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ABSTRACT
The 2030 Agenda for Sustainable Development of the United Na-
tions General Assembly defines 17 development goals to be met
for a sustainable future. Goals such as Industry, Innovation and
Infrastructure and Sustainable Cities and Communities depend on
digital systems. As a matter of fact, billions of Euros are invested
into digital transformation within the European Union, and many
researchers are actively working to push state-of-the-art bound-
aries for techniques/tools able to extract value and insights from
the large amounts of raw data sensed in digital systems.

Edge computing aims at supporting such data-to-value transfor-
mation. In digital systems that traditionally rely on central data
gathering, edge computing proposes to push the analysis towards
the devices and data sources, thus leveraging the large cumulative
computational power found in modern distributed systems. Some
of the ideas promoted in edge computing are not new, though. Con-
tinuous and distributed data analysis paradigms such as stream pro-
cessing have argued about the need for smart distributed analysis
for basically 20 years. Starting from this observation, this talk covers
a set of standing challenges for smart, distributed, and continuous
stream processing in edge computing, with real-world examples
and use-cases from smart grids and vehicular networks.
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1 TALK OVERVIEW
The talk begins by introducing edge computing [19], discussing
both the possibilities it enables as well as the challenges to be ad-
dressed, focusing in particular on the stream processing paradigm
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Figure 1: Sample streaming application – trafficmonitoring.

and its benefits in large distributed systems [3, 20]. The talk contin-
ues with a deeper look into stream processing basic concepts, and
then focuses on three main challenges, as briefly introduced next.
Stream Processing in a nutshell. Stream processing is leveraged
in large distributed systems [1, 2, 7, 9, 10, 13, 22, 23] to process
unbounded streams of tuples. Stream processing applications are
defined as Directed Acyclic Graphs of operators that transform the
tuples delivered by a set of data sources and produce new streams
of tuples that are eventually delivered to end-users. Operators are
either stateless and stateful. Stateless operators process each input
tuple individually and do not maintain a state that evolves according
to the tuples being processed. Stateful operators produce results
that depend on portions of tuples called windows [1]. Figure 1
shows a sample streaming application for traffic monitoring in
urban environments. The application ingests GPS position reports
and, by locating them on a map, estimates the path being followed
by each car. Subsequently, the application aggregates the different
paths, creating reports for road segments that are congested.
Challenge 1: There is more to “pushing the analysis to the
edge” thanmeets the eye.What does it mean to “push the analysis
to the edge” for a streaming application? Naively, one can inter-
pret this as “pushing some of its operators to the edge”. This can be
beneficial, for instance by having each car locally compute its path
concerning the sample application in Figure 1. Besides the obvious
limitations imposed by operators that ingest data from multiple
sources and cannot be moved arbitrarily close to the latter (e.g.,
operator 𝑂𝑃2, that needs to aggregate multiple paths and cannot
thus run locally within each car accessing only the latter’s data),
such an approach does not account for alternative ways of lever-
aging edge devices (and their computational power) [4, 9, 16, 18].
In our example, 𝑂𝑃1 could for instance be replaced by operators
𝑂𝑃1𝑎 , outputting a tuple carrying a road segment id every time a
car enters a new road segment, and 𝑂𝑃1𝑏 , aggregating into paths
such tuples on a per-car basis. Deploying 𝑂𝑃1𝑎 at each car (rather
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than𝑂𝑃1) could still significantly reduce the data volumes collected
from the cars. Moreover, it would allow a utility to run 𝑂𝑃1𝑏 cen-
trally, updating its semantics (e.g., deciding how many past tuples
to aggregate into paths) without extra communication with cars.
Challenge 2: Hardware-, data- and system-awareness. Large
distributed systems such as smart grids or vehicular networks are
composed of heterogeneous devices and sensors [5, 6, 14, 15, 17, 21],
ranging from the small embedded ones found in smart meters to
GPU-based platforms for AI-based self-driving cars [9]. Such het-
erogeneity must be taken into account for streaming applications
to scale while sharing resources with the existing ecosystem of ap-
plications running in each device. While small amounts of memory
suffice for a smart meter to process its consumption readings, the
on-board computer of a car can potentially access tens of gigabytes
of data per hour [9], while running critical applications such as
lane departure warning systems. Continuing our example, running
𝑂𝑃1 (or𝑂𝑃1𝑎) within each car could be conditional to the ability to
limit the maximum amount of resources such operator has access
to, for instance with a dedicated scheduler [17] or by scaling down
the analysis and providing approximate answers [4, 9, 11, 12].
Challenge 3:Model-driven adaptiveness.Adaptive reconfigura-
tions for streaming applications have been proposed since the intro-
duction of the first pioneer streaming frameworks, with techniques
such as operator placement, thread scheduling, load balancing, load
shedding, and elasticity. These techniques aim at controlling the
behavior of performance metrics such as throughput, latency, mem-
ory, and CPU consumption. The rapidly evolving nature of edge
devices and their data demands for proactive analysis of how such
metrics can behave in the short, mid, and long term. Towards this
end, proper modeling of streaming operators’ behavior can allow
for very precise estimation of such metrics with minimal monitor-
ing costs, in accordance with the limited computational resources of
devices [18] and the impact monitoring has on such resources [8].
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