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Scattering of elastic waves by an anisotropic sphere

ATA JAFARZADEH
Department of Mechanics and Maritime Sciences
Chalmers University of Technology

Abstract

Scattering of a plane wave by a single spherical obstacle is the archetype of many
scattering problems in physics and geophysics. Spherical objects can provide a good
approximation for many real objects, and the analytic formulation for a single sphere
can be used to investigate wave propagation in more complicated structures like particle
composites or grainy materials, which may have application in non-destructive testing,
material characterization, medical ultrasound, etc. The main direction of this thesis is to
investigate an analytical solution for scattering of elastic waves by an anisotropic sphere
in the special case with transverse isotropy. Throughout the thesis a systematic series
expansion approach is used to derive displacement and traction fields outside and inside
the sphere. For the surrounding isotropic medium such an expansion is made conveniently
in terms of the traditional vector spherical wave functions. However, describing the fields
inside the anisotropic sphere is more complicated since the classical methods are not
applicable anymore. The first step is to describe the anisotropy in spherical coordinates,
then the expansion inside the sphere is made in the vector spherical harmonics in the
angular directions and power series in the radial direction. The governing equations inside
the sphere provide recurrence relations among the unknown expansion coefficients. The
remaining expansion coefficients outside and inside the sphere can be found using the
boundary conditions on the sphere. Thus, this gives the scattered wave coefficients from
which the transition (T) matrix can be found. This is convenient as the T matrix fully
describes the sphere and is independent of the incident wave. The expressions of the
general T matrix elements are complicated, but in the low frequency limit it is possible
to obtain explicit expressions.

The T matrices may be used to solve more complicated problems like the wave propagation
in polycrystalline materials. The attenuation and wave velocity in a polycrystalline
material with randomly oriented transversely isotropic grains is thus investigated. These
quantities are calculated analytically using the simple theory of Foldy and show a very
good correspondence for low frequencies with previously published results and numerical
computations with FEM.

Keywords: Scattering, Anisotropy, Sphere, T matrix, Distribution of inclusions, Effective
wave number, Attenuation, Phase velocity.
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Part I

Extended Summary

1 Introduction

Wave propagation in elastic solids with an inhomogeneity is an interesting and very
broad research field. The results of this subject find many applications in diverse fields
of engineering such as material characterization, nondestructive materials testing by
ultrasonics, in-situ safety and reliability control of complex structural components by
acoustic emission, dynamic fracture mechanics, seismology and ground vibrations. Among
all these subjects, the focus of the current study is on specific areas mostly related to
material characterization and nondestructive testing.

1.1 Background and motivation

Engineering materials often contain various types of inhomogeneities and anomalies,
herafter called inclusions, which may be in the nature of micro grains in metals or may be
induced by materials processing, manufacturing and in-service conditions like fiber and
particle composites or cracks and cavities in materials. The detection and characterization
of inclusions in materials have great importance in engineering applications since the
materials integrity, stiffness and strength are significantly affected by the presence of
such inclusions. This purpose is often achieved by means of nondestructive testing.
Nondestructive testing techniques are based on the emission of arbitrary waves into a
medium and then studying the propagation of the wave in them. This technique is very
useful for characterization of the materials, since there is a direct connection between
material characteristics like inclusion distribution, density, location, size and orientation
with the properties of the wave propagating in the medium, like effective wave speed and
intensity. Unlike the wave propagation in an ideally homogeneous elastic solid, waves
propagating in an elastic solid with inclusions are generally experiencing diffraction and
scattering. Diffraction refers to the wave deviating from its original path and scattering
refers to the wave radiation from inclusions. Inclusions can be considered as secondary
sources of radiation which are due to the excitation by the incident waves. The diffraction
and scattering of the incident wave lead to some interesting phenomena in the medium. An
incident wave propagating inside a medium carries energy, and when there are inclusions
inside the medium this energy is converted into the scattered wave energy. Such conversion
of energy results in intensity reduction and shape distortion of the incident wave, in other
words the incident wave attenuate and disperse. Consequently, an elastic solid with elastic
inclusions is seen by an incident wave as an attenuative and dispersive medium [3].
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Analysis of scattering in an elastic medium with inclusions normally starts with a single
scattering model. Scattering of waves by a single scatterer is a classical problem in various
fields of mathematical physics like acoustics, electromagnetics and elasticity. The basic
nature of the problem is the same for all fields. Namely, a propagating wave encounters a
discontinuity in the form of an inclusion. The methods used to study such problems are
generally based on techniques shown to be successful in acoustics and electromagnetic fields
such as separation-of-variables, the T matrix methods, integral equation methods, and
finite element methods (FEM). However, the differences of elastodynamic fields compared
with the other fields are the coupled wave equations and the existence of two wave speeds.
Such properties increase the complexity of the elastodynamic equations. Therefore, most of
the studies in elastic fields are limited to isotropic materials, which results in relative ease
in mathematical treatment and still has important applications since many materials are
approximately isotropic or can be homogenised as an isotropic material. A comprehensive
overview of scattering of acoustic, electromagnetic, and elastic waves in isotropic media is
covered in the literature [4, 5]. However, recent investigations of anisotropic materials, like
composites, biological materials and grainy materials (typically metals), have demonstrated
the importance of studying wave propagation in these materials.

Wave propagation in a medium with anisotropic inclusions is more complicated to study
since many of the classical methods are not applicable any longer. Scattering in anisotropic
materials has mostly been studied for electromagnetic waves [6, 7, 8]. For mechanical
waves, most of the studies are done for spherically and cylindrically anisotropic inclusions
[9, 10, 11, 12, 13]. Scattering of elastic waves by an anisotropic obstacle when the
anisotropy is in Cartesian coordinates is investigated in 2D by Boström [14, 15]. The
method presented there is pursued by this research to extend the possible solutions to 3D
problems.

The analysis of multiple scattering has also been extensively studied. Theoretically,
a sequence of equations moving from single scattering to the inclusion of two-obstacle
interactions, then three-obstacle interactions and upwards can be set up using, for instance,
the T-matrix method. However, the complexity of the equations increases in each step
and thus it is normally pursued only for two inclusions [16]. On the other hand, there are
plenty of materials which contain or are composed of a distribution of inclusions. Detailed
investigation of structures of this kind requires a large number of parameters and leads to
extremely complex equations while, in practical applications, such detailed investigation
is not necessary. More efficiently, such materials may be described by their statistics, like
number density of inclusions and the mean size of the inclusions. The usual basis for
the analysis of scattering of these structures has been volume integral equation methods
combined with some perturbation method, often the Born approximation. Such methods
have been used frequently to study the scattering problem and calculate attenuation and
wave speed in grainy materials like simple or complex polycrystals with various types of
anisotropy of the grains [17, 18, 19, 20]. However, these studies all seem to have restrictions
to more or less weak anisotropy. A different approach to estimate the attenuation and the
effective wave speed in polycrystalline materials is to use the T matrix to calculate the
scattering cross section which is related to total energy carried by the scattered waves.
The scattering cross section together with statistical information of the structure like
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number density of inclusions and their mean size is used in some approximate methods like
the theory of Foldy [21] to calculate the attenuation and wave speed. Such an approach
is used to estimate the attenuation of 2D polycrystalline materials with grains of cubic
materials [22]. These approximate methods does not have any limitation on the degree
of anisotropy, however, since they normally neglect multiple scattering effects, they are
restricted to low frequencies for polycrystalline materials. Recently FEM have also been
used to study polycrystalline materials and investigate the attenuation and phase velocity
in them [23, 24, 25, 26, 27, 28].

The main aim of the present project is to extend the possible type of analytical solutions
by solving the canonical 3D problem of scattering of elastic waves by an anisotropic
inclusion. The inclusion has a spherical shape an its material properties is assumed to be
transversely isotropic or orthotropic. Meanwhile, the surrounding material is considered
to be isotropic. A general solution may be presented by calculating the linear relationship
between the expansion coefficient of the incident wave with those of the scattered wave in
the spherical basis. Such a relation defines the transition T matrix of the sphere . This
is done in the appended papers for a transversely isotropic sphere. First, in Paper A,
the problems is considered for a situation when only a torsional wave is considered and
is incident along the symmetry axis of the anisotropic sphere. Therefore the problem is
simplified to an axisymmetric situation. Then, using the same methodology in Paper B,
the scattering of elastic waves by a transversely isotropic sphere with an arbitrary incident
wave is studied. In both papers the T matrix is calculated and presented explicitly for low
frequencies. The T matrix can then be used to calculate the scattering for any incident
wave, a plane wave, a wave from an ultrasonic probe, etc. The T matrix can also be used
as a tool when considering multiple scattering problems, like the scattering by two or
more spheres, or the scattering by a sphere close to a planar interface.

Another important purpose of the project is to use the T matrix to study particle
composites and grainy materials. Specifically, the T matrix may be used to calculate
the attenuation and effective wave speed in these materials as long as the scattering by
each particle or grain is so small that multiple scattering may be neglected. Such an
assumption may be reasonable for the cases with low concentrations of the particles or
very small scattering by each grain. This purpose is pursued in Paper B for polycrystalline
materials with transversely isotropic grains.

1.2 Outline of the thesis

The extended summary of this thesis is structured as follows:

In Chapter 2, the elastodynamic relations describing a scattering problem are introduced
for general anisotropic materials. Then some special cases including isotropic, orthotropic,
cubic and transversely isotropic materials are introduced and their effect on the elastody-
namic wave equations is discussed. Finally, the transformation of the wave equations into
different system of coordinates is explained. The derivation of the general solution of the

3



wave equations for isotropic materials in the polar and spherical system of coordinates is
explained and the solutions are presented in terms of the vector wave functions.

Chapter 3 focuses on different scattering problems, specifically when the inclusion is
not isotropic. An analytical approach to derive the solution in terms of the T matrix
is discussed. First the solution of the 2D scattering problem by an anisotropic circle is
outlined. Then a general approach to solve a group of 3D scattering problems by an
anisotropic sphere is explained. In the last section an approximate method to derive the
attenuation and the wave velocity in materials with a distribution of inclusions is briefly
explained and the implementation to analyse polycrystalline materials is discussed.

A summary of the appended papers is presented in Chapter 4 and is followed by the last
chapter with some concluding remarks and sharing some ideas for future works.

2 Elastodynamics

In this section, an outline is given of the principles of elasticity that are relevant to elastic
wave propagation and scattering. This includes stress and strain definitions, constitutive
relations, and governing equations. Isotropic media are in particular treated and different
anisotropic media are introduced. Also, expressing an elastodynamic problem in different
system of coordinates and possible solutions of them are discussed. There is a wide
body of literature that covers several aspects of continuum mechanics and elastic wave
propagation ([29, 30]). One can refer to them for comprehensive explanations of the
concepts discussed in this section.

2.1 Basic equations

To start developing governing equations in an elastic medium, consider an infinitesimal
surface with normal vector n̂ and surface area dS. The traction on this surface is defined
by the force acting per unit surface area and is given by

tn = σ · n̂, (2.1)

where σ is the stress tensor and is a crucial quantity to describe the governing equation in
an elastic medium since having the stress tensor provides the force acting on any surface
using eq. (2.1). Conservation of angular momentum leads to the symmetry property of
the stress tensor, thus

σij = σji. (2.2)

In general the stress in a medium depends on the deformation of the medium. The
deformation can be defined using the displacement field u(x, t), which varies with position
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x and time t. The constant displacement field with respect to time is the static situation
and the constant displacement field with respect to position shows rigid body motion
and does not generate internal deformations. In the Cartesian tensor the displacement is
written

u = uiexi
, (2.3)

where (x1, x2, x3) are Cartesian coordinates, exi is the unit vector in xi direction and
Einstein’s summation convention is used throughout the section so that a repeated index
is summed over i = 1, 2, 3. The quantity to describe deformation is strain and for small
displacements and deformations, the linear strain tensor is defined by

εij =
1

2
(∂jui + ∂iuj). (2.4)

It is obvious from this definition that the strain tensor is symmetric.

The relation between strain and resulting stress is the constitutive relation which can be
linearised for materials experiencing small deformations. Such a linearisation is expressed
by Hooke’s law and the constitutive relation can be written as

σij = Cijklεkl. (2.5)

The fourth rank tensor Cijkl is the stiffness tensor which in three dimensions has 81 ele-
ments. However, due to symmetry of stress and strain together with energy considerations
the stiffness tensor has the following properties

Cijkl = Cjikl = Cijlk = Cklij . (2.6)

This reduces the number of independent elements of the fourth rank stiffness tensor to the
number of independent elements of a symmetric 6×6 matrix which is 21. Such an analogy
facilitates in expressing the stiffness tensor, thus an appropriate matrix representation of
the stiffness tensor is used wherever needed. Most natural materials have fewer than 21
independent stiffness components. For an isotropic elastic materials the stiffness tensor
depends only on the Lamé parameters λ and µ

Cijkl = λδijδkl + µ(δikδjl + δilδjk), (2.7)

where δij is the Kronecker delta. In this section a general elasticity tensor is considered
and later on the isotropic case and some examples of other constitutive relations are
discussed.

Considering the definition of traction, the force acting on a volume V due to stresses
can be calculated by integrating the traction over the surface of the volume S (

∮
t dS).

Using eq. (2.1) and Gauss theorem it can be shown that the force due to the stress acting
on a volume is given by integrating the divergence of the stress tensor over the volume
(
∫
∂iσijdV ). In addition to this force which is resulting from the deformation of the

volume, forces like gravity or other external excitations may act on the volume. These
forces are denoted the body forces. Now considering a unit volume Newton’s second law
can be written as

∂jσij + bi = ρüi, (2.8)
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where b is the body force per unit volume, ρ is the density (mass per unit volume) and
∂jσij shows the force acting on a unit volume due to the internal deformation. This is
called the wave equation and is the governing equation inside an elastic medium. By
considering eqs. (2.4) and (2.5) the governing equation can be written in terms of the
displacement field u

∂j(Cijkl∂kul) + bi = ρüi. (2.9)

A common and facilitating approach to study the wave equation is to transform the
governing equation into the frequency domain. The frequency domain formulation and the
time harmonic domain formulation are related by the Fourier transform. For the temporal
Fourier transform between time t and angular frequency ω the following convention is
used:

ũ(ω) =

∫ ∞
−∞

u(t)eiωtdt, (2.10)

with the inverse

u(t) =
1

2π

∫ ∞
−∞

ũ(ω)e−iωtdω. (2.11)

A frequency domain formulation removes all time derivatives and greatly facilitates
the solution of the wave equation. In this research all the derivations are given in the
frequency domain and the body forces are neglected. Considering these assumptions the
wave equation simplifies to

∂j(Cijkl∂kul) + ρω2ui = 0. (2.12)

Such a wave equation is a second order differential equation for the displacement field u.
This differential equation needs to be supplemented by some boundary conditions on the
boundary of the medium to complete a boundary value problem. In scattering problems
the domain of study consists of at least two different parts where the boundary conditions
apply to the interface of these domains. This interface may be a closed surface in the
case of a bounded domain. By such definition, a wide range of different boundary value
problems like wave propagation in a half space or wave propagation in an infinite medium
consisting of a distribution of inclusions, may be considered as a scattering problem. From
all these various types of scattering problems, the main interest of this research is type of
the problems where an infinite domain named matrix bound at least one finite domain
named obstacle or scatterer.

One of the main parameters of these scattering problems is the shape of the obstacle. The
most common shapes, especially for analytical approaches, are circular shapes like spheres
and cylinders in 3D and circles in 2D. The simplicity of these shapes in comparison with
more complex ones is crucial for analytical analysis. They are useful to model grainy
materials or fiber composites or on a bigger scale buried pipelines, and other practical
problems. These types of geometry make it necessary to perform the calculation in
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curvilinear system of coordinates. Some of these system of coordinates are explained in
detail in section 2.3.

The other main parameter is the material properties of the matrix and obstacle. The
simplest cases are those with all the material properties being isotropic. However, plenty
of synthetic and natural materials are not isotropic and this makes it necessary to study
cases with anisotropic materials. Some more common types of anisotropy, which are
particularly relevant of this study, are explained in section 2.2.

Another important parameter is the number of obstacles. The simplest case is when there
is a single obstacle in the matrix. Such problems are briefly explained for 2D and 3D
problems in sections 3.1 and 3.2, respectively, and for 3D cases a detailed discussion is
presented in Paper A and Paper B. For the cases with two or more obstacles, multiple
scattering (which is the influence of different obstacles on each other) makes the analysis
more complicated. Different methods are developed to model multiple scattering with
many obstacles, a simple one of these is discussed in section 3.3 and used in Paper B.

2.2 Anisotropy of solids

As it shown in eq. (2.6) the stiffness tensor which describes the material properties may
have 21 independent elements. In most cases the material behaves similarly in some
directions and consequently this number of elements is reduced. The simplest case is when
the material behaviour is similar in all directions. These are called isotropic materials and
the number of independent elements are reduced to two. The independent elements are
the Lamé parameters λ and µ. In this case the equation of motion can be simplified to

(λ+ 2µ)∇(∇ · u)− µ∇× (∇× u) = −ρω2u. (2.13)

For such a partial differential equation, Helmholtz decomposition is useful for the analysis.
The Helmholtz decomposition for an arbitrary vector field like u is

u = ∇Φ +∇×Ψ, (2.14)

where Φ and Ψ are scalar and vector potentials, respectively. Substituting eq. (2.14)
into the wave equation eq. (2.13) shows that the potentials should satisfy a Helmholtz
equation

∇2Φ + k2pΦ = 0,

∇Ψ + k2sΨ = 0,
(2.15)

where kp = ω
√
ρ/(λ+ 2µ) and ks = ω

√
ρ/µ. This shows that there are two types of

waves propagating in the medium. One is the wave corresponding to the scalar potential
u = ∇Φ which is a compressional wave and propagates with the wave number kp. It can
be observed that this wave is irrotational (∇× u = 0) and the displacement vector and
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propagation direction are aligned for a plane wave. Therefore, it is called a longitudinal
wave and is often denoted a P wave. The other type of wave is corresponding to the
vector potential u = ∇×Ψ which is a shear wave and propagates with the wave number
ks. It can be observed that this wave is equivoluminal (∇ · u = 0) and the displacement
vector and propagation direction are perpendicular to each other for a plane wave. This
wave is called a transverse wave and is often denoted a S wave.

Using eq. (2.14) three quantities ui are related to four new dependent variables Φ and Ψi.
Therefore, obviously one degree of arbitrariness is left unspecified for Φ and Ψ potentials.
A simple and useful additional restriction on the potentials is to take the vector potential
Ψ as divergence free i.e. ∇ ·Ψ = 0. However, other types of restrictions are considered in
the literature, especially to facilitate the solution of the vector potential by uncoupling
some components of the fields in curvilinear coordinates. Such restrictions and the solution
of scalar and vector potentials in polar and spherical coordinates is discussed in chapter 3.

Besides the isotropic case two special cases of an orthotropic material, which have plenty
of applications, is mentioned here. An orthotropic material is characterized by three
mutually orthogonal symmetry planes. Thus the number of stiffness constants for an
orthotropic material are reduced to nine. The constitutive relations for such a material in
Voigt notation are

σxx
σyy
σzz
σyz
σzx
σxy


=


C11 C12 C13 0 0 0
C12 C22 C23 0 0 0
C13 C23 C33 0 0 0
0 0 0 2C44 0 0
0 0 0 0 2C55 0
0 0 0 0 0 2C66





εxx
εyy
εzz
εyz
εzx
εxy


. (2.16)

This is the stress-strain relation of a general orthotropic material. A special case is a cubic
material where the material stiffness in all the three coordinate directions are equivalent
so the material has three independent stiffness constants and the extra relations among
the stiffness components of a general orthotropic material are

C11 = C22 = C33,

C12 = C13 = C23,

C44 = C55 = C66.

(2.17)

Another special case is a transversely isotropic material. The stiffness for such materials
are equal in all directions in a plane which is called the isotropic plane. Consequently
the number of independent constants in a transversely isotropic material is five. Taking
the xy plane as the isotropic plane the extra relations among the stiffness constants of a
general orthotropic material are

C11 = C22,

C13 = C23,

C44 = C55,

2C66 = C11 − C12.

(2.18)
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In section 3.1 an example of the scattering by a circle with orthotropic material properties
is explained briefly. In Paper A and Paper B the material properties of the obstacle (or
obstacles) are assumed to be transversely isotropic.

2.3 System of coordinates

As mentioned it is more convenient to use curvilinear system of coordinates in many
scattering problems. Here polar and spherical coordinates for 2D and 3D problems are
explained and general solution of the wave equation (wave functions) in these system of
coordinates are expressed.

For a 2D situation all fields are independent of z, the problem can be divided into out of
plane and in plane waves and the displacement field can be decomposed as

u(x, y) = ∇Φ +∇× ezΨ + ezuz. (2.19)

Here, three displacement components are related to three scalar quantities Φ, Ψ and uz,
all of which must satisfy Helmholtz equation

∇2uz + k2suz = 0,

∇2Ψ + k2sΨ = 0,

∇2Φ + k2pΦ = 0.

(2.20)

Equations (2.19) and (2.20) decompose the displacement field into three waves, one P wave
and two S waves. To distinguish the two different S waves, the third term in eq. (2.19),
which is decoupled from the other two, is called the SH wave and the second term, which
couples to P waves, is called the SV waves.

To shorten the discussion only in plane waves (P-SV) are considered for the 2D case.
Therefore the third term in eq. (2.19) may be neglected and any convenient coordinates in
the xy plane may be used. Here the polar system of coordinates (r, ϕ), which is commonly
used in most scattering problems, is considered. This system of coordinates is defined by
the following relations with respect to the Cartesian coordinates (x, y)

x = r cosϕ, y = r sinϕ. (2.21)

Consequently the expressions for the strains given in eq. (2.4) change to the following
relations for polar coordinates

εrr = ∂rur,

εϕϕ =
1

r
(∂ϕuϕ + ur),

εrϕ =
1

2r
(∂ϕur − uϕ + r∂ruϕ)

(2.22)
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The equations of motion with respect to stresses in polar coordinates are

∂rσrr +
1

r
∂ϕσrϕ +

σrr − σϕϕ
r

= −ρω2ur,

∂rσrϕ +
1

r
∂ϕσϕϕ +

2σrϕ
r

= −ρω2uϕ.

(2.23)

To get the equation of motion (eq. (2.23)) in terms of the displacement, constitutive
relations must be used. The constitutive relations may depend on the system of coordinates.
However, for an isotropic material the constitutive relations are independent of the system
of coordinates and constitutive relations in 2D for polar coordinates may be written asσrr

σϕϕ
σrϕ

 =

λ+ 2µ λ 0
λ λ+ 2µ 0
0 0 2µ

 εrr
εϕϕ
εrϕ

 . (2.24)

Substituting eqs. (2.22) and (2.24) into eq. (2.23) gives the equations of motion in terms
of the displacement field in an isotropic medium. These equations of motion may be
represented as in Equations (2.19) and (2.20). Solution of this system of equations is done
by solving the Helmholtz equations in eq. (2.20) for the Φ and Ψ potentials. Considering
the definition of the ∇ operator in polar coordinates

∇ =
∂

∂r
r̂ +

1

r

∂

∂ϕ
ϕ̂, (2.25)

and using separation of variables, the potentials Φ and Ψ may be written as

Φ0 = Jm(kpr)

(
cosmϕ
sinmϕ

)
Ψ0 = Jm(ksr)

(
cosmϕ
sinmϕ

) (2.26)

The upper index 0 on the potentials denotes that they are regular waves, containing

Bessel functions Jm. The corresponding outgoing waves contain Hankel functions H
(1)
m to

satisfy the Sommerfeld radiation condition in the far field and are denoted by an upper
index +.

To express the general solution of the equations of motion, it is convenient to introduce
the following polar vector wave functions

χ0
1σm =

√
εm

1

ks

(
∇× ẑΨ0

)
=
√
εm

[
er

m

ksr
Jm(ksr)

(
sinmϕ
cosmϕ

)
+ eϕJ

′
m(ksr)

(
− cosmϕ
sinmϕ

)]
χ0

2σm =
√
εm

1

ks

(
∇Φ0

)
=
√
εm
kp
ks

[
erJ

′
m(kpr)

(
cosmϕ
sinmϕ

)
+ eϕ

m

kpr
Jm(kpr)

(
sinmϕ
− cosmϕ

)]
(2.27)
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These are vector wave functions constructed from the scalar wave functions (eq. (2.26))
and Helmholtz decomposition of the displacement field (eq. (2.19)). Here the first index
1 or 2 on the wave functions denotes transverse or longitudinal waves, respectively.
The second index σ = e (even) or o (odd) corresponds to the upper or lower row of
the trigonometric functions, respectively. The even and odd vector wave functions are
symmetric or antisymmetric with respect to ϕ, respectively. The Neumann factor is
defined as ε0 = 1 and εm = 2 for m = 1, 2, ....

Now it is convenient to express the displacement field as a sum of the incident wave uin

(corresponds to the regular wave) and the scattered wave usc (corresponds to the outgoing
wave)

u = uin + usc =
∑
τ,σ,m

(aτσmχ
0
τσm + bτσmχ

+
τσm), (2.28)

where the coefficients aτσm and bτσm are incident and scattered wave coefficients, respec-
tively. In the scattering problems considered in this thesis, the incident wave coefficients
are in principle known and the scattered wave coefficients need to be determined. Here,
the scattered wave is expanded in terms of the outgoing vector wave functions since the
scattered wave as the additional part must satisfy radiation conditions.

In the spherical coordinates (r, θ, ϕ) the relations with Cartesian coordinates (x, y, z) are

x = r sin θ cosϕ, y = r sin θ sinϕ, z = r cos θ. (2.29)

Also the strain displacement relations are

εrr =
∂ur
∂r

, εϕϕ =
1

r sin θ

∂uϕ
∂ϕ

+
cot θ

r
uθ +

ur
r
,

εθθ =
1

r

∂uθ
∂θ

+
ur
r
, εθϕ =

1

2r

(
∂uϕ
∂θ
− cot θuϕ +

1

sin θ

∂uθ
∂ϕ

)
,

εϕr =
1

2

(
1

r sin θ

∂ur
∂ϕ

+
∂uϕ
∂r
− uϕ

r

)
, εrθ =

1

2

(
∂uθ
∂r
− uθ

r
+

1

r

∂ur
∂θ

)
,

(2.30)

and the equations of motion in terms of the stresses in this system of coordinates are

∂σrr
∂r

+
1

r

∂σrθ
∂θ

+
1

r sin θ

∂σrϕ
∂ϕ

+
1

r
(2σrr − σθθ − σrϕ + cot θσrθ)− ρ

∂2ur
∂t2

= 0,

∂σrθ
∂r

+
1

r

∂σθθ
∂θ

+
1

r sin θ

∂σθϕ
∂ϕ

+
1

r
(cot θ (σθθ − σϕϕ) + 3σrθ)− ρ

∂2uθ
∂t2

= 0,

∂σrϕ
∂r

+
1

r

∂σθϕ
∂θ

+
1

r sin θ

∂σϕϕ
∂ϕ

+
1

r
(3σrϕ + 2 cot θσθϕ)− ρ∂

2uϕ
∂t2

= 0.

(2.31)

The constitutive relations may be transformed from the Cartesian to the spherical
coordinates using the appropriate transformation matrix which is discussed in section 3.2.
However, for an isotropic medium the constitutive relations are similar in the spherical
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and the Cartesian system of coordinates

σrr
σθθ
σϕϕ
σθϕ
σϕr
σrθ


=


λ+ 2µ λ λ 0 0 0
λ λ+ 2µ λ 0 0 0
λ λ λ+ 2µ 0 0 0
0 0 0 2µ 0 0
0 0 0 0 2µ 0
0 0 0 0 0 2µ





εrr
εθθ
εϕϕ
εθϕ
εϕr
εrθ


. (2.32)

Substituting eq. (2.32) into eq. (2.31) gives the equations of motion in terms of the
displacements for an isotropic medium. This system of equations may be decomposed
into three scalar potentials as

u(r) = ∇Φ +∇× (rΨ1) +∇×∇× (rΨ2), (2.33)

where Φ, Ψ1 and Ψ2 are potentials associated to P, SH and SV waves, respectively. These
potentials satisfy Helmholtz equations with wavenumbers kp for Φ and ks for Ψ1 and Ψ2.
The ∇ operator in spherical coordinates is defined as

∇ =
∂

∂r
er +

1

r

∂

∂θ
eθ +

1

r sin θ

∂

∂ϕ
eϕ. (2.34)

Using separation of variables to solve the Helmholtz equations in spherical coordinates
leads to trigonometric functions cosmϕ or sinmϕ, where m = 0, 1, 2, ... for the azimuthal
factor (ϕ), associated Legendre functions with cos θ argument as Pml (cos θ) with l =

m,m+1,m+2, ... for the polar factor (θ) and spherical Bessel jm or Hankel h
(1)
m functions

for the radial factor (r), and the potentials may be written as

Φ0 = jm(kpr)Yσml(θ, ϕ),

Ψ0
1 = jm(ksr)Yσml(θ, ϕ),

Ψ0
2 = jm(ksr)Yσml(θ, ϕ).

(2.35)

Here again the upper index 0 denotes that they are regular waves, containing spherical
Bessel functions jm, and the corresponding outgoing waves denoted by + contain spherical

Hankel functions h
(1)
m . The Yσml(θ, ϕ) are called spherical harmonics with the following

definition

Yσml(θ, ϕ) =

√
εm(2l + 1)(l −m)!

4π(l +m)!
Pml (cos θ)

{
cosmϕ
sinmϕ

}
, (2.36)

where σ = e is for the upper row which is even with respect to ϕ and σ = o is for the
lower row which is odd with respect to ϕ. Indices l and m run through m = 0, 1, 2, ... and
l = m,m+ 1,m+ 2, ....

Here the general solution of the displacement field may be written in terms of the spherical
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vector wave functions introduced as

ψ0
1σml(r, θ, ϕ) =

1√
l(l + 1)

∇×
(

Ψ0
1

)
= jl(ksr)A1σml(θ, ϕ),

ψ0
2σml(r, θ, ϕ) =

1√
l(l + 1)

1

ks
∇×∇×

(
Ψ0

2

)
=

(
j′l(ksr) +

jl(ksr)

ksr

)
A2σml(θ, ϕ) +

√
l(l + 1)

jl(ksr)

ksr
A3σml(θ, ϕ),

ψ0
3σml(r, θ, ϕ) =

(
kp
ks

)3/2
1

kp
∇
(

Φ0

)
=

(
kp
ks

)3/2(
(j′l(kpr)A3σml(θ, ϕ) +

√
l(l + 1)

jl(kpr)

kpr
A2σml(θ, ϕ)

)
,

(2.37)

where the first index is denoted τ = 1, 2, 3 for SH, SV and P wavefunctions, respectively.
Aτσml are the vector spherical harmonics which are defined as

A1σml(θ, ϕ) =
1√

l(l + 1)
∇× (rYσml(θ, ϕ))

=
1√

l(l + 1)

(
eθ

1

sin θ

∂

∂ϕ
Yσml(θ, ϕ)− eϕ

∂

∂θ
Yσml(θ, ϕ)

)
,

A2σml(θ, ϕ) =
1√

l(l + 1)
r∇Yσml(θ, ϕ)

=
1√

l(l + 1)

(
eθ

∂

∂θ
Yσml(θ, ϕ) + eϕ

1

sin θ

∂

∂ϕ
Yσml(θ, ϕ)

)
,

A3σml(θ, ϕ) = erYσml(θ, ϕ).

(2.38)

Similarly as in 2D the general solution of the displacement field may be written as the
sum of an incident and a scattered part

u(r) = uin + usc =
∑
τσml

(aτσmlψ
0
τσml(r) + bτσmlψ

+
τσml(r)). (2.39)

In the following section, solving scattering problems is discussed with the means of
concepts and quantities described here.

3 Scattering problems

A general description of a scattering problem is discussed in Chapter 2. The main
purpose of this study is to extend the possible type of analytical solutions by solving the
canonical problem of scattering of elastic waves by an anisotropic (transversely isotropic
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and orthotropic) sphere. To do so, first, the methodology of the current approach is briefly
explained within an example of scalar 2D scattering by a circle with orthotropic material,
then the expansion of such an approach to 3D scattering by a sphere is discussed. Later
on the simple theory due to Foldy is explained to study scattering of elastic waves in a
medium with a distribution of inclusions (obstacles).

3.1 2D scattering by a circle

2D scattering by a circle with orthotropic material properties is studied by Boström ([14,
15]) and here a brief description of this approach is presented. Consider a circle of radius
a with orthotropic material properties, residing in an infinite homogeneous isotropic
medium. The material properties of the surrounding medium are density ρ and Lamé
parameters λ and µ. The material properties of the circle are density ρ1 and stiffness
constants C1, C2, C3 and C4, in which the constitutive relations in Cartesian coordinates
(x, y) are σxxσyy

σyx

 =

C1 C2 0
C2 C3 0
0 0 2C4

εxxεyy
εyx

 (3.1)

Due to the geometry of the problem, it is of course natural to use polar coordinates (r, ϕ).
It is then convenient to use the polar wave functions introduced in eq. (2.27) to describe
field quantities outside the circle.

The displacement field outside the circle can be defined as in eq. (2.28), where the
coefficients aτσm of the incident wave are in principle known and the coefficients bτσm of
the scattered wave need to be determined. A suitable approach is to find the relation
between the scattered wave coefficients and the incident wave coefficients. This relation
defines the transition T matrix as

bτσm =
∑
τ ′σ′m′

Tτσm,τ ′σ′m′aτ ′σ′m′ . (3.2)

With this approach the field description is available for an arbitrary incident wave.

To find the T matrix elements boundary conditions on the boundary of the circle are
required. The boundary conditions are continuity of the displacement and traction on
r = a. The displacement field of the surrounding medium is described as in eq. (2.28)
and the traction in radial direction may be derived by the following traction operator

t(r)(u) = λ∇ · uer + 2µ
∂u

∂r
+ µer × (∇× u). (3.3)

To apply the boundary conditions, the displacement and traction field inside the circle
also need to be determined. The first step to do so is to express the governing equations
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inside the circle in polar coordinates. Therefore, the constitutive relations need to be
transformed to polar coordinates as

σrr = (α1 + 2α2) εrr + α1εϕϕ + 2β1 (εrr cos 2ϕ− εrϕ sin 2ϕ)

+ β2 ((εrr − εϕϕ) cos 4ϕ− 2εrϕ sin 4ϕ) ,

σϕϕ = (α1 + 2α2) εϕϕ + α1εrr − 2β1 (εϕϕ cos 2ϕ+ εrϕ sin 2ϕ)

+ β2 ((εϕϕ − εrr) cos 4ϕ− 2εrϕ sin 4ϕ) ,

σrϕ =2α2εrϕ + β1 ((εϕϕ + εrr) sin 2ϕ) + β2 ((εϕϕ − εrr) sin 4ϕ− 2εrϕ cos 4ϕ) ,

(3.4)

where

α1 =
1

8
(C1 + 6C3 + C2 − 4C4), α2 =

1

8
(C1 + C2 − 2C3 + 4C4),

β1 =
1

4
(C1 − C2), β2 =

1

8
(C1 + C2 − 2C3 − 4C4).

(3.5)

It is observed that β1 and β2 are measures of the anisotropy degree and vanish for an
isotropic medium (β1 = β2 = 0). Also, α1 and α2 can be considered as some mean
stiffnesses and for an isotropic medium with Lamé constants λ1 and µ1, they simplify to
α1 = λ1 and α2 = µ1.

With the constitutive relations and strain definition in polar coordinates the equations
of motion inside the circle are transformed to polar coordinates. As the stress strain
relation (eq. (3.4)), the equations of motion also depend explicitly on trigonometric
functions cos 2ϕ, cos 4ϕ, sin 2ϕ and sin 4ϕ in the azimuthal angle. Due to symmetry the
solution inside the circle can be divided into four independent parts that are symmetric
or antisymmetric with respect to the x and y axes.

The procedure for solving such a system of equations is to make an expansion of the
displacement field in terms of appropriate orthogonal functions. Looking at the polar
wave functions where the displacement field is expressed in trigonometric functions of
the azimuthal coordinate, and considering that inside the circle the stress relations and
equations of motion depend on trigonometric functions, it is useful to expand u inside the
circle in a series of cosmϕ and sinmϕ where the expansion coefficients are functions of r.
Consequently, the governing equations change to a coupled system of ordinary differential
equations for the expansion coefficients, which may be solved by a power series expansion
in r. For instance, the displacement field expansion for the part that is doubly symmetric
can be written as

ur(r, ϕ) = f01r + f03r
3 + . . .+ cos 2ϕ(f21r + f23r

3 + . . .) + . . . ,

uϕ(r, ϕ) = sin 2ϕ(g21r + g23r
3 + . . .) + . . . .

(3.6)

Here fij and gij are the unknown expansion coefficients which are labelled so that the first
index refers to the azimuthal order and the second one refers to the power of the radial
coordinate. The power series expansion follows from the regularity condition at r = 0 and
the trigonometric expansion follows from the symmetry requirements. The corresponding
stresses can be calculated by substituting these expansions in eq. (3.4). Insertion of the
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resulting stress relations into the equations of motion leads to some recursion relations
among the unknown coefficients. For the doubly symmetric case and considering only the
terms expressed explicitly in eq. (3.6) these relations are

g21 = −f21, 8(α1 + 2α2)f03 + 12β1f23 + 24β2f43 + ρ1ω
2f01 = 0,

12β1(f03 + f43) + (8α1 + 12α2 + 4β2)f23 + 4(α1 − β2)g23 + ρ1ω
2f21 = 0.

(3.7)

With the solution inside the circle complete, the scattering problem may be solved by
finding the unknown expansion coefficients using the boundary conditions. The elements
of the transition (T) matrix of the circle can then be calculated explicitly. However, a
general expression of the T matrix elements are too complicated and cumbersome to
calculate (but it can be done numerically). Therefore, only the dominant low frequency
T matrix elements are calculated to lowest order and given explicitly. To obtain the
dominant T matrix elements for the low frequency, it is sufficient to consider the equations
for m = 0, m = 1 and m = 2. Considering the example of doubly symmetric case for the
even values of m (m = 0 and m = 2), the boundary conditions for the displacement and
traction fields provide four equations for the radial components and two equations for the
azimuthal components. The unknowns are the scattered field coefficients b2e0, b2e2 and
b1e2 and the expansion coefficients inside the circle which are those expressed explicitly
in eq. (3.6) (f01, f03, f21, f23, g21, g23). Therefore, there exist nine unknowns that can be
found with the system of equations consisting of six equations from boundary conditions
and three recursion relations among the unknown coefficients inside the circle (eq. (3.7)).
Finally, the scattered wave coefficients can be derived in terms of the incident wave
coefficients and expressed in form of the T matrix. The T matrix elements of a circle
with orthotropic material and a detailed explanation of such a scattering problems are
given by Boström [15].

3.2 3D scattering by a sphere

For the 3D scattering by an anisotropic sphere a similar approach is taken to solve the
problem. Consider the scattering of an elastic wave by a transversely isotropic spherical
obstacle contained in a three-dimensional, homogeneous, isotropic, and infinite elastic
medium. The material properties of the surrounding medium are density ρ and stiffnesses
λ and µ, and the transversely isotropic medium is defined by density ρ1 and stiffness
constants C11, C12, C13, C33 and C44. The stiffness constants obey the constitutive relation
as in eqs. (2.16) and (2.18), which means that the z axis is considered as the axis of
anisotropy for the sphere.

Here the spherical system of coordinates is an appropriate choice based on the geometry
of the problem. Thus, the displacement field outside the sphere may be written in terms
of the spherical vector wave functions as in eq. (2.39) and the radial traction which is
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necessary for applying boundary conditions may be derived as

t(r) = erλ∇ · u+ µ

(
2
∂u

∂r
+ er × (∇× u)

)
. (3.8)

The starting point for the fields inside the sphere is to state the anisotropic elastodynamic
equations with respect to displacement in spherical coordinates. This is done by first
transforming the constitutive relations expressed in eqs. (2.16) and (2.18) into spherical
coordinates. To do so, the following relation for the transformation of a second rank
tensor like stress and strain from the Cartesian to the spherical coordinates is used

Ss = RTScR, (3.9)

where Ss and Sc are second rank tensors in the spherical and the Cartesian coordinates,
respectively, and R is the rotation matrix with the following appearance

R =

cosϕ sin θ cosϕ cos θ − sinϕ
sinϕ sin θ sinϕ cos θ cosϕ

cos θ − sin θ 0

 . (3.10)

Substituting the transformed relations into the equations of motion in terms of stresses
(eq. (2.31)) leads to a system of partial differential equations that contains trigonometric
functions with argument 2θ and 4θ similarly as in the 2D example. As the 2D case
the idea is to expand the displacement field in terms of orthogonal bases. It can be
observed from the spherical vector wave functions that the displacement field outside the
sphere is in terms of vector spherical harmonics in the angular directions. The vector
spherical harmonics constitute an orthonormal base and thus are appropriate candidates
for expansion of the displacement field inside the sphere. Such expansions facilitate the
application of the boundary conditions as well. Such an approach is first taken in Paper
A where the problem is axisymmetric (meaning that all fields are ϕ independent) and
the vector spherical harmonics consist of only the associated Legendre functions in the
θ coordinate. Then a general expansion is explained in Paper B. In both cases these
expansions change the equations of motion inside the sphere to a system of ordinary
differential equations with respect to r, which can be solved using power series expansions
in r.

Finally, using the boundary conditions on the surface of the sphere results in a system of
equations for all the unknown expansion coefficients of the fields outside and inside the
sphere. This makes it possible to determine the T matrix elements for the scattering by a
single sphere. Details of such calculations are discussed in Paper A and Paper B.

3.3 Wave numbers in polycrystals

Polycrystalline materials are solids that consist of many small crystals which are usually
called grains. The grains are normally anisotropic, have random crystallographic orienta-
tions and are separated by grain boundaries. Therefore, propagation of a wave through
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polycrystalline materials can be considered a special case of a distribution of inclusions in
a matrix. Propagation of a wave in an elastic solid with a distribution of elastic inclusions
induce scattered waves and consequently some of the incident wave energy is transferred
into the scattered waves. Due to the multiple scattering the wave experiences attenuation
and dispersion, meaning that the wave decays and its effective phase velocity changes in
a way so that both the attenuation and the phase velocity are dependent on frequency.
In other words, an elastic solid with a distribution of inclusions acts like an attenuative
and dispersive solid, even though the matrix and inclusions are perfectly elastic and do
not dissipate energy [3]. Note also that there are other factors rather than scattering that
is affecting wave attenuation and dispersion. However, here only the scattering effect is
considered.

The interest of the current study is mainly to investigate the overall average response of
the polycrystalline material, rather than the local effects of individual grains. Therefore,
the basic idea is to model the original, inhomogeneous polycrystal as a statistically
homogeneous medium, where both mediums should approximately have the same overall
average response. Various approximate methods are developed to obtain the attenuation
and effective phase velocity of the wave in polycrystals. Most of these estimations are
using volume integral equation methods combined with some perturbation method, often
the Born approximation (see for instance [17, 18, 19, 20]). However, these studies are
restricted to polycrystalline media with weakly anisotropic grains. In this research another
approach based on the theory of Foldy ([21]) is used to calculate attenuation and effective
phase velocity of the wave. This theory was developed for waves propagating in an acoustic
medium with a distribution of point scatterers, but has been generalized to the elastic
case [31]. However, it is still reasonable to apply such an approach to polycrystalline
materials.

In the theory of Foldy, the solution procedure consists of three steps. First the average
forward scattering amplitude of a single grain is determined, then the equation of Foldy
is used to calculate the complex effective wave number based on the average forward
scattering of a single grain and the density of grains. The effective wave velocity and
attenuation coefficient are then obtained by taking the real and imaginary parts of the
complex effective wave number.

To calculate the average forward scattering, first the far field amplitude of the scattered
wave needs to be calculated. This can be done by using the asymptotic behaviour of the
scattered wave when r →∞. The far field scattered wave in spherical coordinates may
be written as

usc(r, θ, ϕ) =
∑
τσml

bτσmlψ
+
τσml(r) =

eiksr

ksr
fs(θ, ϕ) +

eikpr

kpr
fp(θ, ϕ), (3.11)

where the eikr/kr terms are the asymptotic form of the spherical Hankel functions in the
far field. The vector functions fp and fs are the far field amplitudes for P and S waves
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respectively, and are defined as

fs(θ, ϕ) =
∑
σml

i−l(−ib1σmlA1σml(θ, ϕ) + b2σmlA2σml(θ, ϕ)),

fp(θ, ϕ) =

(
kp
ks

)3/2∑
σml

i−lb3σmlA3σml(θ, ϕ).

(3.12)

The avarage forward scattering amplitude can be calculated by taking the mean of the far
field amplitudes over all directions of the incident wave, which is the same as the mean
over all orientations of the inclusions. Using the definition of the T matrix the average
forward scattering amplitude may be written in terms of the T matrix elements as [32]

f̄p = − i

kp

∑
σml

T3σml,3σml,

f̄s = − i

2ks

∑
τσml
τ=1,2

Tτσml,τσml.
(3.13)

In the next step, the complex effective wavenumbers need to be calculated using the
equation of Foldy which may be stated as [31]

K2
i = k2i + 4πNf̄i, (3.14)

where the index i can be P or S for longitudinal and transverse waves, N is the number
density of scatterers and ki is the wave number in the absence of scatterers. The essential
assumption made in this relation is the neglect of interaction among the scatterers or
multiple scattering effects. Therefore it is valid for a dilute distribution of scatterers
(small values of N). However, under the condition that each grain scatters extremely
little, neglect of the multiple scattering should be valid even for a high concentration of
inclusions, and this is the case for the low frequency wave scattering in polycrystalline
materials.

Finally, in analogy to viscoelastic wave propagation in a homogeneous material, the
average dynamic response of the medium including attenuation and phase velocity can be
described by the effective wave number as

K(ω) =
ω

C(ω)
+ iα(ω), (3.15)

where C is the effective phase velocity of the wave and α is the attenuation coefficient.
Therefore having the effective wave number as in eq. (3.14) immediately leads to the
determination of phase velocity and attenuation coefficient as

αi
ki

= Im
Ki

ki
,

Ci
ci

= Re
ki
Ki
,

(3.16)
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Such an approach is taken in paper B and explicit expressions are presented for calculating
attenuation and phase velocity for low frequencies for polycrystalline materials with
transversely isotropic grains.

4 Summary of Appended Papers

4.1 Paper A

In this paper, a single anisotropic spherical obstacle contained in a three-dimensional,
homogeneous, isotropic and infinite elastic medium is considered. For this canonical
problem a transversely isotropic sphere is considered in which the axis of material symmetry
is perpendicular to the xy plane. A spherical coordinate system (r, θ, ϕ) is set at the center
of the sphere and an incident plane wave propagates in the z direction. Such restriction
on the incident wave makes the problem rotationally symmetric and consequently the
displacement and stress fields are independent of the azimuthal angle ϕ. Based on the
polarization of the incident wave the problem can be decomposed into two independent
problems, one relating to motion in the ϕ direction (torsional waves, also known as SH
waves) and the other relating to motion in the rθ plane (P-SV waves). Only the SH waves
which is a scalar case is considered in Paper A.

To solve the problem, the displacement field in the isotropic medium outside the sphere
is constructed as a superposition of incident and scattered waves, which are expanded
in spherical vector wave functions. In the anisotropic sphere first the elastodynamic
equations are transformed into spherical coordinates and then the displacement field
is expanded in associated Legendre functions in θ and powers in r. Substituting the
expansion into the equation of motion inside the sphere leads to recursion relations for
the expansion coefficients that couple different polar orders (in contrast to an isotropic
sphere where there is no such coupling). Using the boundary conditions on the surface
of the sphere results in a system of equations for all the expansion coefficients for the
fields outside and inside the sphere. As a result, the transition (T) matrix elements are
calculated and given explicitly for low frequencies. Some numerical examples of scattered
far fields are also presented.

4.2 Paper B

Paper B is in continuation of Paper A. Here the same problem as in Paper A is considered,
however, this time no restriction is applied on the incident wave, meaning that it may be
of any type, for example a plane wave of arbitrary type and in any direction. Therefore,
the axisymmetric assumption made in Paper A is not valid anymore and all fields depend
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on all the spherical coordinates. The general approach taken in this paper is similar
to the one in Paper A. Here again the elastodynamic equations inside the sphere are
transformed to spherical coordinates and the displacement field is expanded in the vector
spherical harmonics in the angular coordinates and powers in the radial coordinate. Then
recurrence relations among the expansion coefficients can be found using the governing
equations inside the sphere. In the surrounding medium the displacement and traction
fields are expanded in terms of the spherical vector wave functions. All the remaining
expansion coefficients for the fields outside and inside the sphere are found using the
boundary conditions on the surface of the sphere. As a result, the transition (T) matrix
elements are calculated and given explicitly for low frequencies.

In the B, this T matrix is used to study wave propagation in polycrystalline materials
with transversely isotropic crystals. Here the theory of Foldy is used to give an explicit
expression for the effective complex wavenumber of such materials for low frequencies. The
attenuation coefficients and phase velocities of the wave in the material are then directly
derived from the effective wave number. These quantities are numerically compared with
previously published results and with recent FEM results. The comparison with FEM for
low frequencies show a very good agreement regardless of the degree of anisotropy while
the validity of other published methods is restricted to weakly anisotropic materials.

5 Concluding Remarks and Future Work

This thesis demonstrates an analytical approach to study scattering by an anisotropic
sphere. A valuable advantage of analytical approaches is the better insights of the various
aspects of the problem. Such understanding in this research starts with the expression of
the stresses for a transversely isotropic sphere transformed to spherical coordinates. It
is worth to highlight the direct dependence of the stresses on trigonometric functions of
the polar coordinate. It is shown in the thesis how such a dependence leads to coupling
between different orders of the incident wave, which do not happen in the isotropic
cases. The complexity of the transformed wave equations for an anisotropic material
is then overcome by introducing a systematic series expansion in terms of appropriate
orthogonal functions in the angular directions and power series in the radial direction.
The governing equations inside the sphere lead to recurrence relations, which relate the
expansion coefficients inside the sphere to each other.

Another insight comes from the explicit expressions of the T matrix elements for low
frequencies. It can clearly be observed that for low frequencies it is the P-SV waves that
play an dominant role and the SH waves are of limited interest. To be more specific, the
leading order T matrix elements of the SH waves behave as (ka)5 while for the P-SV
waves they behave as (ka)3. Furthermore, such explicit expressions clearly demonstrate
how different T matrix elements depend on the stiffness constants and density of the
sphere and the surrounding medium. It is worth mentioning that there is no particular
problem in numerically computing the T matrix elements for higher frequencies.
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One important application of these T matrices is to derive explicit expressions for
attenuation coefficients and effective phase velocities in a polycrystalline materials with
transversely isotropic grains. Although these expressions are limited to low frequencies,
they have no restriction on the polycrystalline degree of anisotropy in contrast to other
published analytical approaches.

The present methods can be extended in various directions. It is, of course, of interest
to consider more general anisotropy, in particular cubic and orthotropic materials. A
cubic material has only three stiffness constants, while a transversely isotropic material
has five, still this is a more difficult problem because there is no rotational symmetry so
there is coupling both in the polar and azimuthal directions. For a cubic material there is
published results both with analytical methods valid for low degree of anisotropy and
with FEM.

Another extension of the present work is to consider somewhat higher frequencies. The T
matrix must then be computed numerically, but the restriction of the Foldy approach
used so far may then be important. There exist refinements of Foldy’s approach that take
some care of multiple scattering that can be tried. Another way to extend the present
results is to consider a distribution of grain sizes and this should be straightforward. A
further extension is to consider a material with different types of grains, for example
duplex materials.
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