT

T Fast

M ≤ (
M + λ

′

S
′
M

) · OPT (25)

The value of (
M+λ

′

S
′
M

) depends on the WCETs of the tasks for the processors

of the platform. If all the speeds for all the tasks are one, the platform spe-
cialize to homogeneous multiprocessors (Eq. (7)) (Graham, 1969; Brent, 1974;
Blumofe and Leiserson, 1999) and the value (a.k.a approximation, speed-up,
and resource augmentation factor) is (2− 1

M ). In conclusion, the upper bound

on the makespan computed by Eq. (24) is (
M+λ

′

S
′
M

) times larger compared to

the optimal schedule length of any scheduling heuristic that has the work-
conserving property and the greediness property.

5.4 Summary

This section presents two approaches to calculate the makespan of a DAG on
unrelated heterogeneous multiprocessors. Initially, we present an exhaustive
permutation-based approach (Comb) that safely calculates the makespan and
has exponential time complexity (Lemma (2)). Then we use Comb as the step-
ping stone to develop Fast that is given in Theorem (1) to find the makespan
in polynomial time. The main advantage of the approach is its generality. The
assumptions regarding the platform model can cover a wide range of hetero-
geneous multiprocessors. The DAG model can be applied to a broad range
of parallel applications, such as OpenMP task-based parallel applications. Fi-
nally, keeping the scheduler general, assuming only that it is work-conserving
also allows us to cover a broad class of schedulers and not just one scheduling
policy.
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6 Complexity analysis

Initially, we analyze the parameters that are common for all the proposed
bounds. Next, we show that the Comb has exponential time complexity and
Fast has polynomial time complexity.

Common: For a specific task, the minimum WCET between the processors
can be calculated in O(M). The critical path can be calculated in O(|V |+ |E|)
with the use of topological sort (West et al., 2001). As a result, W∞ can be
calculated with O(max{(|V | + |E|), (M))} time complexity. The total work
is the sum of the minimum WCET of all tasks, so W1 is computed with
O(max{N,M}) time complexity.

Comb : The parameter σp of λ and the parameter SM are calculated by
enumerating all the permutations of the tasks (N) to processors (M). Thus,
σp is of size O(NM ) and as a result Comb, given by Lemma (2), has a time
complexity of O(NM ). So, the exhaustive approach has exponential time com-
plexity.

Fast: The makespan T Fast

M is given by Theorem (1) and it uses the pa-
rameters S

′
M and λ

′
that are independent of the permutations and can be

calculated in polynomial time. Initially, Oi requires time O(M · log(M)) to
sort the array of speeds. We have to calculate Oi for all the tasks, so the
time complexity is O(N ·M · log(M)) using an efficient sorting algorithm like

Heapsort. However, accessing Oix and Oix requires constant time because the
array is sorted. Next, the complexity of computing S

′
M is O(max{N,M}) be-

cause to identify the minimum requires O(N) and the sum includes all the
processors (M). Furthermore, the calculation of the heterogeneity requires the
parameter idleix that has time complexity O(max{N ·M}), because the max-
imum requires O(N) and the sum is over at most M − 1 iterations. Finally,
the heterogeneity λ

′
uses idleix together with two maximum operations, that

can be calculated in O(N) and O(M), respectively. So, λ
′

is calculated with
time complexity O(max{N2,M2}), which is polynomial. As a result, for the
Fast, we have O(max{(|V |+ |E|), (M)}+ max{N,M}+ max{N,M}+N ·M ·
log(M) + max{N2,M2}), that is, O(max{N2,M2}), which is polynomial in
time complexity.

7 Evaluation

To quantitatively evaluate the proposed makespan calculation, Section 7.1
presents the simulation framework, and Section 7.2 presents the simulation
results for different parameters of our model for four OpenMP parallel appli-
cations and synthetic DAGs.

7.1 Simulation framework

First, we present the method by which we model the DAGs of the applica-
tions and the synthetic workloads. Next, we describe the simulator that is
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used to calculate the makespan. Finally, we describe the configuration of the
applications and the evaluation metrics used.

7.1.1 DAG modeling

The WCET of a task is generated by adding a randomly generated value to
the cimin (minimum WCET between the different processor types). With the
parameter Limit, we limit the range of the randomly generated values. More
formally, the WCET of every task is given by, cit = cimin + Rand(0, Limit).
The exact value of cimin is stated in the experimental section. We perform two
types of experiments where we consider real applications and synthetic DAGs.

Applications: We model the DAG of four parallel, task-based OpenMP
applications from the BOTS benchmark suite (Duran et al., 2002): Fibonacci,
Sort, Strassen, and FFT. Fibonacci has a tree-like structure and is a good
representative of many recursive applications. It is simple and is very helpful
for the understanding of the parallel execution of the tasks. Sort is a common
operation in almost all fields of computing. Strassen is an efficient matrix-
multiplication algorithm that is used in many scientific applications. Finally,
FFT is used in signal and image processing. The analysis of the OpenMP
code for each application is performed manually. Then the applications are
implemented in our simulation framework to generate the DAG automatically.
Initially, we categorize the parts of the code based on their functionality, and
we introduce three nodes:

– Spawn nodes: The keyword #omp pragma task of a loop generates mul-
tiple tasks. The spawn node models the cost of parallel work generation.

– Basic nodes: It models the execution time of a sequentially executed code,
which is the actual work of the parallel application.

– Synchronization nodes: We use synchronization nodes to model the
#omp pragma taskwait. A Synchronization node models the cost (in time)
of the synchronization.

For Fibonacci, Strassen, and FFT, the structure of the DAG depends on
the input size. The structure of the DAG for Fibonacci depends on the actual
value, and for Strassen and FFT, it depends on the array size. For Sort, the
DAG structure is data-dependent; for the same array size but different actual
data, we can have different DAGs. Previous work introduced conditional nodes
to express the alternative execution paths. We use the method in (Baruah
et al., 2015b) to transform the conditional DAG to a non-conditional worst-
case DAG for Sort. An example of DAG modeling can be found in (Voudouris
et al., 2017).

The applications under analysis have thousands of tasks. However, we note
that the applications have only a few different tasks that perform the same
function, and, as a result, they have the same set of WCETs. Tasks with the
same WCET for the various processors will lead to the same permutations.
Consequently, we need to calculate all the permutations only based on the
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unique tasks, which, in practice, has exponential time complexity to the num-
ber of unique tasks rather than the number of tasks. For example, Fibonacci
has 32836 tasks for input 20, but there is only one unique task that calculates
the Fibonacci numbers. Similarly, for Sort, FFT, Strassen, there are 2, 3, and
1 unique task, respectively. In (Chronaki et al., 2015), they consider OmpSs
applications, which are similar to the OpenMP applications. These applica-
tions have few unique tasks compared to the total number of tasks: Cholesky
factorization, QR factorization, Heat diffusion, and Integral Histogram have
4, 4, 3, and 2 unique tasks, respectively, for DAGs with a few thousands of
tasks. Although there are three categories of each node (spawn, base, and syn-
chronization), the total number of possible pairs of tasks and node categories
is significantly fewer than the total number of tasks.

Synthetic DAGs: A synthetic DAG is modeled by following a similar
structure of the applications. We generate a fully-balanced tree together with
the mirror tree for the Sync nodes. The maximum degree of the Spawn nodes,
and the maximum height of the DAG can be set as parameters. A time budget
is assigned to every Spawn node, which is responsible for distributing it to its
child nodes and the corresponding Sync node to get the desirable W1 and
W∞ characteristics of the DAG. Next, the number of task types is given as
a parameter to the DAG. We randomly generate WCETs with the use of the
Limit parameter with the same approach that we use for the real applications.

7.1.2 Simulator

The simulator is event-based, where an event is considered the completion
of the execution of the tasks, and we implement the scheduler described in
Section 2. The real applications have many tasks, so to avoid state-space ex-
plosion, we generate the DAG gradually. We follow the schedule of the DAG,
assuming that all tasks are executed for their WCET, and we monitor its exe-
cution for two independent schedules/runs. First, we schedule the DAG under
consideration with infinite processors (in practice: INT MAX, in C++) to
calculate the W1 and W∞ parameters given in Section 2. Next, for the sec-
ond schedule/run, we set the number of processor types and the total number
of processors that we want to test. We make sure that there is at least one
processor of each type, and we use random assignment of the processors to
the processor types. We schedule the DAG, and we monitor the unique tasks
to determine the capacity and the heterogeneity for the Fast given and for
Comb makespan given in Sections 4.2 and 4.3. Based on Lemma (2) and The-
orem (1), we use the parameters provided by the simulator to calculate the
makespan for T Comb

M and T Fast

M . The schedule-length of the second run (Sim) is
an instance of the DAG execution and cannot be used as a safe estimation
of the makespan due to timing anomalies; however, it can be seen as a lower
bound on the best achievable makespan.
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7.1.3 Configuration and evaluation metrics

Table 3 presents the configuration of the applications. Initially, the cimin of the
Spawn, Base and Sync are set to 300, 400 and 100 time units. The columns
are the applications (Fibonacci, Sort, Strassen, and FFT). The first row is the
input of the applications and the second row is the total number of nodes that
the applications have. The third row is the total work (W1), and the fourth
row is the workload of the critical path (W∞) of the applications. The fifth
row shows the ratio of the workload of the critical path to the total workload,
and the last row shows the number of unique tasks.

Fib Sort Strassen FFT
Input 20 32768 512 8192

#Nodes 32836 16043 22410 23748
W1 8756400 4403300 7843300 6221400
W∞ 8000 14900 2500 51020
W∞
W1

0.0009 0.003 0.0003 0.008

#Unique tasks 3 6 3 9

Table 3: Application configurations

To the best of our knowledge, no other related work provides a closed-
form solution for the makespan calculation and an exact makespan of parallel
applications modeled as DAGs on an unrelated multiprocessor platform. For
our simulations, we use the following evaluation metrics:

Tightness: The tightness is defined as the ratio T Comb

M /T Fast

M . The exhaus-
tive makespan calculations T Comb

M given by Lemma (2) is compared to the
T Fast

M makespan given by Theorem (1).
Pessimism: We derive a lower bound on the makespan by simulating the

parallel applications’ actual execution with the GHE scheduler, where all the
tasks are executed for their WCET. Let Sim be the schedule length of the
execution. The pessimism of our approach is defined as the ratio of Sim/T Fast

M .
Note that even the optimal way to find the makespan has a length not smaller
than Sim.

All the experiments are performed 100 times, and we report the average.

7.2 Quantitative results

T Fast

M is proven to be a safe makespan by showing that it is always greater
than T Comb

M . As a result, our evaluation needs to quantify the overestimation
introduced to avoid the exponential time complexity of the T Comb

M approach.
Consequently, the closer the estimation of T Fast

M is to the estimation of T Comb

M ,
the better is the estimation. Next, by comparing our proposed approach with
that of the simulation of the execution, we try to quantify the pessimism that
is introduced compared to the best achievable makespan estimation. Ideally,
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T Fast

M and T Comb

M are equal and as close as possible to the lower bound of the best
achievable makespan. By using the evaluation metrics defined in Section 7.1.3,
we present the simulation results concerning different parameters of our model.
Sections 7.2.1–7.2.3 show the results considering the DAG of the applications.
Sections 7.2.4 and 7.2.5 present the result of synthetic DAGs.

7.2.1 Impact of changing the number of processors

Figure 7a presents the tightness (Y-axis on the left-hand side) and the pes-
simism (Y-axis on the right-hand side) of Fibonacci, Sort, Strassen, and FFT
as a function of the number of processors (M), where the number of processor
types is up to min{8,M}. The points without a dashed line correspond to the
tightness of the makespan. The points with a dashed line correspond to the
pessimism. In this graph, the closer to one the values are, the better is the
tightness, and the less is the pessimism.

The makespan calculation of T Fast

M has polynomial time complexity, so we
generate the results for up to a total of 1024 processors. On the contrary, the
makespan calculation of T Comb

M is the permutation-based approach which has
exponential time complexity. With our simulation setup, we can simulate only
up to 8 processors. The Limit is set to 100 for this experiment.

Initially, it can be seen that for one processor, all the approaches are equal
to W1. Furthermore, we can see that for up to eight processors, the tightness
(the overestimation of the makespan) of T Fast

M compared to T Comb

M is less than 1%
on average and up to 1.2% greater for all the applications. We have performed
the same simulations, but with Limit equal to 500 and 1000 (not shown in
the plots). The average tightness of the makespan is slightly higher than 1%
and up to 3%. Next, it can be noted that by increasing the number of pro-
cessors exponentially, the pessimism increases linearly. Compared to Sim, the
pessimism we have averaged from 25% up to 62%.

7.2.2 Impact of changing the number of processor types

Figure 7b presents the tightness and the pessimism for the different number of
processor types for eight processors and the four applications. The horizontal
axis is the number of processor types for the four applications, the left vertical
axis is the tightness, and the right vertical axis is the pessimism. The Limit for
the random generation of the WCET is set to 100.

The tightness of T Fast

M , compared to the two permutation-based approaches,
is, on average, 1% and maximally 1.3%. Consequently, the margin between the
polynomial and the exponential approach is not significant. Since we do not
distinguish between the processor types for the calculation of heterogeneity
and capacity in the polynomial approach but we consider the total number of
processors, and it is expected to have similar behavior with the results shown
in Figure 7a. Next, we note that by increasing the number of processor types
while the total number of processors remains the same, the pessimism increases
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since a relatively smaller number of tasks are now executing with a speed of
one, which leads to a longer makespan.

Compared to Sim, we have, on average, 13% and up to 23% more pes-
simism. Sim is a lower bound on the optimal makespan, so if an exact makespan
can be calculated for parallel applications, which is very unlikely to happen,
our analysis can still provide an upper bound on makespan, which is at most
23% longer than the optimal makespan. Therefore, we think our approach to
finding the makespan using T Fast

M is quite effective for applications that we have
considered from the BOTS benchmark suite.

7.2.3 Impact of task-processor compatibility

Whether a task is compatible with a processor type or not is determined using
a threshold speed for each experiment. If the initial speed of a task on a given
processor is smaller than the threshold, its speed on that processor is set to
zero (δit = 0).

Figure 7c shows the compatibility of the tasks to the processors. The hor-
izontal axis presents the speed threshold for Fibonacci, Sort, Strassen, and
FFT. The vertical axis shows the pessimism of T Fast

M with respect to Sim. The
platform has 32 processors and four processor types. Limit is set to 100 for
this experiment.

Initially, for threshold 0.1, all the applications have pessimism only around
1/0.8 = 25%, i.e., the computed makespan is no more than 1.25 times greater
than the optimal. In such a case, the scheduler can almost always find some
compatible idle processor due to a relatively low threshold speed. Next, it
can be seen that for all the applications, as the threshold increases, i.e., rela-
tively more incompatible tasks, the pessimism initially remains constant and
then increases since fewer compatible processors are available for the tasks to
execute.

Next, we note that the pessimism starts to increase for Fibonacci and
Strassen from speed threshold 0.5 while for Sort and FFT, the tightness begins
to decrease after 0.8 and 0.7, respectively. Since Fibonacci and Strassen have
fewer task types, 3 task types each, compared to Sort and FFT that have 6
and 9, respectively, more tasks are characterized as incompatible for Sort and
FFT. As a result, more tasks have fewer processors to be executed for Sort and
FFT. For Fibonacci and Strassen, tightness reaches its minimum value at 0.8
and for Sort and FFT at 0.9. There are many incompatible processors at that
point, but because the platform has many processors, the scheduler can find
available processors to schedule the tasks in parallel. However, we can see that
the pessimism decreases for high thresholds since the scheduler (i.e., simulated
schedule) cannot find available processors to schedule the tasks, and the total
execution of the schedule increases. Consequently, the pessimism compared to
Sim decreases.
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7.2.4 Impact of processor heterogeneity

To analyze in more detail the variation of the WCET of a task among the differ-
ent processor types, we consider a synthetic DAG, and we vary the Limit fac-
tor. Figure 8 presents the tightness and the pessimism for different values of
the Limit. The horizontal axis is the Limit, the left vertical axis presents the
tightness, and the right vertical axis is the pessimism. The platform has four
processors and two processor types. The synthetic DAG hasW1 = 191400 and
W∞ = 5800 for 938 nodes and 3 task types with ratio W∞W1

= 0.03. Note that
this ratio is one to two orders of magnitude higher than the BOTS applications,
so the impact of heterogeneity should be higher. Note that with Limit = 1000,
we can have a variation on the WCET from 2.5x to 10x for Spawn and Sync
nodes, respectively, that have 400 and 100 time units for their emini values. We
intentionally use extreme values to expose the limitations of T Fast

M .

Fig. 8: Tightness and pessimism for different variations of the WCET.

By increasing Limit, which can be seen as making the platform more het-
erogeneous, the tightness of the T Fast

M approach decreases. On average, we have
5% and a maximum 11% less tight makespan compared to exhaustive ap-
proaches. Such an increase in the makespan is due to the calculation of the
heterogeneity λ

′
, which is calculated between all the tasks. T Comb

M uses λ which
is calculated based on all of the permutations of tasks. We can see that the
pessimism of T Fast

M compared to Sim increases as Limit increases since more
processors would have a lower speed. As a result, the makespan of T Fast

M in-
creases. Compared to Sim, we have on average 51% and up to 74% more
pessimism. Note that although such values may be quite high for our analysis,
we would like to stress that the degree of heterogeneity for higher Limit is
quite pessimistic for many practical heterogeneous platforms.

7.2.5 Impact of application characteristic

For this experiment, we characterize a DAG byW1 andW∞ only, and we vary
the characteristic (i.e., W∞W1

) of an application. Note that W∞W1
is within (0, 1).

If W∞W1
≈ 0, then it means that the length of the critical path is much smaller

in comparison to that of the total work (more dense graph). If W∞W1
≈ 1, then it

means that the length of the critical path is very close to the total work (more
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sparse graph). Figure 9 shows the tightness for the proposed methods where we
keep the value of W1 constant and vary the value of W∞. The horizontal axis
shows different W∞W1

ratios (significantly larger compared to the applications),
and the vertical axis shows the tightness.

Fig. 9: Comparison of the proposed methods for different characteristic of the
synthetic DAG by varying the W∞W1

ratio.

Initially, for both cases, the makespan increases since the critical path in-
creases. Next, the tightness decreases as the W∞W1

increases since by increasing
the W∞, the impact of the heterogeneity increases. T Fast

M has, on average, 6%
and at maximum 16%, less tight makespan compared to the exhaustive ap-
proach.

7.3 Summary

From the simulation results, we can see that T Fast

M provides tight makespan esti-
mation compared to T Comb

M and with low pessimism compared to the simulation
of the execution Sim. We quantitatively verify the intuition by increasing the
number of incompatible processors the makespan increases, which shows that
the parallelism is restricted and leads to a larger estimation of the makespan.
Next, we have seen that increasing the variation of the WCET across the dif-
ferent processor types leads to higher pessimism. Finally, by increasing the
critical path’s workload and total workload ratio, the makespan increases be-
cause less parallelism is available.

8 Comparison with similar approaches

This section compares our model with models in the literature that make more
specific assumptions regarding multiprocessor platforms and applications. Ini-
tially, we compare our approach to approaches that assume the homogeneous
and related multiprocessor model. Next, we compare our approach to a more
specific application and platform model where Typed DAGs (Han et al., 2019)
is assumed.
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8.1 Homogeneous and related multiprocessor models

Table 4 shows the specializations of the proposed formula to formulas proposed
and used in related work. If δit = 1, for any task of the application and any pro-
cessor, the multiprocessor platform is homogeneous. For the platform capacity
and heterogeneity it holds that S

′
M = M and λ

′
= (M − 1), respectively. As a

result, the proposed formula becomes the same formula (
W1+

(M−1)
1 ·W∞
M ) devel-

oped in (Graham, 1969; Brent, 1974) and used extensively in previous works,
for example (Blumofe and Leiserson, 1999; Melani et al., 2015). Similarly, by
assuming the same speeds for the processors for all the tasks, the formula is
the same as the formula proposed in the context of the related multiprocessor
model by (Jiang et al., 2017).

U This work H Graham (1969) R Jiang et al. (2017)

Heterogeneity λ
′

M − 1 λR = λ
′

Capacity S
′
M M SRM = S

′
M

Makespan
W1+λ

′ ·W∞
S
′
M

W1+
(M−1)

1
·W∞

M

W1+λ
R·W∞

SR
M

Table 4: Specializations of the (U)nrelate multiprocessor model to
(H)omegeneous, (R)elated multiprocessor models.

8.2 Typed DAG application model

In the work of (Han et al., 2019), typed DAGs (i.e., every task is compatible
with one processor type) are assumed, and two bounds are proposed to esti-
mate the makespan. The proposed bounds strictly dominate the used baseline
in (Jaffe, 1980) and, through simulation, outperforms the work by (Yang et al.,
2016) significantly. The first approach (NEW-B-1) is a generalization of the
(Graham, 1969) for typed DAGs. The second bound (NEW-B-2) explores the
structure of the DAG and provides a tighter makespan.

By restricting the compatibility of the tasks, the parallelism is reduced
because fewer processors are available to execute every task. Also, the critical
path may be spread to different processor types. As a result, all the nodes that
belong to processor type t1 can interfere with tasks that belong to the criti-
cal path and are executed on processor type t2. The proposed analysis (Jaffe,
1980; Han et al., 2019) reflects this problem by assuming no parallelism be-
tween tasks executed on different processor types. It sums, i.e., serializes, the
execution of the nodes that belong to different types. This assumption limits
parallelism significantly. For example, for any number of processors that a mul-
tiprocessor has, if there is only one processor of each type, all the approaches
are equal to the sequential execution.

We can model Typed DAGs with our settings by assuming for a task τ i

that δit = 1 for the compatible processors and δit = 0 for the non-compatible
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T Fast

M This work T max(π)

M This work NEW-B-1 Han et al. (2019)

Makespan
W1+(M−1)·W∞

Mmin

W1+(Mmin−1)·W∞
Mmin

∑
t∈S

Wt
1+(Mt−1)·Wt

∞
Mt

Table 5: Specializations of the unrelated to the typed-DAG application model

processors. Let Mt denote the number of processors of type t and let Mmin be
the minimum number of processors between the different processor types. Ta-
ble 5 presents the calculations for the typed DAG model. By trivially applying
the T Fast

M approach, for any typed DAG the platform capacity is S
′
M = Mmin and

heterogeneity is λ
′

= M−1. So, the makespan of T Fast

M is more pessimistic than
(Jaffe, 1980) and, as a result, also than the (NEW-B-1) and (NEW-B-2) from
(Han et al., 2019). To reduce the pessimism, we can find the makespan by com-
puting the capacity and the heterogeneity from the same permutation. More
precisely, first, we compute the makespan for all the possible permutations.
Then we find the maximum makespan among all the permutations, denoted
as T max(π)

M , and the platform capacity is Mmin and heterogeneity is Mmin−1. This
approach has exponential time complexity since all the permutations need to
be searched. The T max(π)

M is better than T Fast

M but still more pessimistic than
(NEW-B-1) and (NEW-B-2). By assuming that the mapping of the tasks is
known, we can calculateWt

∞ andWt
1 for each Mt. By serializing the execution

between the types and applying our formula, we find the same formula as for
(NEW-B-1), which is more pessimistic than (NEW-B-2).

9 Related work

In (Graham, 1969; Brent, 1974), a makespan calculation is presented for paral-
lel applications modeled as DAGs executed on homogeneous multiprocessors.
The work in (Blumofe and Leiserson, 1999) extends this bound in the Cilk
programming model context. The Cilk-based parallel applications are mod-
eled with a restricted version of DAGs, and the bound is extended to cover
the work-stealing scheduler. In (Voudouris et al., 2017; Chen et al., 2019)
a formally proven timing anomaly-free dynamic scheduler is introduced that
provides tighter and more scalable, for the number of tasks and number of pro-
cessors, makespan estimations. The results of (Voudouris et al., 2017; Chen
et al., 2019) cannot be trivially applied to unrelated multiprocessors because
the DAG can have different schedule lengths depending on the task-processor
mapping.

In (Bender and Rabin, 2000), the scheduler of Cilk (Blumofe and Leiserson,
1999) is adapted for related heterogeneous systems. They provide a makespan
calculation methodology for Cilk-based applications that can be modeled as
DAGs, and a makespan is introduced. Our approach considers the unrelated
multiprocessor model, which is a more general model for the underlying plat-
form.

The work in (Sih and Lee, 1993; Topcuoglu et al., 2002) considers static
scheduling of applications modeled as DAGs on unrelated multiprocessor plat-
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forms, and the goal is to minimize the schedule length. An extensive compar-
ison of different heuristics for static scheduling on heterogeneous systems can
be found in Braun et al. (2001). In contrast, our approach considers dynamic
scheduling that can utilize the platform more efficiently to achieve load balance
among the processors.

In (Lawler and Labetoulle, 1978), global scheduling of independent tasks
for unrelated multiprocessor scheduling is formulated and solved as an integer
linear problem. In (Andersson et al., 2010; Raravi et al., 2013) the problem of
scheduling independent tasks on two types of unrelated heterogeneous multi-
processor platforms is considered, and further extension of the works in (An-
dersson et al., 2010; Raravi et al., 2013) can be found in (Raravi, 2014). Next,
(Andersson and Raravi, 2014) assumes implicit-deadline, independent tasks,
unrelated multiprocessor platforms, and shared resources, a speed-up bound
of 4 · (1 + ε), where ε depends on the number of shared resources and the
resource requests from the tasks. The assumption of shared resources enriches
the applicability of the model. However, we do not address this problem in this
paper, and we leave it as future work. Furthermore, the work in (Andersson and
Raravi, 2016) assumes constrained-deadline independent tasks and unrelated
platforms but is limited to two processor types. The problem is formulated
as an ILP, and a speed-up bound of 5 is guaranteed. Next, (Baruah et al.,
2019) with the ILP approach for constrained deadlines, independent tasks,
unrelated multiprocessors, and partitioned scheduling, a speed-up bound of
7.83 is achieved. Our approach considers a more general application model
which can exploit the parallelism that exists in the applications. In this work,
we assume a single DAG, and our goal is to find the makespan which is needed
for the analysis for the recurrent execution of DAGs.

Previous work for general-purpose scheduling on unrelated multiprocessors
has focused on special cases of our system model either by limiting the struc-
ture of the DAG (Kumar et al., 2009) or by limiting the execution time of the
tasks and their compatibility to the processors (Page, 2019). In this work, we
consider DAGs where each task can execute on any processor and can have
any execution time. In addition, the proposed makespan can be applied to any
priority ordering of the task that has the work-conserving and the greediness
property. As a result, in this work, instead of focusing on finding a carefully
optimized scheduler for special cases of the application or platform models,
we opt to find a makespan computation formula that is general and has broad
applicability.

The estimation of the makespan of a single DAG gives us the tool to analyze
multiple DAGs with the sporadic DAG model (Baruah et al., 2015a, 2012). In
(Li et al., 2014; Melani et al., 2015; Pathan et al., 2018) global scheduling is as-
sumed and analyzed for homogeneous multiprocessors. Furthermore, federated
scheduling, which can be seen as a generalization of partitioned scheduling,
recently has gained attention, and many recent works focus on this topic (Li
et al., 2014; Jiang et al., 2017; Bhuiyan et al., 2018; Ueter et al., 2018). This
paper proposes a single DAG analysis on unrelated multiprocessors, which is
the first step towards the analysis of sporadic DAGs.
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10 Conclusion

We propose two approaches to calculate the upper bound on the worst-case-
schedule-length (makespan) for applications modeled as DAGs and executed
on unrelated multiprocessors using any work-conserving scheduler. First, with
an exhaustive approach, we show that Comb can safely establish an upper
bound of the makespan. Still, its applicability is limited to small platforms
and DAGs because it has exponential time complexity. We use Comb to build
the Fast makespan that trades off the precision, i.e., tightness, of Comb to
achieve polynomial time complexity.

To quantitatively evaluate the makespan of Fast, we model as DAGs four
OpenMP task-based parallel applications and synthetic workloads. We com-
pare Fast to Comb to determine the tightness. Based on the simulation results,
the Fast approach finds the makespan nearly as tight as the Comb approach.
Furthermore, we compare Fast with the simulation of the assumed scheduler
that is a lower bound on the best-achievable makespan and we show that its
estimation has low pessimism.

The main advantage of the proposed approach is its generality because it
can be applied to a broad range of platforms, applications, and schedulers.
The unrelated model is very expressive and can model many available plat-
forms today using a wide range of processor types and specialized application
accelerators. The DAG model is capable of capturing the behavior of many
parallel applications. The scheduler is dynamic, so it can deal with a large
number of fine-grain tasks that, for example, an OpenMP parallel application
can have. The scheduler also supports arbitrary compatibility of the tasks to
the processors. So, we can model accelerators that are designed to perform
a limited set of operations more efficiently. Furthermore, the scheduler does
not assume any scheduling policy, so our analysis can be applied to many well-
known work-conserving schedulers from the related work. By fixing the WCET
relation of the tasks to the processors, we show that the proposed makespan
specializes (derives the same closed-form solution) to well-known bounds for
homogeneous multiprocessors and recently developed related multiprocessors
and typed DAGs.

The main limitation of the paper is the abstraction of the platform’s ar-
chitectural details. We do not consider any shared resources between the task.
However, in practice, many hardware components, for example, memory and
interconnect, are shared. The use of shared resources significantly complicates
the problem, and detailed timing analysis is needed to determine the interfer-
ence of the tasks. We do not address the issue of shared resources in this paper.
However, we expect the shared resource timing analysis to be orthogonal with
our analysis and that it would increase the applicability of the model.

To the best of our knowledge, no related work covers the combination of
assumptions: DAG application model, unrelated multiprocessor model, and
work-conserving scheduling. As future work, we plan to develop the analysis
of multiple DAGs that are executed on unrelated multiprocessors with the use
of the sporadic DAG model (Baruah et al., 2015a, 2012).
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A Proofs of Lemmas (3) and (4)

This Section contains the proofs of lemmas that are used for the proof of the
efficient makespan calculation (T Fast

M ) given by Theorem (1).

A.1 Proof of Lemma (3)

Lemma (3) states that the platform capacity S
′
M is always less or equal to

minimum platform capacity between the different permutations SM . The proof
of Lemma (3) is given as follows:

Proof Let π(x) denotes the xth task that belongs to a permutation π . For an
arbitrary task π(x) that it is executing on its xth fastest processor it holds
that:

Oπ(x)x ≥
N

min
i=1
{Oix}

Since the size of the Oi is equal to the number of processors M it holds
that:

M∑

x=1

{Oπ(x)x } ≥
M∑

x=1

N
min
i=1
{Oix}

Since it holds for an arbitrary permutation π , it also holds for the permu-
tation that provides the minimum value.

min
π∈σM

{
M∑

x=1

Oπ(x)x } ≥
M∑

x=1

N
min
i=1
{Oix}

From the definitions of SM and S
′
M given by equations (10) and (11) re-

spectively, the statement of the lemma holds.

A.2 Proof of Lemma (4)

Lemma (4) states that the heterogeneity λ
′

is always greater or equal to the
maximum heterogeneity λ between the different permutations. The proof of
Lemma (4) follows.
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Proof Let Oπ(x)x be the subset of speeds that are smaller than the xth fastest
processor of the xth task that belongs to permutation π . For an arbitrary task
1 ≤ π(y) ≤ N that it is executed on its yth fastest processor, it holds that:

Oπ(y)y ≤ N
max
j=1
{Ojy}

Equivalently,

∑

y∈Oπ(x)
x

{Oπ(y)y } ≤
∑

y∈Oπ(x)
x

N
max
j=1
{Ojy}

By dividing both sides with the speed of the xth fastest processor Oπ(x)x 6=
0, of task π(x) we have:

∑
y∈Oπ(x)

x

{Oπ(y)y }

Oπ(x)x

≤
∑
y∈Oπ(x)

x

maxNj=1{Ojy}

Oπ(x)x

Since the inequality holds for any processor x it holds also for the processor
that maximizes the two sides of the inequality:

M
max
x=1
{
∑
y∈Oπ(x)

x

{Oπ(y)y }

Oπ(x)x

} ≤ M
max
x=1
{
∑
y∈Oπ(x)

x

maxNj=1{Ojy}

Oπ(y)y

}

Since it holds for an arbitrary task with index π(x) that belongs to an
arbitrary permutation π it also holds for any task of the application 1 ≤ j ≤ N
and we have:

M
max
x=1
{
∑
y∈Oπ(x)

x

maxNj=1{Ojy}

Oπ(x)x

} =
M

max
x=1
{
∑
y∈Okx

maxNj=1{Ojy}
Okx

} (26)

Since 1 ≤ k ≤ N it also holds that:

M
max
x=1
{
∑
y∈Okx

maxNj=1{Ojy}
Okx

} ≤ N
max
i=1
{ M
max
x=1
{
∑
y∈Oix

maxNj=1{Ojy}
Oix

}} (27)

From (26) and (27) we have:

M
max
x=1
{
∑
y∈Oπ(x)

x

maxNj=1{Ojy}

Oπ(x)x

} ≤ N
max
i=1
{ M
max
x=1
{
∑
y∈Oix

maxNj=1{Ojy}
Oix

}}
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Let π′ be the permutation that provides the maximum value for the max-
imum accumulated capacity loss. Since it holds for any π it also holds for the
permutation π′, we have:

M
max
k=1
{

∑
y∈Oπ

′
(x)

x

{Oπ
′
(y)

y }

Oπ
′ (x)
x

} ≤ N
max
i=1
{ M
max
x=1
{
∑
y∈Oix

maxNj=1{Ojy}
Oix

}}

Equivalently,

max
π∈σM

{ M
max
k=1
{
∑
y∈Oπ(x)

x

{Oπ(y)y }

Oπ(x)x

}} ≤ N
max
i=1
{ M
max
x=1
{
∑
y∈Oix

maxNj=1{Ojy}
Oix

}}

From the definitions of λ, λ
′

and idleix given by the equations (13), (15)
and (14), we have: λ ≤ λ′ . As a result λ

′
is always greater than or equal to λ.
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Abstract. This paper addresses the problem of scheduling a set of real-
time sporadic DAGs with constrained deadlines on unrelated heteroge-
neous multiprocessor platforms. We propose a scheduler, called GUM,
that can be used to dispatch the nodes of multiple DAGs on a heteroge-
neous platform. The GUM scheduler allows the migration of the nodes
from one processor to another to run them faster to exploit the plat-
form’s heterogeneity effectively. Our proposed GUM scheduler is general
because it can easily be applied to any priority-based real-time scheduler.
Based on the GUM scheduler, we first propose an analytical way to com-
pute the makespan of a single DAG. Then we determine the interference
of each DAG on another DAG when they are scheduled together. Based
on the makespan and interference, we compute the worst-case response
time of each DAG to determine whether the deadline a DAG is met or
not. Our empirical evaluation demonstrates the effectiveness in meeting
the real-time deadlines of randomly generated set of sporadic DAGs.

Keywords: Hard real-time scheduling · Sporadic DAGs · Unrelated het-
erogeneous multiprocessors · Response-time analysis.

1 Introduction

Parallel applications that are executed on heterogeneous multiprocessors can
provide high performance and energy efficiency for time-critical applications. For
hard real-time systems, offline schedulability analysis is necessary to guarantee
that an application’s behavior is time predictable. In this paper, we approach the
problem of computing an upper bound on the completion time (also known as the
worst-case response time [3]) for each of a collection of parallel applications with
strict real-time requirements where the applications execute on a heterogeneous
multiprocessor platform.

A parallel application (e.g., OpenMP [11]) can be modeled as a directed
acyclic graph (DAG), where the nodes represent tasks and the edges represent
dependencies among the tasks. The sporadic DAG model [3] assumes a finite
number of recurring DAGs. Each DAG generates a potentially infinite sequence
of releases. The first release can arrive at any time instant, and any two consec-
utive releases are separated at least by their minimum inter-arrival time (also
called the period). Each DAG has a relative deadline that needs to be met, and
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it is relative to the arrival time of every release of that DAG. The sporadic model
is very suitable to model many real-time control and monitoring applications.

Previous work has shown that heterogeneous multiprocessors can provide
high performance and energy efficiency [1]. A heterogeneous multiprocessor plat-
form can be modeled by the unrelated multiprocessor platform model [3]. In the
unrelated model, multiprocessors have processors of different types. Each task of
a DAG can have a different worst-case execution-time (WCET) [17] on different
processor types. The design and timing analysis of a scheduler that can efficiently
utilize the platform by considering the diversity of processor types is necessary
for the correct execution of real-time applications on an unrelated platform.

A dynamic (also called a global) scheduler can schedule a task of a DAG to
any of the processors of a platform. We consider a global and work-conserving
scheduler such that a processor is never idle if there is available work to schedule.
As a result, such a scheduler can balance the work among the processors to utilize
them efficiently. However, the schedulability analysis of such a scheduler for a
heterogeneous platform is challenging because the task-processor mapping can
change from execution to execution and can lead to different schedule lengths.

The schedulability analysis of a set of sporadic DAGs can be separated into
two parts. The first part is the intra-DAG analysis, where a single DAG is ana-
lyzed in isolation, and the main challenge is to estimate its worst-case schedule
length, called the makespan. The second part is the inter-DAG analysis, where
the main challenge is to safely upper bound the interference that each DAG suf-
fers from other DAGs when competing for the computing resource. By combining
the makespan analysis of a single DAG and the inter-DAG interference analysis,
we find the worst-case completion time, called the response time of each DAG.

The main contribution of this paper is the design of a scheduler and its
schedulability analysis to guarantee offline the timeliness for sporadic DAGs that
execute on unrelated multiprocessors. The scheduler is global, work-conserving,
preemptive, and, migrative and it dispatches or migrates a task to the fastest
available processor. The scheduler is suitable for worst-case schedulability anal-
ysis because it has a property that allows us to find the worst-case task-processor
mapping that may happen during run time. The proposed scheduler is a gen-
eralization for unrelated multiprocessors of the scheduler used in [13,15] that
targets homogeneous multiprocessors. Based on the schedulability analysis of
the scheduler, we generalize the classical window-based schedulability analysis
[2,5,3,15] for unrelated multiprocessors to find the response time of each sporadic
DAG. We then specialize the response-time analysis by assuming both fixed- and
dynamic-priority ordering.

Previous work that uses the unrelated multiprocessor model has focused on
independent parallel tasks [6]. Some work assumes DAG as an application model
but focused on related multiprocessors [14]. A few work have also focused on
typed DAGs [19,16,20] where each task of a DAG can execute only one processor
type. To the best of our knowledge, this paper is the first to propose a method
to compute the worst-case response time for globally scheduled sporadic DAGs
on unrelated multiprocessors.
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Contributions. The first contribution of the paper is the design of a sched-
uler for a set of sporadic DAGs that execute on an unrelated multiprocessor
platform. The scheduler is based on a global strategy and is work-conserving
with migration capability so that tasks of each DAG can enjoy a higher speed as
soon as a more capable processor becomes idle at run time. The second contri-
bution of the paper is the schedulability analysis of sporadic DAGs that execute
on unrelated multiprocessors. We generalize for unrelated multiprocessors the
well established analytical tools to compute the response time of sporadic DAGs
executing on homogeneous multiprocessors. Finally, the third contribution is the
empirical evaluation of the proposed scheduler. We randomly generate synthetic
DAGs and check if all their deadlines are met. The simulation results show that
the well-known rate monotonic and earliest deadline first priority assignment
are effective for heterogeneous multiprocessors and perform better than arbi-
trary priority assignment.

Paper organization: Section 2 presents the system model and useful def-
initions used for formal timing analysis of the proposed scheduling algorithm.
Section 3 presents the pseudocode of the proposed scheduler and the greediness
property that we rely on to reason about the worst-case execution behavior of
the parallel applications. Based on the assumed system model and the greediness
property, we in Section 4 formally present the detailed schedulability analysis
to find the makespan of a single DAG. Section 5 extends the timing analysis
to determine the interference that one DAG has on another DAG to find the
response time of each sporadic DAG. Section 6 presents the simulation frame-
work and the empirical results based on synthetic workloads to demonstrate the
effectiveness of our proposed timing analysis in ensuring real-time constraints.
Section 7 presents related work before concluding the paper in Section 8.

2 System model

We model a heterogeneous platform with the unrelated multiprocessor model
[3]. Every processor can be different, and a processor type characterizes it. A
platform with a total of P processors can have one up to P processor types.
Without loss of generality, we index the processors from 1 to P.

We consider a set of sporadic DAGs, denoted by Γ . The set Γ ={G1, . . . GJ}
has a total of J recurrent DAGs. A recurrent DAG Gj has a minimum inter
arrival time (called the period) T j and a relative constrained deadline Dj such
that T j ≥ Dj [3]. If the tasks of DAG Gj are released at time t, then they must
complete their execution by (t + Dj) and the next release happens no earlier
than (t+T j). A DAG is modeled as: Gj =(V j, Ej), where V j is the set of nodes
(i.e., tasks) and Ej⊆(V j × V j) are the edges (i.e., dependencies) of the Gj.

A node τ i, j ∈ V j, is a sequential task and Gj has a total of Ij sequential
tasks. An edge represents a dependency between two tasks. If (τ p, j, τ q, j) ∈ Ej,
then τ q, j can start its execution only after τ p, j finishes its execution. Without
loss of generality, we assume that every DAG has one task with no incoming
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edges, called source, and is denoted by τ src, j. We assume every DAG has one
task with no outgoing edges, called a sink, and is denoted by τ sink, j.

A task τ i, j has P different WCETs, one for each processor and denoted by
ci, jx for x = 1 . . .P. The WCET of a task is the same for all the processors of
the same type. The minimum WCET of task τ i, j among the P processors is:
ci, jmin := minP

x=1{ci, jx }. We assume that all the tasks are allowed to be executed
on all the processors, meaning that ci, jx <∞ where 1 ≤ x ≤ P .

The workload of a task τ i, j is the amount of computation that a task needs
to complete. Regardless of the processor that a task is executed on, its workload
is constant and equal to ci, jmin. The workload of an entire DAG Gj is the sum
of the workloads of all the tasks in Gj and is given by Eq. (1). The parameter
W j

1 intuitively represents the sequential execution of one-by-one task where each
such task executes on its best processor and thus takes its minimum WCET to
finish execution.

Definition 1. Workload of DAG Gj with Ij tasks:

W j

1 :=
Ij∑

i=1

ci, jmin (1)

A source-to-sink path or simply path γj of DAG Gj is a chain of nodes that
γj = (τ p, j, τ p + 1, j,. . . , τ q − 1, j, τ q, j) where (τ i, j, τ i + 1, j) ∈ E such that p ≤ i < q,
τ p, j = τ src, j, and τ q, j = τ sink, j. All the different paths of Gj are denoted by set
pathsj. The workload of an arbitrary path γj is the sum of the workload of the
nodes that belong to that path and is given by:

W(γj) :=
∑

τ i, j ∈γj

ci, jmin

The path with the largest workload among all the paths is called the critical
path and is given by: cpj = arg maxγj∈pathsjW(γj). The maximum workload of
any path of Gj is given by Eq. (2).

Definition 2. The maximum workload of any path in Gj:

W j

∞ =W(cpj) (2)

The parameter W j
∞ intuitively represents the length of the schedule of the DAG

on an infinite number of processors of each type. The total workload (Eq. (1))
and the workload of the critical path (Eq. (2)) can be computed in linear time
in the representation of the DAG [10]. Even though the workload of a task is
constant, the duration that it takes to execute it can vary depending on which
processor the executes at run time (i.e., the task-processor mapping).

We define δi, j
x the speed that task τ i, j can execute at the xth processor for

x = 1 . . .P such that δi, j
x := ci, jmin/c

i, j
x . Let Oi, j

y be the yth highest speed that task
τ i, j can execute on some processor. We specify the speed-preference of processors
by a task τ i, j using a sequence Oi, j as defined in Def. 3.
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Definition 3 (Speed Preference). We define Oi, j =< Oi, j
1 ,Oi, j

2 , . . .Oi, j
P >

for τ i, j as the sequence of non-increasing speeds where Oi, j
1 ≥ Oi, j

2 ≥ . . . ≥ Oi, j
P .

For example, consider a platform with three processors and a task with
WCETs {3, 1, 2} for these three processors. The task has speeds {0.33, 1, 0.5}
and based on the Def. 3 the task has speed preference {1, 0.5, 0.33}.

3 Scheduler

Section 3.1 presents the algorithm of the proposed scheduler. Section 3.2 shows
a property, called the greediness property, of the scheduler that is used for the
formal worst-case analysis of the execution of the nodes of the sporadic DAGs.

Algorithm 1: GUM
1 if Release or Completion event then
2 Check ReadyQ and RunQ for preemption, update platform’s status.
3 while ∃τ i, j ∈ RunQ can Migrate do
4 {τ curr , sp dst} = Find the task τ i, j ∈ RunQ, with the smallest

k ∈ Oi, j that ProcIndex(Oi, j
k ) is idle

5 Execute τ curr to ProcIndex(Ocurr
sp dst), update platform’s status.

6 while ∃ idle and !ReadyQ.Empty do
7 τ i, j = ReadyQ.head
8 Find smallest k ∈ Oi, j that ProcIndex(Oi, j

k ) is idle
9 Execute τ i, j to ProcIndex(Oi, j

k ), update platform’s status.

3.1 Algorithm of the scheduler

Alg. 1 presents the pseudocode of the GUM (Greedy, Unrelated, Maximum-
speed-preference) scheduler. The scheduler is global (dynamic), work-conserving,
migrative, and preemptive [3]. The scheduler’s main design principle is to sched-
ule a task to the idle processor with its highest speed-preference (Def. 3).

The scheduler is invoked in two cases: (i) when a DAG is released and its
source is ready for execution, and (ii) a task completes its execution and its
children are ready for execution (line 1). In both cases, the tasks are stored in
the ReadyQ and are sorted based on their priorities. The RunQ keeps track of
the tasks in execution based on their priorities. The highest and lowest priority
tasks both in ReadyQ and RunQ are at the queue’s head and tail, respectively.

The algorithm mainly has three different steps. In the first step, we check
if there would be any preemption when all the processors are busy, and a
task is awaiting execution with a relatively higher priority than that of a task
in execution. We preempt the lowest priority among the executing tasks with
the highest priority task in the ReadyQ. We update the status of the platform
with the idle processors that are available after a preemption (line 2). In the
second step, we check if there are currently executing tasks in RunQ that can
migrate to a faster idle processor. We repeatedly in line 3-5 try to find a task
from the RunQ with the highest speed-preference (which is the task with the
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smallest index in the speed preference sequence) considering the processors that
are currently idle. We migrate such a task to the faster idle processor and the
processor it was executing on is marked as idle (i.e., status of the platform is
updated in line 5). We check all the executing tasks if they can migrate, and
if there is no task, we exit the loop in line 3-5. In the third step, we dispatch
the tasks for execution from the ReadyQ. If there are idle processors and there
are tasks ready for execution, we dispatch such a task to that idle processor on
which it executes the fastest and we remove the task from ReadyQ (lines 6-9).

The migration cost is platform-dependent and such architectural character-
istics of the platform are known during the WCET analysis which is an active
research area [17]. We assume that the cost of migrations is already included in
the WCET of the task.

3.2 Greediness property

In this section, we present a property of GUM called the greediness property.
Based on this property, we will define the platform’s minimum capacity that
intuitively shows the minimum rate by which the application’s workload can
be executed on the platform. Before we present the property in Lemma 1, we
introduce the notions of scheduling point and a stable time interval. A scheduling
point is a point in time when GUM needs to schedule a task. Such a scheduling
point is at the beginning of the schedule or when a task’s release or completion
occurs (Alg. 1). We call a time interval [a,b] a stable time interval when there is
no scheduling point within the interval except at the endpoints in [a,b].

Lemma 1. (Greediness Property): If total p processors are busy executing
some tasks during any stable time interval with the GUM scheduler where p ≤ P,
then there is some task executing at least at its xth fastest speed for x = 1, 2, . . . p.

The lemma can be proven by case analysis of the scheduled tasks. We need
to consider three cases: (1) all processors are idle; (2.a) some tasks are still in
execution, and no migration is possible; (2.b) some tasks are still in execution,
and some tasks migrate to faster processors. The main idea of the proof of Lemma
1 is that if a total of (x−1) processors are busy, then a new task from the ready
queue in the worst-case would be dispatched for execution to a processor that
provides at least its xth fastest speed. Similarly, if x tasks are in execution, a
task migrates to a new processor that has at least its xth fastest speed. Lem.
1 essentially specifies the task-processor mapping that GUM can achieve in the
worst case if p processors are busy where p ≤ P. Initially, it guarantees that
some task executes during any stable time interval with at least its highest
speed. Next, there is some task that executes with at least its second-highest
speed and so on. Note that the greediness property is oblivious to the task’s
priority, and as a result, it holds for a broad range of priority-based schedulers.

Based on Lemma 1 that shows the worst-case task-processor mapping, we
find in Eq. (3) the platform’s minimum capacity that is always guaranteed to

the applications. The inner minimum operation minIj

i=1{Oi, j
x } finds the mini-

mum speed among the xth speed-preference among all DAG tasks. The outer
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summation
∑P
x=1 accumulates the minimum speeds for all the processors, i.e,

for x = 1 . . .P processors.

Definition 4. Minimum platform capacity:

mj

P :=
P∑

x=1

Ij

min
i=1
{Oi, j

x } (3)

One can analyze the platform capacity independent of the application for
homogeneous and related multiprocessors [13,14] because each particular pro-
cessor provides the same speed to all the tasks. However, for unrelated multi-
processors determinig the capacity is quite challenging as one needs to consider
the WCETs of each task and its relationship to each particular processors. The
minimum capacity in Eq. (3 intuitively shows the minimum rate at which an
unrelated platform can execute the application’s workload. Such an abstraction
of the platform using minimum capacity in Eq. (3 is needed for timing analysis
that we present in next section.

4 Makespan of a single DAG

In this section, we present the first part of the schedulability analysis, which
is the intra-DAG analysis used for the response time computation. We analyze
the worst-case schedule of an arbitrary single DAG, assuming it has dedicated
access to the entire platform, and find the makespan of this single DAG.

To prove that the makespan is correct, we need to show that the GUM sched-
uler does not suffer from execution-time based timing anomalies, which occur
when the DAG’s schedule length becomes larger if a task of the DAG completes
its execution earlier than its estimated WCET [13]. The work in [13,8] present an
upper bound on the makespan for homogeneous processors by avoiding timing
anomalies. In the rest of this section we present how we adapt the result form
[13,8] for unrelated platforms.

In order to account for the worst-case schedulability analysis, we transform
the original DAG into a different DAG, called the degraded DAG. The degraded
DAG is constructed to capture the worst-case task processor mapping in the
sense that the tasks may execute on their slowest processor, i.e., the tasks execute
for their maximum WCET among the processor types. The advantage of this
degradation is that the makespan of the degraded DAG can be computed based
on previous work targeting homogeneous multiprocessors. Finally, we show that
the DAG’s makespan is essentially the makespan for the original DAG executed
on the target unrelated multiprocessor platform. Definition 5 shows how we
degrade the DAG such that we can apply results from earlier work in [13,8].

Definition 5. (DAG degradation): The DAG Gĵ is an isomorphic DAG to
Gj (V j = V ĵ and Ej = E ĵ) that for every task of Gĵ instead of having P WCETs,
the task has only one WCET denoted by (ci, ĵ) and given as ci, ĵ := maxP

t=1{ci, jt },
∀τ i, j ∈ V j. The total workload W ĵ

1 and the workload of the critical path W ĵ
∞ of

the degraded DAG Gĵ are computed by Eq. (1) and Eq. (2), respectively.
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Theorem 1. (Makespan): Given the degraded DAG Gĵ of Gj and an unrelated
platform with a total of P processors, the following holds:

1. An upper bound on the makespan, denoted by Xj
P , of Gĵ executed on a homo-

geneous platform with P processors is given by the right-hand side of Eq. (4):

Xj

P ≤
W ĵ

1 + (P − 1) ·W ĵ
∞

P (4)

2. The upper bound on the makespan of Gĵ given by Eq. (4) is also an upper
bound on the makespan of the Gj executed on the unrelated platform.

Proof. We prove the two parts of the theorem as follows:
Part 1: By degrading the Gj to Gĵ, we pessimistically assume that all tasks

execute for their maximum WCET. The platform with P processors that Gĵ is
executing is a hypothetical homogeneous (WHH) platform. Consequently, the
analysis for a single DAG on a homogeneous platform [13,8] can be applied and
the makespan based on [13,8] is given in Eq. (4).

Part 2: During the execution of Gj on an unrelated platform, the execution
time of a task can be less than its maximum WCET that we assume for Gĵ on
the WHH due to two reasons. First, (a) the execution time shorter because of the
pessimism in estimating the WCET [17]. Second, (b) a task of Gj on an unrelated
platform can be mapped to a processor that ensures execution time that is less
than its maximum WCET that we assume for the Gĵ when it is executed on
the WHH. Eq. (4) that directly follows from [13,8] avoids the execution-time
based timing anomalies and thus proved to be safe in [13,8]. Even if during the
execution of Gj on an unrelated platform, some tasks because of (a) and/or (b)
execute for less than their maximum WCET that we assume for Gĵ on WHH, the
makespan in Eq. (4) is also the makespan of Gj for the unrelated platform. ut

The makespan in Eq. 4 has quite broad applicability as it can be applied to
any work-conserving scheduler like any fixed- or dynamic-priority scheduler.

5 Response time of a sporadic DAG set

The second part of the schedulability analysis is the inter-DAG analysis. We
address the challenge to formally determine how long each DAG can interfere
with the execution of another DAG under analysis. By combining the makespan
analysis from the previous section with the interference analysis, we can compute
the overall completion time (i.e., response time) for each of the sporadic DAGs,
and we can check if all of them meet their deadlines or not.

The problem of computing the interference can be separated into two parts:
(a) computing the maximum workload of each release of a DAG that can interfere
with the other DAG, which is the main challenge for unrelated multiprocessors;
and (b) finding the number of times a DAG can interfere with the other DAGs,
which we can solve based on [2,5,15,3].
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To address (a), we need to find an upper-bound on the workload that a
DAG can interfere with the other DAGs. A DAG can be interfered by another
DAG if there is no processor that the former can execute on. As a result, it is
important to find the time duration that all other DAGs keep all the processors
busy such that we can compute the total interference that all such DAGs can
impose on a DAG under analysis. Please recall that the total workload W j

1 is
defined based on the minimum among all the processors’ WCET for each task.
The total workload W j

1 can be seen as the sequential execution of a DAG that
executes on a hypothetical ideal homogeneous platform with P processors.

A simple approach to find an upper-bound on the workload that a DAG
can interfere with the other DAGs is the W ĵ

1 from Def. 5. However, it would
be pessimistic because we need to assume that all the tasks execute on their
slower processor (i.e., for their maximum WCET). In Lem. 2 we introduce the
inflated total workload that increases/inflates the total workload W j

1 such that
it considers the heterogeneity of the platform and the worst-case task-processor
mapping. To find the inflated workload of a DAG, we use the greediness property
of GUM scheduler and the minimum capacity (mj

P) given in Eq. (3).

Lemma 2. Let Gj is scheduled with GUM on an unrelated platform with P
processors. The inflated total workload wj

P upper bounds the workload W j
1 for an

equivalent execution of Gj on a homogeneous platform with P processors, where:

wj

P =
W j

1

mj
P
· P (5)

Proof. Consider a time interval during which all the processors are busy. Dur-
ing such a time interval, depending on which processors the tasks are executing
on, the platform can offer different capacities to the application. First, by def-
inition, the minimum capacity is the smallest and is used to lower-bound the
platform’s capacity for any time interval. As a result, the W j

1 /m
j
P is the longest

time duration that all the processors are busy. Second, at any time interval,
the platform’s maximum capacity is P when each task executes with speed 1,
which is equivalent to executing the tasks on a homogeneous platform where all
the tasks execute for their minimum WCET. When all the processors are busy
during any time interval, the workload can be consumed at a maximum rate of
P. The maximum inflated workload of a DAG assuming an unrelated platform
with P processors is given by Eq. (5). ut

The window analysis [2,5,15,3] for homogeneous multiprocessors finds the
worst-case interference by considering the worst-case duration that the DAGs
can keep all the processors busy and the number of times that each DAG can
interfere each other DAG. By using the inflated workload (Eq. (5)) and the well-
known window-based schedulability analysis framework [2,5,15,3], we compute
the response time for unrelated multiprocessors. We use [5] to find the interfering
workload for any work-conserving scheduler (AWC) that has the greediness prop-
erty (Lem. 1). For AWC, the interfering workload is computed by considering that
all the DAGs can interfere with the DAG under analysis (Th. 4 from [5]). For a
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fixed-priority scheduling policy, e.g., rate monotonic RM, we need to consider only
interference by the DAGs with higher priorities. For a dynamic-priority sched-
uler, e.g., earliest deadline first (EDF), the interference can be reduced by special-
izing the window analysis (Th. 5 from [5]). Finally, we combine the makespan
from Section 4 with the worst-case interference from the window analysis to find
the response time (Th. V.1 from [15]). For brevity, the exact equations form [5]
to find the interference and the response time are not presented here. All the
parameters used to find the response time can be computed in polynomial time
and the response time can be computed in pseudo-polynomial time [3], which is
acceptable for offline analysis of hard real-time applications [3].

6 Quantitative evaluation

We evaluate the response time computation based on synthetic DAGs and we
check whether each DAG in a set of DAGs meets its deadlines or not. Section 6.1
presents our simulation framework, and Section 6.2 shows the simulation results.

6.1 Simulation framework

The platform has P processors and H processor types where H ≤ P. Each
processor is assigned to an arbitrary processor type while ensuring that there is
at least one processor of each of the H types. Parallel applications like OpenMP
[11] can be modeled as a DAG, which has many tasks but has only a few unique
task types [9]. Multiple tasks of a unique task type have the same functionality
and thus have the same WCET on the same processor type. So we consider only
the unique task types for generating synthetic DAGs.

We randomly generate between [1,10] unique task types for every DAG. Then,
we generate the WCETs of the unique tasks that exist in every DAG. First, we
determine for each task type the minimum WCET randomly between [1,100]
and we associate a randomly chosen arbitrary processor type, called the initial
processor type, to this WCET. Second for each unique software type, we add
a randomly generated value between [1,(H ∗ 100)] to the minimum WCET to
generate the WCET for every processor of the platform (P) that belongs to some
processor type. When we add a new processor type different from the initial
processor type, it will execute a task slower compared to the initial processor
type. From the WCETs of the unique task types, we calculate the mj

p from
Eq. (3) and we consider only the unique task types because tasks that are of the
same unique task type have the same WCET for all the processors.

We select a random value between [1,1000] to generate the total number
of nodes (Ij) for each DAG Gj. Then we randomly select a value between
[Ij,100000] as the value of W j

1 where each node is assumed to at least have an
execution time of one time unit. For two given numbers n ∈ (Z+) and b ∈ R+,
the well-known UUniFast [7] algorithm can randomly generate an array of n
numbers form an uniform distribution such that the sum of the numbers is ex-
actly equal to b. Based on the UUniFast [7], we generate two arrays each with
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the size equal to the number of unique task types (i.e., value of parameter a for
UUniFast) and total value equal to the other parameter b = 100%. The first ar-
ray elements are the percentages of the workload that correspond to each unique
task type. The second array elements are the percentages of workload for each
unique task type that is part of the critical path that we use to compute the
critical path’s workload (W j

∞).
Based on the mj

p and W j
1 we calculate the wj

P given in Eq. (5). To compute
the maximum total workload (W ĵ

1 ) and the maximum workload of the critical
path (W ĵ

∞), initially we find the minimum speed among all the processors for
each unique task type that we use to divide the workload and find the maximum
workload. Next, based on the percentages of workload that correspond to each
unique task type (first array), we find the workload that corresponds to each
unique task type. Furthermore, based on the percentages of the workload of
each unique task type that belongs to the critical path (second array), we find
the workload of each unique task type that belongs to the critical path. By
summing the workloads for each unique task type we find the (W ĵ

1 ) and (W ĵ
∞)

that we use to compute the makespan (Xj
P) given by Eq. (4).

The level of difficulty in scheduling some workload is generally controlled
using a parameter called utilization: the higher is the utilization, the higher is
the demand for computing resources, and consequently, the more difficult it is
to schedule the workload without missing the deadline. We define utilization
of Gj is U j = wj

P/T
j. The total utilization of a set of total J DAGs is U =∑J

j U
j . The period (T j) of a DAG is selected randomly between the range [Xj

P ,
10∗wj

P ], similar to [15]. To generate DAGs with a specific utilization, called goal
utilization, we first generate random DAGs. We add their utilization as long as
the total utilization is smaller than the goal utilization. For the last DAG, we
modify the period to fit the goal utilization. The relative deadline is randomly
selected between [Xj

P , T j].
We calculate the response time where the DAGs are given priority based

on rate monotonic (RM) and earliest deadline first (EDF). We also calculate the
response time for an arbitrary priority ordering (AWC). In summary, the response
time of the DAGs of each set of DAGs is computed using three different policies.
All the tasks of the same DAG have the same priority.

All the randomly generated values that we use to create the synthetic DAGs
are are uniformly random values. We compute the response time for 200 DAG
sets at each utilization point, and we report the average percentage of DAG sets
where all its DAGs meet their deadlines, called acceptance ratio —– the higher
is the acceptance ratio, the better is the proposed analysis in guaranteeing the
schedulability of parallel applications.

6.2 Results of sensitivity analysis

Figure 1 presents the simulations if we keep the number of processors fixed
(P = 4) and vary the utilization. The vertical axis is the acceptance ratio (%).
The horizontal axis is the utilization that we change with step 0.25. Figure 2
shows the acceptance ratio if we keep the utilization fixed (U = 2) and we vary
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the number of processors. The vertical axis is the acceptance ratio, and the
horizontal axis is the number of processors (1, 2, 4, . . . , 128). For both figures,
the left, center, and right graphs are the AWC, EDF, and RM scheduling policies,
respectively. The different lines are the results for H = {1, 2, 3}.

Fig. 1. Acceptance ratio for fixed number of processors and varying the utilization.

Fig. 2. Acceptance ratio for fixed utilization and varying the number of processors.

We can see that EDF and RM provide a higher acceptance ratio than AWC. The
schedulability analysis of EDF and RM needs to consider the interference that the
higher priority DAGs cause while AWC assumes that all the DAGs can interfere
with another DAG. We observe that EDF and RM have similar acceptance rates.
Next, by increasing the number of processor types (i.e., degree of heterogeneity),
the acceptance ratio of H = {2, 4} follows the same trend with H = 1. Also, by
increasing H for each scheduling policies the acceptance ratio decreases. There
are two reasons behind such a phenomenon. The first reason is that the added
processor types are slower compared to the platform where H = 1. Please recall
that if we increase H, we add a new, slower processor type compared to the
case that H = 1 in our simulation framework. The platform with H = 1 can
be seen as the best hypothetical homogeneous platform because all the tasks
are executed for their minimum WCET in comparison to the heterogeneous
platforms (H = {2, 4}). So it is expected that by increasing the number of
processor types, we have a lower acceptance ratio compared to the case when
all the tasks always execute at their minimum WCET. The second reason is the
pessimism of the makespan computation. While the inter-DAG analysis takes
advantage of the scheduler’s greediness property, the makespan computation
pessimistically assumes that all the tasks execute at their largest WCET.

Overall, we can apply the proposed response-time computation to a broad
range of heterogeneous platforms, parallel applications, and scheduling policies.
We are aware of the pessimism considered in our analysis in order to never
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underestimate the completion time of an application in the worst case. Reducing
the pessimism further but in a safe manner is an interesting future work.

7 Related work

There have been several works on determining the makespan of a single DAG
on different types of multiprocessor platforms. The classic work by Graham [13]
initiated a plethora of research for determining the makespan of parallel appli-
cations on homogeneous multiprocessors. The work [8] extended the analysis in
[13] for Cilk-based parallel programs considering a work-stealing scheduler. The
work [4] extends the result in [8] for related heterogeneous systems. None of these
earlier works considers an unrelated platform that we consider in this paper. For
Typed DAGs, each node can execute on exactly one type of processor [19,16].
The assumption that each node can execute only on one type of processor has
limited applicability for emerging heterogeneous architectures available today
(e.g., the big.LITTLE). Unlike [19,16], our work assumes that all the tasks can
execute on all the processors. The [6] considers scheduling a set of independent
sequential tasks on unrelated multiprocessors. Although these works consider
quite a general processor model, the application model is quite restrictive; for
example, sequential tasks cannot model dependencies among the tasks. For par-
allel independent tasks, the potential parallelism that we can achieve is limited
because the intra-task parallelism is not allowed. The [14] proposes federated
scheduling of sporadic DAGs on related heterogeneous multiprocessors. Since
the related model is a special case of the unrelated model, our work is applicable
not only in the context of [14] but also in other hardware and software setups.
The problem of scheduling multiple DAGs on homogeneous multiprocessors is
addressed in [15,18,12]. The homogeneous multiprocessor is a special case of
an unrelated multiprocessor model. Our response time computation would be
identical to [15] when applied to homogeneous multiprocessors, which shows the
backward compatibility feature of our analysis.

In summary, earlier work on scheduling parallel applications on multipro-
cessors considered either a restrictive model of the application or a restrictive
model of the hardware platform. However, a general setting like multiple recur-
rent DAGs executing at an unrelated heterogeneous platform can model many
real-time applications requiring high computation power. Our work fills the gap
by using the application, processor, and scheduler models that are very general
as they can be applied to various parallel applications and hardware platforms.

8 Conclusion

This paper addresses the problem of computing the response time of sporadic
DAGs on an unrelated heterogeneous multiprocessor platform. The GUM sched-
uler is proposed and analyzed to compute the makespan of a single DAG. Based
on the makespan of single DAG and interference that one DAG can suffer from
another DAGs, we developed a response time computation that is applicable
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to any work-conserving scheduler with the greediness property. Simulations are
presented to show the effectiveness of our proposed approach. To the best of
our knowledge, this is the first work that addresses the problem of scheduling
a set of constrained-deadline sporadic DAGs on unrelated machines. The main
salient feature of the proposed research is its generality as it applies to a variety
of hardware platforms, application models, schedulers.

References

1. ARM: The future of compute, re-imagined. https://www.arm.com/why-arm/

technologies/dynamiq (2017)
2. Baker, T.P.: Multiprocessor edf and deadline monotonic schedulability analysis.

In: RTSS. IEEE (2003)
3. Baruah, S., Bertogna, M., Buttazzo, G.: Multiprocessor scheduling for real-time

systems. Springer (2015)
4. Bender, M.A., Rabin, M.O.: Scheduling cilk multithreaded parallel programs on

processors of different speeds. In: SPAA (2000)
5. Bertogna, M., Cirinei, M.: Response-time analysis for globally scheduled symmetric

multiprocessor platforms. In: RTSS. IEEE (2007)
6. Bertout, A., Goossens, J., Grolleau, E., Poczekajlo, X.: Workload assignment for

global real-time scheduling on unrelated multicore platforms. In: RTNS (2020)
7. Bini, E., Buttazzo, G.C.: Biasing effects in schedulability measures. In: ECRTS.

IEEE (2004)
8. Blumofe, R.D., Leiserson, C.E.: Scheduling multithreaded computations by work

stealing. JACM (1999)
9. Chronaki, K., et al.: Criticality-aware dynamic task scheduling for heterogeneous

architectures. In: ACM, ICS (2015)
10. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to algorithms.

MIT press (2009)
11. Duran, A., et al.: Barcelona openmp tasks suite: A set of benchmarks targeting

the exploitation of task parallelism in openmp. In: ICPP (2002)
12. Fonseca, J., Nelissen, G., Nélis, V.: Schedulability analysis of dag tasks with arbi-

trary deadlines under global fixed-priority scheduling. Real-Time Systems (2019)
13. Graham, R.L.: Bounds on multiprocessing timing anomalies. SIAM journal on

Applied Mathematics (1969)
14. Jiang, X., Guan, N., Long, X., Yi, W.: Semi-federated scheduling of parallel real-

time tasks on multiprocessors. IEEE RTSS (2017)
15. Melani, A.e.a.: Response-time analysis of conditional dag tasks in multiprocessor

systems. In: ECRTS (2015)
16. Peng, X., Han, M., Deng, Q.: Response time analysis of typed dag tasks for g-

fp scheduling. In: International Symposium on Dependable Software Engineering:
Theories, Tools, and Applications. Springer (2019)

17. Reinhard, W., et al.: The worst-case execution-time problem overview of methods
and survey of tools. ACM TECS (2008)
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Federated scheduling of sporadic DAGs on unrelated multiprocessors

ANONYMOUS

This paper presents a federated scheduling algorithm for implicit-deadline sporadic DAGs that execute on an unrelated heterogeneous
multiprocessor platform. We consider a global work-conserving scheduler to execute a single DAG exclusively on a subset of the
unrelated processors. Formal schedulability analysis to find the makespan of a DAG on its dedicated subset of the processors is
proposed. The problem of determining each subset of dedicated unrelated processors for each DAG such that the DAG meets its
deadline (i.e., designing the federated scheduling algorithm) is tackled by proposing a novel processors-to-task assignment heuristic
using a new concept called processor value. Empirical evaluation is presented to show the effectiveness of our approach.

CCS Concepts: • Computer systems organization → Embedded systems; Redundancy; Robotics; • Networks → Network relia-
bility.

Additional Key Words and Phrases: Federated, work-conserving, multiprocessor, scheduling, heterogeneous, unrelated, sporadic, DAGs

ACM Reference Format:
Anonymous. 2018. Federated scheduling of sporadic DAGs on unrelated multiprocessors. In Proceedings of . ACM, New York, NY, USA,
20 pages. https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION

New functions are continuously being added in many real-time systems to improve both the safety and the quality of
service for end-users (e.g., autonomous vehicles, industrial robots). Integrating new functions requires high computing
power, which one can achieve using special hardware. Heterogeneous multiprocessors are key to provide such compu-
tation power for many modern real-time applications [3, 4, 18, 21, 28, 29, 35, 36]. In addition, real-time applications
that are implemented using parallel programming models like OpenMP [5] can also effectively exploit such parallel
heterogeneous architectures. However, the main challenge to use a heterogeneous platform for real-time applications is
to guarantee time predictability, i.e., how to ensure offline that the deadlines of the parallel applications will be met at
runtime. This paper proposes the design and analysis of a scheduling algorithm for executing a collection of parallel
real-time applications on a heterogeneous multiprocessor platform while guaranteeing timeliness.

The directed acyclic graph (DAG) is quite powerful to model many parallel real-time applications. A DAG models
one application and has a set of nodes representing sequential tasks and a set of edges representing the dependencies
among the tasks. We consider the problem of scheduling a set of sporadic DAGs with implicit deadlines on an unrelated

heterogeneous multiprocessor platform. Note that the unrelated model is general enough to cover both the homogeneous
and related (i.e., uniform [7]) multiprocessor models, and many commercial heterogeneous platforms are compliant
with the unrelated model [3, 4]. One of the unique features of an unrelated platform is that the processors or cores of
the platform are of different types [7]. Unlike the related machine model, different tasks of a DAG can have different
speeds of execution on the same processor type of an unrelated platform. Exploring such speed relationships that the

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2018 Association for Computing Machinery.
Manuscript submitted to ACM
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tasks of a DAG have to different processor types makes the design and timing analysis of a scheduling algorithm for
unrelated platform really challenging.

The works in [1, 2, 8, 11, 31, 33] consider the scheduling of independent and sequential tasks on an unrelated platform.
Unfortunately, sequential independent tasks neither can exploit intra-task parallelism nor can they be used to model, for
example, data dependencies. Other works [26, 27, 30, 38, 42–44] on scheduling DAGs on unrelated platform assume that
a node can only execute on exactly one type of processor (typed DAGs [26, 42, 43] and HPC-DAGs [44]) or is applicable
only to related platforms [30]. In summary, earlier works on heterogeneous multiprocessors consider a restrictive model
of the tasks or the platform. Our work bridges this gap by considering scheduling a set of DAGs where the nodes may
have dependencies, and a node is allowed to execute on any processor type of an unrelated heterogeneous platform.

We consider the federated scheduling [6, 12, 19, 32, 41] of a collection of sporadic DAGs where each DAG is assigned a
dedicated subset of the processors of an unrelated multiprocessor platform (called, a cluster). The advantage of federated
scheduling is that no DAG in a cluster interferes with the execution of another DAG in a different cluster. However, the
allocation of unrelated processors to the DAGs is more challenging than that of the related or homogeneous model
because different tasks may have different speed relationships with each unrelated processor of the platform. Our
proposed federated scheduling algorithm is designed by considering the complex speed relationships the tasks of a
DAG have with the processors of the unrelated platform.

The problem of searching the clusters that would make all the DAGs meet their deadlines is equivalent to the classical
bin-packing problem, which is NP-hard in the strong sense [23]. Therefore, finding an optimal allocation of the unrelated
processors to all the DAGs under the federated scheduling paradigm is computationally intractable. To that end, the
design of our federated scheduling algorithm uses a novel heuristic for processor allocation to the DAGs based on a
concept called the processor value, which specifies how much overall benefit an unrelated processor offers to meet the
deadline of a DAG. If each of the DAGs is assigned a cluster of processors, it is guaranteed that all the deadlines of all
the DAGs will be met at runtime.

Whether a DAG meets its deadline on a given cluster or not depends on (i) the cluster-level scheduling algorithm,
and (ii) the corresponding schedulability test. We consider global scheduling as the cluster-level scheduler — called the
GUM scheduler — which is used to dispatch the nodes of a DAG on the processors of its cluster. The GUM scheduler
has a special property, called the greediness property, that always tries to execute tasks on a relatively faster processor
whenever such a processor becomes idle at runtime, for example, due to the completion of another task. We present
the schedulability analysis of GUM scheduler based on the greediness property. The outcome of the analysis is a
mathematical expression that can be used to compute an upper bound on the completion time (i.e., makespan) of a
DAG on its cluster. Another salient feature of the analysis of GUM scheduler is that it is oblivious to the priorities of
the tasks of a DAG. Consequently, our analysis is also applicable to a wide variety of cluster-level schedulers like fixed-
or dynamic-priority-based scheduling algorithms.

We evaluate the effectiveness of our proposed federated scheduling algorithm using randomly generated DAGs. We
perform intensive sensitivity analysis of our proposed test by varying different parameters of our assumed system
model. We also compare the proposed schedulability test for federated scheduling with that of the state-of-the-art1 in
[30, 34]. Our proposed federated scheduling algorithm outperforms the state-of-the-art in terms of satisfying the timing
constraints of randomly generated sets of sporadic DAGs.

This paper makes the following contributions.

1We adapted the state-of-the-art analysis to apply in the context of our assumed system model since we could not find any earlier work that considers a
general system model as ours.
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• This paper introduces the concept processor value to capture the complex speed relationships that the tasks of a
DAG have with each processor of an unrelated heterogeneous platform.

• A federated scheduling algorithm is designed based on processor value to find the feasible clusters for a set
of implicit-deadline sporadic DAGs. Each DAG executing on a dedicated cluster does not interfere with the
execution of another DAG on a different cluster.

• We consider the GUM scheduler as the cluster-level scheduler, which is based on the global scheduling paradigm.
– The schedulability analysis of GUM scheduler is presented to determine the makespan of a DAG on a given
cluster. The makespan is used to verify whether the deadline of the DAG on the cluster is met or not.

– The GUM scheduler is shown to possess the greediness property: a task always executes on a relatively
faster processor whenever such a processor becomes idle during runtime. Executing the tasks on relatively
faster processors makes the overall application finish early and thus is more likely to meet its hard deadline.

• Our empirical investigation shows that the proposed federated scheduling is effective for different variations of the
system’s parameters. The proposed schedulability test for federated scheduling outperforms the state-of-the-art
in terms of guaranteeing the real-time constraints of randomly generated sets of sporadic DAGs.

Paper organization: Section 2 introduces the model for the platform and the application. Next, Section 3 introduces
the scheduler that we use to schedule the tasks of a single DAG. Section 4 presents the makespan computation of a
single DAG that executes in isolation on a set of unrelated processors. In Section 5 we propose, based on the processor
value parameter, the federated scheduling algorithm that we use to assign the processors to the DAGs. Furthermore, In
Section 6 we evaluate the proposed federated scheduling algorithm. First, we introduce the simulation framework, and
then we evaluate the effectiveness of the federated scheduling algorithm for unrelated and related multiprocessors.
Finally, Section 7 presents the related work before we conclude the paper in Section 8.

2 SYSTEMMODEL

This section presents the model of the platform and applications that we consider in this paper. A heterogeneous
multiprocessor platform is modeled by a set of P unrelated processors. A processor has an index x such that 1 ≤ x ≤ P
and the set of processor indices is denoted by M such that M = {1, 2, … P}. In this paper, whenever we say “processor
x”, we refer to the processor with index x .

A sporadic DAG setwithN DAGs is defined byΓ= {G1, …GN}, where eachGj is a DAGwith index j ∈ {1, 2, … , j, … ,N}
that models one parallel application. Each Gj is released repeatedly with a minimum inter-arrival time (called the
period), denoted by T j . The execution of each release of Gj needs to be completed by its relative deadline, denoted by
Dj . We assume implicit deadlines and it holds that T j = Dj .

A sporadic DAG Gj with I j nodes is defined by Gj = (V j , E j) where, set V j contains the nodes of the DAG and
E j ⊆ (V j × V j) are the edges among the nodes. A node with index i of Gj is denoted by 𝜏 i, j ∈ V j where 1, ≤ i ≤ I j and
such a node represents a sequential task. An edge represents a dependency between two nodes/tasks. If (𝜏p, j ,𝜏q, j) ∈ E j ,
then 𝜏q, j can start its execution only after 𝜏p, j finishes its execution. Without loss of generality, we assume that every
DAG has one task with no incoming edges, called the source and is denoted by 𝜏 src, j . In addition, we assume every DAG
has one task with no outgoing edges, called the sink and is denoted by 𝜏 sink, j .

Let ci, jx denote the WCET of 𝜏 i, j when it executes on processor x , where x ∈ M. We assume that each task 𝜏 i, j

can execute on any processor and can finish the execution in a bounded time, i.e. 0 < ci, jx < ∞. We denote ci, jmin :=

minx∈M {ci, jx } as the minimum WCET of 𝜏 i, j on any processor. In definition 2.1, we define the total workload of the
3
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DAG, denoted by W j
1 , to capture the execution requirements of an application Gj such that the workload is the sum of

the minimum WCET of each task. The parameter W j
1 intuitively is the length of the sequential schedule assuming the

best task-processor mapping, i.e., all tasks are executed sequentially for their minimum WCET.

Definition 2.1. Total workload of Gj is defined as follows:

W j
1 :=

Ij∑
i=1

ci, jmin (1)

A source-to-sink path or simply path 𝛾 j of a DAG Gj is a chain of nodes that 𝛾 j = (𝜏p, j ,𝜏p + 1, j ,. . . ,𝜏q − 1, j ,𝜏q, j) where
(𝜏 i, j ,𝜏 i + 1, j) ∈ E such that p ≤ i < q and 𝜏p, j = 𝜏 src, j and 𝜏q, j = 𝜏 sink, j . The set of all paths in Gj is denoted by pathsj . We
define the workload of path 𝛾 j , which belongs to Gj , as follows:

W(𝛾 j) :=
∑

𝜏 i, j ∈𝛾 j

ci, jmin (2)

We define the critical path as the path with the largest workload and is given by cpj = arg max𝛾 j ∈pathsj W(𝛾 j).
Definition 2.2 introduces the workload of the critical path. The parameter W j

∞ intuitively is the length of the schedule
assuming a hypothetical platform with an infinite number of processors of each type where all the tasks execute for
their minimum WCET.

Definition 2.2. Workload of the critical path cpj of Gj :

W j
∞ = W(cpj) (3)

It is important to note that regardless of the task-processor mapping of the tasks during the actual execution, the
workload of a path remains constant because the tasks’ minimum WCET determines it. However, the duration that it
will take to execute the path workload depends on the task-processor mapping during the actual execution. As a result,
the path with the largest workload is not necessarily the path that would require the longest time duration to finish
execution. Fig. 1 presents an example that illustrates this situation.

Fig. 1. Example of a path with the largest workload A ≺ B ≺ D ≺ E that it is not the path with the longest time duration. Note that
task C migrates to a faster processor of type 1 when it becomes idle at time 3 (this greediness property will be explained shortly).

The left-hand side of Fig. 1 shows a DAG where each node has two different WCETs for two processors of different
types. Based on Eq. (2), the path A ≺ B ≺ D ≺ E has workload four while the path A ≺ C ≺ E has workload three. At
the right-hand side of the figure, we assume that the tasks are scheduled in lexicographic order of the names of the
tasks to a platform with one processor of type 1 and one processor of type 2. The example shows that path A ≺ C ≺ E

determines the schedule length, which has a smaller workload than A ≺ B ≺ D ≺ E . We will shortly present how we
can find the worst-case task-processor mapping that we can use together with the total workload and the critical path’s
workload to find the makespan of a single DAG.

4
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The length of the sequential execution of Gj on a given single processor x where x ∈ M is given by: Sj
x =

∑Ij

i=1 c
i, j
x .

We define the single-processor utilization of Gj on processor x as follows:

Definition 2.3. The single processor utilization of Gj on a processor x ∈ M is:

U j
x =

Sj
x

T j
(4)

The purpose of defining the utilization is to use the utilization-based schedulability test on a single processor where
the tasks of the DAGs can execute sequentially and meet its deadline. Based on [6, 7, 9] the DAGs in Γ can meet their
deadlines if the sum of the utilization (as per Definition 4) of the DAGs that are executing sequentially on a given
processor x is smaller than one. More formally, if the Condition 2.1 is true, then the tasks in Γ will meet their deadlines
during runtime by sequentially executing them with the earliest deadline first (EDF) scheduler on processor x .

Condition 2.1. A single processor schedulability test of Γ on processor x assuming uniprocessor EDF scheduling:

Uj
x ≤ 1 −

∑
Gk ∈Γ ,k≠j

Uk
x ,∀Gj ∈ Γ (5)

where a new DAG with utilization Uj
x can be assigned to processor x along with the other DAGs in set Γ.

Let 𝛿 i, j
x := ci, jmin/ci, jx denote the speed that 𝜏 i, j has at processor x where x ∈ M. The speed can take values between:

0 < 𝛿 i, j
x ≤ 1 and a higher value means faster execution. Please note that it is strictly larger than 0 because we have

assumed that all the tasks can be executed on all the processors (ci, jx < ∞, ∀x ∈ M). Let O i, j
x be the x th highest speed

that task 𝜏 i, j can execute on some processor ofM where 1 ≤ x ≤ P. We define the speed-preference of the processors
for a task 𝜏 i, j using a sequence O i, j as defined in Definition 2.4.

Definition 2.4. We define O i, j =< O i, j
1 , O i, j

2 , … O i, j
P > of 𝜏 i, j , as the sequence of non-increasing speeds of the processors

ofM such that O i, j
1 ≥ O i, j

2 ≥ … ≥ O i, j
P .

A smaller index of the speed-preference sequence means a relatively higher speed for 𝜏 i, j . For example, assume that
a platform has three processors and a task 𝜏 i, j with WCETs {4, 1, 2} on each processor. The task has speeds {0.25, 1, 0.5}
with speed-preference {1, 0.5, 0.25}. Given the speed-preference set, the second-highest speed for this example is
O i, j

2 = 0.5. In the next section, the scheduler uses the speed-preference to select a relatively faster idle processor where
a task may be executed.

3 SINGLE DAG SCHEDULER

This section introduces the scheduler that we use to schedule the tasks of a single DAG to an unrelated platformM.
Section 3.1 describes the algorithm of the scheduler. Section 3.2 shows a property of the scheduler that we will use to
derive the makespan. We will use the scheduler and the schedulability analysis of this section later to assign each DAG
to a dedicated subset of the processors and show the correctness of our proposed federated scheduling algorithm.

3.1 Description of the intra-DAG scheduler

This section presents the scheduler’s pseudocode that we use to schedule the tasks of a DAG, called GUM (Greedy,
Unrelated, Minimum-speed-preference-index). The GUM is global, meaning that all the tasks of Gj can execute on
any processor of the unrelated platform M . Although the makespan in this section is computed assuming all the
M processors are available, we can apply the same analysis when we known the dedicated subset of the processors

5
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assigned to a DAG. The scheduler is work-conserving, meaning that it never leaves a processor idle if there are ready
tasks to execute. Alg. 1 presents the pseudocode of the scheduler.

The scheduler is invoked at the release of the source/root of Gj or at the completion of a task that belongs to
Gj (line 1). In both cases, the tasks are stored in the ReadyQ, and the RunQ keeps track of the tasks in execution.
The tasks in the ReadyQ are stored in an arbitrary order. Initially, we check if there are currently executing tasks in
RunQ that can migrate to a faster idle processor. We repeatedly try to find a task from the RunQ with the highest
speed-preference (which is the task that have in the speed-preference sequence the smallest index as is defined in
Definition 2.4) considering only the currently idle processors. We migrate such a task to a faster idle processor, and the
processor it was executing on is marked as idle.

We repeatedly check all the executing tasks if they can migrate, and if there is no task, we exit the loop in lines 2-4.
Finally, we dispatch the tasks for execution from the ReadyQ. As long as there are idle processors and there are tasks
ready for execution in the ReadyQ (lines 5-8), we select such a task from the head of the ReadyQ and dispatch the task
to that idle processor on which it executes the fastest. We update the platform’s status by marking the processor that
the task is dispatched as busy, and we remove the task from ReadyQ.

Algorithm 1: GUM
1 if Release or Completion event then
2 while ∃𝜏 i, j ∈ RunQ can Migrate do
3 {𝜏 curr , sp_dst} = Find the task 𝜏 i, j ∈ RunQ, with the smallest k ∈ O i, j that ProcIndex (O i, j

k ) is idle
4 Execute 𝜏 curr to ProcIndex (Ocurr

sp_dst), update platform’s status.
5 while ∃ idle and !ReadyQ.Empty do
6 𝜏 i, j = ReadyQ.pop
7 Find smallest k ∈ O i, j that ProcIndex (O i, j

k ) is idle
8 Execute 𝜏 i, j to ProcIndex (O i, j

k ), update platform’s status.

3.2 Greediness property

We present the greediness property of the GUM scheduler that we will use to define the platform’s minimum capacity
that intuitively shows the minimum rate that the platform’s processors can execute the application’s workload. We will
use the following definitions in Lemma 1. A scheduling point is a point in time when GUM needs to schedule a task.
Such a scheduling point is at time zero or when the scheduler is invoked to schedule a task. We call a time interval [a,b]
a stable time interval when there is no scheduling point except at the endpoints in [a,b].

Lemma 1. (Greediness Property): If there is a total of 0 < p ≤ P busy processors executing some tasks during any stable

time interval with the GUM scheduler, then there is some task executing at least at its x th fastest speed for x = 1, 2, … p.

Proof. Let k, where 0 ≤ k ≤ p, be the set of tasks that continue execution from one stable time interval to the
immediately next stable time interval. In Alg. 1 the k tasks are stored in the RunQ. Also, assume that for some n where
0 ≤ n ≤ p − k, there are n tasks that are newly scheduled at the beginning of the next stable time interval. Based on
Alg. 1, the n tasks are stored in the ReadyQ. Let k + n = p, where 0 ≤ p ≤ P, be all tasks that we need to consider for
execution in the new stable time interval. Let O∗

x denote the x th fastest speed of some task. The asterisk (*) here is used
6
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to specify an arbitrary task. We will prove this lemma by considering the two cases where the GUM scheduler takes
scheduling decisions:

Case (1) - Migration: Let the task 𝜏 i1, j1 complete its execution at time a which is at the beginning of the stable
time interval [a,b]. Let the task 𝜏 i2, j2 be among the k tasks that still continue execution during the stable time interval
[a,b]. Please recall that the GUM scheduler first selects for migration the task that can execute on its most preferred
processor, i.e., smallest index, in comparison to all the currently executing k tasks. Let task 𝜏 i2, j2 , if it migrates, has the
most preferred processor among the k tasks that are still in execution. In the worst-case, 𝜏 i1, j1 was executing before
its completion on a processor that is also for 𝜏 i2, j2 a faster processor. So the task 𝜏 i2, j2 can migrate to a processor that
has at least O i2, j2

k speed because in the worst case there are k − 1 tasks that can occupy the faster processors for 𝜏 i2, j2 .
By following the GUM scheduler, the speeds at which tasks would start executing from the beginning of the stable
interval in the worst case are O∗

1 , O∗
2 , … , O∗

k . This case covers the Alg. 1 lines 2-4.
Case (2) - Dispatch: The k already-executing tasks, either they continue executing on the processor on which they

were executing on the previous stable interval, or they migrated to a faster processor. Because of case (1) the k tasks
are executing at least with speeds O∗

1 , O∗
2 , … , O∗

k . Let the arbitrary task 𝜏 ∗ be the task that is selected for dispatching
among the n new tasks that are ready for execution. The 𝜏 ∗ is going to execute at least with speed O∗

k + 1, because in
the worst-case all the k processors that provide higher speed (O∗

1 , O∗
2 , … , O∗

k ) for 𝜏 ∗ may be occupied by other tasks.
Similarly, the remaining tasks from the n scheduled tasks are going to execute with speeds O∗

k + 2, … , O∗
k + n. This case

covers the Alg. 1, lines 5-8.
Therefore, based on cases (1) and (2), the k + n = p tasks are executing, in the worst-case, with speeds O∗

x , for
x = 1, 2, … p where, 0 ≤ p ≤ P. □

The main idea of Lemma 1 is that if x − 1 processors are busy, then a new scheduled task, in the worst case,
would be executed on a processor that provides its x th fastest speed because in the worst case, all the processors that
provide higher speed are busy executing other tasks. Lemma 1 shows the worst-case task-processor mapping that the
GUM scheduler can achieve because it guarantees that at any stable time interval that x tasks are executing, there is
some task that executes with its highest speed. Next, there is some task that executes with its second-highest speed and
so on. Finally, there is some task that executes with its x th highest speed. By the worst-case, we mean that in another
(better) case, the kth dispatched task may also run on its highest speed processor if that processor has just become idle.
In addition, because we proved the greediness property assuming arbitrary tasks, it holds for any priority ordering of
tasks. Furthermore, the greediness property also holds if we extend the scheduler with a preemption mechanism. By
selecting the removing the preempted task by a preempting task before the migration step, the greediness property
holds because it is oblivious to the priority of the tasks.

Based on the greediness property in Lemma 1, we find in Eq. (6) the platform’s minimum capacity to execute the
application’s workload when all the processors are busy. The inner minimum operation, minIj

i=1{O
i, j
x } finds the minimum

speed among the x th speed-preference among all DAG tasks. The outer summation,
∑P
x=1, accumulates for x = 1 … P

processors, the minimum speeds for all the processors.

Definition 3.1. Minimum capacity of the platform M with P unrelated processors for DAG Gj that is scheduled with
GUM is given by:

mj :=
P∑
x=1

Ij

min
i=1

{O i, j
x } (6)
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In Section 2, we define the workload (Eq. (1)) and the workload of the critical path (Eq. (3)) based on the minimum
WCET of the tasks. In the following section, we will use the minimum capacity to inflate the workload such that we can
compute the makespan by taking into account the dependencies among the tasks and the heterogeneity of the platform.

4 MAKESPAN OF A SINGLE DAG

This section presents the analysis to compute an upper bound on the worst-case schedule length, called the makespan,
of a single DAG executed on an unrelated multiprocessor platform. A trivial makespan computation for unrelated
multiprocessors can be developed by pessimistically assuming that all the tasks execute with their lowest speed, i.e.,
their maximum WCET among all the processors. Then we can find the makespan by [14, 24, 34] for scheduling DAGs
on homogeneous processors because the execution assuming maximum WCET for all the tasks is equivalent to the
homogeneous setup. Even though the estimation is safe, this approach could be quite pessimistic because we assume
that all the tasks execute with their slowest speeds. We propose an alternative to finding a tighter makespan.

The greediness property of the GUM scheduler guarantees a relatively less pessimistic task-processor mapping.
Please recall that if x processors are busy, then based on the greediness property, the worst-case task-processor mapping
is the following: First, there is a task that executes with its highest speed. Next, there is some task which executes with its
second-fastest speed. Finally, there is some task that executes with its x th highest speed. The worst-case task-processor
mapping is captured by the greediness property in the condensed parameter, i.e., the minimum capacity mj in Eq. (6),
that we use to find the makespan. Note that under the greediness property the tasks are not executing with their

A DAG’s execution with a work-conserving scheduler can be separated into two parts: The time that processors
execute the application’s workload and the time that processors remain idle because of the tasks’ dependencies or lack
of enough parallelism. We introduce the total pseudo-workload to represent the processors’ idleness, which intuitively
shows the workload we could have executed if the idle processors were busy. Instead of considering all the task-processor
mappings that can occur during run-time, we use the worst-case task processor mapping via the parameter mj from Eq.
(6) in order to inflate the workload in Lemmas 2 and 3. Finally, we use the scheduler’s work-conserving property, and
we find the makespan of a DAG by using the homogeneous multiprocessors formula [14, 24, 34].

Please recall that the total workloadW j
1 is defined based on the minimumWCET of each task among all the processors.

The total workload W j
1 can be seen as the sequential execution of a DAG that executes on a hypothetical homogeneous

platform with P processors. The purpose of the inflated total workload is to increase/inflate the total workload W j
1 to

include the platform’s heterogeneity by considering the worst-case task processor mapping.

Lemma 2. Let Gj be scheduled with GUM on a platform M with P unrelated processors. The inflated total-workload

w j upper bounds the total workload W j
1 for an equivalent execution on a homogeneous platform with P processors, where:

w j =
W j

1

mj
· P (7)

Proof. Let a time interval be the duration of time where all the processors are busy. During any time interval,
depending on which processors the tasks are executing on, the platform can have different capacities. By definition, the
minimum capacity is the smallest and is used to lower-bound the platform’s capacity at any time interval. As a result,
theW j

1/mj is the longest time duration that all the processors are busy. During a time interval that all the processors are
busy, the maximum capacity that the workload can be executed on is P. The case that provides the maximum capacity
is when all the tasks that are in execution during the time interval are mapped to processors that provide speed one,
which is equivalent to executing the tasks on a homogeneous platform where all the tasks execute for their minimum
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WCET. So, the maximum inflated workload of a DAG assuming a platform with P unrelated processors is given by
Eq. (7). □

Because of the dependencies of the tasks, we have idle processors during the execution of the DAG. For a given
stable time interval of the execution of Gj , let pseudo-workload be the product of the capacity of the idle processors and
the time that they are idle. Let the total pseudo-workload be the sum of pseudo-workloads for all stable time intervals
over the entire duration of the execution of the DAG, which shows the workload that the platform can execute if all
idle processors were busy2. Because it may be computationally impractical to find the actual pseudo-workload, we
compute an upper bound.

For a homogeneous platform, [25, 34], the largest workload of any path is W j
∞, which executes at most on one

processor, and the maximum capacity that can remain idle is P − 1, so an upper bound on the pseudo-workload is
(P − 1) ·W j

∞. However, for an unrelated platform, the path with the largest workload does not necessarily take the
longest time to execute because each task’s execution time depends on the task-processor mapping. Please recall the
example in Fig. 1. Similar to the inflated total workload in Lemma 2, we determine the total inflated pseudo-workload,
denoted by w̄ j , to cover the platform’s heterogeneity as follows.

Lemma 3. Let Gj be scheduled with GUM on an unrelated platformM that has P unrelated processors. The inflated

total pseudo-workload w̄ j upper bounds the total pseudo-workload (P−1) ·W j
∞ for an equivalent execution on a homogeneous

platform with P processors, where:

w̄ j =
(P − 1) ·W j

∞
mj

· P (8)

Proof. From [25, 34] we know for a homogeneous platform that the maximum idleness or the pseudo-workload is
W j

∞ · (P − 1). It follows from Lemma 2 that the longest duration that is needed to execute the pseudo-workload by
P processors is (P − 1) ·W j

∞/mj . An upper bound on the maximum capacity of the platform is P. Consequently, the
inflated pseudo-workload is calculated by Eq. (8). □

Lemmas 2 and 3 respectively inflate the total workload and the total pseudo-workload to resemble the execution of
the application for a homogeneous platform with a total of P processors. We inflate these workloads to capture all
the possible task-processor mappings that could occur during run time. In Theorem 1, we use the work-conserving
property of GUM to find a safe upper bound of the makespan, denoted by Xj , for the original unrelated platform.

Theorem 1. (Makespan): An upper bound on the makespan of Gj scheduled with GUM on an unrelated platform

with P processors is:

Xj ≤ W j
1 + (P − 1) ·W j

∞
mj

(9)

Proof. Consider the execution of the tasks such that the length of the schedule is exactly equal to the makespan
Xj (it will be evident that we do not need to know such an execution to prove this theorem). Let B be the actual total
workload needed to execute the application, and let B̄ be the actual total pseudo-workload (i.e., idle time) generated
for the schedule with completion time Xj . Fig. 2 presents the two types of workloads as the area determined by the
capacity of the platform (y-axis) and the execution time (x-axis). Because the scheduler is work-conserving, and it never

2Similar concept to shadow threads in [10] for a related (uniform) platform.
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Fig. 2. Visualization of the makespan. The B area shows the application’s actual total workload, and the B̄ shows the actual total
pseudo-workload.

leaves all the processors idle until the completion of the application, the makespan Xj on a total of P homogeneous
processors is equal to:

Xj ≤ B + B̄
P

which is evident from Fig. 2.
To map the execution from the homogeneous to an equivalent execution on P unrelated processors, we upper bound

the actual total workload and the actual pseudo-workload with the inflated workload and the inflated pseudo-workload,
respectively. By Lemmas 2 and 3, it holds that B ≤ w j and B̄ ≤ w̄ j and we have:

=⇒ Xj ≤ w j + w̄ j

P
By replacing Eq. (7) and (8), we have:

Xj ≤ W j
1 + (P − 1) ·W j

∞
P · P

mj

which in trun is equivalent to:

Xj =
W j

1 + (P − 1) ·W j
∞

mj

□

To theoretically evaluate the proposed makespan calculation, we compare it to the optimal-schedule-length (i.e.,
minimum completion time), denoted by OPT. Because it is intractable to find the optimal schedule length, we find a
lower bound on the optimal schedule length as follows. Let an upgraded DAG be an isomorphic DAG to Gj (V j = V ĵ

and E j = E ĵ) that for every task instead of having P WCETs, each task has only one WCET which is the ci, jmin. Because its
task has one WCET, the analysis of DAG scheduling for homogeneous platform can be applied, and a lower bound

on the optimal-schedule-length is found by LB = max{W j
∞,

W j
1

P } for the upgraded DAG [14, 25] which is also a lower
bound for the original DAG Gj .

Corollary 1. The makespan is 2·P−1
mj times larger than the optimal schedule length (OPT):

Proof. From Eq. (9), given by Theorem (1), we have:

Xj =
W j

1 + (P − 1) ·W j
∞

mj

Xj =
P
mj

· W
j
1

P + (P − 1)
mj

·W j
∞

10
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By definition LB ≤ OPT, so it holds that W j
1

P ≤ OPT andW j
∞ ≤ OPT.

=⇒ Xj ≤ P
mj

· OPT + (P − 1)
mj

· OPT

Xj ≤ 2 · P − 1
mj

· OPT

□

The value ( 2·P−1
mj ) is determined by the speeds of the tasks for the processors of the platform. If all the tasks of all

DAGs have speed one for all the processors, then we have the homogeneous setup. The value (a.k.a approximation,
speed-up, and resource augmentation) is equal to (2 − 1

P ) which is equal to the classic bound derived by Graham [25].
We find the makespan by assuming that all the processors of setM are available for a DAG. In the following section,

we will use the makespan in federated scheduling to test the schedulability of a DAG that is executing in isolation to a
subset of unrelated processors that are available, called cluster. In the Corollary 2, we extend the notation of Theorem 1
with the cluster’s index and we find the makespan of a DAG that executes at a cluster.

Corollary 2. Let a cluster with index y , denoted by Ky , be a subset of the processors in set M. The cluster Ky has Py

unrelated processors (|Ky | = Py ). Without loss of generality, the processors are indexed by x ∈ {1, 2, … , x , … , Py } and the
O i, j

x , y represents the x th fastest speed of the processors in Ky for task 𝜏 i, j . The upper bound on the makespan is computed

based on Eq. (9) for a cluster Ky as follows:

Xj
y ≤

W j
1, y + (Py − 1) ·W j

∞, y

mj
y

(10)

where W j
1, y , W

j
∞, y , and m

j
y are computed by Eq. (1), Eq. (3), and Eq. (6) assuming that the only processors that are available

for executing 𝜏 i, j belong to Ky . If the cluster has one processor (Py = 1), the utilization of that processor is denoted by Uj
1,y

and the Cond. 2.1 is used to check the schedulability of Γy ⊆ Γ.

After finding the makespan of a DAG that executes on a cluster, the next challenge is to determine the processors
that compose the clusters. In the next section, we will describe how we select the processors to make the clusters and
how we assign a DAG to a cluster such that all the DAGs of the sporadic DAG set meet their deadlines.

5 FEDERATED SCHEDULING

For federated scheduling, a DAG either gets a dedicated subset of processors (cluster) such that it can execute in isolation
without being interfered with by other DAGs or is executed sequentially upon a single processor as in partitioned
scheduling. Finding the optimal assignment of DAGs to processors for unrelated multiprocessors with respect to
meeting all DAGs deadlines is an NP-hard problem [23]. So we have turned our focus on developing heuristics for the
assignment of processors to the DAGs.

Because the processors are of different types, it is not clear what processors are good to select for each DAG such
that all the DAGs would meet their deadlines. To characterize a processor with respect to meeting a DAG’s deadline in
Section 5.1 we introduce a concept, called processor value, that intuitively shows how “good” a processor is for a DAG
concerning meeting its deadline. The processor value models the expected scheduling decisions that GUM would
make during runtime by considering the speed-preference of all tasks of a DAG. We use the processor value in the
federated scheduling algorithm to select suitable processors for each DAG. Finally, in Section 5.2 we present the
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federated scheduling algorithm. The federated scheduling algorithm takes as input a sporadic DAG set and a set of
unrelated processors. It returns success if it finds successful assignment of the processor to DAGs such that all the
DAGs meet their deadlines otherwise returns failure.

5.1 Processor value

The processors of a heterogeneous platform have different capabilities to execute the workload of a task that belongs
to a DAG. The speed-preferences for the processors characterize a task because they determine what processor the
GUM would select during runtime. A DAG is composed of tasks with different speed-preferences for the processors.
To determine if a processor can be beneficial for a DAG to meet its deadline, we introduce the processor value that
intuitively shows how good is a processor for a DAG by taking into account the speed-preferences of each task that are
used by GUM to schedule the tasks to a cluster.

Initially, at Definition 5.1 we introduce parameter bi, j
s, x , y , that finds if the x th processor that belongs to cluster Ky ,

is the sth highest speed for task 𝜏 i that belongs to DAG Gj . We use the parameter bi, j
s, x , y to able to find the processor

that provides the sth highest speed for each task because each task would like to have processors that provide a higher
speed of execution (i.e., smaller speed-preference) in order to complete its workload faster.

Definition 5.1. The boolean parameter is true if the processor x ∈ Ky is the sth speed-preference of task 𝜏 i, j ∈ Gj ,
otherwise it is false:

bi, j
s, x , y =



true ProcIndex (O i, j

s, y ) = x

false otherwise
(11)

where O i, j
s, y is the sth fastest speed for 𝜏 i, j in cluster Ky and ProcIndex (O i, j

s, y ) is the index of this processor in cluster Ky .

Each DAG is composed of different tasks that have different speed-preferences for the processors. To be able to
consider the speed-preferences of all the tasks that belong to a DAG, we use the parameter bi, js, x , y to count all the tasks
that have the same speed on the same processor. More precisely, Definition 5.2 introduces parameter cnt js, x , y that counts
the tasks that belong to DAG Gj and have processor x ∈ Ky as their sth speed-preference.

Definition 5.2. The cnt js, x , y finds the number of tasks of Gj that have processor x ∈ Ky as the sth speed-preference:

cnt js, x , y =
Ij∑
i=1

bi, j
s, x , y (12)

In Definition 5.3 we introduce the processor value of a processor x ∈ Ky for DAG Gj . The
∑Py
s=1 operation in Definition

5.3 accumulates for all the options the number of tasks that have processor x ∈ Ky as their s option. Because we assume
that all the tasks can execute on all the processors, the number of options is equal to the number of processors of Ky .
The term 1

s in Eq. (13) introduces a weight for the cnt js, x , y to favor the processors that the GUM scheduler would try to
select for the tasks of the Gj during runtime. A smaller value of s gives a larger weight, and the processors that provide
higher speed get a higher value. The purpose of weight in determining the processor value of x is to capture the fact
that a faster processor for the tasks is a very “valuable” or critical resource.

Definition 5.3. The processor value of processor x ∈ Ky with respect to Gj :

PV j
x , y =

Py∑
s=1

1
s
· cnt js, x , y (13)
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Because a DAG may need more than one processor to meet its deadline, we define the cluster value that accumulates
the processor values of the processors that belong to Ky , as follows: P̂ j

y =
∑
x∈y PV

j
x , y . In the next section, we will use

the cluster value to find the suitable clusters of processors for each DAG in order to make all the DAGs schedulable. The
purpose of defining cluster value is to select the (unassigned) DAG having the highest cluster value for the assignment
of that cluster by considering the potentially feasible clusters of all the unassigned DAGs. Now, based on the cluster
value, we next present our federated scheduling algorithm.

5.2 Description of the algorithm

The Alg. 2 presents the main functionality of the federated scheduling algorithm. We start by initializing the number
of clusters (Y ) to zero (line 1). As long as there are unassigned DAGs from the sporadic DAG set Γ and there are
available processors (lines 2 - 3), we try to assign the processors to the DAGs as follows. At line 4, we call Alg. 3 to find
a temporary schedulable cluster (FTSC) for all the unassigned DAGs. The FTSC in Alg. 3 first computes the processor
values of the available processors that have not been assigned to some DAG yet (Avail) with respect to DAG G. We
rank/sort the processors based on their processor value (Pref ). Based on the order of the processors specified by Pref ,
we build a temporary cluster (s) by adding one processor at each iteration of the loop at lines 5-10 in Alg. 3. We compute
the makespan of G for the temporary cluster s. If the DAG is not schedulable, we add one more processor based on the
Pref processor order to temporary cluster s, and we check if the DAG is schedulable. We continue adding processors
until either the DAG is schedulable or we are out of processors, and we return zero (i.e., failure).

Among all the unassigned DAGs that we called the FTSC algorithm, we select the DAG (Gj) with the highest cluster
value (ClusterValue, line 4). Next, at lines 5-8, we check if we can schedule the Gj to one of the already available clusters
with a single processor. In case Gj is schedulable with single processor scheduling, we assign it to the available cluster
with the smallest index that has one processor along with the other DAGs already assigned to this cluster, and we remove
it from Γ. In case Gj is not schedulable to a single processor, we check if the FTSC in Alg. 3 found a schedulable cluster
for Gj (line 10). If FTSC did not find a cluster that we can schedule Gj , then we return failure (line 16). Otherwise, we
make a new cluster with the processors of (ClusterProc) of the temporary cluster, and we assign them permanently to
Gj . The DAG is removed from Γ, and the cluster processors are removed by theM (lines 11-14). If all the DAGs of Γ are
assigned, then we return success (line 19); otherwise, we return failure (lines 18).

6 EVALUATION

To quantitatively evaluate the federated scheduling algorithm, we generate synthetic DAG sets, and we check if all the
DAGs of a DAG set meet their deadlines by varying different parameters of the system model. Section 6.1 introduces
the simulation framework and Section 6.2 presents the simulation results.

6.1 Simulation framework

We model a platform by generating P processors. The platform has H processor types, where H ≤ P. An arbitrarily
selected processor type characterizes each of the P processors, and we ensure that there is at least one processor of each
of the H types. As a result, the number of processors of each processor type is randomly determined based on P and H.

We model a DAG by first generating the tasks that compose the DAG. Parallel applications like OpenMP [20] have
many tasks but have only a few unique task types [17] — tasks that perform the same functionality but work on different
data. Tasks that are of the same unique task type have the same functionality and thus have the same WCETs for the
processors. For each DAG, we randomly generate between [1,10] unique tasks. For each unique task type, first, we
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Algorithm 2: Is Γ Schedulable on M
1 Y = 0 // Total number of clusters

2 while Γ ≠ ∅ do
3 if M ≠ ∅ then
4 {ClusterProc, ClusterValue} = Call FTSC(Gj ,M) , ∀Gj ∈ Γ and select the Gj with the largest ClusterValue.
5 c = Find the first cluster index that Pc = 1 and for Γc ∪ Gj , the single processor schedulability test is true (Cor. 2 and

Cond. 2.1 ), otherwise return 0.
6 if c ≠ 0 then
7 Γc = Γc ∪ Gj

8 Γ = Γ\Gj

9 else
// Make new cluster

10 if ClusterValue ≠ 0 then
11 Y + +
12 ΓY = Gj

13 Γ = Γ\Gj

14 M = M\ClusterProc
15 else
16 return failure

17 else
18 return failure

19 return success

Algorithm 3: FTSC(DAG G, Cluster Avail)
1 s = ∅
2 ClusterValue = MAX_FLOAT

3 List < float > Pref

4 Pref = Sort the Avail processors based on PV j
x ,Avail .

5 for p = 1; p < |Avail |; p + + do
6 Add the first p processors based on Pref to the temporary cluster s.

// Check schedulability of G on cluster s based on Cor. 2

7 if XG
s

DG ≤ 1 and P̂G
s ≤ ClusterValue then

8 ClusterValue = P̂G
s

9 ClusterProc = s
10 break
11 s = ∅
12 if ClusterValue = MAX_FLOAT then
13 ClusterValue = 0

14 return {ClusterProc,ClusterValue}

determine its minimum WCET by randomly selecting a value between [1,100]. Then we randomly select a processor
type to associate with the minimumWCET, and we call it the initial processor type. Next, for each unique task type and
for each processor type, we add a randomly generated value between [1,(H ∗ 100)] to its minimum WCET to determine
its WCET to the corresponding processor type. By adding a new processor type, we essentially add processors that are
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slower compared to the initial processors that determine the minimum WCET. From the WCETs of the unique task
types, we calculate the minimum capacity (mj) from Eq. (6), and we consider only the unique task types because tasks
that are of the same unique task type have the same WCET for all the processors.

After generating the WCET of the unique tasks for each processor of the platform, we generate the DAG. First, we
generate the total number of nodes (I j) for each DAG Gj by selecting a random value between [1,1000]. Second, we
generate the total workload (W j

1) by selecting a random value between [I j ,100000], where each node has at least one
time unit of execution time. The UUniFast [13] algorithm, takes two numbers as input n ∈ (Z+) and b ∈ (R+) and
randomly generates an array of size n, where each element of the array is selected from a uniform distribution such that
the sum of elements of the array is exactly equal to b. We use the UUniFast algorithm to generate three arrays, each
with the size equal to the number of unique task types and total value equal to 100%. Each element of the first array
has a fraction of the total workload corresponding to a unique task type. Next, each element of the second array has a
fraction of the unique task type’s workload that belongs to the critical path. Finally, each element of the third array has
a fraction of all the nodes that correspond to a unique task type. We use the first two arrays to find the workload of the
critical pathW j

∞ by summing all the unique task types workloads that belong to the critical path. We use the third array
to compute the processor value PV j

x , y given by Eq. (5.3).
The utilization of the platform models the difficulty to successfully schedule a DAG set: a higher value of utilization

means that it is more difficult to schedule a DAG set. Recall that by increasing the number of processor types, we
always add slower processors. In order to compare a platform with H = 1 to another platform with H > 1, we define the
utilization based on the inflated workload of a DAG for the unrelated platform under analysis. The inflated workload
captures the heterogeneity of the platform. By defining the utilization of Gj on an unrelated platform as Uj =w j/T j , we
can model the utilization of the platform by taking into account the fact that we have added slower processors (w j is
given by Eq. (7)). The total utilization of a DAG set with N DAGs is U=

∑N
j=1 U

j . The period (T j), which is equal to the
deadline, of a DAG is selected randomly between the range [X j

P , w j], where X j
P is the makespan of a DAG assuming

that it has all the processors available. To generate a DAG set with a fixed utilization, called goal utilization, we first
generate one-by-one random DAG, and we add their utilization. As long as the total utilization is smaller than the goal
utilization, we continue generating random DAGs until a DAG has a larger utilization than the remaining utilization.
For the last DAG, we modify the period to fit the goal utilization. All the randomly generated values that we use to
create the synthetic DAGs are uniformly distributed. Based on the federated scheduling algorithm, we compute the
schedulability of 200 DAG sets at each utilization point, and we report the average acceptance ratio — percentage of
DAG sets that all their DAGs meet their deadlines.

6.2 Results

To quantitatively evaluate the federated scheduling algorithm, we perform three studies. First, we test the schedulability
of the proposed federated scheduling by varying the number of processor types. Next, we compare our approach to
global scheduling for unrelated multiprocessors. Finally, we specialize the system model for related multiprocessors,
and we compare our approach to federated scheduling from previous works for related multiprocessors.

First, in Fig. 3a the vertical axis is the acceptance ratio, and the horizontal axis is the utilization. We keep the number
of processors fixed to 16. The three lines are the simulation for multiprocessor platforms with H = {1, 2, 4} number
of processor types. Initially, we can see that for all the platforms, as the utilization increases, the acceptance ratio
decreases. We can observe that for low utilization, the platform with H = 1 has the highest acceptance ratio. However,
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as the utilization increases, we can see that the acceptance ratio of H = {2, 4} is higher than H = 1. From the simulation
framework, we know that when we add a new processor type, then we add a slower processor compared to the initial
processor. We can imagine the initial processor as an "excellent" processor that can execute every task for its minimum
WCET. We can assume that the initial processor would be extremely expensive. As a result, a multiprocessor platform
with H = 1 would be a powerful platform but very expensive. By increasing the number of processor types, we add
slower processors and sacrifice performance to reduce the platform’s cost. In addition, because the utilization is defined
by the inflated workload, the deadlines for the platforms H = {2, 4} are longer compared to the platform with H = 1.
To capture the heterogeneity of the platform, the inflated workload for a heterogeneous platform is larger compared
to the case that H = 1 which is equal to the total workload of the application. We can argue that this experiment as
offering platforms with different costs for longer deadlines that a client provides. From the simulation results, we see
that we can use the platform H = {2, 4} more efficiently than the platform H = 1. So, a client who can afford to have
more extended deadlines can choose a platform with a lower cost having a relatively higher acceptance ratio.

(a) Fixed #Processors. (b) Fixed utilization.
Fig. 3. Different number of processor types.

Second, in Fig. 3b the vertical axis is the acceptance ratio, and the horizontal axis is the number of processors, while
we keep the utilization fixed to 16. Keeping the utilization fixed does not lead applications to have a relatively higher
deadline for H = {2, 4} in comparison to H = 1 as we have witnessed in the experiments presented in Fig. 3a. The
platform with H = 1 achieves a higher acceptance ratio compare to the platforms with H = {2, 4} because by increasing
the number of processors, it is easier to find available processors for each DAG, and since all the tasks execute with
speed, one, a high acceptance ratio is achieved. However, for H = {2, 4} even though there are available processors, the
processors are slower compared to H = 1 and achieves a lower acceptance ratio.

One of the main alternatives to federated scheduling is global scheduling. In global scheduling, all the DAGs share
all the processors, which means that during runtime, a task of a DAG can execute on any idle processor. With global
scheduling, the DAGs compete for the same processors, which introduces interference among the DAGs. The response
time of a globally scheduled DAG is composed of the makespan of a DAG, assuming that all the processors are available
and the maximum interference that the other DAGs introduce. There is no related work that proposes global scheduling
for unrelated multiprocessors to the best of our knowledge. To compare the federated scheduling algorithm, we adapt
for unrelated multiprocessors the global scheduling [34], originally developed for homogeneous multiprocessors. The
adaptation is not trivial because the unrelated model is a generalization of the homogeneous model and requires to
prove that we can find a safe estimation of the response time of DAGs that execute on unrelated multiprocessors.
However, we do not address this problem in this paper, but we rather modify [34] only for the sake of comparison.

We compute the makespan given by Eq. (9) by assuming that all the processors are available for each DAG. In [34],
to find the inter-DAG interference, the window analysis is used. The window analysis can be separated into two parts.
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Federated scheduling of sporadic DAGs on unrelated multiprocessors , ,

First, we need to find the maximum workload that a DAG can interfere with the other DAGs. To adapt the first part for
unrelated multiprocessors, we replace the workload of a DAG with the inflated workload of a DAG given by Eq. (7).
Second, the window analysis, by taking into account the relation of the periods and the deadlines of all DAGs, finds the
maximum number of times a DAG can interfere with the other DAGs. For unrelated multiprocessors, we assume that
the second part is the same because the platform does not influence the periods of the DAGs. By combining the two
parts of the window analysis, we find the maximum interference that a DAG can experience by other DAGs. We extend
our scheduler with preemption capabilities, and we use two well-known priority assignments, namely, rate monotonic
(RM) and earliest deadline first (EDF). By assigning priorities to the DAGs allows us to consider only the higher priority
DAGs to compute the interference that a DAG suffers. Finally, based on the makespan and the DAG’s interference, we
compute the response time. For global scheduling, the makespan of a DAG is shorter than federated scheduling since
all the processors are assumed to be available when analyzing each task’s makespan under global scheduling. However,
we need to consider the interference among the DAGs in global scheduling. In contrast, for federated scheduling, there
is no interference among the DAGs because the DAGs have dedicated processors, but the makespan is longer because a
subset of processors is assigned to each DAG. Thus, it is not straightforward to conclude whether the global or federated
scheduling dominates the other.

In Fig. 4a and 4b, we compare the federated scheduling algorithm to global scheduling. For Fig. 4a, the vertical axis is
the acceptance ratio, and the horizontal axis is the utilization. We use a platform with 16 processors 4 processor types.
In Fig. 4b the vertical axis is the acceptance ratio, and the horizontal axis is the number of processors. We keep the
utilization fixed to 16. We compare this paper’s federated scheduling algorithm to global RM denoted by GRM-MBBSB
and global EDF marked by GEDF-MBBSB where "MBBSB" is from the initial letter of the authors’ last name in [34].

(a) Fixed #Processors. (b) Fixed utilization.
Fig. 4. Comparison to global scheduling.

In Fig. 4a and 4b it can be observed that federated scheduling achieves a higher acceptance ratio. For federated
scheduling, the DAGs with an exclusive cluster to execute cannot interfere with the other DAGs. Also, DAGs that are
scheduled sequentially can efficiently utilize the processors because the single processor EDF for implicit deadlines is
optimal considering meeting the DAGs deadlines and can potentially fully use the processor. In contrast, for global
scheduling, each DAG, even though it can exploit all the processors to minimize its makespan, interferes with all the
lower priority DAGs and results in a lower acceptance ratio for these sets of simulations.

Finally, in Fig. 5a and 5b we adapt our system model for related multiprocessors. Because the related model is a special
case of unrelated multiprocessors, the specialization is trivial by assuming that all the tasks of all the DAGs have the same
speed-preferences for all the processors of the platform. Our single DAG scheduler becomes the same with the single
DAG scheduler of [30], so our makespan is comparable to the makespan developed in [30]. For related multiprocessors,
the makespan in [30] compared to Eq.9 is tighter because they model more precisely the pseudo-workload by exploiting
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the characteristic of the related machines, which we cannot do since we consider unrelated machines. With the use of
uniformity (Eq. (2) in [30]), they find a tighter estimation of the capacity idleness that is introduced by the dependencies
among the tasks (i.e., smaller pseudo-workload) and, as a result, a tighter makespan. However, the main objective of
[30] is to solve the underutilization for homogeneous multiprocessors. As a result, the processor to the DAG allocation
mechanism is not aware of the different processor types’ capabilities, which can lead to mapping the DAGs to processors
that are incapable of meeting DAG’s deadline.

In Fig. 5a the vertical axis is the acceptance ratio, and the horizontal axis is the utilization. We assume a platform
with 8 processors and 4 processor types. In Fig. 5b the vertical axis is the acceptance ratio. The horizontal axis is the
number of processors, and we assume a fixed utilization equal to 8, and we consider 4 processor types. We compare
“this work” to [30], denoted by JGLY. It can be observed from both 5a, and 5b that the proposed federated scheduling
algorithm can achieve a higher acceptance ratio compare to JGLY . Even though our approach has a less tight makespan
compare to JGLY for related multiprocessors, it has a higher acceptance ratio because our processor to DAG allocation
algorithm models the heterogeneity of the processors using the concept of processor value and the expected run-time
scheduling decisions of the single DAG scheduler and assigns suitable processors for the DAGs such that all the DAGs
can meet their deadlines.

In conclusion, from the empirical evaluation, it can be seen that the proposed scheduler can effectively schedule the

(a) Fixed #Processors. (b) Fixed utilization.
Fig. 5. Specialization to related multiprocessors.

DAGs on unrelated multiprocessors. For the considered experiments, it is shown that the proposed federated scheduling
algorithm outperforms global scheduling for unrelated multiprocessors. Finally, we see that the proposed approach is
also effective for the related multiprocessors, which is a special case of unrelated multiprocessors.

7 RELATEDWORK

There have been several works on determining the makespan of a single DAG on different multiprocessor platforms.
The classic work by Graham [25] initiated much research for determining the makespan of parallel applications on
homogeneous multiprocessors. The work in [14] extended [25] for the Cilk-based parallel program considering a
work-stealing scheduler. The work in [10] extends the result in [14] for related heterogeneous systems. None of these
earlier works considers an unrelated platform. Our work addresses this limitation by considering the makespan’s
computation for a single DAG on an unrelated platform. The works in [15, 39, 40] consider static scheduling of a
single DAG on unrelated multiprocessors. However, static scheduling pre-assigns the tasks to the processors that
may not fully utilize the platform like a work-conserving scheduler. Our work bridges this gap by designing a quite
general work-conserving scheduler for unrelated platforms. For Typed DAGs, each node can execute on exactly one
type of processor [26, 27, 38, 42, 43] and HPC-DAGs [44]. The assumption that each node can execute only on one
type of processor has limited applicability for many heterogeneous architectures available today (e.g., the big.LITTLE).
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Our work assumes that all the tasks can execute on all the processors. The problem of scheduling multiple DAGs on
homogeneous multiprocessors is addressed for the global [16, 22, 32, 34, 37, 38] and federated [12, 30, 32, 41] scheduling
algorithms. Since the homogeneous multiprocessor is a special case of an unrelated multiprocessor model, our results
can also be applied to homogeneous multiprocessors. The work in [30] proposes makespan computation of a single
DAG on a related heterogeneous machine. Then they apply this analysis to design a federated scheduling algorithm for
multiple DAGs on homogeneous multiprocessors. The work in [30] — as the authors highlighted — can also be applied
to schedule multiple DAGs on related heterogeneous machines. Since the related model is a special case of the unrelated
model, our work can also be applied in the context of [30]. The works in [1, 2, 8, 11, 31, 33] consider scheduling a set of
independent sequential tasks on unrelated multiprocessors. Although these works consider a general processor model,
the application model is quite restrictive; for example, sequential tasks cannot model dependencies.

In summary, earlier works on scheduling parallel applications on multiprocessors make restrictive assumptions
regarding the model of the application or model of the hardware platform. However, a general setting with sporadic
DAGs scheduled on an unrelated heterogeneous platform can model many real-time practical applications requiring
high computation power. Our work fills the literature gap by considering models of the application, processor, and
scheduler that are very general because they can be applied to various parallel applications and hardware platforms.

8 CONCLUSION

This paper addresses the problem of providing timing guarantees for sporadic DAGs that execute on unrelated multi-
processors. We use a global scheduler to schedule the tasks of a single DAG on a dedicated cluster, and we perform the
schedulability analysis to find the makespan of a single DAG on that cluster of unrelated processors. We introduce the
concept of processor value to assign suitable processors to a DAG. Based on the processor value, we introduce a federated
scheduling algorithm that assigns the processors to the DAGs such that all the DAGs meet their deadlines. Finally, the
simulation results based on synthetic DAGs show that the proposed approach can achieve a higher acceptance ratio
than global scheduling for unrelated multiprocessors and compare to the previous works on federated scheduling on
related multiprocessors. Designing new heuristics based on processor value to determine feasible clusters under the
federated scheduling paradigm is an interesting future work.
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