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Abstract
A major part of the wind turbine operation cost is resulted from the maintenance
of its components. This thesis deals with the theory, algorithms, and applica-
tions concerning minimization of the maintenance cost of wind power turbines,
using mathematical modelling to find the optimal schedules of preventive
maintenance activities for multi-component systems.

The main contributions of this thesis are covered by the four papers ap-
pended. The unifying goal of these papers is to produce new optimization
models resulting in effective and fast algorithms for preventive maintenance
time schedules. The features of the multi-component systems addressed in our
project are: aging components, long-term, and short-term planning, planning
for a wind power farm, end of the lifetime of the wind farm, maintenance
contracts, and condition monitoring data.

For the long-term maintenance planning problem, this thesis contains an
optimization framework that recognizes different phases of the wind turbine
lifetime. For short-term planning problem, this thesis contains two modeling
frameworks, which both focus on the planning of the next preventive mainte-
nance activities. Our virtual experiments show that the developed optimization
models adopt realistic assumptions and can be accurately solved in seconds.
One of these two frameworks is further extended so that available condition
monitoring data can be incorporated for regular updates of the components’
hazard functions. In collaboration with the Swedish Wind Power Technology
Center at Chalmers and its member companies, we test this method with real-
world wind farm data. Our case studies demonstrate that this framework may
result in remarkable savings due to the smart scheduling of preventive mainte-
nance activities by monitoring the ages of the components as well as operation
data of the wind turbines.

We believe that in the future, the proposed optimization model for short-
term planning based on the component age and condition monitoring data can
be used as a key module in a maintenance scheduling app.

Keywords: Age-based preventive maintenance scheduling, Wind turbine
maintenance, Combinatorial optimization, Integer linear optimization, Linear
programming, Weibull distribution, Renewal-reward theorem, Virtual replace-
ment, Condition monitoring data, Cox proportional hazards method.
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1 Introduction

1.1 Background

During the last decades, there is an increased awareness of the impact of global
warming in the world. In December 1997, the Kyoto protocol was adopted to
combat global warming by the United Nations Convention on Climate Change.
In the year 2021, 192 parties had signed and ratified the protocol. Since 2016, 195
countries have signed the Paris Agreement, agreeing to work towards limiting
global temperature rise to well below 2 degrees centigrade.

Global warming has been attributed to increased greenhouse gas emission
concentrations in the atmosphere through the burning of fossil fuels. Renewable
energy, as an alternative, is capable of displacing energy from fossil fuels.
According to [7], more than 50% of total electricity in the world might come
from renewable energy sources by 2050.

In the year 2020, Europe had 220 GW of total wind energy capacity [6]. Wind
accounted for 16.4% of the electricity consumed in 2020 (in EU27+UK), (13.4%
from onshore and 3% from offshore wind turbines). According to a prediction
in [3], close to 85% of electricity in the EU will be generated from renewable
resources by 2050, with wind alone representing up to 26% in 2030 and up to
56% in 2050.

A large part of the operation cost is resulted from maintaining the wind
turbine equipment, especially for offshore wind farms. This cost decreased
by 44% in 10 years, reaching 45-79 EUR/MWh at the end of 2019 [40]. This
thesis addresses the issue of further reducing the maintenance cost by means of
mathematical optimization.

1.2 Purpose and aim

The societal goal of this thesis is to contribute to the increase of the availability of
wind power, in tandem with the EU 2050 target of a reduction of CO2 emissions
by 85%, such that global warming would be limited to 2 degrees Centigrade. To
this end, we focus on the reduction of the maintenance costs, which typically
account for up to 25% of the total levelized cost of electricity (LCOE) of current
wind power systems [21].

The scientific goal of this thesis is to mathematically represent the combination
of the gathering of information from accumulated condition monitoring signals
with maintenance optimization models, in order to faster and better estimate

1



2 1. Introduction

Figure 1.1: The left map marks all wind farms in Sweden(information gathered by
Vindbrukskollen). The right map indicates the location of the wind farms included in
the case study of Paper IV.

the optimal timing and selection of maintenance and replacement activities at
an onshore or offshore wind farm.

The practical goal of this thesis is to combine the condition monitoring system
with a set of maintenance optimization models and methods. In the future, such
a development could result in a critical component of a practical maintenance
app. Such an app for wind turbine maintenance scheduling would use as the
input information: (a) the current ages of the key components of the turbine
and (b) the recent data from a condition monitoring system for the components
in question. As the output, the app would suggest the optimal time for the
next preventive maintenance activity as well as which components should be
attended to during this activity.
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1.3 Limitations

In this thesis, by a maintenance action of a component (either corrective or
preventive), we mean a replacement of the component, so that after the mainte-
nance event the replaced component’s condition is "as good as new".

For simplicity of presentation, in this thesis, we sometimes assume that at
most one component of the wind farm may break down at any given time step.

Our optimization model for the PM scheduling under condition monitoring
is illustrated in terms of the gearbox bearing temperature data. However, our
methodology can be adapted to other kinds of monitoring data.

It is assumed that one component breaks do not influence another compo-
nent’s life length; i.e., the lifetimes of different components are independent
random variables. For each component, we assume that its lifetime follows the
Weibull distribution with a scale parameter θ > 0 and shape parameter β > 0,
so that the corresponding hazard function (failure rate at age t) takes the form

r(t) = θβtβ−1, t > 0. (1.1)

1.4 A first look at the appended papers

The preventive maintenance scheduling problem with interval costs (PMSPIC)
model of paper [33] has been a major inspiration of our work. The key ingredient
of the objective function of the PMSPIC model is the so-called interval cost. The
interval cost for a time interval between two consecutive PM planned activities
is defined as the maintenance cost (excluding mobilization costs) estimated for
this interval, see Section 4.2.

The relationship between the four thesis papers and paper [33] is shown in
Figure 1.2. The five paper are depicted as two clusters: two papers on the left
are devoted to the long-term planning, while the three papers on the right focus
on the short-term planning.

The connection, labeled as mIC, between PMSPIC paper and Paper 1 repre-
sents the fact that the idea of interval cost (IC) is drastically modified in Paper
1 resulting in a modified Interval Cost formula. The connection, labeled MIC,
between Papers 1 and 2 indicates that in Paper 2 we further modified mIC
formula to MIC formula, and it is the latter formula for the Modified Interval
Cost that is presented in this thesis, see Section 4.3. Compared to PMSPIC,
Paper 2 has two additional features mentioned in Figure 1.2: evaluation of
the maintenance contract and more careful treatment of the end of the global
planning period for a wind turbine.

Paper 3 introduces a new idea which we called virtual replacement (VR),
which is used for defining the objective function as a more carefully estimated
maintenance cost of a multi-component system. In Paper 4, the optimization
model of Paper 3 is enhanced by a Cox proportional hazard model to incorporate
condition monitoring data as input. The algorithm of Paper IV is tested on the
data collected from a number of Swedish wind farms, see the right panel of
Figure 1.1.
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Figure 1.2: The relationship between the PMSPIC paper and the four appended papers.
Paper 2, as PMSPIC paper, addresses the long-term maintenance scheduling. In contrast,
Papers 1, 3, 4 deal with the short-term planning.

1.5 Outline

The thesis is organized as follows. In Chapter 2, we present the general informa-
tion on wind turbines and their maintenance. Chapter 3 contains an overview of
the literature on the optimal maintenance scheduling. Then long-term schedul-
ing problem is discussed in Chapter 4 and the short-term scheduling problem
is presented in Chapter 5. In Chapter 6, we demonstrate how a rescheduling
algorithm based on the models developed in Chapter 5 works. Chapter 7 is
devoted to a number of case studies illustrating our optimization models. In
Chapter 8, we summarize the appended papers. The final Chapter 9 presents
the main conclusions of the thesis and suggests some future research problems
connected to our results.



2 Wind turbine maintenance

This chapter introduces the basic information regarding wind turbine and
wind turbine maintenance.

Figure 2.1: The left figure shows an onshore wind farm. The right figure illustrates the
practical challenges for performing a maintenance of a wind turbine.

2.1 A typical wind turbine

Depending on their shape, the wind turbines can be categorised into two types:
vertical axis wind turbines and horizontal axis wind turbines. The majority of
the wind turbines are horizontal axis. A typical wind turbine is schematically
depicted in Figure 2.2 [51].

[i] Blades. When wind flows across the blade, the air pressure on one side
of the blade decreases. The difference in air pressure across the two
sides of the blade creates both lift and drag forces. The force of the lift is
stronger than the drag and this causes the rotor to spin. For onshore wind
turbines with power of 3–4 MW, the length of the blades can vary from 50
meters to 75 meters, see [70]. For offshore wind turbines, the blades are
usually longer, for example, a Vestas 15-MW offshore wind turbine has
115.5-meter-long-blades, see [69].

[ii] Rotor. The function of the rotor is to convert kinetic energy of the wind
to mechanical energy and to transmit this to the main shaft, see [28]. The
rotor includes everything that rotates in front of the nacelle. There is a
pitch system controlled by the computer of the wind turbine. The pitch
angle of the blades is controlled by the pitch system, so that when the

5



6 2. Wind turbine maintenance

Figure 2.2: The main components of a wind turbine.

blades are pitched the power from wind is reduced. Usually, the rotors
are three-bladed.

[iii] Gearbox. The gearbox increases the rotational speed by connecting the
low-speed shaft to the high-speed shaft with different size gears. For ex-
ample, if the rated power of the wind turbine is 1 MW, the rated rotational
speed of the low-speed shaft is about 20 rotations per minute. The gearbox
increases the rotational speed by a factor 90 to get the rotational speed of
the high-speed shaft to reach about 1800 rotations per minute. For a larger
turbine, e.g., 5 MW (REpower 5MW machine), the rotational speed of
the low-speed shaft is about 12 rotations per minute at rated power. The
gearbox increases the rotational speed by a factor 97 to get the rotational
speed of the high-speed shaft to reach about 1173.7 rotations per minute
[43]. (There are also direct-drive wind turbines without gearboxes. This
kind of design, more common for the offshore turbines, helps to minimize
the total maintenance cost.)

[iv] Generator. The generator transforms the rotational energy of blades
into electrical energy. There are different types of generators used in
wind turbines: induction generators, double fed induction generator,
synchronous generators. The double fed induction generator is the most
commonly used in the wind energy conversion systems, see [16].

[v] Converter. The converter converts the variable frequency output of a
generator, driven by a variable speed wind turbine, to a fixed frequency
appropriate for the grid, see [36]. The converter is located between the
generator and the transformer. It enables wind turbine operation under
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various speed, and control the torque in the drive train, protecting the
gearbox from high torque.

[vi] Control system. The control system contains a computer that controls
dynamic mechanical loads and maintains operating limits, based on a
continuous measurement of rotation speed and wind direction. The
control system controls the pitch angel, the current in the generator and
the yaw direction. It is connected to several sensors in the wind turbine.
For larger wind farms, the control systems from different turbines are
monitored by a center of operations.

[vii] Main bearing. The principal role of the main bearing is to support the rotor
while reacting non-torque loads either independently, preventing them
from being transmitted further down the drive train, or in combination
with the gearbox and mounts [35]. Depending on the type of wind turbine,
triple-row roller bearings or double-row tapered roller bearings are used
as main bearings. While the roller bearing leads to lower stresses in the
adjacent construction, the tapered roller bearing is particularly attractive
because it has zero play, therefore allowing for an optimal rolling behavior
of the bearing.

[viii] Supervisory control and data acquisition (SCADA). A SCADA system
offers remote control and supervision of a wind farm and its components.
There are also a lot of single wind turbines with SCADA systems. It
can run on a computer in the wind turbine, the control room of the
wind farm, or on any internet-connected computer accessing the wind
farm using TCP/IP. SCADA systems can retrieve, store and export huge
amounts of data, giving a full overview of all relevant parameters of wind
turbines, like various temperatures, pitch angles, electrical parameters,
rotor speeds, yaw systems, and so on. SCADA signals can be used for
condition monitoring and early fault detection.

2.2 Typical maintenance policies

Over the past 100 years, the technology related to the maintenance of multi-
component systems has been evolving as the systems become more and more
complex. In this section, we present several typical maintenance policies and
introduce abbreviations CM, PM, CBM, ABM, OM which are often used in this
thesis.

[i] Corrective maintenance (CM)
is a "maintenance carried out after fault recognition and in-
tended to restore an item into a state in which it can perform a
required function" [66].

A CM action is performed after the occurrence of a problem in order to
restore the object to its operational condition or to replace it with another
one in an operational condition [38, Chapter. 1]. Since the maintenance
is performed after a failure has occurred, there will be a production loss
and the failure may also affect the remaining lives of other components.
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For major components in the wind turbines, the downtime is around one
month for the onshore wind turbines. For the offshore wind turbines, the
downtime can be several months. As a result, a CM activity may be quite
costly. To avoid sudden breakdowns, sometimes it is beneficial to perform
preventive maintenance actions.

[ii] Preventive maintenance (PM)
is a "maintenance carried out intended to assess and/or to mit-
igate degradation and reduce the probability of failure of an
item" [66].

A PM action is performed before a breakdown of the component [63].
There are two types of PM activities: a simple PM and a preventive
replacement. A simple PM includes actions like inspecting the condition
of the components, changing the oil of a certain equipment, and other
minor adjustments just to make sure the object lasts longer. After a simple
PM, the condition of the components is between "as good as new" and "as
bad as old". A preventive replacement is the action of replacing an old
but not broken component with a new one. In this thesis, by PM we mean
solely a preventive replacement.

[iii] Condition-based maintenance (CBM)
is a "preventive maintenance which include assessment of phys-
ical conditions, analysis and the possible ensuing maintenance
actions" [66].

The condition monitoring techniques have been developing quite fast in
the recent years. One common source of condition monitoring data for
the wind turbines is the output of SCADA. Since the state of the major
components can be monitored at a low cost and in an accurate way, CBM
is becoming the most cost-effective form of PM. Using the information
from the condition monitoring system, one can try to improve the PM
scheduling by enhancing an existing optimization model to minimize the
maintenance cost. For wind turbines, it is common to use temperature
data, vibration data, current/voltage waveform analysis data, acoustic
emission data, or oil analysis data to quantify the physical condition of
the components [65].

[iv] Age-based maintenance (ABM) or predetermined maintenance
is a "preventive maintenance carried out in accordance with
established intervals of time or number of units of use but
without previous condition investigation" [66].

Following this maintenance policy, only the age of the components is
monitored. The solution of an optimization model taking into account the
current age of the components, can be used to advise the maintenance
personal when they should perform maintenance and which components
they should attend. In the wind power industry, regular minor mainte-
nance actions and annual services are widely used [23]. Changing the
major components based only on the component ages is a quite uncom-
mon maintenance policy.
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[v] Opportunistic maintenance (OM)
is a "preventive maintenance or deferred corrective mainte-
nance undertaken without scheduling at the same time as other
maintenance actions or particular events to reduce costs, un-
availability, etc" [66].

OM is a kind of maintenance strategy that combines CM and PM. When
one component breaks down, the maintenance personal alongside a CM
on the broken component, may as well perform PM on other components
whose condition is deemed to be critical. This is extremely beneficial for
offshore wind farms, due to the large mobilization costs.

2.3 Wind farm maintenance contracts

The wind turbine maintenance involves four types of stakeholders: manufac-
turers, wind farm owners, maintenance companies, and insurance companies.
The maintenance is performed by either the manufacturer, the farm owner, a
contracted maintenance company, or a temporarily hired maintenance com-
pany; the interrelations of the companies involved are regulated by contracts.
We consider the following four contract types, all of which are common within
wind energy production and maintenance.

[C-I] Full service maintenance contract (between the wind farm owner and the
manufacture). According to this contract, the manufacturer usually covers
the costs to replace broken components. In addition, the contract includes
either a production-based or a time-based warranty.
A production-based warranty guarantees a minimum level of ’measured
average availability’ for the wind farm, defined as

"ratio of actual production to required production, or any other
reference level, over a specified period of time" [66].

A time-based warranty guarantees a minimum level of ’technical avail-
ability’ of the wind farm, defined as

"during a given period of time, percentage of the time during
which an item was able to perform when required" [66].

The manufacturer makes its own PM plan: if a component fails, the
manufacturer performs CM of the broken component. Under this contract,
the wind farm owner pays a fixed fee to the manufacture based on the
contract period which covers all maintenance costs induced within the
contract period. The manufacturer pays the actual cost of all maintenance
work. The optimization of the maintenance scheduling is done on behalf
of the manufacturer.

[C-II] Basic insurance contract (between the wind farm owner and the insurance
company). Maintenance is performed either by a maintenance company
or by the wind farm owner’s maintenance team. Here we define a sudden
failure as

"a failure that could not be anticipated by prior examination or
monitoring" [66].
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When a component fails due to a sudden failure, the insurance company
will reimburse the owner for the cost of the component with a discount,
while the work/labor costs are paid by the wind farm owner. In practice,
the stakeholders negotiate to classify a failure as a sudden failure, in our
modelling this feature is represented by a probability that ’the failure is
classified as being sudden’. Since a sudden failure entails unwanted costs
for both stakeholders, they both benefit from PM, to the extent depending
on the value of the probability.
Under this contract, the wind farm owner and the insurance company
share the maintenance cost. The insurance company covers a part of the
maintenance cost during CM. The optimization of the PM scheduling is
done on behalf of the wind farm owner.

[C-III] No insurance contract. Maintenance is performed either by a maintenance
company or by the wind farm owner’s maintenance team. The wind
farm owner covers all maintenance costs. The owner plans for PM; if a
component suddenly fails the owner asks a maintenance company or its
own maintenance team to perform CM.
Under this contract, since the wind farm owner pays for everything,
optimization of the maintenance scheduling is done on behalf of the wind
farm owner.

[C-IV] Maintenance contract with a maintenance company (between the wind
farm owner and the maintenance company). Four main types of agree-
ments exist:

• Call-off agreement. The simplest variant: the wind farm owner
contacts the service provider in the event of an error. The owner pays
for the maintenance time and components costs.

• Basic agreement. Planned service is included in an annual fee; cor-
rective maintenance is paid by the wind farm owner when it occurs.
This agreement is available both with and without remote monitor-
ing.

• Full service "light". Planned service, corrective maintenance, and
spare parts, monitoring, as well as reporting, are included in an an-
nual fee. The main components (blade/rotor, main bearing, gearbox,
generator, nacelle, tower, and foundation) are excluded from the con-
tract. Inverters and SCADA systems are either included or excluded.
This agreement can be with or without an availability guarantee.

• Full service. Planned service, corrective maintenance (including
spare parts and main components), monitoring, and reporting are
included in the agreement. Blade wear–and–tear are included in
certain agreements. Foundations are not included. This agreement is
with an availability guarantee (time- or production-based).

According to discussions with a group of wind farm owners within the Swedish
Wind Power Technology Centre (SWPTC) [1], there are two common setups for
them. One is to have [C-I] contract with the manufacture from the beginning till
the end of wind farm’s lifetime. The other one only have [C-I] contract with the
manufacture during the initial years of a wind farm’s operating period. After
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the initial operating period the wind farm owner either extends this contract
(contract type [C-I]), or acquires a maintenance contract with a maintenance
company (contract type [C-IV]), or acquires a basic insurance contract (contract
type [C-II]), or does not have any insurance contract at all (contract type [C-III]).
During the whole life of the wind farm, the owner may switch between the four
types of contracts.
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3 Literature overview on opti-
mal scheduling

There is a broad body of literature devoted to various optimization strategies
of maintenance scheduling. In this chapter, we present an overview of the
literature related to the thesis topic. There is a multitude of papers devoted to
solving the optimal PM scheduling problem for multi-component systems [75],
[72], [56].

3.1 Age-based maintenance scheduling

In this section, we investigate literature regarding the age-based maintenance
scheduling problem.

In Yeh and Chen [79], the authors develop a mathematical model to derive
an optimal periodical PM policy for a leased facility. Within a lease period, any
failures of the facility are rectified by minimal repairs and a penalty may occur
to the lessor when the time required to perform a minimal repair exceeds a
reasonable time limit. Further on, in Lee and Cha [47], periodic PM policies is
considered for a deteriorating repairable system, and the effect of a PM action is
classified into three categories ’failure rate reduction’, ’decrease of deterioration
speed’, and ’age reduction’.

While the periodical PM policy considers equidistant PM occasions, [33]
and [50] looks into the PM schedule of a long time interval. The model PMSPIC
from Gustavsson et al. [33] is devised to schedule PM of the components over
a finite and discretized time horizon, given a common mobilization cost and
component costs dependent on the lengths of the maintenance intervals. This
model can be used for PM scheduling, but can also be dynamically used in a
setting allowing for rescheduling. It is the main inspiration of our work. In
Moghaddam and Usher [50], optimization models are developed to determine
optimal PM schedules in repairable and maintainable systems. It demonstrates
that it is beneficial to conduct simultaneous PM activities, if the mobilization
costs are high, then simultaneous PM activities is advantageous. This is also
shown in this thesis. However, the suggested models in [50] are nonlinear,
which means they are computationally hard to solve. On the other hand, in this
thesis, we present two optimization models which only look at the next PM
activity, they are linear integer optimization models, and very easy to solve.

While in [9] the authors assume that at a PM action, the components which

13
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has been maintained are as good as new, papers [24], [25], [46], [83] instead look
into imperfect PM, where after PM the components are not as good as new. In
Ding and Tian [24][25], three OM optimization models are proposed dealing
with both perfect PM and imperfect PM. Lam and Banjevic [46] introduce a
sequential PM policy and analyze two imperfect PM models. Zhou et al. [83]
propose an OM scheduling algorithm for the multi-unit series system based
on dynamic programming with the integration of the imperfect effect into
maintenance actions.

Papers [55], [59], [8] and [49] are devoted to optimization issues related
to different maintenance contracts. Park and Pham [55] deal with the optimal
maintenance policy under different warranty policies, considering both the
warranty period and the post-warranty period. For the warranty period, the
authors suggest a warranty cost model using a repair–replacement warranty
policy with repair times and failure times. Qiu et al. [59] consider optimization
of the maintenance costs under performance-based contracts. The paper inves-
tigates an optimal maintenance policy for inspected systems that are subject to
both soft and hard failures. According to Almeida [8], the main parameters of
maintenance contracts are downtime and maintenance costs. Lisnianski et al.
[49] consider an aging system, in which the maintenance is performed by an
external maintenance team. They consider different kinds of contracts between
the two parties paying special attention to downtime costs. The authors suggest
a model based on a piecewise constant approximation of the increasing failure
rate function. In this thesis, we present a long-term model, which can be used
for different contracts and different planning periods.

3.2 Condition-based maintenance scheduling

Condition-based maintenance recommends maintenance actions based on in-
formation collected through online monitoring of the crucial components, and
it can significantly reduce maintenance costs by decreasing the number of un-
necessary maintenance operations. A general assumption for CBM strategies, is
that the system at hand is monitored continuously and one can intervene and
maintain the system at any given moment, see [39], [38], and [58].

Christer [19] proposes a method of an inspection maintenance policy as
opposed to an existing breakdown maintenance policy for a building complex.
The method is based upon information likely to be available and specific sub-
jective assessments which could be made available. Estimates of the expected
number of defects identified at inspection and the consequential cost saving
are presented as functions of the inspection frequency. In a follow-up paper,
Christer and Waller [20] further develop the basic model of [19] and apply it in
a practical study.

Cox’s Proportional Hazards Model (PHM), proposed in [22], utilizes mea-
surable entities as covariates to update the hazard function for a component,
whenever data from condition monitoring systems are available. Several re-
search teams have suggested various optimization models in an attempt to
make use of condition monitoring data by applying some version of PHM, see
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[76], [80], [48], [57]. Vlok et al. [71] develope a probabilistic model to estimate
the machinery remaining lifetime using data from condition monitoring system.
Their probabilistic approach involves a PHM with Weibull baseline hazard and
a Markov process model. Vibration data is used as an input from the condi-
tion monitoring system to illustrate a practical application of this probabilistic
model. Similarly in [13], the failure process along with the covariate process
is represented by a discrete Markov process. A PHM algorithm is proposed
for predicting the remaining lifetime of the machinery based on a condition
monitoring process. In this thesis, we proposed a Cox’s proportional hazard
method for updating the Weibull parameters of the components based on con-
dition monitoring data, then we use the updated Weibull parameters for the
optimization model to get a better estimation of the lifetime of the components.

Jafari et al. [37] propose a joint optimization of the maintenance policy and
the inspection interval for a multi-unit series system. They develop a model
and algorithm that can be used to determine an optimal maintenance policy for
a multi-component system to minimize the maintenance cost, where one unit is
subject to condition monitoring, while just the age information is available for
the other units, and the future survival time has a Weibull distribution. Tian
et al. [68] develop a method of using the condition monitoring data to effectively
predict the remaining life length of a component in a multi-component system.

Kalosi et al. [42] look at a model with both planned and unplanned main-
tenance opportunities, at which the system is restored to a perfect condition,
showing some preliminary results that a control limit policy (depending on the
remaining time until the next planned maintenance) is optimal.

Wang et al. [74] feed the online vibration and temperature signals of bear-
ings from the condition monitoring system into a neural network and predict
the features of bearing vibration signals at any time horizon. Furthermore,
according to the features, by considering historical condition and failure of the
components, degradation factor was defined. A PHM is used to estimate the
survival function and forecast the remaining lifetime of the bearing.

Ghasemi et al. [31] develop an approach build upon a hidden Markov model,
assuming that the equipment’s unobservable degradation state evolves as a
Markov chain. The Bayes rule is used to determine the probability of being in a
certain degradation state at each observation moment. Cox’s time-dependent
PHM is applied to deal with the equipment’s failure rate. Two main problems
are addressed: the problem of imperfect observations, and the problem of taking
into account the whole history of observations.

3.3 Opportunistic maintenance scheduling

Zhu et al. [84] and Zhu et al. [85] consider a single-unit system with periodically
scheduled PM events together with unscheduled break downs whose arrival
times form a homogeneous Poisson process. Both scheduled and unscheduled
events are treated as opportunities for OM activities subject to the current
condition of the functioning components. Similarly, Ba et al. [10] develop an
OM model considering two critical properties of real-world opportunities: (i)
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non-homogeneous opportunity arrivals and (ii) stochastic opportunity duration.
Jardine et al. [39] derive the optimal replacement policy for a 3-state compo-

nent degrading over time with corrective replacements at failures and preven-
tive replacements at both scheduled and unscheduled opportunities.

Zhou et al. [83] introduce opportunistic PM scheduling method for multi-
unit series systems based on dynamic programming and on short-term opti-
mization with imperfect maintenance integration.

Laggoune et al. [45] consider opportunistic replacement of components
through grouping of components in such a way that replacement times for each
component in a group is an integer multiple of the least replacement time.

3.4 Wind turbine maintenance scheduling

The majority of the papers on optimal maintenance scheduling for wind turbines
focus on offshore wind turbines: due to the high mobilization costs of the
offshore maintenance, PM scheduling can be extra beneficial. A recent review
paper Ren et al. [62] presents the state-of-the-art research results on offshore
wind turbine maintenance, with regard to strategy selection, schedule planning,
onsite operations, and environmental threats. Carlos et al. [18], unlike many
others, look into onshore wind farms and use a stochastic model to optimize
the maintenance cost.

Rangel-Ramírez and Sørensen [61] propose a risk-based inspection planning
optimization of offshore wind turbines, based on the methodologies developed
for oil and gas installations, and taking into account the lower reliability level
for wind turbines. This framework address fatigue prone in welded steel joints
typically located in the wind turbine substructure. Karyotakis and Bucknall
[44] examine ‘planned intervention’ as a possible operation and maintenance
strategy for large offshore wind farms (planned intervention is a scheduled
maintenance with deferred CM activities [66]).

Fischer [28] propose a new method for using PHM to integrate failure history
of a fleet of turbines and vibration data from the condition monitoring system.
Based on the age of the monitored component and its vibration levels, this
method suggests a distribution of the residual life of the component, yielding a
turbine-specific prediction, which is continuously updated when new condition
monitoring system data become available.

Yang et al. [77] use data mining techniques to select the most informative
variables from the SCADA systems of the turbine to improve the prediction
accuracy. They employ an exponentially weighted moving average model-
based control chart to implement the residual approach, in order to remove
the auto-correlation in the data. An opportunistic model has been presented in
[27]. The model is based on variable reliability thresholds—which varies with
weather conditions—that provides flexibility to the decision-making process.

For wind turbines, Ech-Chhibat et al. [26] describe a PM methodology based
on cost optimization to determine a systematic period of intervention and re-
placement of components. Hameed and Vatn [34] analyzed the role of grouping
of components within an overall maintenance optimization framework for off-
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shore wind turbines. The frequency of visits to the wind farm could be reduced
significantly by grouping different activities together.

Kahrobaee and Asgarpoor [41] show, through a case study of wind turbines,
how a hybrid analytical-simulation approach works for maintenance optimiza-
tion of deteriorating equipment. Shafiee [64] report a critical study on the
current progress and perspectives of maintenance logistics organization for off-
shore wind energy. Ye et al. [78] develop a non-optimality detection technique
for continuous processes. Nielsen and Sørensen [52] compare two different
maintenance strategies, e.g., condition-based and corrective maintenance for a
generic offshore wind turbine with single component. The model is formulated
as a benefit maximization problem with constraints of design, inspection and
decision rules. Influencing parameters of the model are minimum damage
level to initiate repair, interval of inspection, mean time between failures of the
component. A case study is presented to compare two strategies of maintenance
and investigate the effects of various parameters.

Nilsson and Bertling [53] study the effect of condition monitoring as the
maintenance strategy on life cycle cost for two cases, a single onshore turbine
and an offshore wind farm. According to their study, condition monitoring
benefits maintenance management of offshore power systems by increasing in
turbine availability for power generation (by 0.43%).

Besnard et al. [15] propose an optimization framework for OM of offshore
wind turbines. Their model demonstrates that it is possible to save major
maintenance costs by taking advantage of low power forecasts and corrective
maintenance opportunities to perform the PM tasks. Later on, Besnard et al.
[14] propose a model for offshore wind turbine maintenance support organiza-
tion. Their model considered location of the maintenance accommodation, the
number of technicians, the choice of transfer vessels, and the use of a helicopter
as decision variables. Backlogging of maintenance activities are presented
through a queuing model. A case study shows that (under specific assump-
tions) the most cost effective arrangement for the maintenance teams is the
offshore accommodation with 24 h a day, 7 days a week availability for service.

Fischer et al. [29], [30] present a limited-scope reliability-centred mainte-
nance analysis of the wind turbines. The analysis focuses on the major com-
ponents: gearbox, generator, hydraulic system, and electrical system. They
compare visual inspection and condition monitoring to either prevent the fail-
ure itself or to avoid critical secondary damage. The study forms the basis for
the development of quantitative models for maintenance strategy selection and
optimization.

Tian et al. [67] consider the failure probability of the whole turbine system
and suggested an optimal CBM policy depending on certain failure probability
threshold values. Odgaard et al. [54] develop a fault-tolerant control of wind
turbines that served as a benchmark model for similar studies.

For offshore wind turbines, the logistic and downtime costs are major issues.
Raknes et al. [60] propose a mathematical model that considers how mainte-
nance tasks should be scheduled and performed by technicians transported by
a fleet of dedicated vessels. The model considers such aspects as different work
shifts, the handling large maintenance tasks, and a calculation of the downtime
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costs. Zheng et al. [82] look into the effects of the varying wind speed on the
wind turbine maintenance planning. Wang et al. [73] and Zhang et al. [81]
deal with imperfect PM. By utilizing the information about the state of various
critical components, the maintenance routines can be further improved.

Bangalore and Patriksson [11] and Bangalore et al. [12] develop a machine
learning approach to maintenance scheduling for a wind turbine whose con-
dition is monitored by a time series {ξ(1), ξ(2), . . . , ξ(t)} summarising some
key characteristics of the turbine which can be used for predicting the failure
times after time t. A deep learning algorithm is trained to predict the next value
ξ̂(t+ 1) for a time series observed up to the current time t. Then at time t+ 1, de-
pending on a certain measure of discrepancy between the observed ξ(t+ 1) and
predicted ξ̂(t+1) values, a decision is made whether a PM should be performed
in the near future or not. A key assumption (to simplify the model) is that the
turbine’s component in question has an exponential life length distribution.



4 Long-term scheduling

In this chapter, we address the long-term planning of PM activities for an
n-component system. An n-component system in the current context refers
to a wind turbine consisting of n major components. Section 4.1 introduces
notation some of which will be used even in later chapters. In Section 4.2, we
propose an interpretation of the interval cost function first defined in Section
5.1 of [33]. Then in Section 4.3, we propose a new approach to the interval cost
idea. Section 4.4 contains the main results of this chapter.

4.1 Key notation

We consider the maintenance planning for a system comprised of components
indexed by j ∈ {1, . . . , n} during the planning period (s, r]. Our models involve
the following parameters describing different maintenance costs:

bjt is the CM cost of component j consisting of the price of a new component,
the mobilization costs, and the expected downtime cost at time t ∈ (s, r],

hj is the component specific PM cost of component j consisting of (a) the
difference between the price of a new component and the expected market value
of the component to be replaced, and (b) the cost of the physical replacement of
the component j in the PM regime,

dt is the downtime cost and the mobilization cost of the PM activities
planned at time t ∈ (s, r].

It is assumed that the life lengths of the components are independent from
each other and follow a Weibull distribution with different parameters for
different j. The notation below can deal with various entities, enabling a track
of the current ages of the components:

θj and βj are the scale and shape parameters of the Weibull distribution
describing the life length of component j,

U ju1, U
j
u2, . . . are the consecutive random failure times since time u for com-

ponent j, we define U ju0 = u,
T stands for the lifetime of the wind turbine.

4.2 The interval cost function

The idea of the interval cost (IC) is initially proposed in [33]: different forms the
IC-function were suggested, but here we focus on a particular formulation, see
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Section 5.1 in [33]. Notice that the definition of the IC-function cjut given in this
section is valid only for the case of constant costs dt ≡ d.

Consider component j during the time interval (u, t]. Assume that at time u
the component is in the state of being "as good as new" and that at time t a PM
replacement is scheduled for this component. Then the associated IC-function

Cjut = E

[ ∞∑
k=1

1{Ujuk≤t}
bj
Ujuk

]
+ hj − (hj + d)P jt−u, (4.1)

involves the expected value of the CM cost

Bjut = E

[ ∞∑
k=1

1{Ujuk≤t}
bjUuk

]
(4.2)

caused by the component failures during the time interval (u, t]. The IC-function
can be decomposed into three terms

Cjut = Bjut + (1− P jt−u)hj − P jt−ud, (4.3)

where the second and the third terms represent estimated cost savings due to
rescheduling. Here, P jt−u is defined by

P jt = E

[ ∞∑
k=1

1{Uj0k≤t}
(

1
tU

j
0k

)λ]
, (4.4)

and will be called the cost reduction factor for the planning time interval of
length t.

The definition (4.4) of the cost reduction factor involves a new positive
parameter λ which is assumed to be independent of the indices j and whose
role is explained next under the simple scenario of a single failure at time
U j01 = σ, where σ ∈ [0, t]. In the simple case of a single failure at time σ,
the intuitive explanation of the expression (σt )λ is a compromise between two
extreme cases: a failure at the start of the planning period, σ = 0, and a failure
just before the planned PM replacement, σ = t.

If σ = 0, then such a component failure will not change the PM plan,
implying that almost no cost can be saved due to rescheduling. According
to (4.4), the corresponding cost reduction factor takes value 0. On the other
hand, if σ = t, then the new scheduling is just simply plan a CM activity on
component j instead of a PM activity. This results in the cost reduction factor
1 by formula (4.4), and a big cost reduction term in (4.1). For σ ∈ (0, t), the
expression (σt )λ gives a factor which lies between the extreme values 0 and 1.
The role of the parameter λ is to control to what extent the proximity of the
failure time to the planned PM time influences the extra costs. For example, if
λ = 1 the intermediate cost is found by a linear extrapolation.

To illustrate the definition (4.1), consider an example of a maintenance plan
described by Figure 4.1, where the marked times are planned PM times for
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a two-component system. For this particular example, the total maintenance

Figure 4.1: An example of a long term maintenance plan for a two-component system.

cost is computed as the sum of the interval costs across different intervals and
components:

C1
0,t1 + C1

t1,t2 + C1
t2,t3 + C1

t3,T + C2
0,t1 + C2

t1,t4 + C2
t4,T . (4.5)

For the above definition of the IC-function, we identify an issue which
makes the definition problematic in the case when two or more failures occur
within a short time interval. The issue is clarified in the form of two examples
below: Example 1 deals with the case of two failures for component 1 before the
planned PM activity, and Example 2 deals with both components experience
failures before the planned PM activity. Both examples illustrate a possibility of
the total cost reduction factor for a certain interval getting a value larger than 1,
which results in an overcompensating possibility associated with formula (4.1).

Example 1. Consider the particular interval cost C1
0,t1 . Suppose t1 = 100

months, and there are two failures of the component 1 before time t1 at times
U1

01 = 50 months and U1
02 = 80 months. Let λ = 1, then the cost reduction factor

takes a value larger than 1:

1
t1

∞∑
k=1

1{U1
0k≤t1}U

1
0k = 1.3.

Example 2. Consider the sum of two interval costs C1
0,t1 and C2

0,t1 . Once
again, suppose t1 = 100 months and put λ = 1. Assume that both components
experience a single failure before time t1 at times U1

01 = 80 months and U2
01 = 90

months. Then the corresponding cost reduction factor for d at time t1 is also
larger than 1:

1
t1

∞∑
k=1

1{U1
0k≤t1}U

1
0k + 1

t1

∞∑
k=1

1{U2
0k≤t1}U

2
0k = 1.7.

We address the above mentioned problematic issue illuminated by Examples
1 and 2 by suggesting a modified definition of the IC-function introduced in the
next section.
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4.3 Modified interval cost function

Here we propose a modification of the formula (4.1) in a way that separates the
maintenance costs associated with the interval (u, t] on the component level

cjut = E

[ ∞∑
k=1

1{Ujuk≤t}
bjUuk

]
+ (1− pjt−u)hj , (4.6)

on the whole system level
(1− pt−u)dt,

where

pjt = E(V jt ), V jt = max
k≥0

{
U j0k
t

∣∣U j0k ≤ t
}
, (4.7)

pt = E(Vt), Vt = max
i∈I

(V jt ).

Here, pjt is the expected proportion of the failure-free right-most part of the
time interval [0, t] computed on the component level. A similar proportion pt is
computed on the whole system level.

Compared to (4.3), we now have

cjut = Bjut + (1− pjt−u)hj ,

which is the sum of the CM costs (4.2) and a reduced component specific PM
cost. To justify the latter term, assume that component i is as good as new at
time 0, and that the first PM replacement of this component is planned at time t.
Suppose that component i is going to fail at times σ1 < σ2 < . . . < σk during
the time interval (0, t]. Observe that in this case, we have V jt = σk

t . We now
argue the reduced PM cost should be computed as

(1− σk
t )hj . (4.8)

Notice, that the last expression equals 0 in the case σk = t, which is a natural
property, since in this case the planned PM at time t should be cancelled because
of a CM occurring at the time of failure.

We derive the proportion σk
t in (4.8) starting from

(σ1

t )λ + (σ2−σ1

t )λ + . . .+ (σk−σk−1

t )λ, (4.9)

which should be compared to its counterpart stemming from (4.4):

(σ1

t )λ + (σ2

t )λ + . . .+ (σkt )λ.

We now argue that expression (4.9) for the proportion of the saved PM cost
due to rescheduling is more relevant than the latter one. Notice that the first
term (σ1

t )λ is the same for both expressions, and its justification is given in the
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previous section. The new approach is now explained by referring to the second
term in (4.9),

(σ2−σ1

t )λ.

Clearly, this term is a natural counterpart of the first term, assuming that at the
failure time σ1 after a CM replacement had been performed, a rescheduling is
done such that the interval [0, t] is replaced by [σ1, σ1 + t].

With (4.9) in hand, it remains to observe that the only way to satisfy the
boundary relation discussed above

(σ1

t )λ + (σ2−σ1

t )λ + . . .+ (σk−σk−1

t )λ = 1, for σk = t,

is when λ = 1. Now, with λ = 1, we get the desired ratio

(σ1

t )λ + (σ2−σ1

t )λ + . . .+ (σk−σk−1

t )λ = σ1

t + . . .+ σk−σk−1

t = σk
t .

4.4 MICPM model

For a given planning period [s+ 1, r] ⊂ [0, T ], we define a long-term PM plan
as a pair (x, z), of arrays

x = {xjut, j ∈ {1, . . . , n}, u ∈ {s, . . . , r − 1}, t ∈ {u+ 1, . . . , r + 1}}
z = {zut, u ∈ {s, . . . , r − 1}, t ∈ {u+ 1, . . . , r}}

with binary components

xjut ∈ {0, 1}, zut ∈ {0, 1}, for all (j, u, t), (4.10)

which satisfy the following linear constraints

r+1∑
t=s+1

xjst = 1, j = 1, . . . , n, (4.11)

t−1∑
u=s

xjut =

r+1∑
v=t+1

xjtv, j = 1, . . . , n, t = s+ 1, . . . , r, (4.12)

zut ≥ xjut, j = 1, . . . , n, u = s, . . . , r − 1, t = s+ 1, . . . r. (4.13)

The meaning of the binary variables xjut and zut is explained below by specifying
when each of them takes value 1 in terms of planned PM activities for a single
component i, or the whole system.

For s < u < t ≤ r, equality xjut = 1 means that component replacements are
planned at time steps u and t, but no PM activities for component j are planned
between times u and t. If t ≤ r, then xjs,t = 1 means that the first PM is planned
at time step t. If u > s, then xju,r+1 = 1 means that the last PM is planned at
time step u. Finally, xjs,r+1 = 1 means that no PM activities during [s+ 1, r] are
planned for component j.



24 4. Long-term scheduling

Whenever xjut = 1, we say that a PM interval for component j starts at time
step u and ends at time step t. Due to the constraints (4.11), for each component
j either the first PM is scheduled in one of the time steps {s+ 1, . . . , r}, or no
PM is scheduled (i.e., xjs,r+1 = 1). The constraints (4.12) ensure that, for each
component j, the end of any PM interval is the start of the next PM interval.

For the whole system, equality zut = 1, s < u means that for at least one of
the components, a PM is planned at time steps u and t, but no PM is planned
in-between these times. Equality zst = 1 means that the first PM for the whole
system is planned at time t, see (4.13).

For a given long term PM plan (x, z), the total maintenance cost is obtained
as the sum of the interval costs on the component level plus the PM cost
estimated on the system level

f1(x, z) : =
∑
j∈J

r∑
u=s

r+1∑
t=u+1

cjutx
j
ut +

r−1∑
u=s

r∑
t=u+1

(1− pt−u)dtzut.

In terms of the objective function f1(x, z) the MICPM optimization model for
the long-term maintenance scheduling problem is stated as

MICPM optimization model

MINIMISE: f1(x, z)
SUBJECT TO THE CONSTRAINTS: (4.10), (4.11), (4.12), and (4.13)



5 Short-term scheduling

This chapter deals with the short-term PM scheduling for a n-component
system. Here, the focus is to find the optimal time for the next PM activity and
specify which of the n components should be replaced at that time. Section 5.1
presents an approach based on the MICPM-function which is introduced in
Section 4.3. A different approach based on a new idea of virtual replacement is
suggested in Section 5.2.

In this chapter, we use the notation introduced in Section 4.1.

5.1 NextPMMIC model

For a given planning time interval (s, r] ⊂ [0, T ], we define a short-term PM
plan as a pair (x, z) of arrays

x = {xjst, j = 1, . . . , n, t = s+ 1, . . . , r + 1}, z = (zs+1, . . . , zr+1)

with binary components

xjst ∈ {0, 1}, zt ∈ {0, 1}, t = s+ 1, . . . , r + 1, j = 1, . . . , n, (5.1)

which satisfy the following linear constrains

r+1∑
t=s+1

xjst = 1, j = 1, . . . , n, (5.2)

xjst ≤ zt, t = s+ 1, . . . , r + 1, j = 1, . . . , n. (5.3)

For t = s+ 1, . . . r, the equality xjst = 1 means that

(x, z)-plan tentatively schedules a PM of the component j at the time
step t, however, whenever a failure of the component occurs during (5.4)
the period [s+ 1, t], the plan requires rescheduling of the next PM,

and on the system level, zt = 1 means that

(x, z)-plan tentatively schedules at least one PM (5.5)
activity on one or several components at the time step t.
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Furthermore, xjs,r+1 = 1 means that the (x, z)-plan tentatively schedules no
PM activity for the component j during the time period [s+ 1, r]. The equality
zr+1 = 1 means that no PM activity is planned during the time period [s+ 1, r].

The objective function for the NextPMMIC model is defined as the time
average maintenance cost

f2(x, z) :=
1

t− s

( n∑
j=1

r+1∑
t=s+1

cjstx
j
st +

r+1∑
t=s+1

(1− pt−s)dtzt
)
,

where the ratios pt and the modified interval costs cist are defined in Section 4.3.
The corresponding optimization model

NextPMMIC optimization model

MINIMISE: f2(x, z)
SUBJECT TO THE CONSTRAINTS: (5.1), (5.2), (5.3), and (5.6)

requires an additional constraint

Dj
stx

j
st ≥ 0, t = s+ 1, . . . , r, j = 1, . . . , n. (5.6)

It ensures that a suggested PM at time t brings some benefits, as compared to a
simple strategy when no PM is performed. With the PM-free strategy, the total
maintenance cost (including mobilization costs) for the component j during the
period [s, T ] would be

E

[ ∞∑
i=1

1{Ujs,i≤T}

(
bj + dUjs,i

)]
.

Alternatively, if the plan is to perform a PM for the component j at time t, and
then to perform replacements of the component j whenever it breaks down,
then the total cost would be

cjs,t + E

[ ∞∑
i=1

1{t+Uj0,i≤T}

(
bj + dt+Uj0,i

)]
.

Taking into account the difference between these two total costs

Dj
s,t = E

[ ∞∑
i=1

1{Ujs,i≤T}

(
bj + dUjs,i

)]
−cjs,t−E

[ ∞∑
i=1

1{t+Uj0,i≤T}

(
bj + dt+Uj0,i

)]
,

we conclude that the planned PM of the component j at time t is justified only
if Dj

s,t ≥ 0.
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5.2 NextPMVR model

Suppose the ages of n components at time s are given by the vector

a = (a1, . . . , an),

where the value of a is non-negative. For the first component failure after time
step s, the label of the failed component is denoted by γ ∈ {1, . . . , n}, and the
corresponding failure time is s+ La. Observe that both γ and La are random
variables. Suppose the next PM is planned at time t. Then using formulas

Ca = (T − s− La)c∗ + bγs+La
+
∑
j 6=γ

M j
aj+La

,

Pat = dt + (T − t)c∗ +

n∑
j=1

M j
aj+t−s,

we can estimate by Ca the expected total maintenance cost if a failure happens
before the planned PM activity, by Pat the total maintenance cost if there is no
failure before the planned PM activity at time t. Here c∗ denotes the expected
average monthly maintenance cost of the whole system, and

M j
a = min{hja,mj

a}

is effective replacement cost of a PM activity targeting component j having age
a. The latter is defined as the minimum between virtual replacement cost mj

a

associated with component j with age a, and

hja = hj + gja, (5.7)

is the actual PM replacement cost which is now assumed to depend on the
component’s age a. For simplicity, we assume that hja linearly increases with
age a, so that gj ≥ 0 is a new parameter specifying the slope of this linear
function.

How c∗ and mj
a are computed is explained in the next section.

For a given time s ⊂ [0, T ], treated as the planning time, we define a short-
term PM plan as a pair (x, z) of arrays

x = {xjt , j = 1, . . . , n, t = s+ 1, . . . , T}, z = (zs+1, . . . , zT+1)

with binary components

xjt ∈ {0, 1}, zt ∈ {0, 1}, for all (j, t), (5.8)
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which satisfy the following linear constrains

T+1∑
t=s+1

zt = 1, (5.9)

zt ≤
n∑
j=1

xjt , t = s+ 1, . . . , T, (5.10)

hjaj+t−sx
j
t +mj

aj+t−s(x
j
t − zt) = M j

aj+t−szt, t = s+ 1, . . . , T, j = 1, . . . , n.

(5.11)

As in the previous section, xjt = 1 defines in (5.4), and zt = 1 defines in (5.5).
Constraint (5.9) means that we only look at the next PM of the whole system,
and equality zT+1 = 1 means that no PM activity is planned during the planning
period (s, T ].

Now we are ready to introduce another optimization model

NextPMVR optimization model

MINIMISE: f3(z)
SUBJECT TO THE CONSTRAINTS: (5.8), (5.9), (5.10), and (5.11)

with the objective function

f3(z) =

T∑
t=s+1

E
(
Ca1{s+La≤t} + Pat1{s+La>t}

)
zt + E

(
Ca1{s+La≤T}

)
zT+1,

defined as the expected total cost during the whole lifetime of the system.
Notice that the total cost function f3(z) does not explicitly depend on the set

of variables x. The role of x becomes explicit through the constraints (5.10) and
(5.11). The latter says that if zt = 1, that is if a PM for at least one component is
scheduled at time t, then for each component j, there is a choice between two
actions at time t:

• either perform a PM, so that xjt = 1 and zt − xjt = 0,

• or do not perform a PM and compensate for the current age of the com-
ponent by increasing the cost function using the virtual replacement cost
value (corresponds to xjt = 0 and zt − xjt = 1).

5.3 The renewal-reward argument

The estimated lifetime maintenance costs Ca and Pat that introduced in the
previous section are obtained using a renewal argument in the multiple compo-
nent setting. To overcome the problem of the absence of true renewal events
in the multi-component setting, we rely on the idea of virtual replacements: at
the moment of an actual replacement, either a CM or PM replacement, we treat
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all the components of the system to become as good as new at this moment.
In this way, we get access to renewal events, and to adjust for introducing the
virtual replacements, we compute what we call virtual replacement costs mj

a, in
a manner explained below.

Observe that the renewal argument is much more straightforward in a single
component setting, since each replacement of the component, either a CM or
PM replacement, is a renewal event resetting the component to the state as good
as new. To define the virtual replacement cost mj

a, consider a system consisting
of a single component j and assume that at time 0 the component is as good as
new. Assuming that the first PM activity is planned at time t, the component is
going to experience the first replacement at times Ut = min{t, Lj}, where Lj is
the failure time of the initial component j. Treating Ut as the first renewal time
and applying the classical renewal-reward theorem, see [32], we derive c∗j (t),
the long-term monthly maintenance cost of the component j. Minimizing over
planning time t,

c∗j = min{c∗j (t), t > 0},

we obtain the optimal monthly maintenance cost of the component j.
Using c∗j and applying the renewal-reward theorem in the single component

setting once again, we are able to determine the optimal next PM plan for the
single component j assuming that at time 0 it has age a. Let f∗j (a) be the total
PM cost associated with the optimal PM plan for the single component j with
starting age a > 0. Its counterpart in the case a = 0 is Tc∗j . Taking the difference

mj
a = f∗j (a)− Tc∗j

we define the long term virtual replacement cost of the component j of age a.
This difference evaluates the extra maintenance cost over the time period [t, T ]
due to the component’s age a at the starting time t of the observation period.
The larger a is, the higher the expected maintenance cost is.

Clearly, a multi-component system is not fully renewed at the failure events
unless all n components break down at the same time. Using the idea of
virtual replacements, we can apply the renewal-reward argument in the multi-
component setting to obtain c∗, the expected average monthly maintenance
cost of the whole system, in a way similar to that of for obtaining c∗j . For more
details, see Paper III.
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6 NextPM rescheduling algo-
rithms

Using the NextPM models described in the previous chapter one can build a
practical algorithm for optimal rescheduling of the next PM plan after each CM
and PM activity. Figure 6.1 depicts a flowchart that illustrates the basic idea of
such an algorithm.

The left bottom box depicts the key step of the algorithm, the NextPM step,
which can be based on the optimization model described in Section 5.1 or in
Section 5.2.

Figure 6.1: Flow diagram of optimal rescheduling algorithm based on a NextPM module.

Later in this chapter this idea will be further developed to include condition
monitoring data, see Figure 6.2 below.

6.1 Optimal rescheduling algorithm for the next PM

In this section, we show the algorithm in a more formal way (Algorithm 1),
compare to the one shown by the flowchart Figure 6.1. This algorithm produces
a new optimal next PM schedule according to the NextPM model, but the com-
ponents may break before the scheduled PM event. To save some mobilization

31
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cost, it may be beneficial to maintain other components as well. Thus in this
section, we briefly mention the NextOM model for the OM planning step.

Algorithm 1 Optimal rescheduling algorithm
Input a, s, r
Start Solve NextPM{a, s, r}
Output: (t∗, P), where P ⊂ {1, . . . , n} is the set of components subject

to PM activities at time t∗

If t∗ < T
If a failure during the period (s, t∗] damages component i at time t

Set u := t
Solve NextOM{i,a, u}
Output: O ⊂ {1, . . . , n} is the set of components subject to OM

activities at time u
Perform CM of component i at time u
Perform PM of each component j ∈ O at time u
Update r := min(u+ r − s, T ), s := u
Update tj := u, j ∈ O ∪ {i}

Else Perform PM of each component j ∈ P at time t∗

Update r := min(t∗ + r − s, T ), s := t∗, aj := s, j ∈ P
End
Go to Start

Else
Stop

End

The NextOM model is tightly connected with the corresponding NextPM
model, so that there are two versions of NextOM models as well. Here we
briefly explain the idea of NextOM connected to the NextPMMIC model. The
NextOM model deals with only two time steps: the time step a CM replacement
for the failed component i is performed and the next time step. Essentially,
we use a version of the NextPMMIC model with r = s + 2, and an additional
constraint xis+1 = 1.

6.2 Rescheduling under condition monitoring

An up-to-date algorithm for optimal scheduling must incorporate available
condition monitoring data beyond the current age information of the key com-
ponents of the system. As a development towards this goal we present an
enhancement of the rescheduling Algorithm 1 represented by the flowchart
Figure 6.2. Compared to Figure 6.1, the enhanced algorithm has extra steps
represented by colored boxes of Figure 6.2.

The five new steps deal with a regular update of the condition monitoring
data which is assumed to occur every 3 months (this explains expression s+ 3
appearing in the top three additional boxes in Figure 6.2). In the remainder of
this section, we explain the step following the data collection step. This crucial
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step uses the latest condition monitoring data for updating the Weibull parame-
ters of the components of the systems, so that the next round of the NextPM
optimization will be adjusted to either worsened or improved conditions of the
components (as compared to the baseline, i.e., normal conditions).

Figure 6.2: Flow diagram of optimal rescheduling algorithm under condition monitoring

Let us focus on a single component, say gearbox, whose life length under
"normal" conditions is described by a Weibull distribution with the baseline
parameter values θ and β, corresponding to a hazard function in the form (1.1).
Suppose we have access to two sets of data from the SCADA system:

• containing the observed ages of the components which is still operational;
u1, . . . , uK

• and yet another historical data set for components that have failed

(v1, ξ
(1)), . . . , (vN , ξ

(N)), (6.1)

where, vk is the failure age of a gearbox k, and ξ(k) = (ξ
(k)
1 , . . . , ξ

(k)
vk ) is the

corresponding recorded history of the monitoring data.

The baseline Weibull parameter values θ and β are estimated from the two
sets of observed lifetimes

U = {u1, . . . , uK}, V = {v1, . . . , vN},
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by maximising the likelihood function

L(θ, β) =
∏
t∈V

P(L = t)
∏
t∈U

P(L > t) =
∏
t∈V

(e−θ(t−1)β − e−θt
β

)
∏
t∈U

e−θt
β

.

A flexible model for describing the variable condition of the gearbox is
based on the Cox proportional hazards method, see [22]. In the framework
of the Weibull parametric distribution, we will assume that the Weibull shape
parameter β stays unchanged, while the scale parameter θ̂ changes over time

θ̂ = θφ(t), (6.2)

where the Cox factor φ(t) takes positive values and is a function

φ(t) = eκ(ξ̄(t)−ξ̄), (6.3)

of the times series describing the pertinent condition monitoring data

ξ = (ξ(1), ξ(2), . . .).

In (6.3),

ξ̄ =
ξ(1) + . . .+ ξ(12)

12

is the first year average of the covariate ξ, and

ξ̄(t) =
ξ(t− 2) + ξ(t− 1) + ξ(t)

3

is the latest three-month moving average. Obviously, this approach requires
that the farm has been in operation for at least 15 months.

The Cox regression parameter κ mentioned in (6.3) is estimated from the
data set assuming that the data is labeled in such a way that the failure times
are sorted in the ascending order

v1 < v2 < . . . < vN .

Replacing in (1.1) the baseline parameter θ with θ̂ defined by (6.2) and (6.3), we
arrive at the following hazard function

r(t, ξ) = θβtβ−1φ(t). (6.4)

The key argument of the Cox method is that (6.4) implies the following expres-
sion for the partial likelihood function of the regression parameter κ

L∗(κ) =

N∏
j=1

r(vj , ξ
(j))∑N

i=j r(vj , ξ
(i))

=

N∏
j=1

exp{κξ̄(j)(vj)}∑N
i=j exp{κξ̄(i)(vj)}

.

Maximization of this partial likelihood leads to the desired maximum likelihood
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estimate κ.
The Cox factor (6.3) has the following effect on the failure rate of the gearbox,

provided κ is positive (in other words, assuming that the chosen covariate is
such that higher values of ξ(t) indicate higher stress on the gearbox at time
t). At the time of observation t, the first year average ξ̄ is compared with the
last three months average ξ̄(t). If the difference ξ̄(t) − ξ̄ is close to zero, then
the current condition of the gearbox is deemed to be normal and formulas (6.2)
and (6.3) suggest using the baseline parameter θ̂ = θ for describing the failure
rate of the gearbox. However, if it turns out that ξ̄(t) > ξ̄, then θ̂ > θ, so that
the corresponding hazard rate (6.4) becomes larger that the base line value r(t)
given by (1.1). Alternatively, if ξ̄(t) < ξ̄, then of course, the failure rate of the
gearbox at time t is below the normal.
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7 Case studies for the long-term
maintenance scheduling

The case studies of this section are based on the following information. The
life length of a wind turbine is assumed to be 240 months (i.e., 20 years), namely

T = 240

in month, which is a typical life length for onshore wind farms; see [86]. It is
assumed that four major components of a typical wind turbine have the Weibull
distribution parameters and replacement costs as listed in Table 7.1. These data

j
Component

type

Failure
replacement cost

[$1000]

Preventive
replacement cost

[$1000]

Weibull shape
parameter

Mean life
length

[months]
1 Rotor 162 36.75 3 89.9
2 Main bearing 110 23.75 2 110.8
3 Gearbox 202 46.75 3 71.4
4 Generator 150 33.75 2 97.5

Table 7.1: Key parameters for four major components of a wind turbine.

are derived from [67, Table 4] which is based on the data gathered from 6630
wind turbines during different periods of time from year 1994 to 2004.

All computations are performed on an Intel 2.40 GHz dual core Windows
PC with 16 GB RAM. The mathematical optimization models are implemented
in AMPL IDE [2], the parameters of the model are calculated by Matlab [5], and
the optimization models are solved using CPLEX [4].

7.1 Long-term rescheduling after sudden component
failures

In this section, an enhanced MICPM model is implemented for a wind farm
consisting of 10 wind turbines.

In Chapter 6 we addressed the important issue of rescheduling of the next
PM plan at times when one or several components of a wind turbine is re-
placed. This section illustrates the performance of the long-term planning
model MICPM as it is repeatedly applied after several consecutive component

37
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Figure 7.1: Rescheduling of PM plans for wind turbine 7 (top panel) and wind turbine 2
(bottom panel). The vertical lines delineate PM∗

0, the original PM plan, the circles show
the PM times for the PM∗

1 plan obtained after the first failure, and crosses correspond to
PM∗

2, the third plan obtained after the second failure.

failures. When a component fails, it has to undergo CM while the PM plan
needs to be rescheduled from the time point of the failure. The new sched-
ule is then used until another component fails, at which time the PM plan is
rescheduled.

Here we apply MICPM for PM scheduling of a wind farm containing of
10 wind turbines during the period [0, T ] with T = 240 months. To estimate
the total maintenance cost of the whole wind farm, we introduce a new model
parameter by assuming that the mobilization cost of $50,000 is independent
of the number of wind turbines to be attended during a given maintenance
activity, see Tian et al. [67, Table 2]. We also assume that the downtime cost,
both CM and PM, for a single turbine is $10,000.

At time t = 0, all 40 components are considered to be new, and after applying
MICPM we have obtained the same long-term PM schedule for each of the ten
wind turbines, namely all four components should be replaced at times

u1 = 49, u2 = 99, u3 = 148, u4 = 198.

These PM times are delineated by four vertical lines in Figure 7.1. Graphically,
these four vertical lines represent the initial PM plan, PM∗0, with the total cost of

cost of PM∗0 = 10155,

in the unit of $1000.
Next, we introduce PM plans PM∗1 and PM∗2 produced by MICPM at the

first two times of component failures. These times we simulate based on the
corresponding Weibull distributions, resulting in following two earliest failure
events:

1. the generator of turbine 7 breaks at month s1 = 15,

2. the rotor in turbine 2 breaks at month s2 = 32.
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At the first failure time, the generator of turbine 7 must be replaced and MICPM
is applied to the new planning period (s1, T ] with all the components. The
starting age of all components (except for the replaced one) is 15. The resulting
new optimal plan PM∗1 is identical to PM∗0 for all turbines except turbine 7, see
circles in Figure 7.1 indicating the updated PM times. The total maintenance
cost, including the CM cost associated with the first failure, becomes

cost of PM∗1 = 10175,

in the unit of $1000.
At the second failure time, the rotor of turbine 2 must be replaced and

MICPM is applied to the new planning period (s2, T ] with all the components,
except for the generator of turbine 7 and the rotor of turbine 2, with the starting
age 32. The resulting new optimal plan PM∗2 is identical to PM∗0 for all turbines
except for turbines 7 and 2. The times of another optimal plan PM∗2 are shown
as crosses in Figure 7.1. Observe that the algorithm decides that at time s2 = 32
not only the failed rotor of turbine 2 should be replaced, but also other three
components. The total maintenance cost, including the cost associated with two
CM and three OM replacements, is

cost of PM∗2 = 10122,

in the unit of $1000.

7.2 Modified interval costs for the four components

In this section, we get a closer look at the modified interval cost functions cj0t
which are calculated using (4.6) for the four components of the wind turbine.
The main findings of this study are summarized by Figure 7.2 in terms of the
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average interval costs 1
t c
j
0t computed for different interval lengths. Observe

that each of the curves has its minimal value:

1. the lowest value for rotor is achieved at month 54,

2. the lowest value for main bearing is achieved at month 62,

3. the lowest value for gearbox is achieved at month 47,

4. the lowest value for generator is achieved at month 60.

These component-specific optimal times illuminate the optimal PM times
obtained for one or several wind turbines viewed as four-components systems
in the case studies of Sections 7.1 and 7.3. For example, recall that the typical
interval between consecutive PM times of Section 7.1 is around 50 months.

7.3 Comparison of different maintenance schedul-
ing methods

In this section we compare the performance of three models introduced in the
previous sections with that of the PMSPIC model by applying them to the same
situation of a wind farm with ten wind turbines. Each wind turbine is treated
as a four-component system under the assumptions given in table 7.1. The
computed maintenance costs are also compared to the cost of the pure CM
strategy.

Tables 7.2-7.3 summarize the results of the two different constant cost

dt = d, t ≥ 0.

These tables not only show the optimal schedules for the next PM occasion and

Maintenance Next PM time [month] Monthly CPU time
scheduling for components maintenance [sec]
method 1 2 3 4 cost [$1000] Matlab AMPL
NextPMMIC x x 43 x 4.733 56 0.01
NextPMVR x x 43 x 4.703 2 –
MICPM x x 42 x 4.018 161 2.36
PMSPIC x x 41 x 4.749 100 2.25
Pure CM x x x x 6.205 – –

Table 7.2: Outputs and running times of different maintenance methods for d =
1 [$1000].

the associated monthly maintenance cost, but also specify the computational
times required by different algorithms. For NextPMMIC, PMSPIC and MICPM,
the “Matlab” column presents the time it takes to generate the main parameters
of the model. The “AMPL” column presents the time it takes to solve the
optimization model. Here we run 5000 simulations and take the average to
estimate the parameters. For NextPMVR, we use Matlab to solve the optimization
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problem. The main advantage of the optimization models NextPMMIC and
NextPMVR compared to PMSPIC and MICPM lies in the computational speed.
For example, if d = 10 [$1000], NextPMMIC runs 10,000 times faster than the
PMSPIC optimization, and NextPMVR is even faster than NextPMMIC.

Maintenance Next PM time [month] Monthly CPU time
scheduling for components maintenance [sec]
method 1 2 3 4 cost [$1000] Matlab AMPL
NextPMMIC 52 52 52 52 5.082 58 0.01
NextPMVR 52 52 52 52 5.040 2 –
MICPM 49 49 49 49 4.211 143 45.82
PMSPIC 47 47 47 47 5.025 101 13.47
Pure CM x x x x 6.536 – –

Table 7.3: Outputs of different maintenance methods for d = 10 [$1000].

Tables 7.2-7.3 reveal that the next PM schedules produced by the four opti-
mization models are quite similar. When d is large, to save on high downtime
costs, the optimal plan always requires maintenance of all components. When d
is small, then the optimal solution is to plan a preventive replacement for the
most vulnerable component given the knowledge of the current ages of the
components.

According to the third column of Tables 7.2-7.3, all four methods report
significant savings if compared to the pure CM strategy. The MICPM model
gives the lowest monthly maintenance cost. This is because MICPM is the only
model considering the effect of the end of wind turbine lifetime. Towards the
end of lifetime, not only PM activities should not be planned, but even CM
replacements should not be performed if a component failure happens too
close to the end of the turbine’s life. Taking into account this factor, reduces
the monthly maintenance cost in the long run. Simulations show that without
considering the end of lifetime, MICPM produces a monthly maintenance cost
similar to other models.

Notice that the monthly cost of PMSPIC compared to monthly cost produced
by the NextPM models is slightly higher with d = 1, and slightly lower with
d = 10. This is due to the specific way of parameter d entering into the formula
for the interval cost employed by PMSPIC, see Section 4.2.

The CPU time to solve the models MICPM and PMSPIC is just a few seconds.
However, this case study deals with only one turbine with four components,
and the time step length is one month. As we show by the next case study,
this time increases exponentially with increased number of components and
decreased time step length.

Table 7.4 presents a comparison analysis with much shorter time steps
comprising three days instead of one month. After a ten-fold increase of the
number of time steps compared to the setting of Table 7.3, the algorithms
of PMSPIC and MICPM have failed to complete calculations after ten hours
of running and are terminated. We can conclude that the solution time for
PMSPIC and MICPM increased exponentially, this is due to the complexity of
their optimization models which are both NP-hard problems (see [33]). On the
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Maintenance Next PM time [month] Monthly CPU time
scheduling for components maintenance [sec]
method 1 2 3 4 cost [$1000] Matlab AMPL
NextPMMIC 51.7 51.7 51.7 51.7 5.073 26 [min] 0.08 [sec]
NextPMVR 51.9 51.9 51.9 51.9 5.030 10 [sec] –
MICPM 49.4 49.4 49.4 49.4 4.207 65 [min] terminated
PMSPIC 47.3 47.3 47.3 47.3 5.023 38 [min] terminated
Pure CM x x x x 6.536 – –

Table 7.4: Outputs of different maintenance methods for d = 10 [$1000] with a finer
time step length of three days. Notice that the results for the long-term planning models
MICPM and PMSPIC are obtained by the corresponding programs being terminated after
ten hours of running, so that the solutions presented in the table might be sub-optimal.

other hand, we see that NextPMVR can be solved fast even in this case, thanks to
the special structure of the optimization model: all the parameters of NextPMVR

are computed theoretically, avoiding the time-consuming simulations required
by the other models.

7.4 A case study based on the data from a Swedish
wind farm

To demonstrate the algorithm of Section 6.2 we use historical data of a Swedish
wind farm consisting of 16 turbines (labeled by numbers 1 to 16), with each tur-
bine being represented by a single component, its gearbox. The main challenge
of this case study is to see if our approach is able to avoid a failure event by
placing PM events at right times and for the right gearboxes.

The wind farm is observed for 137 months and during this period 8 failures
of gearboxes were recorded, as given in Table 7.5.

Gearbox ID 9 12 11 15 16 5 6 13
Failure time (months) 25 43 73 73 97 109 121 121

Table 7.5: Historical data on failure times.

In this case study, we use the linear formula (5.7) for the function h3
a. A

detailed description of the parameters of the model (including g3 and h3) used
in this case study is given in Section 5 in Paper IV.

Observe that two pairs of equal failure times indicate violations of the model
assumption of independence between the gearbox lifetimes. Our guess is that
for each of the paired events, one of the gearboxes might have broken down
earlier and the turbine stayed idle until the second gearbox went down, so that
both gearboxes were replaced simultaneously.

The results of our study based on the historical data of the wind farm
are summarized in Figure 7.3. They show the recurrent 3-month updates of
the PM planning, so that if the next PM activity is planned after the next 3-
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month time period, it will not be performed. After 3 months, we update the
data from SCADA and resolve the optimal problem again to obtain a new
maintenance plan. The green line represents the observation time and the black
line represents the planning horizon 3 months ahead. Each planning round
giving the next time for PM as a point lying above the black diagonal, will be
followed by a new planning round with an updated time for the next PM. The
next PM plan will be implemented only if the next PM point lies between the
two diagonals on the graph.

As shown on the x-coordinate of Figure 7.3, the first PM event is scheduled
at time step 15. The resulting optimal planning time at month 54 is shown on
the y-coordinate. The corresponding point (15, 54) is marked on the graph by
label 2 meaning that two gearboxes out of 16 should be replaced at month 54.
Since point (15, 54) lies above the black diagonal, we apply our algorithm once
again at time step 15 + 3 = 18 and find the new PM time to be at month 45
when two gearboxes should be replaced. At time step 21, an updated PM plan
says that three gearboxes should be replaced at month 43, and so on.
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Figure 7.3: The recurrent next PM planning for the wind farm

The most interesting points on the graph are first, the time step 25, coming
from Table 7.5, marked by a circle on the x-axis, and secondly, the point (37, 39).
At time step 24, the optimal PM plan is to replace gearbox 9 at month 41 together
with two other gearboxes. However, according to the historical data, a sudden
failure of gearbox 9 takes place at time step 25, which cancels the next PM plan
and requires a CM replacement. The OM step of our rescheduling algorithm
suggest to perform at time step 25 only the replacement of the failed gearbox
9. After the CM event, the next round of the NextPM step produce an optimal
plan suggesting to replace two gearboxes at month 41.

First, at time step 37, the next PM time falls within the 3-month window.
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The plan suggests that two gearboxes, number 12 and number 13, should be
replaced at month 39. We stop implementing our algorithm after time step 39,
because the historical data does not include these replacements.

To summarize, we note that even though our algorithm missed the first, un-
usually early failure at time step 25, it successfully prevented the sudden failure
of gearbox 12 at time step 43, see Table 7.5, by suggesting a PM replacement of
gearbox 12 at time step 39.



8 A summary of the appended
papers

8.1 Paper I: Optimal scheduling of the next preven-
tive maintenance activity for a wind farm

This article presents a binary linear optimization model, which solution may
suggest to wind turbine owners which components, and when, should undergo
the next PM. In the thesis, we further develop this model into NextPMMIC. The
scheduling strategy takes into account eventual failure events of the multi-
component system, in that after the failed system is repaired, the previously
scheduled PM plan should be updated treating the restored components to be
as good as new.

The optimization model is tested in three numerical case studies. The
first study addresses the illustrative case of a single component system. The
second study analyzes the case of seasonal variations of mobilization costs,
as compared to the constant mobilization cost setting. Among other things,
this analysis reveals a dramatic cost reduction achieved by the optimization
model as compared to the pure CM strategy. In these two case studies, the
costs are reduced by around 35%. The third case study compares the NextPM
model with PMSPIC. This comparison demonstrates that the NextPM model is
accurate and much more effective.

8.2 Paper II: Mathematical optimization models for
long-term maintenance scheduling of wind po-
wer systems

In this article, the planning of corrective and preventive maintenance is investi-
gated under different types of contracts between the wind farm owner and a
maintenance or insurance company, and during different phases of the turbines’
lives and the contract periods.

The optimization model MICPM is a simplification of the models presented
in this article. While MICPM focuses on a n-component system, the models in
this article represents a wind farm comprising m wind turbines each of which
has n (identical) component types. In this article, a mathematical model of

45
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preventive maintenance scheduling is combined with corrective maintenance
strategies. The combined strategies are then applied to four relevant combina-
tions of the phases of the turbines’ lives and the contract types.

Our case studies show that even with the same initial criteria, the opti-
mal maintenance schedules differ between different phases of time as well as
between contract types. One case study reveals a 40 % cost reduction and a sig-
nificantly higher production availability—1.8 % points—achieved by our opti-
mization model as compared to a pure corrective maintenance strategy.Another
study shows that the number of planned preventive maintenance occasions
for a wind farm decreases with an increasing level of an insurance contract
regarding reimbursement of costs for broken components.

8.3 Paper III: Optimal maintenance schedule for a
wind turbine with aging components

In this article, the optimization model NextPMMIC is developed using the
renewal-reward theorem. In the multi-component setting, a new concept virtual
replacement is introduced, which allows us to treat each replacement event as a
renewal event, even if some components are not replaced by new ones.

NextPMMIC is applied to a four-component model of a wind turbine and the
optimal maintenance plans are computed for various initial conditions. In this
article, compare to the two articles above, one clear difference of the parameters
is that the actual PM replacement cost is not a constant value any more, it is
assumed to depend on the component’s age. The modelling results show clearly
the benefit of PM planning compared to pure CM strategy (about 8.5% lower
maintenance cost). Then the optimization model is compared with another
state-of-art optimization model, it shows a similar scheduling with a much
faster CPU time. The comparison demonstrates that the proposed optimization
model is both fast and accurate.

Compare to paper 1, the scale parameter is in a different parameterization
which is also commonly used [17]. Suppose the scale parameters in [67, Table
4] are αj , the shape parameter is βj , then the relationship between αj and the
scale parameter in this paper θj is θj = α

−βj
j .

8.4 Paper IV: Optimal preventive maintenance sche-
duling for wind turbines under condition mon-
itoring

In this article, we further develop NextPMMIC. We use the data from SCADA
system to update the Weibull parameters of the model. Our optimization
criterium takes into account the current ages of the key components, the major
maintenance costs including eventual energy production losses as well as the
available data monitoring the condition of the wind turbines. To illustrate how
the optimization algorithm works, a case study is presented based on data
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collected from several wind farms located in Sweden. The results show that PM
planning gives some effects, if the wind turbine components in question live
significantly shorter than the turbine itself.
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9 Conclusions

In this thesis, we introduce new modelling frameworks for the maintenance
scheduling of the wind turbines. Our long-term scheduling optimization model,
taking into account the prospective ages of the major components, allows
to estimate the reasonable price of a full service maintenance contract or an
insurance contract for the wind farm owner.

The short-term maintenance scheduling approach developed in this thesis
results in much faster computational algorithms compared to accurate long-
term scheduling algorithms. This effect is achieved without compromising the
accuracy of the planning of the next preventive maintenance action.

Among other things, our analysis shows that if preventive replacements are
not sufficiently cheaper than the corrective maintenance replacements (which
may be true for the onshore wind farms with low mobilization costs), then the
optimal solution is to manage the wind farm without preventive maintenance
planning.

The key modelling innovations of this thesis are

• the development of the modified interval cost function, which improves
the initial definition based on heuristic argument, and provides a mathe-
matical justification for the modified formula,

• the introduction of the virtual replacement concept arising from the
renewal-reward argument, which takes account of hidden future costs
associated with positive ages of components treated by the model as being
as good as new,

• a systematic implementation of the Cox’s proportional hazard method for
updating the Weibull parameters of the components based on condition
monitoring data.

9.1 Performance of different optimization models

In this thesis, we introduce three optimization models of maintenance schedul-
ing: NextPMMIC, NextPMVR, and MICPM. Our models treats the objective
function as the total maintenance cost of a preventive maintenance schedule,
which takes into account the corrective replacement costs associated with the
eventual component failures as well as the expected preventive replacement
costs.

49
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The MICPM modelling framework allows evaluating different kinds of
contracts covering different phases of the lifetime of the wind farm. In a re-
lated case study we demonstrate how the MICPM algorithm can be used for
rescheduling the long-term maintenance plan following eventual component
failures. Through this case study we demonstrate that our approach gives a
robust estimate of the total maintenance cost: after each rescheduling the total
cost goes either up or down compared to the cost of the initial plan, depending
on the consecutive times of the component failures.

The main idea behind the NextPMMIC and NextPMVR models is to drastically
reduce the computational time by focusing on the next preventive maintenance
planning. We suggest two different approaches to this problem and compare
their performance through a case study dealing with a wind turbine viewed
as a four-component system. According to this case study, the latter algorithm,
based on the new idea of virtual replacement, is much faster producing very
similar results. Both algorithms are much faster than the long-term scheduling
algorithms MICPM and PMSPIC.

The fast model NextPMVR is further enhanced by adding a parameter updat-
ing step, allowing the maintenance scheduling optimization algorithm to take
into account the real time data from the SCADA condition monitoring system.
A case study using the historical data from a Swedish wind farm illustrates
how our rescheduling algorithm may work in practice. The case study clearly
demonstrates that our algorithm may result in appreciable savings due to smart
scheduling of preventive maintenance activities by monitoring the ages of the
components in use as well as available real time data, which supervising the
condition of the wind turbines in a wind farm.

9.2 Further research

The optimization models of maintenance scheduling for wind turbines are
based on several assumptions concerning the functioning of the wind turbine
and different maintenance actions. In the future, one can build new models
upon the optimizations models developed in this thesis by allowing for

• deferred corrective maintenance actions, define as "corrective maintenance
which is not immediately carried out after a fault detection but is delayed
in accordance with given rules" [66];

• preventive maintenance actions other than full replacement, like inspec-
tion, minor or major repair;

• secondary damage of components connected to the components experi-
encing the prime failure.
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