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Limited Feedforward Waveform Design for OFDM
Dual-Functional Radar-Communications

Musa Furkan Keskin, Member, IEEE, Visa Koivunen, Fellow, IEEE, and Henk Wymeersch, Senior Member, IEEE

Abstract—We consider the problem of time-frequency wave-
form design for an OFDM dual-functional radar-communications
(DFRC) system that communicates with an OFDM receiver while
simultaneously estimating target parameters using the backscat-
tered signals. In particular, the goal is to achieve a favorable
performance trade-off between radar and communications by op-
timizing subcarrier powers in a time-frequency region of interest.
First, we focus on radar-optimal waveform design to minimize the
Cramér-Rao bound (CRB) on delay-Doppler estimation subject
to an integrated side-lobe level (ISL) constraint in the delay-
Doppler ambiguity domain, where a convex-concave procedure
(CCP) is devised to solve the resulting non-convex fractional
program. Next, we investigate the problem of DFRC trade-off
waveform design to optimize the communications rate under
radar similarity constraint. Unlike the traditional DFRC sys-
tems which ignore feedforward overhead for conveying transmit
waveform control information, we assume the existence of a low-
rate feedforward channel between the DFRC transceiver and the
communications receiver. Relying on the covariance matrix of lin-
ear minimum mean-squared-error (LMMSE) estimates of input
symbols, we derive a novel communications metric as a function
of both subcarrier powers and forwarded control information,
and propose a joint waveform and control signaling optimization
(JWCSO) strategy that leverages the sparsity and rank-one
structure of DFRC waveforms within an alternating maximization
framework. Simulation results show that the proposed JWCSO
approach provides significant performance gains over the con-
ventional feedforward-agnostic waveforms and achieves near-
optimal radar-communications trade-off performance, reaching
the boundary of the CRB-capacity region with only a limited
feedforward information.

Index Terms– OFDM, dual-functional radar-communications,
waveform design, limited feedforward, delay-Doppler ambiguity.

I. INTRODUCTION

A. Background and Motivation

Joint radar-communications (JRC) systems have recently
gathered a great deal of interest as spectral congestion becomes
a compelling issue in 5G and beyond wireless networks [1]–
[6]. As one of the dominant threads in JRC research, dual-
functional radar-communications (DFRC) system design aims
to develop a single hardware platform that can perform radar
sensing and communications simultaneously [2], [7], [8]. The
essential merit of DFRC approach over separate radar and
communications systems lies in its ability to provide spectrum
efficiency and hardware reuse that helps reduce cost, size
and power consumption [9], [10]. In vehicular applications,
dual-functionality can be accomplished by exploiting the exist-
ing vehicle-to-vehicle (V2V) communications standards (e.g.,
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IEEE 802.11p and IEEE 802.11ad) for radar purposes in mono-
static [10]–[13] and bi-static [14] operation. Similarly, DFRC
base stations (BSs) operating in sub-6 GHz and millimeter-
wave (mmWave) bands can concurrently transmit communica-
tion symbols to downlink users and process the backscattered
signals for target detection [1], [8].

As the de facto standard for most wireless communications
systems, orthogonal frequency-division multiplexing (OFDM)
waveform has been widely considered for implementing DFRC
systems due to its favorable characteristics, such as robust-
ness to multipath effects, simple synchronization and high-
accuracy radar operation [2], [5], [14]–[18]. While OFDM
DFRC systems have certain drawbacks from a practical point
of view, such as high peak-to-average power ratio (PAPR)
and limitations on unambiguous range due to cyclic prefix,
various techniques have been exploited to overcome these chal-
lenges, such as Golay and Reed-Muller coding [19, Ch. 3.6.3]
[20] and tone reservation [21] for PAPR mitigation, and a
modified pulse compression scheme to extend unambiguous
range [22, Ch. 6.3.3]. To improve radar-communications trade-
off performance in OFDM DFRC systems, a multitude of
waveform design1 algorithms have been proposed by jointly
considering radar and communications performance metrics
[18], [23]–[27]. In [18], [26], OFDM subcarrier powers are
designed to simultaneously maximize the data rate and the
mutual information (MI) between target impulse response and
received signal. Similarly, to optimize the achievable rate while
guaranteeing a certain level of radar estimation accuracy, [23]
employs the Cramér-Rao bound (CRB) for target parameter
estimation as the radar metric. As an alternative dual-functional
approach, recent works investigate joint subcarrier selection
and power allocation strategies that assign non-overlapping
subcarriers to radar and communications subsystems [24], [25],
[27]. The common observation in this area of research is
that trade-off waveforms with optimized subcarrier powers
can offer non-negligible gains over the conventional uniform
power allocation strategy in terms of both target estimation
performance and communications data rate.

In the prior approaches to OFDM DFRC waveform design
[18], [23]–[27], including those that focus solely on the
radar performance of OFDM (e.g, [28], [29]), several major
limitations exist that may incur performance degradations
in practical scenarios. First, these schemes typically require
the knowledge of radar channel gain, which leads to online
optimization of radar probing waveforms and thus brings ad-
ditional computational complexity. In addition, such methods
consider the design of frequency-domain waveforms without
addressing the time-domain variation of subcarrier powers
across consecutive symbols of an OFDM frame, which would
limit Doppler estimation performance [10], [16], [19], [30].
Furthermore, characterization of waveform side-lobe levels

1In compliance with the literature, OFDM waveform design refers explic-
itly to power allocation across subcarriers throughout the text.
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with random communication data has been rarely studied (e.g.,
[15], [31]) and combined time-frequency design of an OFDM
waveform with rigorous side-lobe control in the presence of
random symbols has been unexplored in the literature.

Besides the above shortcomings of existing studies con-
cerning the radar functionality of OFDM, a significant chal-
lenge involving the communications aspect of OFDM in
dual-functional scenarios pertains to the availability of lim-
ited feedforward channel from the DFRC transceiver to the
communications receiver [32], [33], [34], which, to the best
of authors’ knowledge, has not been addressed in the ex-
isting DFRC research. The key consideration is that DFRC
waveforms can be designed flexibly at the transceiver side
in line with the requirements of radar and communications
subsystems; nevertheless, such waveforms become part of the
effective channel between the transmitter and the receiver,
which comprises transmit waveform (i.e., subcarrier powers)
and communication channel gains. In order for the receiver
to be able to decode transmit symbols, DFRC waveform
information should thus be conveyed to the receiver side over a
separate, possibly low-rate, feedforward/control channel [32],
[34]. Therefore, DFRC waveform design algorithms should
take into account the limits of feedforward channels, especially
in the case of rapidly time-varying waveforms.

B. Contributions

In this paper, we propose a novel time-frequency waveform
design framework for OFDM DFRC systems assuming the
availability of a limited feedforward channel between the
transmitter and the receiver. Leveraging tools from difference-
of-convex functions (DC) programming [35] and fractional
optimization [36], we introduce algorithms for designing
both radar-optimal and DFRC trade-off waveforms. Unlike
frequency-only waveform optimization [18], [23]–[27], we
provide time-frequency waveform design algorithms to offer
flexibility in the Doppler domain, which enables improved
Doppler estimation. In addition, to achieve dual-functionality
with high data rates, we propose the concept of limited feed-
forward waveform design that jointly optimizes the transmitted
DFRC waveform and the feedforward/control information sent
to the receiver. The main contributions can be summarized as
follows:
• Radar-Optimal OFDM Waveform Design: The radar-

optimal waveform design problem is formulated to op-
timize the delay-Doppler ambiguity function (AF) via
CRB minimization for main-lobe shaping and by im-
posing integrated side-lobe level (ISL) constraints for
side-lobe shaping, where the expected AF under random
transmit symbols [15], [31] is used to quantify ISL. This
leads to a challenging non-convex optimization problem
with a quadratic-over-quartic fractional objective and a
quadratic-fractional ISL constraint. We recast the problem
using second-order cone (SOC) and difference-of-convex
(DC) function constraints and develop a convex-concave
procedure (CCP) based algorithm that entails solving a
series of SOC programs. The proposed formulation has
the advantage of being independent of target parameters
and therefore allows offline optimization in a single-target
scenario.

• LMMSE Based Communications Metric: To quantify the
capacity loss associated with the availability of a limited
feedforward channel for conveying the knowledge of
time-varying subcarrier powers to the receiver, we derive

a novel communications metric as a function of both the
transmit waveform and the control signaling information,
that provides a lower-bound on capacity by exploiting
its relation to the linear minimum mean-squared-error
(LMMSE) covariance matrix [37], [38]. Our approach
herein is similar in spirit to that followed in multiuser
multiple-input multiple-output (MIMO) broadcast sce-
narios for transmit beamforming [32], where effective
channels are unknown at the receivers.

• OFDM DFRC Trade-off Design with Limited Feedfor-
ward: Under the assumption of a limited feedforward
channel, we formulate a joint DFRC waveform and con-
trol signaling optimization (JWCSO) problem to maxi-
mize the LMMSE-based communications metric subject
to a similarity constraint for the radar-optimal waveform.
Capitalizing on the sparsity and rank-one structure of
waveforms, respectively, at the radar and communications
end of the trade-off, we propose an alternating optimiza-
tion approach that iterates between updating the waveform
and the control signaling information.

Additionally, simulation results indicate that the radar-
optimal waveforms can outperform the traditional uniform
and water-filling solutions in terms of range and velocity
accuracies. Moreover, it is shown that the proposed DFRC
trade-off waveforms obtained via JWCSO strategy in the
presence of limited feedforward can operate very close to
the boundary of the CRB-capacity region achievable with un-
limited feedforward, whereas waveforms without feedforward
optimization lead to significant capacity loss. The advantage
of the JWCSO approach becomes more pronounced at high
SNRs, where capacity improvements up to 3 bits/s/Hz over
feedforward-agnostic waveforms can be achieved for a given
radar CRB level. Furthermore, for a given capacity level, the
proposed time-varying waveforms are demonstrated to achieve
lower CRB in both range and velocity than the traditional time-
invariant waveforms [18], [23]–[27], while requiring the same
level of feedforward overhead. Based on the simulation results,
we provide guidelines on when sparsity and rank-one structure
of DFRC waveforms should be enforced depending on SNR
and radar similarity regimes. We also depict the resulting
waveforms in delay and Doppler domains to provide qualitative
insights into the characteristics of radar and communications
subsystems.

II. SYSTEM MODEL

Consider an OFDM DFRC transceiver equipped with a
DFRC transmitter and a radar receiver operating on a sin-
gle hardware platform. As shown in Fig. 1, the DFRC
transceiver concurrently transmits data symbols to an OFDM
communications receiver and performs radar sensing using the
backscattered signals to estimate parameters of targets in the
environment [5], [7]. Being co-located with the transmitter in
a joint system, the radar receiver is assumed to have perfect
knowledge of the transmit signal [5]. In addition, we assume
perfectly decoupled transmit and receive antennas so that the
radar receiver does not suffer from self-interference due to full-
duplex radar operation [5], [10], [12], [16]2. In this section,
we first provide OFDM transmit signal model and then derive
signal models at the radar and communications receivers.

2There exist many self-interference cancellation techniques to achieve
sufficient isolation between the transmit and receive antennas [12], [39]. For
instance, in a full-duplex OFDM radar implementation, adaptive filtering based
nonlinear digital cancellers in combination with RF cancellers and circulators
have been shown to provide around 100 dB TX/RX isolation [40].
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Fig. 1. Considered scenario with an OFDM DFRC transceiver and a
communications receiver, where the transceiver uses the backscattered signal
to detect targets. The proposed power allocation accounts for both radar and
communications performance metrics.

A. Transmit Signal Model
We consider an OFDM communication signal consisting of

M OFDM symbols, each of which has a total duration of
Tsym = Tcp + T and a total bandwidth of N∆f = B. Here,
Tcp and T denote, respectively, the cyclic prefix duration and
the elementary symbol duration, ∆f = 1/T is the subcarrier
spacing, and N is the number of subcarriers [5]. Then, the
complex baseband transmit signal for the mth symbol is given
by

sm(t) =

N−1∑
n=0

√
Pn,m xn,m e

j2πn∆ftrect

(
t−mTsym

Tsym

)
,

(1)
where Pn,m and xn,m denote, respectively, the transmit power
and the complex data symbol on the nth subcarrier for the mth

symbol [17], and rect (t) is a rectangular function that takes
the value 1 for t ∈ [0, 1] and 0 otherwise. Denoting by fc the
carrier frequency, the upconverted signal over the block of M
symbols for t ∈ [0,MTsym] can be written as

s̃(t) = <

{
M−1∑
m=0

sm(t)ej2πfct

}
. (2)

B. Radar Receiver
Suppose there exist K point targets in the environment, each

characterized by a complex channel gain hk (including path
loss and radar cross section), a round-trip delay τk, and a
normalized Doppler shift νk , 2vk/c, with vk and c denoting
the radial velocity and the speed of propagation, respectively.
Then, the backscattered signal at the radar receiver after
downconversion can be expressed as [41], [42]

r(t) =

K−1∑
k=0

M−1∑
m=0

hksm(t− τk)ej2πfcνkt + ω(t) , (3)

where ω(t) denotes the signal-independent interference plus
noise term. Following [41], [42], we assume that the Doppler-
induced phase rotation within an OFDM symbol duration is
negligible3, i.e., fcνkTsym � 1, so that fcνkt ≈ fcνkmTsym

3This is tantamount to the requirement that the subcarrier spacing is much
larger than the maximum Doppler shift, i.e., fcνk � 1/Tsym < 1/T =
∆f [16, Eq. (3.145)]. For instance, consider a DFRC base station [1] for
a drone application, where fc = 2.7 GHz and ∆f = 30 kHz, we have
fcνkTsym = 0.0225 for Tcp = T/4 and for a target with velocity vk =
30 m/s. Similarly, a mmWave vehicular application using IEEE 802.11ad [12]
with fc = 60 GHz and ∆f = 5.15625 MHz yields fcνkTsym = 0.0029
[30].

for t ∈ [mTsym, (m+ 1)Tsym]. Based on this approximation,
we rewrite (3) as

r(t) =

K−1∑
k=0

M−1∑
m=0

hksm(t− τk)ej2πfcνkmTsym + ω(t) . (4)

Following the standard processing approach for OFDM
signals [41], [42], [43, Ch. 12.1], the Fourier transform of the
received signal in (4) over the elementary symbol duration (i.e.,
after removing the cyclic prefix) for the mth OFDM symbol
in the nth subcarrier is given by

yn,m =

∫ (m+1)Tsym

mTsym+Tcp

r(t)e−j2πn∆ft dt . (5)

To ensure orthogonality of subcarriers in (5), the cyclic
prefix duration is assumed to be larger than the round-trip
delay of the furthermost scatterer [2], [15], [16], i.e., Tcp ≥
max{τ0, . . . , τK−1}. Under this assumption, plugging (1) and
(4) into (5), we have

yn,m =

K−1∑
k=0

N−1∑
sn=0

(
hk
√
P

sn,m xsn,me
−j2πsn∆fτkej2πfcνkmTsym

×
∫ (m+1)Tsym

mTsym+Tcp

ej2π(sn−n)∆ft dt

)
+ zn,m (6)

=
√
Pn,mxn,m

K−1∑
k=0

αke
−j2πn∆fτkej2πfcνkmTsym

+ zn,m , (7)

where zn,m ,
∫ (m+1)Tsym

mTsym+Tcp
ω(t)e−j2πn∆ft dt and αk , Thk.

To obtain (7) from (6), we rely on the subcarrier orthogonality,
i.e., ∫ (m+1)Tsym

mTsym+Tcp

ej2π(sn−n)∆ft dt = Tδ(sn− n) . (8)

For the convenience of analysis, let us define, respectively,
the frequency-domain steering vector and the temporal steer-
ing vector as

θ(τ) , [1, e−j2π∆fτ , . . . , e−j2π(N−1)∆fτ ]
T
, (9)

φ(ν) , [1, e−j2πfcTsymν , . . . , e−j2πfc(M−1)Tsymν ]
T
. (10)

Accordingly, the radar observations in (7) over the block of
M symbols can be rewritten in a compact form as

Y = P�X︸ ︷︷ ︸
Transmit

Signal

�
K−1∑
k=0

αkθ(τk)φH(νk)︸ ︷︷ ︸
Radar Channel

+ Z︸︷︷︸
Noise+
Interf.

, (11)

where � denotes the Hadamard product, Y ∈ CN×M , P ∈
RN×M , X ∈ CN×M and Z ∈ CN×M with [Y]n,m , yn,m,
[P]n,m ,

√
Pn,m, [X]n,m , xn,m and [Z]n,m , zn,m,

with [·]n,m representing the (n,m)th entry of a matrix. We
assume that the transmit symbols are drawn from a com-
plex circularly-symmetric Gaussian codebook with vec (X) ∼
CN (0NM , INM ), where vec (·) denotes the matrix vectoriza-
tion operator, 0N is the all-zeros vector of size N and IN
is the N × N identity matrix. In addition, the interference-
plus-noise term is assumed to be distributed according to
vec (Z) ∼ CN (0NM ,Rz), where we assume the covariance
matrix Rz ∈ CNM×NM to be estimated through secondary
data [44].
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Given the transmit symbols X, the problem of interest
for radar sensing is to estimate from the observation Y in
(11) the parameters of the radar channel, i.e., the unknown
target parameters consisting of channel gains {αk}K−1

k=0 , delays
{τk}K−1

k=0 and Doppler shifts {νk}K−1
k=0 .

C. Communications Receiver

Following the structure in (11), the signal model at the
communication side can be expressed as

Ycom = P�X�Hcom + Zcom , (12)

where Hcom ∈ CN×M represents the communication channel
in the time-frequency domain and Zcom is the receiver noise
with vec (Zcom) ∼ CN (0NM , σ

2INM ). In accordance with
the radar-communications literature [2], [10], [12], we adopt
a frequency-selective communication channel model which is
time-invariant during the transmission of a single block of M
consecutive OFDM symbols (i.e., a quasi-static block-fading
channel [43, Ch. 4.3.1], [45]):

Hcom = hcom1TM , (13)

where hcom ∈ CN×1 represents the channel frequency re-
sponse and 1M is the all-ones vector of size M . The block-
fading assumption in (13) can be particularly relevant for
mmWave vehicular scenarios, where the transmitting and re-
ceiving vehicles are moving in the same direction, resulting
in a small relative velocity and thus a negligible Doppler shift
[12]. Equipped with the knowledge of hcom in (13) through
pilot symbols [46] and that of P via control signaling [47], the
communications receiver aims to decode the transmit symbols
X from Ycom in (12).

D. Dual-Functional Waveform Design Problem

Our problem of interest in this paper is to design the
dual-functional time-frequency waveform P that ensures a
favorable radar-communications trade-off by joint optimiza-
tion of radar and communication functionalities characterized
through signal models in (11) and (12)–(13), respectively. We
start by providing the performance objectives for radar and
communications in Sec. III. Then, we devise algorithms for
designing radar-optimal and radar-communications trade-off
waveforms in Sec. IV and Sec. V, respectively.

III. RADAR AND COMMUNICATIONS PERFORMANCE
METRICS

In this section, we derive performance metrics for OFDM
radar and communication functionalities to be employed in
waveform optimization. The reader is referred to the supple-
mentary material for detailed derivations and proofs.

A. Radar Performance Metric

Assuming a noise-dominated scenario (i.e., Rz = σ2
rINM )

with a single-target, we consider the CRBs on delay and
Doppler estimation as our estimation performance criterion
[48]. According to Sec. S-I in the supplementary material, the
CRBs can be obtained as

var (τ̂) ≥ Cτ =
1

2γSNR

(1Tq)(qTΥνq)

(qTΥτq)(qTΥνq)− (qTΥτνq)2
,

(14a)

var (ν̂) ≥ Cν =
1

2γSNR

(1Tq)(qTΥτq)

(qTΥτq)(qTΥνq)− (qTΥτνq)2
,

(14b)

where
q , vec (P�P) (15)

is the equivalent optimization variable, τ̂ and ν̂ are unbi-
ased estimates of τ and ν, respectively, and γSNR, Υτ ∈
RNM×NM , Υν ∈ RNM×NM , Υτν ∈ RNM×NM are given in
(S21) in the supplementary material. As seen from (14a) and
(14b), the CRBs depend on SNR, q, ∆f , Tsym and fc, but
they are independent of target delay-Doppler values. To design
the radar-optimal waveform q based on a scalar metric, we
consider weighted minimization of delay and Doppler CRBs
in (14), which is given by

frad(q) = λτCτ + (1− λτ )Cν , (16)

where λτ and 1 − λτ denote prescribed, user-determined
weighting factors for delay and Doppler estimation accuracies,
with 0 ≤ λτ ≤ 1.

B. Communications Performance Metric

We first rewrite the received signal model in (12) in vector
form as

ycom = x�
,h(p)︷ ︸︸ ︷

p� (1M ⊗ hcom) + zcom = H(p)x + zcom ,
(17)

where ⊗ denotes the Kronecker product, ycom ,
vec (Ycom) ∈ CNM×1, p , vec (P) ∈ RNM×1, x ,
vec (X) ∈ CNM×1, zcom , vec (Zcom) ∈ CNM×1, h(p) ∈
CNM×1 represents the effective channel experienced by the
receiver, which depends on the waveform p, and H(p) ,
diag (h(p)) ∈ CNM×NM , with diag (·) returning a diagonal
matrix with the elements of a vector on the diagonals.

For amplitude modulation schemes, such as pulse ampli-
tude modulation (PAM) or quadrature amplitude modulation
(QAM), estimating x from ycom in (17) requires the knowl-
edge of both hcom and p (i.e., the effective channel gain)
at the receiver. It is assumed that hcom is available at the
receiver through training sequences and at the transmitter
via a feedback channel [46]. As the optimization of the
DFRC waveform p is performed at the transmitter side, this
information must be conveyed to the receiver over a limited
feedforward channel4 for symbol decoding at the receiver.
Following the models in [32], [34], we assume the existence
of a low-rate feedforward channel (which is separate from the
main communication channel) to send the control information
regarding p to the receiver.

To characterize the capacity loss in the presence of a limited
feedforward, we consider an imperfect channel state informa-
tion (CSI) at the receiver, denoted by H(p̂), that results from
an imperfect/partial knowledge of the transmit powers over a
limited feedforward channel, denoted by p̂ ∈ RNM×1. Under
this setting, the receiver computes the imperfectly implemented

4Unlike the conventional OFDM power allocation schemes (e.g., [49]), p
varies over both frequency and time domains to fulfill the radar functionality
(i.e., optimization of radar delay-Doppler characteristics) and thus may not
be fully available at the receiver due to high control signaling overhead
[33]. Specifically, perfect knowledge of p ∈ RNM×1 at the receiver would
require transmitting a control information half the amount of the user data
x ∈ CNM×1, which is highly impractical.
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[50] LMMSE estimate of x in (17) with H(p̂) in place of
H(p) [51, p. 389]

x̂ = RxHH(p̂)

(
H(p̂)RxHH(p̂) + Rzcom

)−1

ycom , (18)

where the input and noise covariance matrices are given by
Rx = I and Rzcom

= σ2I. In (18), the transmitter employs
the optimal waveform p (see (17)), whereas the receiver
performs symbol decoding using the forwarded information
p̂ [32]. It is worth highlighting that p is the DFRC waveform
transmitted over the main channel for the purpose of joint
communications and sensing, while p̂ is sent over a separate,
low-rate feedforward/control channel. Leveraging the relation
between the channel capacity and the LMMSE covariance
matrix [37], [38], we derive a performance metric that accounts
for the availability of a limited feedforward channel, as stated
in the following proposition.

Proposition 1. The capacity C(p, p̂) of the frequency-
selective channel represented by the input-output relation (17)
in the presence of an imperfect knowledge p̂ of the subcarrier
powers p at the receiver can be lower-bounded as [37], [38],
[52]

C(p, p̂) ≥ − log det RLMMSE(p, p̂) , (19)

where

RLMMSE(p, p̂) = diag

({
|hi(p̂)|2(|hi(p)|2 + σ2)

(|hi(p̂)|2 + σ2)
2 (20)

− 2<{h∗i (p̂)hi(p)}
|hi(p̂)|2 + σ2

+ 1

}NM−1

i=0

)
represents the covariance matrix of the LMMSE estimate of x
in (18), with hi(p) , [h(p)]i.

Proof. See Sec. S-II in the supplementary material. �

Remark 1 (Variations in Power Allocation). We assume
that the DFRC transmitter changes its power allocation p after
each OFDM frame (consisting of M symbols) to adapt to
possible channel variations. In this setting, there might be gaps
between practically achievable rates due to operation in the
finite blocklength regime [53] and the capacity lower-bound
in (19), which has been derived with an infinite blocklength
assumption (as in, e.g., [54]–[57]). Despite such gaps between
theoretical and practical achievable rates, adopting (19) as the
optimization metric can provide useful design guidelines to
improve transmission rate [43, Ch. 9.7] and offer valuable
insights into radar-communications trade-off characteristics
[44], [58], [59] (as will be shown in Sec. VI-B). To obtain
metrics that can quantify the practical performance of such
a communication system, achievable rates in the finite block-
length regime should be investigated [53], which, however, is
outside the scope of this paper and can be considered for future
studies.

Proposition 1 enables joint optimization of transmit wave-
form p and control signaling information p̂, as will be dis-
cussed in Sec. V. Since the input and noise covariance matrices
in (18) are diagonal, RLMMSE(p, p̂) becomes a diagonal
matrix, as well. This implies that the channel in (17) decouples
into N × M single-input single-output (SISO) channels in
the frequency-time blocks, allowing the capacity lower-bound
in (19) to be expressed as a sum of the capacities of all

individual SISO channels (see (38) in Sec. V-A). We now
provide the following remarks on some special cases regarding
Proposition 1.

Remark 2 (Unlimited Feedforward Channel). Given the
DFRC waveform p, the optimal control signaling strategy over
an unlimited feedforward channel is to transmit the waveform
itself, as expected, i.e.,

p = arg min
p̂

log det RLMMSE(p, p̂) . (21)

Remark 3 (Connection to Water-filling). Under the as-
sumption of an unlimited feedforward channel, i.e., p̂ = p
(perfect CSI at the receiver), the problem of maximizing the
lower bound in (19) boils down to the classical achievable rate
maximization problem, i.e.,

min
p

log det RLMMSE(p,p) ≡ max
p

NM−1∑
i=0

log

(
1 +
|hi(p)|2

σ2

)
,

whose optimal solution under a total power constraint is
given by frequency-domain water-filling with respect to the
subchannel gains hcom [43, Ch. 4.4.1].

IV. RADAR-OPTIMAL OFDM WAVEFORM DESIGN WITH
DELAY-DOPPLER AMBIGUITY SHAPING

In this section, we focus on the design of radar-optimal
OFDM time-frequency waveform. We first introduce an ISL
constraint in the delay-Doppler ambiguity domain and formu-
late the waveform design problem. Then, exploiting the special
problem structure, we propose a CCP based algorithm by
converting the original problem into a series of SOC programs.

A. Delay-Doppler Ambiguity Constraint
Generally speaking, waveform design based on the CRB

metric can produce a sharp peak in the main-lobe of the delay-
Doppler ambiguity domain and provide improved estimation
accuracy [60]. However, the CRB characterizes only the local
behavior of the delay-Doppler ambiguity function (AF) around
the origin, which might lead to high side-lobe levels if not
properly accounted for in the optimization process [61]. To
take into account both local (high SNR) and non-local (low
SNR) estimation errors, we enforce the normalized integrated
side-lobe level (ISL) constraint as [62], [63]∫∫

Rs |χ(τ, ν)|2 dτ dν

|Rs| |χ(0, 0)|2
≤ βISL , (22)

where χ(τ, ν) is the AF of the OFDM waveform at a given
delay mismatch τ and Doppler mismatch ν, Rs denotes the
side-lobe region in the delay-Doppler domain (which can be
chosen flexibly according to design requirements) with the
area |Rs|, and βISL is the upper limit on the allowable ISL.
The constraint (22) allows us to control the relative amount
of energy in 2-D portions of interest Rs of the ambiguity
surface with respect to its peak, thus avoiding undesired side-
lobe levels.

Recalling the observation model in (11), the AF (averaged
over the distribution of transmit symbols5) can be derived by
computing the output of the matched filter tuned to a delay-
Doppler pair (τ1, ν1)

P�X� θ(τ1)φH(ν1) , (23)

5Please refer to Sec. S-V-B in the supplementary material for details on
how random data symbols X can impact the AF side-lobes.
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applied to the interference-plus-noise-free observation matrix
corresponding to a target at a delay-Doppler bin (τ2, ν2)

W �P�X� θ(τ2)φH(ν2) , (24)

as shown in (25) on top of page 7. In (24), W ∈ RN×M rep-
resents a predefined 2-D time-frequency window6, commonly
employed in radar processing to suppress side-lobes caused
by rectangular windowing [64, Ch. 5.3.1]. After algebraic
manipulations on (25) and defining w = vec (W), we obtain

χ(τ1, ν1, τ2, ν2) (26)

= qT
(
w �

(
φ(ν1)⊗ θ∗(τ1)

)
�
(
φ∗(ν2)⊗ θ(τ2)

))
= qT

(
w �

[(
φ(ν1)� φ∗(ν2)

)
⊗
(
θ∗(τ1)� θ(τ2)

)])
= qT

(
w �

(
φ∗(ν)⊗ θ(τ)

))
, χ(τ, ν)

for the delay-Doppler mismatch (τ, ν) , (τ2 − τ1, ν2 − ν1).
Substituting (26) into (22), the normalized ISL constraint

can be written as∫∫
Rs qT

(
wwT �

(
φ∗(ν)⊗ θ(τ)

)(
φT (ν)⊗ θH(τ)

))
q dτ dν

|Rs|qT
(
wwT �

(
φ∗(0)⊗ θ(0)

)(
φT (0)⊗ θH(0)

))
q

=
qTΞq

|Rs| (wTq)2
≤ βISL , (27)

where

Ξ , wwT �
∫∫
Rs
φ∗(ν)φT (ν)⊗ θ(τ)θH(τ) dτ dν . (28)

B. Problem Formulation
Under the normalized ISL constraint (27) and a total power

budget 1Tq = PT , the radar-optimal OFDM waveform design
problem via weighted minimization of delay and Doppler
CRBs in (16) can be formulated as follows:

min
q

qT [λτΥν + (1− λτ )Υτ ] q

(qTΥτq)(qTΥνq)− (qTΥτνq)2
(29a)

s.t. 1Tq = PT , q � 0 (29b)
qTΞq

(wTq)2
≤ β̃ISL , (29c)

where we drop the immaterial scaling factor PT
2γSNR

in (16) and
define β̃ISL , βISL|Rs|. In the proposed design framework
(29), the level of parameter uncertainty (e.g., tracking error
covariance in track radars [61]) characterizes the side-lobe
region Rs in (22), while the measurement SNR governs the
maximum tolerable ISL level βISL

7. For fixed Rs and βISL,
(29) is an offline optimization problem since the objective (29a)
does not depend on target parameters, as noted in Sec. III-A.

Regarding the structure of (29), we point out the following
observations: (i) the objective (29a) has a highly non-convex
fractional form with quadratic and quartic functions on the

6Note that W has no effect on the CRB since the CRB derivation is based
on the time-frequency observation matrix (11) and is therefore independent
of the receive processing applied afterwards. On the other hand, P is a dual-
functional transmit waveform that can impact both radar and communications
performance, as discussed in Sec. III.

7For instance, in the case of high uncertainty regarding delay and Doppler
parameters, the system designer can set Rs to cover a relatively large region
in the delay-Doppler domain over which occurrence of spurious peaks can be
prevented. Similarly, for low SNR operation, βISL can be reduced to decrease
the side-lobe levels so that the estimator does not choose an incorrect delay-
Doppler pair corresponding to a side-lobe.

numerator and denominator, respectively; and, (ii) the ISL
constraint (29c) contains a non-convex quadratic-fractional
function. Hence, (29) is a challenging non-convex optimization
problem that is intractable to solve to global optimality. In
what follows, we provide an equivalent reformulation of (29)
in terms of second-order cones (SOCs) [65] and difference-of-
convex (DC) [35] functions, that lends itself to application of
efficient local optimization algorithms.

C. Reformulation of (29) with SOC and DC Constraints
To demonstrate the equivalent form of (29), we provide the

following proposition.

Proposition 2. The waveform design problem in (29) can
be equivalently reformulated as follows:

min
q,tτ ,t̃τ ,tν ,t̃ν
κτ ,κν ,κτν

λτ tτ + (1− λτ )tν (30a)

s.t. (29b)∥∥ [2 tτ − t̃τ
]T ∥∥

2
≤ tτ + t̃τ (30b)∥∥ [2 tν − t̃ν

]T ∥∥
2
≤ tν + t̃ν (30c)∥∥ [2κτν κν − κτ + t̃τ

]T ∥∥
2
≤ κν + κτ − t̃τ

(30d)∥∥ [2κτν κτ − κν + t̃ν
]T ∥∥

2
≤ κτ + κν − t̃ν

(30e)∥∥∥∥[ 2 ũTτ q
1− PT uTτ q + κτ

]∥∥∥∥
2

≤ 1 + PT uTτ q− κτ
(30f)∥∥∥∥[ 2 ũTν q

1− PT uTν q + κν

]∥∥∥∥
2

≤ 1 + PT uTν q− κν
(30g)

f1(r)− f2(r) ≤ 0 (30h)
f3(r)− f4(r) ≤ 0 (30i)
f4(r)− f5(r) ≤ 0 , (30j)

where r , [qT , κτν ]T and

f1(r) , qTΞq, f2(r) , β̃ISL(wTq)2 (31a)

f3(r) ,
(
ũTτ q

)2
+
(
ũTν q

)2
+ 2

(
PT uTτνq− κτν

)
(31b)

f4(r) ,
(
ũTτ q + ũTν q

)2
(31c)

f5(r) ,
(
ũTτ q

)2
+
(
ũTν q

)2
+ 2

(
PT uTτνq + κτν

)
. (31d)

Proof. See Sec. S-III in the supplementary material. �

As observed from Proposition 2, the equivalent problem (30)
consists of a linear objective (30a), linear constraints (29b),
SOC constraints (30b)–(30g), and DC type inequality con-
straints (30h)–(30j). Hence, the non-convexity of (30) stems
from the DC functions. In the following part, we propose a
convex-concave procedure (CCP) [35] based low-complexity
iterative algorithm to handle this non-convexity.

D. CCP Based Iterative Algorithm
1) Convexification of DC Constraints: CCP is a local

optimization heuristic that iteratively converges to a Karush-
Kuhn-Tucker (KKT) point of the original non-convex problem
(30) in an efficient manner [66, Thm. 4]. Starting from an
initial feasible point8 r0, we convexify the DC functions in

8A feasible point can be found by solving the ISL optimization problem
in (S50) in Sec. S-VI of the supplementary material.
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χ(τ1, ν1, τ2, ν2) = EX

{
tr

((
P�X� θ(τ1)φH(ν1)

)H(
W �P�X� θ(τ2)φH(ν2)

))}
(25)

= tr

((
P�P

)T(
EX

{
X∗ �X

}
︸ ︷︷ ︸

1N1TM

�W � θ∗(τ1)φT (ν1)� θ(τ2)φH(ν2)
))

= qTvec
(
W � θ∗(τ1)φT (ν1)� θ(τ2)φH(ν2)

)
.

(30h)–(30j) by linearizing the concave part around the current
iterate r` =

[
qT` , (κτν)`

]T
as [35]

fi(r)− f̂j(r; r`) ≤ 0 (32)

for (i, j) ∈ {(1, 2), (3, 4), (4, 5)}, where f̂j(r; r`) , fj(r`) +
∇fj(r`)T (r− r`).

2) SOC Representation of the Convexified ISL Con-
straint through Vandermonde Decomposition: Defining a` ,
2β̃ISLwTq`w and ã` , β̃ISL(wTq`)

2, the convexified ISL
constraint in (32) for (i, j) = (1, 2) can be expressed as

qTΞq− aT` q + ã` ≤ 0 . (33)

Assume that the 2-D smoothing window in (28) is given by
W = wτw

T
ν and the side-lobe region Rs is rectangular, i.e.,

Rs = Rτ×Rν , whereRτ andRν represent the corresponding
delay and Doppler intervals, respectively. Let

Ξτ ,
∫
Rτ
θ(τ)θH(τ) dτ = VτDτV

H
τ (34a)

Ξν ,
∫
Rν
φ∗(ν)φT (ν) dν = VνDνV

H
ν (34b)

denote the Vandermonde decompositions [67] of the Hermitian
positive semi-definite Toeplitz matrices Ξτ and Ξν , respec-
tively. Then, the ISL constraint in (33) can be reformulated
as the following SOC (see Sec. S-IV in the supplementary
material for details) [65, Ch. 2.1]:∥∥∥∥∥
[

2
(
D

1/2
ν ⊗D

1/2
τ

)(
Ṽν ⊗ Ṽτ

)H
q

1− aT` q + ã`

]∥∥∥∥∥
2

≤ 1 + aT` q− ã` ,

(35)
where Ṽτ = wτ1

T
Rτ
�Vτ and Ṽν = wν1

T
Rν
�Vν .

3) SOCP Formulation: Reformulating all the constraints in
(32) as SOCs [65, Ch. 2.1], the problem to be solved at the
`th iteration of CCP becomes

min
q,tτ ,t̃τ ,tν ,t̃ν
κτ ,κν ,κτν

λτ tτ + (1− λτ )tν (36a)

s.t. (29b), (30b)− (30g), (35)∥∥∥[2 qT [ũτ ũν ] , 1 + bT` q− 2κτν + b̃`
]T∥∥∥

2

≤ 1− bT` q + 2κτν − b̃` (36b)∥∥∥[2 qT (ũτ + ũν) , 1− cT` q− 2κτν + c̃`
]T∥∥∥

2

≤ 1 + cT` q + 2κτν − c̃` , (36c)

where b` , 2PTuτν − 2 (ũτ + ũν)Tq`(ũτ + ũν), b̃` ,[
(ũτ + ũν)Tq`

]2
, c` , 2

(
ũTτ q`ũτ + ũTν q`ũν + PTuτν

)
,

and c̃` ,
(
ũTτ q`

)2
+
(
ũTν q`

)2
.

The problem (36) is a second-order cone program (SOCP)
and therefore can be solved efficiently using available conic
solvers [68]. The proposed iterative algorithm for solving
the problem (29) (or, equivalently, (30)) is summarized in
Algorithm 1.

Algorithm 1 CCP-SOCP for Solving (29)
Input: Rτ , Rν , βISL, w, λτ
Output: Radar-optimal waveform q
Initialization: Compute the Vandermonde decompositions
of Ξτ and Ξν in (34). Choose an initial feasible point r0 =[
qT0 , (κτν)0

]T
of (30). Set ` = 0.

Repeat
Solve the SOCP (36) to obtain the optimal ropt.
Set r`+1 = ropt and ` = `+ 1.

until the objective value in (36a) converges.

V. RADAR-COMMUNICATIONS TRADE-OFF DESIGN WITH
LIMITED FEEDFORWARD

In this section, we consider radar-communications trade-off
designs with limited feedforward by employing the communi-
cations objective in (19) under a constraint on the similarity
to the radar-optimal waveforms designed in Sec. IV.

A. Joint Waveform-Control Signaling Optimization (JWCSO)
Given the radar-optimal waveform prad, we formulate the

trade-off waveform design problem as9

min
p,p̂

log det RLMMSE(p, p̂) (37a)

s.t. ‖p‖22 ≤ PT (37b)

‖p− prad‖22 /(2PT ) ≤ ε (37c)
[Control Overhead Constraint on p̂] , (37d)

where 0 ≤ ε ≤ 1 determines the level of similarity be-
tween the radar-optimal and the radar-communications trade-
off waveforms10. In (37), we perform joint optimization of the
waveform p and the feedforward/control signaling information
p̂ to maximize the capacity lower-bound in (19) subject to
a tolerable mismatch between p and prad, and a control
signaling overhead constraint on p̂ [33].

Let sh , 1M⊗hcom and shi ,
[
sh
]
i
. Then, plugging (20) and

the definition of h(p) in (17) into (37), the problem becomes

max
p,p̂

NM−1∑
i=0

log

(
Ai(p, p̂)

Bi(p, p̂)

)
(38)

s.t. (37b)− (37d) ,

where

Ai(p, p̂) ,
(
p̂i|shi|2 + σ2

)2
(39)

Bi(p, p̂) ,
(
p̂i|shi|2 + σ2

)2
+ p̂i|shi|2

(
pi|shi|2 + σ2

)
9Since the radar-optimal waveform can be designed offline, we pursue a

sequential optimization approach that designs the DFRC trade-off waveform
using a similarity constraint, which provides computational savings compared
to a joint strategy that optimizes radar and communications metrics in a single
problem.

10ε can be chosen depending on practical requirements and priorities
of radar and communications subsystems. In a radar-critical operation with
stringent accuracy requirements, ε can be close to 0, while for scenarios
requiring high-rate data transmission, ε can be set close to 1.
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− 2
√
p̂ipi|shi|2

(
p̂i|shi|2 + σ2

)
. (40)

The problem (38) is a non-convex optimization problem with
a non-concave objective function in the joint variable (p, p̂).
Exploiting the framework in [36], we devise an alternating
optimization procedure to obtain near-optimal solutions to
(38), as described in Sec. V-C.

B. Limited Feedforward via Sparsity and Rank-One Con-
straints

According to Remark 2 in Sec. III-B, the optimal forwarded
information p̂ that maximizes the capacity lower-bound in (38)
is the waveform p itself in the absence of control overhead
constraints in (37d). However, such an unconstrained choice
of p̂ incurs a large overhead on the feedforward channel as p
contains subcarrier powers of an entire OFDM frame. Based
on this observation, we propose two strategies to enforce a
special structure on p̂ through (37d) to enable its transmission
over a low-rate feedforward channel. To this end, we exploit
the following observations regarding the structure of p:

• Sparsity Constraint: As ε → 0 in (37c) (i.e., con-
vergence to radar-optimal waveform), the optimal p
becomes sparse in time-frequency11 (only a small per-
centage of subcarriers has a non-negligible power level),
thereby leading to the constraint∥∥p̂∥∥

0
/(NM) ≤ ζ , (41)

where 0 ≤ ζ ≤ 1 denotes the normalized limit on the
feedforward channel. In this scheme, the transmitter sends
over the feedforward link the non-zero power levels and
their indices12.

• Rank-One Constraint: As ε → 1 in (37c) (i.e., con-
vergence to communication-optimal waveform), the op-
timal P exhibits the rank-one structure P = pfreq1TM
(equivalently, p = 1M ⊗ pfreq), where pfreq ∈ RN×1

represents the frequency-domain waveform. As indicated
in Remark 3 and as will be verified in Sec. VI-B, pfreq

coincides with the water-filling solution at ε = 1. Hence,
we propose to enforce the constraint

p̂ = 1M ⊗ pfreq , (42)

where the forwarded information is pfreq. In this case,
the overhead ratio is given by ζ = 1/M .

For limited feedforward design, the sparsity constraint in
(41) or the rank-one constraint in (42) can be enforced de-
pending on the operation regime in terms of SNR and radar
similarity ε, which will be further elaborated on in Sec. VI-B.
As a complementary mechanism to the proposed constraints,
various other criteria, such as discretization, compression via
run-length encoding [33], [69] and constrained entropy [69],
can be applied on the optimized feedforward values obtained
via (37) to further reduce the number of bits transmitted over
the feedforward channel.

11This will be verified through simulations in Sec. VI. In particular, please
see Fig. 2 and Fig. 9(a).

12We highlight that the LMMSE decoding in (18) and the associated
capacity expression in (19) or (38) are valid for any p̂. For instance, if
some elements in p̂ are zero due to sparsity constraint, the corresponding
time-frequency bins do not contribute to the overall capacity in (38) since
log
(
Ai(p,p̂)
Bi(p,p̂)

)
= 0 when p̂i = 0.

C. Reformulation of (38) via Quadratic Transform

The problem (38) belongs to a special class of non-convex
fractional programming problems, called the sum-of-functions-
of-ratio problem [36]. When p̂ is fixed, (38) becomes a
concave-convex fractional program in p, which, although be-
ing a difficult non-convex problem, can be solved as a sequence
of convex optimization problems. This motivates the use of
the quadratic transform [36, Cor. 2], a generalized version of
Dinkelbach’s transform, to recast (38) into an equivalent form,
as shown in the following lemma.

Lemma 1. The radar-communications waveform design
problem in (38) can be equivalently recast as

max
p,p̂,%

NM−1∑
i=0

log
(

2%i
√
Ai(p, p̂)− %2

iBi(p, p̂)
)

(43)

s.t. (37b), (37c){
(41), if sparsity constraint on p̂

(42), if rank− one constraint on p̂

%i ∈ R, i = 0, . . . , NM − 1 ,

with a newly introduced auxiliary variable %.

Proof. See [36, Cor. 2], using Ai/Bi = maxρi(2ρi
√
Ai −

ρ2
iBi). �

The equivalent problem (43) is now amenable to alternating
optimization that alternates over p, p̂ and % while holding the
remaining terms fixed.

D. Alternating Optimization for Solving (43)

The proposed design approach is described below and
summarized in Algorithm 2. Since the constraint functions
of p and p̂ are decoupled, Algorithm 2 converges to a KKT
point of (38) under the condition that the solutions to the three
subproblems are unique [70, Prop. 1].

1) Optimize p for Fixed p̂ and %: The optimization of the
trade-off waveform p for a given control signaling information
p̂ and auxiliary variable % yields the subproblem

p? = arg max
p

NM−1∑
i=0

log
(

2%i
√
Ai(p, p̂)− %2

iBi(p, p̂)
)

s.t. (37b), (37c) , (44)

which is a concave maximization problem [71, Ch. 3.2.4]
under convex quadratic constraints and thus can be efficiently
solved through convex optimization.

2) Optimize p̂ for Fixed p and %: For the sparsity constraint
in (41), the optimal p̂ can be obtained via separability of the
objective in (43) and the entries of p̂ being decoupled as (cf.
Remark 2)

p̂?i =

{
pi, i ∈ I
0, otherwise

, (45)

where I ⊆ {0, . . . , NM − 1}, with |I| = ζNM , contains the
indices of the subcarriers with the highest ζNM values from
%i(pi|shi|2 + σ2)(2− %iσ2).13

13This can be derived by plugging p̂i = pi into the argument of the log
function in (43).
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For the rank-one constraint in (42), the optimal pfreq is given
by

p?freq = arg max
pfreq

N−1∑
n=0

M−1∑
m=0

log
(
fn,m(p, pfreq,n,%)

)
(46)

s.t. pfreq � PT1 ,

where √pfreq,n , [pfreq]n,

fn,m(p, pfreq,n,%) , 2%n,m

√
An,m(p, p̂)− %2

n,mBn,m(p, p̂)

with p̂ = 1M⊗pfreq and the vectorized index i being replaced
by the row-column pair (n,m). The optimization problem in
(46) can be decomposed into N independent subproblems

p?freq,n = arg max
0≤pfreq,n≤PT

M−1∑
m=0

log
(
fn,m(p, pfreq,n,%)

)
(47)

for n = 0, . . . , N − 1, which can be solved by executing a
simple line search method (e.g., Golden-section search with
multiple initial points [72]). We note that (46) provides a
general design strategy for pfreq which coincides with the
water-filling solution at ε = 1, but yields different solutions
for ε < 1.

3) Optimize % for Fixed p and p̂: For a given p and p̂, the
closed-form optimal solution for % is given by [36]

%?i =

√
Ai(p, p̂)

Bi(p, p̂)
, i = 0, . . . , NM − 1 . (48)

Algorithm 2 Alternating Optimization for Joint Design of
DFRC Waveform and Feedforward/Control Signaling in (43)

Input: PT , ε, prad, hcom, ζ
Output: DFRC waveform p, feedforward information p̂
Alternating Iterations:

1) Update p by solving the convex problem (44)
2) Update p̂ via (45) for sparsity constraint and via (47) for

rank-one constraint
3) Update % via (48)
until the objective value in (43) converges.

E. Special Case of Unlimited Feedforward Channel
In this part, we investigate the special case of the DFRC

trade-off design problem in (37) for unlimited feedforward
channels, in which case p̂ = p is the optimal feedforward
information for a given waveform p (see Remark 2). Accord-
ing to Remark 3, the DFRC waveform design problem with
p̂ = p reverts to

max
p

NM−1∑
i=0

log

(
1 +

pi|shi|2

σ2

)
(49)

s.t. (37b), (37c) ,

which can be solved via convex optimization tools [68]. The
problem in (49) can be highly relevant for PSK modulations
since the receiver does not require the knowledge of p to
decode transmit symbols x in (17) (meaning that p is perfectly
available at the receiver). Note that the objective in (49) is
mostly valid at low SNRs as a communications metric for
PSK constellations and the validity region can be enlarged by
increasing modulation order [73].

TABLE I
OFDM PARAMETER SETS FOR SIMULATIONS

Parameter Set 1 Set 2
Carrier Frequency, fc 2 GHz 60 GHz
Total Bandwidth, B 1.5 MHz 128 MHz
Number of Subcarriers, N 64 256
Subcarrier Spacing, ∆f 23.4 kHz 500 kHz
Total Symbol Duration, Tsym 64µs 3µs
Number of Symbols, M 16 256
Block Duration, MTsym 1.02 ms 768µs

TABLE II
MAIN-LOBE WIDTH VS. ISL CONSTRAINT FOR THE SCENARIO IN FIG. 3

βISL (dB) -18 -15 -12 -9 -6 -3 0
Range (m) 0.62 0.57 0.52 0.48 0.45 0.40 0.39
Velocity (m/s) 1.71 1.61 1.49 1.37 1.23 1.09 1.09

VI. SIMULATION RESULTS

In this section, we provide simulation results to illustrate
the performance of the proposed waveform design algorithms.
In order to exemplify both sub-6 GHz DFRC base station
scenarios (e.g., 5G NR cellular systems [1]) and vehicular
DFRC systems in the mmWave band [12], the two sets
of OFDM parameters are used, as shown in Table I. For
simulations, per-sample SNR is given by SNR = Pavg/σ

2,
where Pavg = PT /(NM) is the average power constraint. The
communication channel hcom in (13) is generated by using 4
and 340 taps in the delay domain, respectively, for Set 1 and
Set 2, where each tap follows a zero-mean complex Gaussian
distribution with variance σ2

com [8], [46]. In addition, we set
the weighting factor in (16) as λτ = 0.5 and use the SI units m
and m/s for Cτ and Cν , respectively, to balance the delay and
Doppler parts. Furthermore, we define the uniform waveform
as the one with equal subcarrier powers, i.e., Pn,m = Pavg,
∀n,m.

A. Radar-Optimal Waveforms: Performance of Algorithm 1

In this part, we present design examples from the proposed
radar waveform design algorithm in Algorithm 1 and inves-
tigate its convergence behavior and delay-Doppler estimation
performance by fixing the radar channel gain to |α| = 0 dB.

1) Waveform Design Examples: To illustrate the effect of
the ISL constraint on the delay-Doppler ambiguity charac-
teristics, Fig. 2 plots the optimal time-frequency waveforms
obtained by solving (29) with and without the ISL con-
straint (29c) and the corresponding AFs. In addition, Fig. 3
demonstrates the range and velocity profiles of the optimal
and uniform waveforms along with the controlled side-lobe
regions. For the scenario in Fig. 3, Table II shows the main-
lobe widths in range and velocity (corresponding to −6 dB AF
magnitude) for various ISL constraints βISL. It can be observed
that the proposed approach with the introduced ISL constraint
offers a good compromise between estimation accuracy (main-
lobe sharpness) and side-lobe suppression, leading to globally
optimal waveforms over Rs. Moreover, the unconstrained
waveform puts all the available power on the edges of the time-
frequency region because the CRB is inversely proportional
to RMS bandwidth and RMS envelope [74], [75]. However,
such a power allocation creates aliasing (grating lobes) in
the delay-Doppler spectrum due to insufficient sampling of
the time-frequency region. The ISL-constrained waveform has
a more balanced time-frequency distribution and can prevent
high side-lobe levels in the delay-Doppler domain.
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Fig. 2. Optimal time-frequency waveforms q obtained by solving (29) (a)
with and (b) without the ISL constraint (29c), and the corresponding delay-
Doppler AFs in (c) and (d) computed via (26), where the OFDM parameters
are shown in Table I (Set 1), W is the 2-D Hamming window, λτ = 0.5,
βISL = −25 dB, andRs is given by [−4, 4] in normalized delay and Doppler
mismatch values (in multiples of delay resolution ∆τ and Doppler resolution
∆ν, respectively), excluding the main-lobe region [−1, 1]. Ambiguity-aware
design in (a) can produce a waveform with low side-lobe levels in (c) over the
given side-lobe region of interest, whereas blindly optimizing CRB without
side-lobe control in (b) creates ambiguities over the entire delay-Doppler
domain in (d).

2) Convergence Behavior of CCP Algorithm: To showcase
the convergence behavior of Algorithm 1 initialized at the
uniform waveform, Fig. 4 demonstrates the evolution of the
range and velocity CRBs in the objective (29a) and the ISL in
(29c) over the CCP iterations. It is observed that Algorithm 1
converges in few iterations, with a monotonically decreasing
sequence of CRB values14. Hence, by iteratively solving the
SOCP in (36), the proposed CCP approach can enhance the
range and velocity accuracy of radar well beyond that of the
conventional uniform waveform. Moreover, we notice that the
ISL converges to its upper bound while the CRBs are im-
proving, which agrees with the fundamental trade-off between
main-lobe smearing and side-lobe leakage [76, Ch. 2.6.1]. This
is also corroborated by Fig. 5, which shows the evolution of
waveforms with respect to the CCP iterations.

3) Impact of ISL Constraint on RMSE Performance: To
evaluate the actual estimator performance, we run a Monte
Carlo simulation with 1000 trials to compute the root mean-
squared errors (RMSEs) achieved by the maximum-likelihood
estimators (MLEs) of delay and Doppler parameters:

(τ̂ , ν̂, α̂) = arg min
τ,ν,α

∥∥Y�W −P�X� α θ(τ)φH(ν)
∥∥2

F
,

(50)
where

α̂ =
tr
( (

P�X� θ(τ)φH(ν)
)H

(Y�W)
)

∥∥P�X� θ(τ)φH(ν)
∥∥2

F

, (51)

14Each CCP iteration takes around 600 seconds to complete in MATLAB.
It is worth emphasizing that the radar-optimal waveforms can be designed
offline via (29), as pointed out in Sec. IV-B, which bypasses real-time
processing requirements. As a low-complexity, suboptimal alternative to joint
time-frequency design, we have performed separate 1-D designs for time and
frequency domains using Algorithm 1 and observed similar AF characteristics,
in which case CCP iterations take around 0.6 seconds.
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Fig. 3. (a) Range and (b) velocity profiles (i.e., zero-Doppler and zero-delay
cuts of the AF in (26)) corresponding to the uniform waveform (with equal
subcarrier powers) and the optimal waveforms obtained via (29) with and
without the ISL constraint (29c) (i.e., βISL = 0 dB), where the parameters
are shown in Table I (Set 2), Rs covers 4 resolution cells in delay and
Doppler domains excluding the mainlobe region, range and velocity mismatch
values are shown in terms of multiples of delay resolution ∆τ and Doppler
resolution ∆ν, respectively, and W is the 2-D Hamming window. The
proposed waveform design strategy with a rigorous side-lobe control can
sharpen the main-lobe peak with respect to the uniform waveform, leading
to an improved estimation accuracy, without producing ambiguities.

2

2.5

3

3.5

4

1

1.5

2

2.5

3

1 2 3 4 5 6 7 8 9

-24

-22

-20

-18

-16

-14

Fig. 4. Convergence behavior of Algorithm 1 for SNR = −10 dB, initialized
at the uniform waveform, using the parameters in Table I (Set 1).
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Fig. 5. Evolution of range profiles (zero-Doppler cut of the AF in (26)) of
the waveforms over the CCP iterations in Algorithm 1, where the parameters
are shown in Table I (Set 2) and range mismatch values are shown in terms
of multiples of delay resolution ∆τ . The algorithm converges to a waveform
with reduced main-lobe width (i.e., smaller CRB) and side-lobe levels raised
up to the allowable ISL.
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Fig. 6. Range and velocity estimation performances of the OFDM waveforms
designed using Algorithm 1 with the parameters in Table I (Set 1).

and the search space for (τ, ν) is chosen as Rs including
the main-lobe region15. We compare the RMSE performance
of three different strategies: (i) the uniform waveform, (ii)
the radar-optimal waveform with the ISL constraint in (29c)
(βISL = −15 dB and βISL = −25 dB), and (iii) the radar-
optimal waveform without (29c) (i.e., βISL = 0 dB).

Fig. 6 plots the range and velocity RMSEs with respect
to SNR, along with the corresponding CRBs. It is seen that
the MLEs for the uniform waveform and the ISL-constrained

15Please refer to Sec. S-V-A in the supplementary material for details on
the implementation of the MLE in (50).
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Fig. 7. −6 dB contour plots of the delay-Doppler AFs corresponding to the
uniform waveform and the radar-optimal waveforms obtained by solving (29)
using different weighting factors λτ with the parameters in Table I (Set 1),
where ∆τ and ∆ν denote, respectively, the delay and Doppler resolutions.

radar-optimal waveforms can attain the CRBs as the SNR
increases, whereas the RMSE of the unconstrained radar-
optimal waveform does not improve with SNR due to delay-
Doppler ambiguities16, in compliance with Fig. 2 and Fig. 3.
This proves the significance of the ISL constraint, introduced in
Sec. IV-A, in circumventing the ambiguity problem for CRB-
based waveform optimization. Moreover, the ISL-constrained
waveforms outperform the uniform strategy in terms of the
RMSE performances above a certain SNR threshold that
increases with βISL. These results reveal that the proposed
approach becomes more robust to noise as the ISL constraint
gets tight and is superior to the conventional uniform solu-
tion in the medium-to-high SNR regime17, which complies
with tracking scenarios [61]. Futhermore, as βISL increases,
the corresponding ISL-constrained waveform achieves higher
accuracy, implying that increasingly larger ISL values can be
imposed as the SNR gets higher. We underline the fact that
the proposed waveforms are highly flexible and can be re-
configured for very low SNR scenarios by enlarging Rs and
decreasing βISL in (29c).

4) Trade-Off Between Delay and Doppler CRBs: We ana-
lyze the trade-off between delay and Doppler CRBs resulting
from the scalarization in the radar objective (16) through
the weighting factor λτ . Fig. 7 shows the −6 dB contour
plots of the delay-Doppler AFs corresponding to the uniform
waveform and the radar-optimal waveforms designed via (29)
using different λτ . It is observed that λτ governs the trade-
off between the main-lobe widths along the delay and Doppler
axes. In particular, as λτ increases, the objective in (16) places
more emphasis on the minimization of delay CRB than that of
Doppler CRB, which in turn renders the peak of the AF sharper
along the delay domain and more spread along the Doppler
domain. Moreover, the proposed radar-optimal waveforms are
superior to the uniform waveform in terms of both delay and
Doppler accuracies irrespective of λτ .

B. DFRC Trade-Off Waveforms: Performance of Algorithm 2
In this part, we illustrate the radar-communications trade-off

performance of the proposed time-frequency DFRC waveform
design approach in Algorithm 2 using Set 1 in Table I with
|α| = 0 dB. Based on the results in Fig. 6, prad in (37c) is

16Even in the absence of noise (infinite SNR), the unconstrained waveform
cannot achieve the CRB because the estimator would choose one of the
secondary peaks in Rs equally likely.

17At medium SNR, the RMSE performance gap between the radar-optimal
waveforms and the uniform one is on the order of m and m/s in range and
velocity, respectively, which can be crucial in certain applications, such as
vehicular positioning [77].
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chosen as the radar-optimal waveform designed under the ISL
constraint βISL = −25 dB. Since there exists no previous work
on DFRC waveform design with feedforward constraints, we
consider the following schemes for benchmarking purposes:
• Unlimited Feedforward Channel (UFC): Solve (49) (i.e.,

perfect CSI at the receiver). This scheme establishes an
upper bound on the capacity for a given similarity level
ε in (37c) and incurs an overhead of ζ = 1.

• Joint Optimization of p and p̂ with the Sparsity Con-
straint (JWCSO-Sparse): The proposed algorithm in Al-
gorithm 2 using the sparsity constraint in (41) over a
limited feedforward channel with an overhead 0 < ζ < 1.

• Joint Optimization of p and p̂ with the Rank-One Con-
straint (JWCSO-RankOne): The proposed algorithm in
Algorithm 2 using the rank-one constraint in (42) over a
limited feedforward channel with an overhead ζ = 1/M .

• Feedforward-Agnostic Optimization (FAO): The tradi-
tional waveform design approach that optimizes p as in
the UFC scheme without feedforward optimization and
uses the uniform subcarrier powers for decoding at the
receiver, i.e., p̂i = Pavg.

• Water-filling: Water-filling solution in Remark 3 with an
overhead ζ = 1/M .

• UFC Time-Invariant Waveform (UFC-TI): Special case
of the UFC scheme where the same frequency-domain
DFRC waveform is employed over the entire OFDM
frame, leading to an overhead ζ = 1/M . Here, the time-
invariant radar-optimal waveform is designed by solving
(29) with an additional rank-one constraint of the form
q = 1M ⊗ qN , where qN ∈ RN×1 represents the
frequency-domain waveform.

In Fig. 8, we depict the achievable CRB-capacity trade-
off region along with the trade-off curves corresponding to
different schemes for SNR = −10 dB and σ2

com = 35 dB as
the radar similarity constraint ε in (37c) varies over the interval
[0, 1]. In addition, to investigate the performances of different
schemes with respect to SNR, Fig. 9 plots the capacity for
various radar similarity levels.

1) Capacity-CRB Trade-off Curves: From Fig. 8, it is seen
that the UFC scheme delineates the boundary of the achievable
trade-off region between radar estimation accuracy and com-
munication rate, in compliance with Remark 2 in Sec. III-B.
Hence, it yields the highest capacity that can be attained for
a given radar similarity constraint ε. In the communication-
optimal regime (i.e., ε = 1), the UFC coincides with the water-
filling solution, as expected.

Inspecting the FAO and UFC curves in Fig. 8 and Fig. 9,
we observe that optimizing only the DFRC waveform with-
out feedforward optimization can significantly degrade the
communication performance, especially at high communica-
tion SNRs. Therefore, the traditional feedforward-agnostic
(waveform-only) design approach for OFDM dual-functional
systems fails to provide high data rates with time-varying sub-
carrier powers (i.e., when the Doppler ambiguity domain needs
to be shaped). On the other hand, through joint waveform and
feedforward optimization, the proposed JWCSO approach in
Algorithm 2 can achieve near-optimal trade-off performance
in the sense that it can almost reach the capacity upper bound
of the UFC benchmark for a given similarity level ε (either
using JWCSO-Sparse for low ε or using JWCSO-RankOne for
high ε). This indicates that
• the LMMSE-based metric in Proposition 1 provides an

accurate quantification of limited feedforward effects,

• the JWCSO strategy, which jointly designs p and p̂,
can allow the DFRC system equipped with a low-rate
feedforward channel (ζ � 1) to operate very close to its
theoretical limits attainable with unlimited feedforward
(ζ = 1), and

• Algorithm 2 can provide globally optimal solutions to the
non-convex problem in (38).

Additionally, in the high SNR regime (Fig. 8), JWCSO-
RankOne achieves significant capacity gain via feedforward
optimization with respect to the FAO benchmark18 (up to more
than 3 bits/s/Hz improvement). Comparing Fig. 8 and Fig. 9,
we remark that the benefit of the proposed JWCSO approach
is more prominent at high SNRs.

The trade-off curves in Fig. 8 suggest that the proposed
DFRC waveforms offer a flexible trade-off between radar and
communications, outperforming the conventional uniform and
water-filling solutions in terms of accuracy and/or capacity.
In addition, different from such conventional approaches, the
proposed waveforms can be dynamically adapted to varying
practical system requirements (i.e., whether it is a radar-critical
scenario with ε ≈ 0 or a communications-critical scenario
with ε ≈ 1). Moreover, it is seen that the range and velocity
CRBs can be improved substantially with only a negligible
loss in communications performance. Similarly, the DFRC
waveforms can increase capacity up to a certain similarity ε
without degrading the range-velocity accuracy of radar.

2) Capacity With Respect to SNR: From Fig. 9, it can
be observed that the JWCSO approach with the rank-one
constraint consistently outperforms the FAO at all SNRs and
similarity levels, closing the substantial capacity gap with
respect to the UFC benchmark. In addition, the performance
gain via feedforward optimization with the rank-one constraint
becomes more evident as the SNR increases and the radar
waveform similarity decreases (i.e., ε increases).

Comparing the two variants of the JWCSO, we notice that
the sparsity constraint outperforms the rank-one constraint for
small ε, while the latter exhibits better performance as ε→ 1
and finally meets the water-filling solution at ε = 1 (as seen
from Fig. 8), in agreement with the observations in Sec. V-B.
Moreover, the lower the SNR, the smaller the performance
gap of the sparsity-based approach with respect to the UFC
benchmark since the contribution of the unselected subcarriers
i 6∈ I in (45) to the equivalent capacity objective in (43)
is negligible at low SNRs. Nevertheless, in the high SNR
regime, JWCSO-Sparse suffers from the so-called diminishing
marginal returns property of the log function [81, Ch. 5.2.2].
This effect can also be noticed from Fig. 8, where the capacity
achieved by JWCSO-Sparse under a high communication SNR
saturates at a certain ε since the unselected subcarriers provide
non-negligible contribution to the overall capacity in this
regime.

This observation offers valuable insights into the charac-
teristics of radar and communication functionalities. While
the radar-optimal waveform exhibits a sparse/peaky nature
irrespective of the SNR, the water-filling solution converges
to the uniform power allocation as the SNR increases [78]–
[80], as seen from Fig. 8. Hence, the sparsity assumption holds
at the radar side at all SNRs; however, it breaks down at the
communication side in the high SNR regime. Based on the

18Note that FAO meets the water-filling solution at ε = 1 for the high SNR
scenario in Fig. 8. The reason is that FAO assumes uniform power allocation
for decoding at the receiver and the optimal waveform designed by FAO at
ε = 1 coincides with the water-filling solution, which converges to the uniform
power allocation at high SNRs [78]–[80].
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Fig. 8. Radar-communications trade-off curves obtained by different ap-
proaches as ε in (37c) varies over [0, 1], where the ISL constraint of the radar-
optimal waveform is βISL = −25 dB, SNR = −10 dB, σ2

com = 35 dB and
0 ≤ ζ ≤ 1 indicates the feedforward/control overhead of the corresponding
approach.

TABLE III
GUIDELINES ON WHICH CONSTRAINT TO ENFORCE IN ALGORITHM 2

UNDER VARIOUS OPERATION REGIMES

Low SNR High SNR
Radar-Optimal (ε→ 0) Sparse Sparse
Weighted (0 < ε < 1) Sparse Rank-One
Communication-Optimal (ε→ 1) Rank-One Rank-One

above outcomes, we provide, in Table III, a rough guideline on
which variant of the JWCSO algorithm to choose at different
operation regimes.

3) Time-Varying vs. Time-Invariant Design: In this part,
we compare the trade-off performances of the proposed time-
varying DFRC waveforms (i.e., time-frequency waveforms
as discussed above) and the traditional time-invariant DFRC
waveforms (e.g., [18], [23]–[27]), represented by UFC and
UFC-TI schemes, respectively. From Fig. 8, it can be seen that
for a given capacity level, the time-varying waveform always
achieves lower CRB (i.e., higher accuracy) in both range and
velocity than the time-invariant one. In addition, the velocity
CRB of the time-invariant waveform cannot even be improved
with respect to the uniform and water-filling solutions (due
to uniform power allocation in time), while the time-varying
waveform exhibits trade-off behavior in both range and ve-
locity domains. Hence, the proposed time-varying design is
superior to its time-invariant counterpart in terms of radar-
communications trade-off performance. We emphasize that
both designs require the same level of feedforward overhead,
i.e., p̂ is of size N (the number of subcarriers), when the
JWCSO-RankOne strategy is employed for the time-varying
waveform.
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Fig. 9. Communication performance of different schemes with respect to SNR
for various radar similarity levels, where σ2

com = 0 dB. (a) ε = 0.0001. (b)
ε = 0.01. (c) ε = 0.1.

C. Radar-Communications Trade-off at mmWave

In this part, we employ the parameters from Set 2 in
Table I to show the trade-off between the radar estimation
performance and the communications rate for a mmWave
DFRC system employing the UFC scheme. In (37c), prad

is set to be the radar-optimal waveform designed under the
ISL constraint βISL = −15 dB. Fig. 10 illustrates the range-
velocity CRB vs. capacity curves with varying SNR levels.
It is seen that cm-level accuracy can be achieved even with
very weak target returns (|α| = −35 dB), satisfying the
requirements of mmWave vehicular DFRC systems [11]. In
addition, the trade-off becomes more favorable with increasing
SNR, as expected, which implies that the achievable rate
can be increased significantly without sacrificing the radar
functionality. In Fig. 11, we plot the range and velocity profiles
of the OFDM waveforms with varying similarity constraints
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Fig. 10. Range-velocity CRB vs. capacity trade-off curves of a mmWave
DFRC system at various SNR levels, where the radar channel gain is set
to |α| = −35 dB and the ISL constraint of the radar-optimal waveform is
βISL = −15 dB.
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Fig. 11. (a) Range and (b) velocity profiles of the radar-optimal, DFRC trade-
off and water-filling waveforms at SNR = 0 dB, where the ISL constraint
of the radar-optimal waveform is βISL = −15 dB, and range and velocity
mismatch values are shown in terms of multiples of delay resolution ∆τ and
Doppler resolution ∆ν, respectively.

ε, corresponding to specific points along the SNR = 0 dB
trade-off curve. We observe that as the proximity to the radar-
optimal waveform increases (i.e., decreasing ε), the curvature
of the main-lobe becomes sharper, which indicates improved
quality of range and velocity estimates. Evidently, the water-
filling waveform yields the worst estimation performance due
to its wide main-lobe.

VII. CONCLUDING REMARKS

We have addressed the time-frequency waveform design
problem for an OFDM DFRC system in the presence of a low-
rate feedforward channel between the DFRC transmitter and
the communications receiver. The proposed radar-optimal and

DFRC trade-off waveform design algorithms have been shown
to provide significant performance gains over the conventional
schemes, in terms of both radar estimation accuracy and chan-
nel capacity. Moreover, we provide important insights into the
structure of optimal waveforms under different SNR and radar
similarity regimes. As a future research direction, we plan to
extend the proposed design strategy to massive MIMO radar-
communications scenarios, where a massive MIMO BS serves
multiple UEs while simultaneously detecting targets using
the backscattered signals [82]. In this setup, conveying the
information on waveforms and beamforming vectors to UEs
might require a huge overhead, which makes it necessary to
consider limited feedforward waveform/beamforming designs.
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