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Abstract: Power quality (PQ) is an increasing concern in the distribution networks of modern
industrialized countries. The PQ monitoring activities of distribution system operators (DSO), and
consequently the amount of PQ measurement data, continuously increase, and consequently new
and automated tools are required for efficient PQ analysis. Time characteristics of PQ parameters
(e.g., harmonics) usually show characteristic daily and weekly cycles, mainly caused by the usage
behaviour of electric devices. In this paper, methods are proposed for the classification of harmonic
emission profiles for typical consumer configurations in public low voltage (LV) networks using
a binary decision tree in combination with support vector machines. The performance of the
classification was evaluated based on 40 different measurement sites in German public LV grids.
This method can support network operators in the identification of consumer configurations and the
early detection of fundamental changes in harmonic emission behaviour. This enables, for example,
assistance in resolving customer complaints or supporting network planning by managing PQ levels
using typical harmonic emission profiles.

Keywords: power system harmonics; harmonic current emission; consumer behavior; public low
voltage network; time series; machine learning; classification; support vector machines

1. Introduction

The importance of power quality (PQ) in distribution networks continuously increases.
One of the reasons is the integration of new device technologies on a large scale, like
photovoltaic inverters, the transition from incandescent to LED lamps, and the integration
of battery electric vehicles and smart distribution systems. This may result in an increased
deterioration of PQ, which could in return affect other electronic devices, in particular if
their sensitivity to a particular PQ phenomenon (e.g., harmonic distortion) is high (low
immunity).

Increased levels of harmonic distortion can, for example, cause audible noise and
additional losses in network elements and devices, resulting in additional thermal stress,
which can result in reduced lifetime. Harmonic can also result in interference in communi-
cation, increased neutral conductor loading in LV networks, and reversible or irreversible
malfunction of devices [1–3].

The prices of PQ monitoring equipment have continuously decreased during the
last decades. Especially the integration of intelligent electronic devices (IED), like energy
meters, enables extremely cost-efficient solutions [4]. Due to this trend, network operators
have intensified their PQ measurement activities and the number of monitored sites rapidly
increases. Consequently, the amount of PQ measurement data increases and its efficient
management and analysis becomes a challenge of high complexity [5]. As also identified by
the CIRED/CIGRE working group C4.112 “Guidelines for Power quality monitoring” [6],
efficient methods and algorithms to analyze these large amounts of data are a key issue for
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future smart grids. Efficient and automated methods for processing large amounts of data
are essential, but rarely exist at present.

Harmonic emission in public LV networks is mainly determined by the type and num-
ber of connected equipment with power electronic interfaces and depends on the behavior
of the connected consumers/users (e.g., office hours) and the amount of generation (e.g.,
time of the day). Subsequently, PQ levels in public LV networks will vary over time and
allow for the definition of distinctive emission profiles for harmonic currents. The different
characteristics of these harmonic emission profiles can be used for the construction of a
classification system for the identification of the probable consumer configuration based
on the measurements of their harmonic currents.

Section 2 introduces the impact factors for PQ in public LV networks, as well as the
typical variations within their time series. The German measurement campaign, which is
the basis for the measurement data, is presented in the following section, highlighting the
consumer configurations of the 40 measurement sites and the analyzed harmonic currents.
The automatic generation of characteristic classes of typical harmonic emission profiles
using measurements is explained in Section 4. The design of a classification system using a
binary decision tree in combination with support vector machines is part of Section 5. The
performance of the training and the testing process of the classification system is evaluated
in Section 6. The last section introduces a measure of misclassification, which allows the
user of the classification system to identify emission profiles that are incorrectly assigned
to the defined classes of emission profiles.

2. Impact Factors on Power Quality

The variety of factors influencing power quality can be generally allocated into the
electrical and the non-electrical environment. The electrical environment includes all
factors directly related to type and number of devices connected to the network and the
network elements themselves [7]. The non-electric environment includes all factors that
have an additional impact, in particular on the usage behavior (e.g., climatic conditions)
and the penetration ratio of electric devices.

2.1. Electrical Environment

Three different aspects represent the electrical environment at the measurement site.
The consumer topology is characterized by the amount and type of consumers connected
to the network, which is directly linked to the type and number of disturbing devices.
The generation topology characterizes number, type, and rated power of the generating
installations connected to the network. Most of the installations utilize inverters which
can emit, for example, harmonics. Typical examples are photovoltaic installations. The
network topology covers all characteristics directly related to the network. The technical
parameters mainly influence the short circuit power, which determines the voltage quality
levels for a given current emission.

2.2. Types of Variation

The impact of the electrical environment results in variations of different periods,
which are displayed in Figure 1 [8].
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Short-term variations are mainly influenced by the consumer usage and generation
behavior of the connected devices. Certain consumer topologies show a distinct behavior
with different daily patterns of current quality parameters (e.g., working days vs. weekends
in office buildings). This repetitive behavior can be used to derive emission profiles, e.g.,
for current harmonics as shown in [9], to model their impact on residential loads [10]
or identify load patterns for single households [11]. Considering harmonic currents at
the bus bar of public LV networks can provide valuable qualitative information about
the dominant circuit topologies for different consumer configurations [12]. Generation in
German public LV grids is mainly dominated by small PV installations and occasionally
by micro combined heat and power (micro-CHP) installations, which are usually located
in residential areas. While PV installations always require an inverter, micro-CHPs can
be connected either directly, or via an inverter, to the grid. In the future, it is expected
that converter-based storage applications will also continuously increase, especially in
residential areas. Both inverters and converters contribute, due to the power electronics,
to harmonic emission. The network topology normally does not contribute to short-term
variations.

Medium-term variations, over periods of several months, are likely related to gen-
eral changes in consumer and generation behavior, which are mostly linked to seasonal
effects [7]. Early nightfall during winter months can lead to an increased use of equipment
like illumination, and subsequently result in a higher emission of harmonics. A more
detailed methodology for the analysis of seasonal variations can be found in [8].

Long-term variations are usually characterized by trends, which can only be identified
over several years [13]. One possible reason is the introduction of new device technologies
at a larger scale. For example, the introduction of electrical vehicle chargers might lead
to an increased emission level of current harmonics or a decreased emission level, due to
cancelation effects between the existing and newly introduced device topologies [14].

Nevertheless, the consumer topology is the dominant impact factor for public LV
grids in Germany. The impact is highly visible due to distinctive daily and weekly cycles,
especially in the emission of harmonic currents.

3. Measurement Campaign

The harmonic current emission of a LV network mainly depends on the number and
the type of electronic equipment, which is determined by the type of connected consumers.
In order to obtain representative results, different uniform consumer configurations, such
as residential areas with single- or multi-family houses, office areas, and commercial areas
were distinguished in the site selection. Additionally, mixed areas were selected, which rep-
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resent typical combinations of the three consumer configurations. In total 40 measurements
of different public LV networks in Germany were selected:

• 18 measurements in residential areas,
• 6 measurements in commercial areas,
• 6 measurements in office areas and
• 10 measurements in mixed areas.

The measurement equipment (Dewe-561-PNA from Dewetron and G4500 Blackbox
from Elspec) complies with IEC 61000-4-30 [15] class A and provides all major power
quality parameters for voltage and current, including the harmonics up to 2.5 kHz. The
measurement data was aggregated to 10 min. The individual harmonics of odd order 3 to
15 and the total harmonic current (THC) were analyzed in order to determine the typical
harmonic emission of public LV networks. Currently, harmonics are usually studied as
absolute values, because the expression related to the fundamental might not properly
reflect the impact on the network. This is mainly due to the high variation of fundamental
current compared, for example, to voltages. This variation can result in very high relative
values in cases of low fundamental currents, as well as variations of the relative harmonic
current, just because of the variation in the fundamental, even at a constant harmonic
current. Consequently, harmonic currents, with regard to their impact on the grid, should
always be analysed as absolute values. This equation represents the total harmonic currents,
I(h), independent of changes in the fundamental current magnitude, I(1):

THC = THD · I(1) =

√√√√ 50

∑
h=2

(
I(h)
)2 (1)

The accuracy of the measurement equipment for harmonic currents was additionally
validated in order to ensure meaningful results. Values of harmonic currents above 600 mA
have a relative error of less than 10% with respect to the measured value. The measurement
duration ranged between three months and up to more than one year for each of the four
different consumer configurations.

Usually, the harmonic current spectra contain only odd harmonics, which decrease in
magnitude significantly with increasing order. Considering the required accuracy, usually
only harmonic current magnitudes up to the 15th order remain for an analysis. In this
paper the 3rd harmonic order serves as an exemplar for the description and illustration of
the method.

4. Harmonic Emission Profiles

Several case studies of measurements in LV networks have analyzed the emission of
harmonic currents under different impacts, like PV inverters or lamp technologies [16–18].
The results showed that the harmonic emission of different consumer configurations is
strongly related to the typical usage of the connected equipment. The analysis of the 40 mea-
surements sites within the German measurement campaign showed that characteristic
emission profiles, especially of the 3rd harmonic current are most suitable for representing
different consumer configurations.

4.1. Characteristic Emission Profiles

The analysis of the weekly and daily time series for harmonic currents allows for an
automated determination of characteristic emission profiles [8], similar to the classification
of electric loads and load patterns [9–21]. The application of the method proposed in [22] for
measurements with a duration of at least one year leads to four different emission profiles
of harmonic currents, with respect to the dominating consumer configuration (residential,
commercial, office, and mixed areas). Two typical emission profiles for the 3rd harmonic
current of an office building and an electronic market are displayed in Figures 2 and 3.
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Due to the consumer behavior for an office building the results in Figure 2 represent
the typical emission of harmonic currents during one year. Group 1 (c.f. Figure 2a) mainly
represents the weekend days and holidays, whereas group 2 (c.f. Figure 2b) represents the
working days from Monday to Friday. The two emission profiles for the electronic market
in Figure 3 reveal that it is usually closed on Sundays and holidays (group 1 in Figure 3a)
and open from Monday to Saturday (group 2 in Figure 3b). The analysis of the 40 different
sites of the measurement campaign showed that the emission profiles are split into three
groups, which are influenced by different types of day. These three groups are similar
to the VDEW load profiles [23]: Monday to Friday (G1), Saturday (G2), and Sunday and
holidays (G3). The 50th percentile is calculated for each time point of all available daily
time series within a group. The resulting 50th percentile time series are used to represent
the typical emission profile for the harmonic currents of the 40 measurement sites. Typical
examples for the emission behavior of the 3rd harmonic current for different consumer
configurations are displayed in Figure 4.
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4.2. Grouping of Emission Profiles

In total 360 emission profiles could be obtained (3 phases, 3 groups, and 40 measure-
ments) for each specific harmonic order. These profiles were categorized into different
classes in order to enable the development of the classification system.

4.2.1. Min-Max Normalization and Clustering of Emission Profiles

The range of harmonic current values within the different LV networks strongly varies.
Therefore, min-max normalization was applied in order to avoid problems using emission
profiles with different ranges of values. The value ranges of a time series x were scaled
between 0 and 1 in order to preserve the relation between the original values and to get a
fixed range of values [24]:

x′ =
x−min(x)

max(x)−min(x)
. (2)

As displayed in Figure 4, five different classes of emission profiles can be distinguished.
A hierarchical cluster analysis was used in order to assign each of the 360 emission profiles
for the 3rd harmonic current to one of the classes. The Euclidean distance measure was
used to calculate the required distance matrix for the clustering process. Other different
distance measures (e.g., dynamic time warping distance) were tested and showed almost
identical results compared to the Euclidean distance measure. The clustering used average
linkage within each iteration of joining multiple clusters. The clustering process was
stopped at five groups. A manual revision of the group assignment was carried out
afterwards to ensure coherent profiles within each group. Based on the authors experience
with other measurement campaigns in public low-voltage grids (e.g., [12]), the consumer
configurations and their harmonic emission behavior are fully representative for Germany.

4.2.2. Definition of Profile Classes

The resulting groups of the clustering process were assigned to one of the classes, D0
to D4, which are displayed in Figure 5. The displayed profiles are used to illustrate the
definition of the five classes that were used for the classification process.
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40 measurements in LV grids within three groups: working days, Saturdays, and Sundays/holidays for all phases L1 to L3.

Class D0: Daily time series without distinctive daily cycles, almost non-existent or no
harmonic emission at all (c.f. Figure 5a) were categorized as class D0. Examples are the
emission profiles of office areas (c.f. Figure 2a) and the electronic markets (c.f. Figure 3a)
for non-working or closed days.

Class D1: The daily time series in class D1 (c.f. Figure 5b) have increasing emission
levels of harmonic currents until the evening hours (around 8 o’clock) and decreasing levels
during nighttime. The shape of the emission profiles is typical for consumer configurations
in residential areas. Differences between single- or multi-family houses were not present
for the analyzed LV networks.

Class D2: The emission profiles of class D2 can be distinguished into two time intervals.
For the example of the electronic market (c.f. Figure 5c) the two intervals were within the
opening hours (high emission levels) and the closing hours (low emission levels). The
transition between the two time intervals is usually within a short time frame, of less than
one hour, and is strictly related to the opening hours.

Class D3: The class D3 (c.f. Figure 5d) represents emission profiles that are typical
for consumer configurations like office areas. The emission levels can be divided into two
time intervals. In comparison to class D2 the transition between the two intervals has a
longer duration of multiple hours. This might occur due to different working hours within
different offices.

Class D4: The emission profiles of class D4 (c.f. Figure 5e) are usually represented by
measurements in mixed areas which are a combination of, for example, residential and
office areas. This results in the typical “evening peak” of emission levels, as in class D1,
and the time interval of distinctive emission levels during working hours, as in class D3.

5. Classification of Harmonic Emissions Profiles

The definition and the categorization of the 360 emission profiles for the 3rd harmonic
current (c.f. Figure 5) were required for the development of the classification system for
harmonic emission profiles using machine learning methods. The given requirements of
pre-known classes allow for the use of supervised learning algorithms, such as binary tree
structure classifiers, in combination with support vector machines (SVM) [25]. SVMs have
been proven to be suitable in terms of classification rate and adaptiveness to the given
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classification problems. SVMs have been successfully applied for large amounts of data [26]
and a wide range of applications in power systems, from energy theft detection [27], island-
ing, and grid fault detection [28] to classification of power quality disturbances [29–33]. For
continuous PQ parameters, such as harmonics, the present applications rarely go beyond
the generation of static reports and the comparison with respective limits. An automated
classification system can support network operators with the identification of consumer
configurations and the early detection of fundamental changes in the harmonic emission
behavior at a particular site. This way it can extract valuable information about the PQ
characteristics of a grid, which can serve as basis for further optimization of planning and
operation in future grids.

5.1. Binary Tree Structure Classifier

The multi-class classification problem of five groups was divided into multiple two-
class classifications using a binary tree structure classifier. The structure of the tree classifier
was based on a top-down approach, and is displayed in Figure 6.
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The automated classification of emission profiles usually achieves better results if the
easier classification problems are treated first [34]. Therefore, the first two-class decision
was applied between the class D0 and the classes (D1, D2, D3, D4). The classes (D1, D4)
and (D2, D3) were divided in a second two-class decision, and were finally divided into D1
or D4 and D2 or D3 within two additional classification steps [22].

5.2. Feature Selection

The two-class decisions require suitable features in order to distinguish between the
different classes of emission profiles. The features are calculated for all emission profiles
and the most efficient features for the four individual classifiers are selected.

5.2.1. Features for Classifier SVM-1

The first classifier to distinguish between D0 and (D1, D2, D3, D4) uses the mean, x,
and the standard deviation, sx, of the emission profiles. Both features are displayed in
Figure 7 and show significantly lower values for class D0 in comparison to the remaining
classes D1 to D4.
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5.2.2. Features for Classifier SVM-2

The classifier SVM-2 uses two different features to distinguish between the classes
(D1, D4) and (D2, D3). The mean of the emission profiles between 9 p.m. and 12 p.m. in
the evening addresses the emission “peaks” in the evening hours for residential areas. The
range between midnight and 3 a.m. in the morning highlights the higher variation of the
emission in the morning hours for the classes D1 and D4.

5.2.3. Features for Classifier SVM-3

The separation of class D1 and class D4 is based on the mean between 9 a.m. in the
morning and 3 p.m. in the afternoon, which is related to typical working hours in Germany.
The 60th percentile is used as an additional feature.

5.2.4. Features for Classifier SVM-4

Classifier SVM-4 distinguishes between class D2 and class D3. The first feature is
based on the mean between 5 p.m. and 8 p.m. in the evening, in order to highlight the
difference between the transitions of the time intervals with and without higher levels of
emission for the two classes. The 60th percentile is also used as an additional feature.

5.3. Implementation of Support Vector Machines

As a last step after definition of the five classes for the emission profiles and selection
of features for their separation, the actual classifiers had to be implemented. Therefore,
support vector machines (SVM) with a radial basis function kernel (RBF kernel) were
proven as a suitable choice [22]. The SVM as a classifier is robust against typical problems
like overfitting, which results in higher classification rates [34]. The computational effort is
usually lower in comparison to other methods like Bayes classifications [35].

The basic idea of SVMs is to construct a hyperplane within the feature space in order
to divide the emission profiles according to their known classes. The hyperplane aims
to separate two classes with a clear margin that is as wide as possible. The class of new
emission profiles, which are mapped into the same feature space, are predicted based on
which side of the hyperplane they are allocated. The regularisation parameter, C, that
strongly affects the resulting hyperplane is user specified [36].

5.3.1. Radial Basis Kernel Function

One of the main advantages of SVMs is the use of kernel functions, which allow for
the classification of non-linear separable data sets. The reason for such a mapping is that it
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is more likely to obtain a linearly separable region in a higher dimensional space than a
lower dimensional space [35]. This can be achieved with the RBF kernel function:

k
(
xj, xi

)
= Φ

(
xj
)
·Φ(xi) = exp

(
−
∣∣|xj − xi|

∣∣2
γ

)
(3)

The user-specified kernel parameter, γ, is a second parameter that strongly affects the
resulting hyperplane and the respective classification results.

5.3.2. Determination of Optimal Parameters

A selection of optimal parameters for the regularisation parameter, C, and the kernel
parameter, γ, is required before the application of SVMs with a RBF kernel. A simple grid
search, using k-fold cross-validation to find the two best parameters (C, γ) within a wide
enough parameter range [37], is applied to each of the SVMs. The two parameter ranges
C =

{
10−1, . . . , 102} and γ =

{
10−2, . . . , 101} are suitable for the given classification

problem.
A cross-validation is applied for each combination of (C, γ), dividing the training set

into k equally sized subgroups. The training is applied k-times, whereas each time one
group is tested against the remaining groups to determine the error rate. The result of the
grid search for optimal parameters (C, γ) of the classifier SVM-1 is displayed in Figure 8.
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The training results of SVM-1 with the optimal parameters in Figure 9a had a classifi-
cation rate of 96.3%, with one misclassification.

Selecting suboptimal parameters may result in perfect classification rates of 100% for
the training, as displayed in Figure 9b. Future classifications will very likely lead to many
misclassifications due to the overfitting to the training samples.
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6. Classification of Harmonic Emission Profiles

The evaluation of the classification was applied using the 360 emission profiles from
Figure 5. The emission profiles were randomly divided into a training and test samples.
According to [38] split ratios of 50:50 to 70:30 mostly give good results, whereas splits of
90:10 are recommended for a very small sample size. The training set should be large
enough in order to maintain the generalization abilities of the classifiers. A division into
50% for the training samples and 50% for the test samples leads to good results for the
given data set.

6.1. Performance Evaluation

The resulting numbers for a random split of the emission profiles per class are pre-
sented in Table 1. The optimal parameters for the regularisation parameter, C, and the
kernel parameter, γ, were determined for each of the classifiers SVM-i, i = 1, . . . , 4 using
the training samples.

Table 1. Number of emission profiles per class using a random separation into training samples and
test samples.

Class D0 D1 D2 D3 D4

Training samples 27 85 15 15 38
Test samples 23 79 15 15 48

The emission profiles of Figure 5 were used as a reference for the classification in
order to identify misclassifications. The classification results for the training process of the
classification system are listed in Table 2.

Table 2. Classification results for the training samples of Table 1.

Class D0 D1 D2 D3 D4 Average

Number of
misclassifications 1 4 0 1 3 1.8

Classification rate in % 96.3 95.3 100 93.3 92.1 95.4

An average false alarm rate of 4.6% was achieved for the separate classes, which
equals about two misclassified emission profiles per class. The actual evaluation of the
classification system was determined by classifying the “unknown” test samples. The
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results for the classification of the test samples are presented in Table 3. A classification
rate of 95.5%, similar to the training results, was obtained.

Table 3. Classification results for the test samples of Table 1.

Class D0 D1 D2 D3 D4 Average

Number of
misclassifications 0 4 1 1 2 1.6

Classification rate in % 100 94.9 93.3 93.3 95.8 95.5

6.2. Robustness of Performance

The process of randomly splitting into training and test samples was repeated 100
times in order to evaluate the robustness of the classification system independently from
one specific split, as presented in Table 1. The average and per class classification rates are
represented as box whisker plots in Figure 10, and separately for the training samples and
the test samples.
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The median of the average classification rates was 97.0% for the training samples and
92.3% for the test samples. The different classification results varied for different splits.
Nevertheless, the lowest classification rates per class did not fall below 72%.

7. Measure of Misclassification

The definition of five classes of emission profiles may result in misclassifications for
completely different profiles. A new but not implemented emission profile is assigned to
one of the defined classes even if it does not fully match. A simple measure of misclassifi-
cation was defined in order to overcome these inherent shortcomings [22]. The measure of
misclassification, Gm, is based on the average distance between all emission profiles in one
group, compared to the distance of the new emission profile.

The Euclidian distance d
(
xi, xj

)
was used to calculate the dissimilarity between two

emission profiles xi and xj within one group. The average distance between one emission
profile and all others profiles of one group can be calculated as follows:

di = d(xi) =
1
N ∑N

j=1 d
(
xi, xj

)
with i, j = 1, 2, . . . , N and i 6= j (4)
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and results for N emission profiles within one group in di = d1, d2, . . . , dN average distances.
The 25th percentile d[25] and the 75th percentile d[25] are calculated. A newly classified
emission profile, y, can be defined as an outlier, similarly to the definition of the box-whisker
plots in [39]:

d(y) > d[75] + 1.5
(

d[75] − d[25]

)
(5)

The measure of misclassification for newly quantified emission profiles is calculated
as follows:

Gm(y) =
d(y)− d[75]

d[75] − d[25]
(6)

High values of Gm � 1 are used as an indicator showing that newly classified emission
profiles strongly differ from the training samples of the assigned class. The measures of
misclassification are exemplarily presented in Figure 11a,c for test samples of the classes
D1 and D2. Two assignments with Gm = 1.5 and one assignment with Gm = 4.0 indicate
that the emission profiles differed from the training samples of the respective classes. The
actual emission profiles, which are displayed in Figure 11b,d, emphasized that the higher
the measure, the more likely the misclassification of the classified emission profile.
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Nevertheless, emission profiles should be manually reviewed by the user of the
classification system. Additional measurements or the definition of a new class of emission
profiles may be needed, depending on the individual results.
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8. Conclusions

The emission of harmonic currents in public LV networks is mainly influenced by the
consumer and generating configuration. Especially the harmonic emission of certain con-
sumer configurations, such as commercial areas, is strongly related to the typical usage of
the connected equipment. The analysis of weekly and daily time series of harmonic currents
confirms that the three different day types, Mondays to Fridays, Saturdays, and Sundays
and Holidays, are represented. The harmonic emission behaviour for these day types
is very consistent and differs according to the typical German consumer configurations
residential, offices, commercial, and mixed areas.

The harmonic emission behaviour was used for the development of a classification
system in order to identify a probable consumer configuration based on the measurement of
their respective harmonic currents, especially the 3rd harmonic current. A binary decision
tree using support vector machines was used for the classification system, which requires
training for the actual application. The features to distinguish between the different classes
were introduced for each of the four SVMs. The measured emission profiles were grouped
accordingly to the predefined classes. The performance evaluation was highlighted for
360 emission profiles, which were split into 50% for the training set and 50% for the test
set. The results showed an average classification rate of at least 95%. The random split
into training and test samples was repeated one hundred times in order to evaluate the
robustness of the classification, and revealed similar classification rates for the training and
test processes.

The emission profiles used for the training process strongly influenced the classi-
fication results. A measure of misclassification was introduced in order to enable the
identification of misclassified emission profiles by the user of the classification system. It
can be used as an indicator for emission profiles that differ strongly from the assigned pro-
file class respective to their associated training samples. A manual review of misclassified
profiles enables the user to identify unusual emission behaviour of specific measurement
sites, i.e., anomaly detection.

The automatic identification of consumer configurations based on their harmonic
emission is a first contribution towards more automated analysis of large data quantities
and to keeping the routine assessment of PQ levels efficient.
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