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Abstract
The distribution of liquid water in ice-free clouds determines their radiative
properties, a significant source of uncertainty in weather and climate models.
Evaporation and turbulent mixing cause a cloud to display large variations in
droplet number density, but quite small variations in droplet size (Beals et al.,
Science, 2015, vol. 350, pp. 87–90). However, direct numerical simulations of the
joint effect of evaporation and mixing near the cloud edge predict quite different
behaviours, and how to reconcile these results with the experimental findings
remains an open question. To infer the history of mixing and evaporation from
observational snapshots of droplets in clouds is challenging, because clouds
are transient systems. We formulated a statistical model that provides a reli-
able description of the evaporation–mixing process as seen in direct numerical
simulations and allows us to infer important aspects of the history of observed
droplet populations, highlighting the key mechanisms at work and explaining
the differences between observations and simulations.
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1 INTRODUCTION

Clouds play a major role in regulating weather and cli-
mate on Earth, by modulating the incoming solar radi-
ation. Despite substantial scientific advances in the last
decades, clouds still represent the primary source of uncer-
tainty in climate projections (Stocker et al., 2013; Pincus
et al., 2018). A key challenge is to understand how entrain-
ment of dry air at the edges of ice-free clouds affects the
size distribution and number density of droplets (Blyth,
1993). This is important because the amount and distri-
bution of liquid water determine cloud optical properties

(Kokhanovsky, 2004) and precipitation efficiency (Burnet
and Brenguier, 2007). As a consequence, weather and cli-
mate models are sensitive to how entrainment at the cloud
edge is parameterised (Mauritsen et al., 2012).

The optical properties of clouds are of crucial impor-
tance for the radiation balance of the Earth’s climate
system (Dufresne and Bony, 2008; Caldwell et al., 2016).
The size distribution and number density of droplets are
key ingredients, because the light-extinction coefficient of
the cloud is determined by the number of the droplets it
contains times their average surface area (Kokhanovsky,
2004).
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F I G U R E 1 (a) Effect of
mixing on local droplet populations
(schematic). On large spatial scales
(𝓁1 and 𝓁2), mixing and evaporation
is not yet complete, but some smaller
regions (of size 𝓁3) are in local steady
states: saturated air with droplets, or
subsaturated air without droplets. (b)
Initial cloud configuration in our
model. Before mixing, moist air and
droplets reside in a w×L×L slab,
contained in a cubic domain of side
length L. Regions with dry air are
dashed. The solid line is the initial
profile of supersaturation s (see text).

Regarding precipitation efficiency, the mechanism of
rain formation in ice-free clouds is a longstanding unre-
solved problem in atmospheric physics (Grabowski and
Wang, 2013). A broad initial droplet size distribution
is needed to activate the collisions and coalescences of
droplets necessary for the rapid onset of rain formation
observed empirically in warm clouds (Szumowski et al.,
1997; 1998; Devenish et al., 2012). Microscopic droplets
grow by condensation of water vapour, or shrink by evap-
oration. However, when a droplet-containing parcel does
not mix with its surroundings, condensation causes the
droplet size distribution to narrow because the diffusional
growth of a droplet is inversely proportional to its radius,
so that small droplets grow faster than large ones (Rogers
and Yau, 1989).

Turbulence has a strong influence upon droplet
condensation and evaporation in clouds (Bodenschatz
et al., 2010). Turbulent mixing causes water-vapour and
liquid-water content to fluctuate on different length- and
time-scales (Vaillancourt et al., 2001). As a consequence,
nearby droplets may have experienced quite different
growth histories. The droplets of a cloudy parcel that is
mixed with dry air evaporate at different rates, so that the
droplet size distribution broadens (Lanotte et al., 2009; Sar-
dina et al., 2015; 2018; Li et al., 2020). Cloud-resolving
simulations (Hoffmann and Feingold, 2019) show that this
mechanism can have a strong effect on droplet number
densities in turbulent clouds.

Entrainment of dry air at the cloud edge triggers
rapid changes in the droplet size distribution (Perrin and
Jonker, 2015; Abade et al., 2018). As turbulence mixes
dry air into the cloud, it creates long-lasting regions of
dry air where droplets can evaporate rapidly. Droplets in
regions with higher water-vapour concentration, by con-
trast, may saturate the air and survive for a much longer
time (Figure 1a). While droplets evaporate, turbulence
mixes the cloud at many length-scales, ranging from

the Kolomogorov length—of the order of millimetres
(Devenish et al., 2012)—to a few kilometres (Rogers and
Yau, 1989). Evaporation and mixing on a spatial scale 𝓁
depend on the turbulent mixing time 𝜏𝓁 at that scale, and
upon the relevant thermodynamic time-scale 𝜏. Their ratio
forms a Damköhler number Da = 𝜏𝓁∕𝜏 (Dimotakis, 2005).
The thermodynamic process parameterised by Da is lim-
ited by the rate of mixing if Da is large, and limited by
thermodynamics if Da is small. The dynamics at large
Damköhler numbers is referred to as inhomogeneous mix-
ing (Baker et al., 1980), where some droplets evaporate
completely while others do not evaporate at all. Small-Da
mixing is called homogeneous, where droplets evaporate
at approximately the same rate, so that the droplet size
distribution remains narrow.

The notion of homogeneous and inhomogeneous mix-
ing remains debated (Tölle and Krueger, 2014), but it can
be given a precise meaning in terms of the fraction Pe(t) of
droplets that have evaporated completely at time t. How-
ever, it is not understood at present which mechanisms
and parameters determine the transition from homoge-
neous to inhomogeneous mixing. Several authors have
attempted to describe turbulent mixing in terms of one
Damköhler number. Lehmann et al. (2009) used a com-
bined microphysical response time 𝜏r, a function of the two
thermodynamic time-scales of the problem, 𝜏d (droplet
evaporation), and 𝜏s (supersaturation relaxation). Lu et al.
(2018), by contrast, suggest that 𝜏d should be used to for-
mulate a single-parameter criterion for inhomogeneous
mixing. The direct numerical simulations (DNS) by Kumar
et al. (2018) explored how the nature of mixing changes
as 𝜏L∕𝜏r increases with the linear size L of the simulated
domain. However, no clear sign of inhomogeneous mix-
ing was found. The authors mention that this may be a
consequence of the thermodynamic setup used. Another
possibility is that the simulated system was just not large
enough. Jeffery (2007) emphasised that evaporation and
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mixing cannot be described by a single Da alone, because
there are two thermodynamic time-scales, leading to three
key nondimensional parameters: Dad, Das, and the vol-
ume fraction 𝜒 of cloudy air. However, Jeffery only stud-
ied the case Dad = Das and did not discuss the implica-
tions of varying the Damköhler numbers separately. Pin-
sky et al. (2016a) and Pinsky and Khain (2018a) modified
an equation for advected liquid water (Rogers and Yau,
1989) into a diffusion–reaction equation for the droplet
size distribution and emphasised the significance of a
nondimensional parameter, their potential evaporation
parameter.

Here we derive a statistical model for evaporation and
turbulent mixing at the cloud edge from first principles.
The model takes into account the multiscale turbulent
dynamics, as turbulent clouds can have large Reynolds
numbers; Re∼ 107 is a conservative estimate for convec-
tive clouds (Devenish et al., 2012). The model quantita-
tively predicts the outcomes of the DNS by Kumar et al.
(2012; 2013; 2014; 2018). Furthermore, the model shows,
in accordance with Jeffery (2007), that the evolution of the
droplet size distribution is determined by Dad, Das, and 𝜒 .
We find that the potential evaporation parameter of Pinsky
et al. (2016a) and Pinsky and Khain (2018a) is determined
simply by the ratio of the Damköhler numbers. Finally,
the model allows us to interpret the results of in situ mea-
surements of clouds at the centimetre scale (Beals et al.,
2015).

2 METHOD

We study mixing and evaporation of cloud droplets by mix-
ing moist air, droplets, and dry air in a cubic domain of side
length L with periodic boundary conditions. Initially, the
saturated or slightly supersaturated moist air with super-
saturation sc ≥ 0 is contained in a w×L×L slab, together
with N0 randomly distributed water droplets (Figure 1b).
The dry air, initially outside the slab, has negative super-
saturation se < 0. The mixing is driven by statistically sta-
tionary homogeneous isotropic turbulence, with turbulent
kinetic energy TKE and mean dissipation rate per unit
mass 𝜀 (Frisch, 1995). Essentially the same setup is used
in the DNS of Kumar et al. (2012; 2013; 2014; 2018), which
allows us to understand their simulation results in terms
of our model.

2.1 Microscopic equations

For the turbulent mixing, we start from the microscopic
equations of Kumar et al. (2018) and earlier studies
(Vaillancourt et al., 2002; Lanotte et al., 2009; Paoli and

Shariff, 2009; Kumar et al., 2014; Perrin and Jonker, 2015).
We neglect buoyancy, particle inertia and settling, temper-
ature changes due to vertical motion, and temperature and
pressure dependences of the thermodynamic coefficients,
and subsume the joint effects of temperature and water
vapour into a single supersaturation field.

We denote fluid velocity and pressure by u(x, t) and
p(x, t), and supersaturation by s(x, t). The spatial posi-
tion of droplet 𝛼 is x𝛼(t), its radius equals r𝛼(t), and the
index 𝛼 ranges from 1 to N0. We nondimensionalise as
follows: u′ = u∕U, x′ = x∕(U𝜏L), t′ = t∕𝜏L, p′ = p/(𝜚aU2),
x′
𝛼 = x𝛼∕(U𝜏L), s′ = s/|se|, r′𝛼 = r𝛼∕r0, and s′c = sc∕|se|. Here

U =
√

2 TKE∕3 is the turbulent root-mean-square veloc-
ity, 𝜏L = TKE∕𝜀 is the large-eddy time [proportional to
L/U if the size of the largest eddies is of the order L
(Pope, 2000)], 𝜚a is the reference mass density of air,
r0 = [N−1

0
∑N0

𝛼=1 r𝛼(0)3 ]1∕3 is the initial volume-averaged
droplet radius, and |se| is the (positive) subsaturation of
air outside the initial cloud slab. Dropping the primes,
the microscopic equations take the nondimensional
form:

D
Dt

u = −∇p + Re−1
L ∇2u with ∇ ⋅ u = 0, (1)

D
Dt

s = (ReLSc)−1∇2s − Das 𝜒Vr𝛼(t)s(x𝛼, t), (2)

d
dt

x𝛼 = u(x𝛼, t) , (3)

d
dt

r𝛼 = Dad s(x𝛼(t), t)∕(2r𝛼) if r𝛼 > 0 . (4)

Equations 1–4 are the incompressible Navier–Stokes
equations, with Lagrangian time derivative D

Dt
= 𝜕t +

(u ⋅ ∇). In DNS of Equations 1–4, a forcing is imposed to
sustain stationary turbulence. This is not necessary in the
model introduced below, and we therefore do not include
a forcing term in Equation 1. Equation 2 is the equation
for supersaturation. The first term on its right-hand side
describes diffusion of the supersaturation s(x, t). The sec-
ond term models the effect of condensation and evap-
oration through the average r𝛼(t)s(x𝛼, t), taken over all
droplets in the vicinity of x. Droplets are advected by the
turbulent flow (Equation 3), and Equation 4 models how
the droplet radius r𝛼 changes due to evaporation and con-
densation. When a droplet has evaporated completely, we
impose that it must remain at r𝛼 = 0. In the derivation
of Equation 4, s(x𝛼(t), t) enters as the supersaturation at
distances from the droplet much larger than the droplet
radius (Rogers and Yau, 1989). In other words, Equation 4
relies on a scale separation between droplet sizes and the
lengths that characterise supersaturation fluctuations gen-
erated by turbulent mixing (Vaillancourt et al., 2001). As
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a consequence, droplets interact locally with the super-
saturation field over finite volumes through the aver-
age r𝛼(t)s(x𝛼, t) in Equation 2. Further details regarding
Equations 1–4 are given in the Supporting Information,
where we also show how to derive Equations 1–4 from the
more detailed dynamical description of Vaillancourt et al.
(2001; 2002), Kumar et al. (2014; 2018), and Perrin and
Jonker (2015).

An advantage of writing the dynamics in nondi-
mensional form is that this determines the independent
nondimensional parameters. First, ReL = 2

3
TKE2∕(𝜀𝜈) is

the turbulence Reynolds number (Pope, 2000), where 𝜈

is the kinematic viscosity of air. The Schmidt number
is defined as Sc = 𝜈∕𝜅, where 𝜅 is the diffusivity of s.
The volume fraction of cloudy air is given by 𝜒 = w∕L,
and V = [L∕(U𝜏L)]3 is the dimensionless domain vol-
ume. The Damköhler number Das is defined as Das =
𝜏L∕𝜏s, where 𝜏s = (4𝜋A2A3𝜚wn0r0)−1 is the supersatura-
tion relaxation time. This is the time-scale at which the
supersaturation decays towards saturation, assuming that
all droplets have the same radius r0, and for droplet
number density n0 =N0/(wL2). Further, 𝜚w is the den-
sity of pure liquid water, and A2 and A3 are thermody-
namic coefficients, specified in the Supporting Informa-
tion. The Damköhler number Dad is defined as Dad =
𝜏L∕𝜏d, where 𝜏d = r2

0∕(2A3|se|) is the droplet evaporation
time, the time that it takes for a droplet of radius r0 to evap-
orate completely in a constant ambient supersaturation
se < 0.

The Damköhler numbers determine the extent to
which saturation and droplet evaporation are limited
by the rate of mixing (Dimotakis, 2005). Saturation is
mixing-limited at large Das, since regions with evapo-
rating droplets—created by mixing of cloudy and dry
air at the time-scale 𝜏L—saturate faster than 𝜏L. When
Das is small, by contrast, evaporating droplets saturate
the air more slowly than it is mixed. In this case, sat-
uration is not limited by the rate of mixing. Droplet
evaporation is mixing-limited at large Dad, since droplets
then evaporate more rapidly than the exposure to sub-
saturated air changes. At small Dad, mixing is faster
than droplet evaporation, and droplets tend to evaporate
mainly after the system has been mixed. The droplets
then experience roughly the same supersaturation as they
evaporate.

In the limit ReL →∞, three key nondimensional
parameters remain in Equations 1–4: 𝜒 , Dad, and Das. The
system can be parameterised by 𝜒 , Dad, and

ℛ = Dad∕Das . (5)

In this way, the scale dependence of the mixing pro-
cess is contained in Dad only. The Damköhler-number

ratio ℛ is inversely proportional to the density of liq-
uid water in the cloud slab; it regulates the moisture of
the mixing process (details in the Supporting Informa-
tion). The bifurcation between moist steady states, where
droplets remain in saturated air, and dry steady states,
where all droplets have evaporated completely (Jeffery,
2007; Kumar et al., 2013; Pinsky et al., 2016b), occurs at a
critical value of ℛ, ℛc. The critical ratio ℛc can be com-
puted from the conserved quantity 𝜃 = −⟨s(t)⟩ − 2𝜒

3ℛ
[1 −

Pe(t)]⟨r3(t)⟩, which is analogous to the liquid-water poten-
tial temperature at fixed altitude (Gerber et al., 2008; Lamb
and Verlinde, 2011; Kumar et al., 2014). Here, Pe(t) is
the fraction of completely evaporated droplets, the frac-
tion of droplets for which r𝛼(t) = 0 at time t. Furthermore,⟨s(t)⟩ = V−1∫V s(x, t) dx is the volume average of supersat-
uration, and

⟨
r3(t)

⟩
= {[1 − Pe(t)]N0}−1 ∑N0

𝛼=1 r𝛼(t)3 is the
mean cubed droplet radius, conditioned on r𝛼(t) > 0 by
the factor [1−Pe(t)]−1. The conservation of 𝜃 can be con-
cluded by integrating Equation 2 for supersaturation over
the domain volume: see the Supporting Information for
details. Moist steady states have

⟨
r3(t)

⟩
> 0 and ⟨s(t)⟩= 0,

dry steady states have Pe(t)= 1 and ⟨s(t)⟩< 0, so the sign
of 𝜃 determines whether the steady state is moist or dry.
The value of 𝜃 is determined by the initial conditions,
𝜃 = −⟨s(0)⟩ − 2𝜒∕(3ℛ). Setting 𝜃 = 0, we find the critical
Damköhler-number ratio ℛc = − 2

3
𝜒∕⟨s(0)⟩.

DNS of Equations 1–4 for experimentally observed dis-
sipation rates and droplet number densities are feasible
only for quite small systems (Kumar et al., 2018). This
restricts the range of scales that can be explored and makes
it difficult to detect inhomogeneous mixing in DNS. We
therefore pursue an alternative approach and adapt a PDF
model (Pope, 2000)—commonly used to describe combus-
tion processes (Haworth, 2010)—to the inhomogeneous
cloud edge. As opposed to the kinematic statistical models
reviewed by Gustavsson and Mehlig (2016), we must also
take thermodynamic processes into account.

2.2 Statistical model

Statistical models have been used to describe droplets in
a supersaturation field that fluctuates around zero, as in
the cloud core (Paoli and Shariff, 2009; Sardina et al., 2015;
Chandrakar et al., 2016; Siewert et al., 2017). At the cloud
edge, there are large deviations from this equilibrium.
Jeffery (2007), Pinsky et al. (2016a), and Pinsky and Khain
(2018a) formulated models for the cloud edge where
droplets evaporate in direct response to a mean supersat-
uration field. This does not take into account that mixing
is local, and that small droplets are advected together with
the supersaturation field. For an accurate description of
mixing and evaporation, it is essential to describe how each
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droplet carries its own local supersaturation (Siewert et al.,
2017). Our model does just that. It is derived from first
principles using the established framework of PDF models
(Pope, 2000).

For the configuration shown in Figure 1b, we
derive one-dimensional statistical-model equations from
Equations 1–4 (details in the Supporting Information):

du = −3
4

C0udt +
(

3
2

C0

)
1∕2 d𝜂 , (6)

d
dt

s = −1
2

C𝜙[s − ⟨s(x, t)⟩] − Das 𝜒V⟨r(t)s(x, t)⟩ , (7)

d
dt

x = u , (8)

d
dt

r = Dad s∕(2r) if r > 0 . (9)

Equation 6 describes the fluctuating acceleration of
Lagrangian fluid elements in turbulence. Here, d𝜂 are
Brownian increments with zero mean and variance dt, and
C0 is an empirical constant (Pope, 2011). Each Lagrangian
fluid element has a supersaturation s, and may contain a
droplet (at position x, of size r). Equation 7 approximates
the supersaturation dynamics as decay towards ⟨s(x, t)⟩,
regulated by the empirical constant C𝜙 (Pope, 2000). The
second term on the right-hand side of Equation 7 repre-
sents the effect of condensation and evaporation through⟨r(t)s(x, t)⟩. The position-dependent averages ⟨… ⟩ in
Equation 7 are taken over fluid elements located at x at
time t (details in the Supporting Information). The sta-
tistical model in Equations 6–9 becomes independent of
ReL at large Reynolds numbers, where C0 approaches a
definite limit (Pope, 2011). It is independent of Sc, in accor-
dance with the known behaviour of advected scalars in
fully developed turbulence (Shraiman and Siggia, 2000).

Equations 6–9 rest upon a probabilistic description of
the dynamics of the two phases, droplets and air (Pope,
2000; Jenny et al., 2012). The corresponding evolution
equations, dictated by Equations 1–4, contain unclosed
terms that must be approximated (Pope, 1985; Haworth,
2010) to obtain a closed model such as in Equations 6–9.
Following Pope (2000), we cast the model into the form of
stochastic dynamical equations for Lagrangian fluid ele-
ments. Since the dynamics is statistically one-dimensional
in our configuration, we can average over the y and z
coordinates to obtain Equations 6–9 in one-dimensional
form. For the closures, we rely on standard approxima-
tions, common and justified in PDF modelling of single-
phase flows (Pope, 1985) and in models for turbulent
combustion (Haworth, 2010; Jenny et al., 2012; Stöllinger
et al., 2013). The explicit mathematical approximations
for the closures provided in the Supporting Information

render the interpretation of the statistical model definite,
and indicate how to improve the model when necessary.

In the following, we briefly summarise the closures.
Equation 6 contains the closure for fluid-element accel-
erations. It reproduces the empirically observed effect of
turbulent diffusion of passive-scalar averages (Pope, 2000).
Equation 7 contains two closure approximations. First, the
decay towards ⟨s(x, t)⟩ approximates the diffusion of super-
saturation. This closure ensures that the mean of a pas-
sive scalar is conserved, and that a passive scalar remains
bounded between its minimal and maximal values (Pope,
2000). Furthermore, it describes the decay of passive-scalar
variance in statistically homogeneous turbulent mixing of
two scalar concentrations (Pope, 2000). However, this clo-
sure does not reproduce the relaxation of the single-point
PDF of scalar concentration from a two-peaked distribu-
tion via a U-shaped distribution into a Gaussian (Eswaran
and Pope, 1988; Pope, 1991). For our initial conditions
(Figure 1b), the decay towards ⟨s(x, t)⟩ captures the super-
saturation fluctuations experienced by a fluid element as it
moves towards or away from the most cloudy region. Note
that this closure does not account for large saturated cloud
structures that tend to relax slowly towards ⟨s(x, t)⟩. Such
events are most relevant during the initial stages of the
mixing–evaporation process, and their effect is expected
to diminish with time, as large cloud structures are mixed
into smaller and smaller structures. Consequently, the sta-
tistical model may describe short initial transients only
qualitatively, not quantitatively.

The second closure in Equation 7 approximates the
effects of droplet phase change on the supersaturation
field: the local average r𝛼(t)s(x𝛼, t) in Equation 2 is replaced
by the ensemble average ⟨r(t)s(x, t)⟩. This is the simplest
closure that preserves the conservation of the parame-
ter 𝜃, and it is therefore common in PDF models that
describe combustion of particles in turbulence (Haworth,
2010; Jenny et al., 2012; Stöllinger et al., 2013). The aver-
age ⟨r(t)s(x, t)⟩ takes into account that droplet evaporation
is delayed locally when nearby droplets saturate the sur-
rounding air. Since we obtain closure by replacing the local
average r𝛼(t)s(x𝛼, t) by an average over fluid elements with
one-dimensional dynamics, variations in the rate of super-
saturation relaxation in the y- and z-coordinates are not
described.

It is expected that the large cloud structures mentioned
above, and their three-dimensional forms, matter more
at very large Damköhler numbers. Therefore it cannot be
excluded that the statistical model is only qualitative in
this extreme limit. Below we show that the model works
very well even for the largest Damköhler numbers in DNS
studies (Kumar et al., 2012; 2014). Also, since the statistical
model is derived using the established framework of PDF
models (Pope, 2000), it can be improved straightforwardly
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by incorporating additional variables in the probabilistic
description (Pope and Chen, 1990; Pope, 2000; Meyer and
Jenny, 2008), or by using more refined approximations
(Pope, 1991; Jenny et al., 2012).

3 RESULTS

3.1 Comparison with DNS

The statistical model can be used to understand the DNS
results of Kumar et al. (2012; 2013; 2014; 2018). Figure 2
shows good agreement for the time evolution of the frac-
tion Pe(t) of droplets that have completely evaporated, even
though the statistical-model dynamics is slightly slower.
Panels (a) and (b) in Figure 3 shows that the model repro-
duces the broadening of the droplet size distribution. The
slightly slower dynamics in Figure 2 and the deviations
in the tails in Figure 3 suggest that the statistical model
does not reproduce the most rapid evaporation rates. This
could be due to turbulent fluctuations in the supersatura-
tion diffusion, neglected in Equation 7. Kumar et al. (2012;
2014) compute droplet size distributions with prominent
exponential tails using DNS—some of them are seen in
Figure 3 (black lines)—and connect these tails to corre-
sponding exponential tails in the PDF of supersaturation
at droplet positions. In our statistical-model simulations,
we observe heavy tails in the PDF of supersaturation at
droplet positions, but the tails are less pronounced than
in the DNS (not shown). Heavy tails are consistent with
the results of Eswaran and Pope (1988) mentioned above,
who observed how an initially bimodal supersaturation
relaxes.

Despite these shortcomings, our model describes the
time evolution of Pe(t) very well (Figure 2). It is also a sig-
nificant improvement over models in which the droplets
interact with a mean supersaturation field (Jeffery, 2007;
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F I G U R E 2 Fraction Pe(t) of droplets that have evaporated
completely as a function of nondimensional time t, parameters in
Table 1. Coloured lines are statistical-model simulations, black lines
are DNS of Kumar et al. (2014).

Pinsky et al., 2016a; Pinsky and Khain, 2018a). In reality,
the droplets react to the local supersaturation, as men-
tioned above, and this may be particularly important at
large values of Dad, where locally saturated regions can
persist for a long time.

Figure 4 shows the steady-state value P∗
e of Pe(t) com-

puted from the statistical model as a function of Dad
and ℛ∕ℛc. We see how P∗

e increases with both Dad and
ℛ∕ℛc. The DNS results of Andrejczuk et al. (2006) and
Kumar et al. (2012; 2013; 2014; 2018) form a pattern in
Figure 4 that verifies these dependences: open symbols
correspond to DNS with little or no complete evapora-
tion in the steady state (P∗

e < 10%), and filled symbols to
P∗

e > 10%. Figure 4 also explains why the DNS of Kumar
et al. (2018) did not exhibit significant levels of inhomo-
geneous mixing: since their ℛ was quite small, small
values of P∗

e require values of Dad much larger than unity
(Dad ∼ 102 for P∗

e = 10%). Furthermore, the substantially
different outcomes of the DNS of Kumar et al. (2012; 2014)
are explained: their parameters lie on opposite sides of
the bifurcation line. Figure 4 also explains, at least quali-
tatively, numerical results of DNS of transient turbulence
with quite different initial conditions (Andrejczuk et al.,
2006), namely how the amount of complete droplet evap-
oration increases with both ℛ∕ℛc and Dad. There is no
parameter corresponding directly to Dad in the simula-
tions of Andrejczuk et al. (2006), because they are for
different initial conditions and flows. We therefore place
these simulations in Figure 4 by computing a time-scale
ratio that, in a qualitative sense, incorporates the same
physics as Dad (details in the Supporting Information).
Key parameters of the DNS in Figure 4 are summarised
in Table 2; a complete description is provided in the
Supporting Information.

3.2 Mixing histories from observations

A common way of characterising the droplet content of a
cloud is to plot the mean cubed radius r3 and number den-
sity n of droplets for observed cloud-droplet populations
in a mixing diagram. Figure 5(a) shows a mixing diagram
with empirical data from Beals et al. (2015). Black crosses
are values of r3 and n extracted from snapshots (linear size
15 cm) of local droplet populations measured during an
airplane flight through a convective cloud.

Observational data in mixing diagrams are commonly
discussed in relation to the homogeneous mixing line, a
curve of the global steady states (r3

∗,n∗) that result from
homogeneous mixing (no complete evaporation) between
different proportions of undiluted cloudy and dry environ-
mental air (Gerber et al., 2008; Kumar et al., 2014; Pinsky
et al., 2016a). Beals et al. (2015) calculated this line; it is also
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(a) (b)

F I G U R E 3 (a) Evolution of the droplet size distribution (parameters in Table 1) for different times. The probability density of the
nondimensional droplet radius r is shown for the statistical model (coloured lines) and DNS of Kumar et al. (2014) (black lines). The initial
droplet size distribution is monodisperse and centred at r = 1. (c) Same as (b), but for a very moist case (parameters in Table 1) and DNS of
Kumar et al. (2012).

T A B L E 1 Summary of statistical-model simulations (details in the Supporting Information): Damköhler
number ratio ℛ, critical ratio ℛc, and volume fraction 𝜒 of cloudy air.

Simulation Dad Das 𝓡 𝓡c 𝝌

Figure 2 and 3a [dry] 2.44 0.968 2.52 0.859 0.428

Figure 2 [moist] 1.09 1.43 0.76 0.859 0.428

Figure 3b [very moist] 0.754 8.20 0.092 0.683 0.4

Figure 4 5E-3–4E2 1E-3–9E3 4E-2–4E0 0.913 0.429

Figure 5a 1E-2–1E3 6E-2–6E3 0.17 0.18–2.7 0.2–0.8

Figure 5b 1E-2–8E2 3E-3–4E4 2.4E-2–2.9E-2 0.38–0.41 0.369–0.374

shown in Figure 5a. A fundamental problem, however, is
that it is not clear how to interpret mixing diagrams such as
Figure 5a, since it is not clear that the empirically observed
droplet populations reflect global steady states (Pinsky and
Khain, 2018a).

It is nevertheless likely that most data points in
Figure 5a sample local steady states, that is, locally
well-mixed droplet populations that reside in saturated air.
To describe such droplet populations, one must refer to the
multiscale turbulent mixing process. We attempted this
analysis using the statistical model, assuming that the sta-
tistical model with the initial condition shown Figure 1b
describes how a cloud structure at the spatial scale L
develops. Under this assumption, n∗ and r3

∗ are given by the
droplet number density (normalised by n0) and the mean
cubed droplet radius

⟨
r(t)3⟩ in the steady state, and we can

conjecture the mixing histories that formed the measured
droplet populations.

We begin by noting that 𝜒 and P∗
e are completely deter-

mined for any steady-state point (r3
∗,n∗) in a mixing dia-

gram. To show this, we write the volume-averaged initial
supersaturation as ⟨s(0)⟩ = (1 + sc)(𝜒 + 𝜒0) − 1, where 𝜒0
is a constant that depends on the initial supersaturation
profile (details in the Supporting Information). Inserting

𝜒 = n∗∕(1 − P∗
e ) (10)

into 𝜃 = −⟨s(t)⟩ − 2𝜒
3ℛ

[1 − Pe(t)]⟨r3(t)⟩, we find

P∗
e = 1 −

n∗[1 + 3
2
ℛ(1 + sc)]

n∗r3
∗ +

3
2
ℛ[1 − 𝜒0(1 + sc)]

. (11)

Equations 10 and 11 determine how to map (r3
∗,n∗) to

(𝜒,P∗
e ). As a consistency check we note that one obtains

the homogeneous mixing line (Pinsky et al., 2016a) from
Equation 11 by setting P∗

e = 0. This allows us to infer that
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F I G U R E 4 Steady-state fraction P∗
e of completely evaporated

droplets as a function of Dad and ℛ∕ℛc; details in the Supporting
Information. The fraction P∗

e is colour-coded. The solid red line is
the contour P∗

e = 10%, the black dashed line indicates the transition
between moist and dry steady states, and symbols indicate DNS
results from previous studies: ▵ (Kumar et al., 2012), ◽ (Kumar
et al., 2013), ⬦ (Kumar et al., 2014), ▿ (Kumar et al., 2018), and
◦ (Andrejczuk et al., 2006). Filled symbols indicate P∗

e > 10%. The
DNS of Andrejczuk et al., (2006) should not be compared
quantitatively with the statistical model results, since they are for
different initial conditions and decaying turbulence (see text and
Supporting Information). Red, blue, and light blue circles
correspond to the dry, moist, and very moist simulations in
Figures 2 and 3.

ℛ = 0.17 and sc = 𝜒0 = 0 for the homogeneous mixing
line of Beals et al. (2015).

Any point in the mixing diagram must correspond
to a local steady state with certain values of P∗

e and
𝜒 . Each statistical-model simulation for given Dad, ℛ,
and 𝜒 yields a certain value of P∗

e . This allows us
to extract a value of Dad for each point in the mix-
ing diagram from our statistical-model simulations. The
result is shown in Figure 5a. We see that Dad increases
rapidly above the homogeneous mixing line. Estimating
𝜏s ∼ 1s from Beals et al. (2015) and conservatively esti-
mating 𝜀∼ 1 cm2⋅s−3 for a convective cloud, a value of
Dad = 1000 implies that an observed droplet population
was mixed at spatial scales of the order of L ∼

√
𝜀𝜏3

L ∼
5 km, larger than the size of the cloud. In other words,
the rapid increase of Dad in Figure 5a suggests that
most of the data in the mixing diagram cannot be in
a global steady state of a mixing process parameterised
by ℛ = 0.17.

We concluded above that most measurements of Beals
et al. (2015) are likely to correspond to local steady states.
As undiluted cloudy air is mixed with premixed air,
such steady states are formed locally and temporarily as

local mixing processes equilibrate at small spatial scales
(Figure 1a). We now discuss how the analysis of local
steady states may yield insight into possible local histo-
ries of the cloud. Air affected by earlier mixing events is
not as dry as environmental air, so the mixing of undiluted
cloud with premixed air is governed by smaller values
of ℛ. We therefore ask: which values of ℛ are consis-
tent with the assumption that the experimentally observed
droplet population in the middle panel of figure 2 of Beals
et al. (2015)—the red cross in Figure 5a—reflects a local
steady state? Our model allows us to determine possible
combinations of Dad, ℛ, and 𝜒 consistent with a local
steady state. We know that ℛ must be smaller than 0.17,
the upper limit dictated by the homogeneous mixing line
of Beals et al. (2015). Furthermore, since the data can-
not lie below the homogeneous mixing line of the global
mixing process, a lower bound for ℛ is ℛmin = 2

3
(n∗ −

r3
∗)n∗∕

[
(1 + sc)(𝜒0 + n∗) − 1

]
= 0.0236.

Figure 5b shows values of ℛ and Dad obtained from
our statistical-model simulations that are consistent with
these constraints. We see that the range of possible val-
ues of Dad covers several orders of magnitude. This means
that local mixing processes consistent with the red cross in
Figure 5a may have occurred over a large range of spatial
scales. We also see thatℛ does not vary much in Figure 5b,
only between 0.024 and 0.03. This allows us to conclude
that some important aspects of the mixing dynamics are
essentially independent of spatial scale. First, the fact that
ℛ is substantially smaller than 0.17 indicates that the non-
cloudy air was premixed. Second, using Equation 11, we
find that the reduction in droplet number density was
caused primarily by dilution even at the largest scales,
since P∗

e increases only up ∼1.4% for the largest value of
Dad, at Dad ∼ 1000 and ℛ = 0.03. Put differently, 𝜒 ∼ n∗
for all values of Dad we considered.

How does the outcome of a local mixing process
depend on its scale? Larger scales correspond to larger
values of Dad, and Figure 5b shows that complete
droplet evaporation begins to occur around Dad = 1,
where ℛ starts to exceed ℛmin (blue circle). Estimating
𝜀∼ 10 cm2⋅s−3, a typical value for convective clouds
(Devenish et al., 2012), we find that Dad = 1, 𝜏s ∼ 1, and
ℛ= ℛmin correspond to the spatial scale 9 m. Mixing pro-
cesses leading to the red cross in Figure 5a that occurred
at scales smaller than 9 m were therefore perfectly homo-
geneous: none of the droplets evaporated completely, as
they were diluted by premixed air. At larger spatial scales,
small but nonzero fractions of the droplets evaporated
completely. Equation 11 gives ℛ = 0.028 for P∗

e = 1%, and
from Figure 5b we read off Dad = 13 (green circle). For
𝜀∼ 10 cm2 ⋅s−3 these values correspond to 300 m. This sug-
gests that reductions in droplet number density are also
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F I G U R E 5 (a) Mixing diagram. Empirical data from Beals et al., (2015) (black crosses). The homogeneous mixing line (black) from the
top panel of figure 3 of Beals et al., (2015) corresponds to ℛ = 0.17. The coloured region shows where steady states are found in the mixing
diagram, for ℛ = 0.17. The corresponding values of Dad are colour-coded (legend). The red cross is the measurement shown in the middle
panel of figure 2 of Beals et al. (2015). (b) Values of ℛ and Dad consistent with a steady state at the red cross in panel (a) (red). We estimate
L∼ 9 m for Dad = 1 (blue circle). These local mixing processes have ℛ= ℛmin (black dashed line), so no droplets have evaporated completely
(P∗

e = 0). The green circle corresponds to Dad = 13 and ℛ = 0.028, with Pe*= 1% and L∼ 300 m.

T A B L E 2 Parameters of DNS shown in Figure 4: Damköhler number Dad, Damköhler-number ratio ℛ, critical ratio ℛc, and
volume fraction 𝜒 of cloudy air. Some dimensional parameters are also shown: domain size L, mean dissipation rate ε, and droplet
number density n0 of the initially cloudy air

Dimensional parameters
Nondimensional parameters L 𝜺 n0

Reference Dad Das 𝓡 𝓡c 𝝌 [cm] [cm2 ⋅s−3] [cm−3]

◦ Andrejczuk et al. (2006) 8E−1–1E2 3E0–3E2 0.13–2.8 0.10–4.5 0.13–0.87 64 4E−1–9E2 1E2–1E3

▵ Kumar et al. (2012) 8E−3–8E−1 8E−2–8E0 9.2E−2 0.68 0.4 26 34 164

◽ Kumar et al. (2013) 0.14, 0.31 0.62, 0.41 0.22, 0.73 0.68 0.4 26 34 164

⬦ Kumar et al. (2014) 0.61–2.4 0.97–1.9 0.31–2.5 0.84 0.42 51 34 153

▿ Kumar et al. (2018) 0.12–0.91 0.51-4.0 0.23 0.90–0.95 0.42–0.45 1E1–2E2 32–35 120

dominated by dilution, and not complete droplet evapo-
ration, for mixing processes that range over hundreds of
metres. Furthermore, since most data points in Figure 5a
reside well above the region where equilibria are found for
ℛ = 0.17, we conclude that they too resulted from mixing
with premixed air.

4 DISCUSSION

A general conclusion from our analysis is that both
Damköhler numbers are important for the transi-
tion to inhomogeneous mixing; Dad parameterises the
mixing-limited nature of droplet evaporation, and the ratio
ℛ = Dad∕Das regulates the self-limiting effect of droplet
evaporation, namely that droplets cease to evaporate when
they have saturated the surrounding air or evaporated
completely. Analysing the parameters of our microscopic

equations, Equations 1–4, we see that ℛ = − 3
2

R, where
R is the potential evaporation parameter of Pinsky et al.
(2016a) and Pinsky and Khain (2018a). Therefore R is in
fact given by the ratio of Dad and Das, consistent with our
conclusion that both Damköhler numbers matter.

Pinsky and Khain (2018b; 2019) concluded that the
Damköhler-number ratio ℛ determines whether a cloud
expands by dilution or shrinks by complete droplet evap-
oration. A mixing process that mixes equal proportions
of saturated cloudy and subsaturated noncloudy air has
ℛc = 2

3
, so the symmetric configuration they adopted for

the cloud edge implies that the cloud expands if ℛ <
2
3

and shrinks otherwise. We note that whether the cloud
expands or shrinks depends on the position and scale at
which one perceives it. A local mixing process with small
ℛ∕ℛc tends towards a moist steady state, so the cloud
dilutes locally. A local mixing process that tends towards
a dry steady state, by contrast, consumes the cloud. It
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is possible for a cloud to expand locally for some time,
even if this local expansion is part of a mixing process
that consumes the cloud at larger length- and time-scales.
Although global mixing processes are transient, they con-
tain local steady states. Diluted and saturated local droplet
populations (such as the red cross in Figure 5a) can be
a part of such transients. However, such local steady
states must eventually be abandoned as mixing proceeds
globally.

Adopting this multiscale picture of mixing, in which
a large-scale mixing process consists of many mixing pro-
cesses at smaller scales, it is natural to expect that large
ranges of the parameters 𝜒 , ℛ, and Dad are relevant. If
one moves the domain of a local mixing process from the
interior of the cloud towards the cloud edge, the liquid
water content decreases, so that ℛ∕ℛc and Dad increase.
Lehmann et al. (2009) point out that Dad increases as
one perceives mixing processes at larger and larger spa-
tial scales. This corresponds to moving to the right in
Figure 4. We note thatℛ∕ℛc and Dad tend to increase with
distance from the interior of the cloud. Moving the sam-
pling volume towards the cloud edge then corresponds to
a motion upwards and to the right in Figure 4. The amount
of complete droplet evaporation increases in this direction,
consistent with the fact that complete droplet evaporation
takes place at the cloud edge.

A number of assumptions may influence our interpre-
tation of the empirical data in Section 3.2. First, the model
configuration in Figure 1b is simplified compared with real
clouds, which have irregular shapes that deform during
the mixing–evaporation process. Second, the observational
method may not detect droplets with radii smaller than 3
𝜇m (r3

𝛼 = 0.2), as stated by Beals et al. (2015). If many small
droplets were not detected, the observations in Figure 5a
are located too far from the homogeneous mixing line.
Third, at the upper end of the Damköhler range in Figure 5,
the statistical model may not be quantitatively accurate,
as stated above. We nevertheless expect that the statistical
model reproduces the evolution of droplet size distribu-
tions in DNS qualitatively in Figure 5. This expectation
is corroborated by the robust tendency for P∗

e to increase
with increasing values of Dad and ℛ in Figure 4, and fol-
lows directly from the roles of the Damköhler numbers in
mixing–evaporation dynamics.

The deviations in the tails of droplet size distributions
at moderate Damköhler numbers in Figure 3 suggest that
the next step in improving the statistical model should aim
at reproducing the fastest evaporation rates in the transient
mixing–evaporation process. A better agreement in the
tails could be achieved by refining the closure for super-
saturation diffusion by using a dynamic C𝜙 in Equation 7
(Jenny et al., 2012), or by introducing additional fluctu-
ations (Pope, 1991). Another possibility is to refine the

description of the spatial structure of the supersaturation
field by improved closures (Pope, 1991; Vedula et al., 2001;
Meyer and Jenny, 2008; Jenny et al., 2012).

5 CONCLUSIONS

We derived a statistical model for evaporation and turbu-
lent mixing at the cloud edge from first principles. The
model explains results of earlier DNS studies of mixing
(Andrejczuk et al., 2006; Kumar et al., 2012; 2013; 2014;
2018) and shows that two thermodynamic time-scales are
important for a mixing process, the droplet evaporation
time and the supersaturation relaxation time. This means
that one must consider two Damköhler numbers in order
to quantify the mixing–evaporation dynamics. We con-
cluded that the simulations of Kumar et al. (2018) did
not exhibit a transition to inhomogeneous mixing with
increasing spatial scale, because the supersaturation relax-
ation time was too small compared to the droplet evapora-
tion time.

Our analysis supports general conclusions regarding
in-situ observation of droplets in turbulent clouds. First,
most of the local and instantaneous snapshots of droplet
configurations observed by Beals et al. (2015) cannot be
in the steady states of a global mixing process that mixed
undiluted cloud with dry environmental air. However, a
local droplet population may still be in a local steady state,
established as the droplets saturated the air locally. Such
local steady states belong to the transient of a global mixing
process. In order to understand the nature of this transient,
it was necessary to consider the whole range of possible
steady states at different length-scales (Figure 1a). In short,
clouds are not equilibrated at large scales, yet local steady
states occur at small scales.

Our analysis also indicates that most of the droplet
populations observed by Beals et al. (2015) are likely
to have resulted from mixing with premixed air, and
we concluded that the corresponding local steady states
arose by dilution rather than complete evaporation. Our
model indicates that only a very few droplets evaporated
completely.

We found that the statistical-model dynamics is some-
what slower than the DNS of Kumar et al. (2012; 2014) and
that the tails of our droplet size distributions are somewhat
lighter. We speculated that this may be due to the supersat-
uration dynamics being oversimplified. Since our model
belongs to the family of established PDF models (Pope,
2000), it is clear how to address this question in the future
(Pope, 1991; Vedula et al., 2001; Jenny et al., 2012).

Last but not least, our analysis highlights which addi-
tional observational data are needed for a more quanti-
tative statistical-model analysis of in situ cloud-droplet
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measurements. To determine the three key parameters,
the volume fraction of cloudy air as well as the two
Damköhler numbers, one needs joint measurements of
local droplet populations, supersaturation levels in their
vicinity, and the sizes of the local cloud structures. This
will allow us to characterise and understand the mecha-
nisms underlying local mixing processes observed on dif-
ferent length- and time-scales and at different distances
from the cloud edge. A challenge for the future is to under-
stand the global picture, how evaporation distributes in
the cloud, and where complete droplet evaporation takes
place. This is necessary to improve the parameterisation of
mixing and evaporation at the cloud edge in subgrid-scale
models, in order to better represent the radiative effects
of clouds.
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APPENDIX A. LIST OF SYMBOLS

Table A1 lists symbols used in the article.

T A B L E A1 List of symbols

t time

x = (x, y, z) spatial position

N0 number of droplets at initialisation

Pe fraction of completely evaporated droplets

u fluid velocity

p pressure

L side length of cubic simulation domain

w width of initially cloudy region in simulation
domain

sc supersaturation within initial cloud slab

se supersaturation outside initial cloud slab

T A B L E A1 Continued

TKE turbulent kinetic energy

U root-mean-square of fluid velocity

𝜀 turbulent dissipation rate per unit mass

𝜈 kinematic viscosity

𝜅 diffusivity of supersaturation

s supersaturation

r droplet radius

r0 initial volume radius of droplets

n0 droplet number density of intially cloudy
region

r𝛼(t)s(x𝛼, t) average of r𝛼(t)s(x𝛼, t) for droplets in the vicinity
of x at time t

D
Dt

Lagrangian time derivative

𝜏d droplet evaporation time

𝜏s supersaturation relaxation time

𝜏𝓁 time-scale for mixing at the length scale 𝓁

𝜏L large-eddy turnover time in simulation domain

ReL turbulence Reynolds number

Sc Schmidt number

V nondimensional volume of simulation domain

Dad Damköhler number based on droplet evapora-
tion time

Das Damköhler number based on supersaturation
relaxation time

ℛ Damköhler-number ratio

ℛc Critical Damköhler-number ratio

ℛmin Lower bound for Damköhler-number ratio
related to mixing diagrams

𝜒 volume fraction of cloudy air

𝜒0 contribution to the initial volume average of
supersaturation

𝜃 conserved quantity that reflects the conserva-
tion of water and energy

C0, C𝜙 empirical constants

⟨… ⟩ volume average or ensemble average in statisti-
cal model

https://doi.org/10.1002/qj.4015
https://doi.org/10.1002/qj.4015

