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The existing conventional traffic flow models aims to simulate human-driven following
vehicles in real world. In this era of emerging transport solutions, controlling or intervening
traffic flow to achieve high fuel efficiency along with good driving safety and travel effi-
ciency becomes a reality. As such, it is worth exploring the possibility of developing eco-
driving models to optimise vehicle movements for fuel consumption minimisation, while
maintaining safety and efficiency. In this study, we propose a modified genetic algorithm
(GA) based calibration method that enables the calibrated parametric traffic flow (car fol-
lowing) models to simulate or control vehicles in an eco-driving manner. By developing a
novel objective function for the GA method based on the widely-used VT-Micro fuel con-
sumption model, the proposed method can calibrate model parameters towards improving
fuel efficiency. Besides, by subtly using heavy fuel consumptions as a surrogate index to
represent low travel efficiency or dangerous driving strategies, the modified GA method
with the novel objective function can guide the calibrated model towards achieving com-
plete eco-driving requirements. Experimental simulation results further indicate that traf-
fic flow models calibrated by the modified GA-based method can also alleviate traffic
disturbances and oscillations in a more effective manner.
� 2021 Tongji University and Tongji University Press. Publishing Services by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

Microscopic traffic flowmodels, also known as microscopic car following models, describe how vehicles are following one
another on roadways, which are the foundation of microscopic traffic flow theories and are of great significancy with regard
to the development of adaptive cruise control (ACC) systems (Jiang et al., 2001; Yu et al., 2019). The majority of existing car
following models consists of continuous mathematical functions and can be categorized as conventional parametric car fol-
lowing model, as compared to car following models built on novel technologies such as machine learning based car following
models or cell automata car following models (Treiber and Kesting, 2013b). Despite of numerous studies on the develop-
ments and applications of conventional car following models (Gipps, 1981; Bando et al., 1995; Treiber et al., 2000; Jiang
et al., 2001; Sangster and Rakha, 2014; Fadhloun and Rakha, 2020; Xu et al., 2021), the potentials of these car following
models are yet to be fully tapped. To be specific, since conventional models with multiple mathematical equations would
bration

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.ijtst.2021.04.004
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:xiaobo@chalmers.se
mailto:drxiaoboqu@gmail.com
https://doi.org/10.1016/j.ijtst.2021.04.004
http://www.sciencedirect.com/science/journal/20460430
http://www.elsevier.com/locate/ijtst
https://doi.org/10.1016/j.ijtst.2021.04.004


Y. Yu and X. Qu International Journal of Transportation Science and Technology xxx (xxxx) xxx
inevitably include some model parameters that needs to be calibrated before the models can be used, the performances and
capabilities of the models would largely lie on the adopted calibration method as well as the quality of the calibration data.
However, regardless of using different calibration data, the majority of current approaches for calibrating car following mod-
els will drive the model parameter values towards best fitting the calibration data which usually comprises following-the-
leader field data (Kesting and Treiber, 2008; Chen et al., 2010; Punzo et al., 2012, 2014; Wang et al., 2012; Treiber and
Kesting, 2013a). As a result, most calibrated conventional car following models are only good at simulating or predicting real
following vehicles, which is equivalent to well reproduce human driver behaviours. Yet these calibrated models may not be
capable of simulating or controlling the following vehicles to solve various traffic challenges that human drivers are hard to
handle.

The calibration of conventional car following models is a branch of nonlinear optimization problems. The current
approaches for solving nonlinear optimization problems would normally adopt objective function(s) to quantitively measure
the optimization objective (e.g. cost, profit, prediction error and so on) that needs to be maximized or minimized subject to
specified constraints. As for calibrating parameters for conventional car following models, the objective functions adopted by
the majority of existing calibration approaches (e.g. genetic algorithm approach by Kesting and Treiber (2008), least square
errors approach by Treiber and Kesting (2013a) and so on) measure the errors between the actual gap/speed/acceleration of
a real following vehicle and the predicted gap/speed/acceleration of a model-driven following vehicle, with an aim to min-
imize such errors through the calibration process. In other words, the behaviours of real manually-driven following vehicles
are used as the benchmarks for measuring the performance and fitness degree of a particular calibrated car following model.
Therefore, the final calibrated models do have the potential to reproduce real followers.

On the other hand, eco-driving has become an increasingly popular technological topic in the background of reducing
Greenhouse Gas (GHG) emissions to protect environment (Barkenbus, 2010). In a brief word, eco-driving refers to a way
of driving that emphasizes better fuel efficiency while still maintaining sound driving safety and acceptable travel efficiency,
which can be achieved by several manners including applying more moderate accelerations/decelerations and anticipating
traffic flow and signals (Barkenbus, 2010). A number of automobile manufacturers such as Toyota, Honda and so on have
already implemented different levels of eco-driving technologies into the ACC systems. Meanwhile, in the discipline of traffic
engineering, various efforts on developing eco-driving technologies have also been made and one can refers to a number of
technical reviews such as Alam and McNabola (2014), Taiebat et al. (2018), Huang et al. (2018) for more details. It is also
worth mentioning that Mintsis et al. (2020) even paid special attentions to achieve dynamic eco-driving in the vicinity of
signalized intersections.

However, as illustrated before, current car following models calibrated by existing approaches are not necessarily good
choices for addressing specified traffic challenges such as improving fuel efficiency to achieve eco-driving. This is because
model parameters calibrated based on actual manually-driven vehicle (MV) data may also introduce extra uncertainties
caused by human drivers’ errors, physical limits, or selfishness (non-cooperativeness) into the model, which will inevitably
compromise the performances of the calibrated model.

To enable car following models to better address traffic challenges that human drivers are hard to handle, one common
approach is to modify and optimize the structures or stimulus–response logics of conventional car following models. A good
example is a modified Intelligent Driver Model proposed by Zhou et al. (2017a) that can improve the efficiencies of freeway
ramp merging, which is an optimized variant of the widely-used Intelligent Driver Model (Treiber et al., 2000). Nonetheless,
to the best of our knowledge, very few studies have paid attentions to improving car following models to better address traf-
fic challenges through modifying the model calibration method, rather than changing the model structure or logics (which
can be very complicated). To bridge this gap, this study aims at introducing a novel objective function for a widely-used
genetic algorithm (GA) based calibration method (Kesting and Treiber, 2008) in order to enable the calibrated car following
models to improve fuel efficiency while still maintain driving safety and travel efficiency. Accordingly, even without any
model structure/logic modifications, conventional car following models calibrated by this modified GA-based approach
can enable the following vehicles to drive in an eco-driving manner, which provides traffic researchers an effective way
to simulate eco-driving vehicle platoon and analyses its properties and features.

The rest of this paper is organized as follows. Section 2 introduces in details the proposed GA-based calibration method
with a modified objective function. Section 3 calibrates two widely-used conventional parametric car following models using
both the modified GA approach and the original GA approach respectively. Section 4 comprehensively compare the perfor-
mances of the same car following model calibrated by both approaches to validate the effectiveness of the modified GA-
based calibration method. Section 5 further discusses about the scope of the proposed calibration method and concludes
the study.
2. A genetic-algorithm based model calibration approach with novel objective function

To find a possibly optimal solution (a set of possibly optimal model parameter values) for an equation-based, parametric
car following model, Kesting and Treiber (2008) propose an effective calibration method which resort to the genetic algo-
rithm (Goldenberg, 1989) as a solution search heuristic. Assume there are X unknown parameters in a car following model
M, the detailed workflow of a typical GA-based calibration method is organized as follows:
2
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� Define a wide but reasonable value range (serve as the parameter constraints) for each of the X model parameters from
which the optimal value for each parameter will be generated. This can greatly reduce the calibration complexity and
enable the calibration method to converge faster towards the optimal parameter values.

� Initialize a population of N individuals, each of which is a set of X parameter values randomly generated from their
respective value ranges. The N individuals (parameter sets) form the first generation of the genetic algorithm.

� In each generation (iteration):
1) Calculate the average trajectory prediction error of car following model M under each of the N individuals of the cur-

rent generation based on a pre-defined objective function. The goal of the GA-based calibration method is to find an
individual (a set of model parameter values) that can minimize such errors. Details of the adopted objective function
and how the errors for each individual are calculated are illustrated separately in a later paragraph;

2) Stochastically select N � 1 pairs of individuals from the current population based on their average trajectory predic-
tion errors: individuals with lower errors will possess higher probabilities of being selected and vice versa. The N � 1
pairs of selected individuals correspond to N � 1 parents in a genetic context. This step ensures that individuals with
better genes are always more likely to be chosen as the parents to yield next-generation individuals so that individuals
in each generation would gradually evolve and produce lower and lower trajectory prediction errors;

3) Produce one next-generation individual from each selected parental pair through a stochastic crossover action: each
parameter value in the next-generation individual is inherited from one of its two parental individuals in a stochastic
manner. A total of N � 1 next-generation individuals will be produced;

4) For each of the N � 1 next-generation individuals, there is a small chance described by a mutation probability Pbm that
one of its parameters will mutate and get a random new value. As for which of the X parameters in a next-generation
individual would mutate, each of the parameters will share the same mutation probability 1

X;
5) Keep the individual that achieves the lowest errors (the best-performed one) in the population of current generation

to the next generation without any changes.
6) By implementing the above actions, a next generation of N individuals will be finally yielded from the current popu-

lation, making the population of each generation remains stable and unchanged.
� The calibration process will go through numerous generations and will terminate in either of the two conditions:

1) A pre-specified number of generations is evaluated;
2) The lowest error achieved by the best-performed individual in a generation has reached below a pre-specified error

threshold, which means the calibration process has converged.

Upon the completion of the above calibration process, one can simply adopt the parameter value set that achieves the
lowest average trajectory prediction error in the last generation as the model parameters for the target car following model
M.

It is easy to conclude that for a typical GA-based calibration approach, the fitness degree of a particular individual is rep-
resented by the average trajectory prediction error of the car following model M under that parameter set. Given that the
mixed error measure function is a combination of the relative error measure and absolute error measure and will not over-
estimate errors in most cases (Kesting and Treiber, 2008), it is also adopted as the objective function of the GA-based cali-
bration method to calculate the average trajectory prediction error of each individual when compared to the real follower
trajectories, which is shown below in Eq. (1).
Fmix Dxsim
h i

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

h Dxreal
��� ���i h

Dxsim � Dxreal
� �2

Dxreal
��� ��� i

vuuuut ð1Þ
where expression h�imeans the temporal average value of the variable over the entire time duration and �j j refers to the abso-

lute value of the variable. x refers to the position of the following vehicle at a specific time step such that Dxsim denotes the

predicted space headway at the same time step and Dxreal denotes the corresponding real space headway. Fmix Dxsim
h i

refers to

the trajectory prediction error in predicting a single following vehicle. To obtain the average trajectory prediction error, one

simply needs to calculate Fmix Dxsim
h i

for each follower in the calibration dataset and take the average of them.

Nonetheless, as illustrated in Section 1, conventional car following models calibrated by the current GA-based approach
or other existing approaches are not necessarily suitable choices for improving fuel efficiency due to the introduction of extra
uncertainties caused by various limits of human drivers during the calibration process. Therefore, to enable the calibrated car
following models to better improve fuel efficiencies of following vehicles while still maintaining driving safety and accept-
able travel efficiency so that eco-driving can be achieved, we attempt to modify the current GA-based calibration method by
1) introducing the average instantaneous fuel consumption of vehicle as the surrogate index for measuring the fitness degree
of a model parameter set and 2) use the widely-used VT-Micro fuel consumption model (Ahn et al., 2002) as the core part of
the proposed objective function to calculate such instantaneous fuel consumption. The details of the modified objective
function are listed below:
3
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evtð _x tð Þ; €x tð ÞÞ ¼ exp
X3
i¼0

X3
j¼0

Kij €x tð Þð Þ b _x tð Þc120km=h
0km=h

� �i
b€x tð Þc13km=h=s

�5km=h=s

� �j
)(

ð2Þ

e _x tð Þ; €x tð Þ;DxðtÞð Þ ¼ epenalty : if

_x tð Þ < 0
or

_x tð Þ > v limit

or

DxðtÞ � l > max Dxmax; _x tð Þ � hwmaxð Þ
or

DxðtÞ � l < maxðDxmin; _x tð Þ � hwminÞ

8>>>>>>>>>>><
>>>>>>>>>>>:

evtð _x tð Þ; €x tð ÞÞ : otherwise

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð3Þ

eavg ¼ he _x tð Þ; €x tð Þ;DxðtÞð Þi ð4Þ

Eq. (2) is the VT-Micro model that calculates the instantaneous fuel consumption (liters=s) of a vehicle at time t based on

the instantaneous speed _x tð Þ and acceleration €x tð Þ. Kij €x tð Þð Þ is a coefficient whose value depends on the sign of instantaneous
acceleration €x tð Þ. To be consistent with previous studies including Zhou et al. (2019) and Ma et al. (2017); Qu et al., 2020, the
values of Kij €x tð Þð Þ� �

i;j¼0;1;2;3 are simply adopted the same as those in Ma et al. (2017). Besides, it is worth noting that the trun-

cation of speed and acceleration may cause slight underestimation of fuel consumption.
In addition, considering that the GA-based approach with the modified objective function should enable the calibrated car

following models to not only reduce fuel consumptions, but also maintain driving safety and travel efficiency at an accept-
able level, a step function described by Eq. (3) is further introduced, in which the final instantaneous fuel consumption
e _x tð Þ; €x tð Þ;DxðtÞð Þ at time t is determined by the result evtð _x tð Þ; €x tð ÞÞ of VT-Micro model in most cases except the following:

� Current speed (unit: m=s) of the following vehicle is smaller than 0 or larger than a pre-specified speed limit v limit , which
strongly contradicts the basic driving safety requirement;

� Current net gap1 DxðtÞ � l of the following vehicle is smaller than the minimum safe net gap defined by the larger value of a
minimum safe net space headway Dxmin and a minimum safe time headway hwmin, which contradicts driving safety require-
ment as well;

� Current net gap DxðtÞ � l is larger than the maximum allowable net gap defined by the larger value of a maximum allow-
able net space headway Dxmax and a maximum allowable time headway hwmax. This contradicts the requirement of main-
taining an acceptable travel efficiency since keeping a too large net gap will definitely sacrifice travel efficiency.

Therefore, when encountering the above three situations, instead of taking the result of VT-Micro model, Eq. (3) will
adopt a fixed heavy punishment defined by epenalty as the final instantaneous fuel consumption of the following vehicle at
time t. In other words, the dangerous or unwanted performance of a calibrated car following model in the fields of driving
safety and travel efficiency will be represented by an extremely high instantaneous fuel consumption so that parameter set
leading to such situations will be gradually eliminated through multiple generations during the calibration process. At last,
Eq. (4) is introduced to calculate the average instantaneous fuel consumption eavg of the car following model with a specific
parameter set over all times. The obtained eavg will be the new surrogate index to measure the fitness degree of a parameter
set.

Eqs. (2)–(4) comprise the complete objective function proposed in this study. By replacing the average trajectory
prediction error in the current GA-based calibration method with the average instantaneous fuel consumption calculated
by Eqs. (2)–(4) combined while keeping all other parts of the calibration method unchanged, the modified GA-based
approach can easily calibrate parameters of conventional parametric car following models towards achieving lower fuel
consumptions while maintaining driving safety and acceptable travel efficiency. Thus, it makes it possible to achieve certain
level of eco-driving by simply using existing car following models (tap more potentials of existing car following models).
3. Calibrations of two conventional car following models

In this section, we attempt to calibrate conventional car following models using both the original GA-based method and
the modified GA-based method respectively against the same calibration dataset in order to compare and validate whether
the proposed calibration approach do outperform the original approach in enabling the following vehicles to achieve the
aforementioned eco-driving requirements.

Two conventional, equation-based car following models that output accelerations are thus adopted: 1) the confined Full
Velocity Difference (c-FVD) car following model proposed by Yu et al. (2019), and 2) the Intelligent Driver Model (IDM)
refers to the space headway and l refers to the average vehicle length taking as 5 m.
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proposed by Treiber et al. (2000). Given that the details of car following models are beyond the scope of this study, we would
directly introduce the parameters that need to be calibrated in both car following models while one could refer to the cor-
responding papers for more details regarding model structures, applications, and performances.

For the c-FVD model, it is developed based on the popular FVD car following model (Jiang et al., 2001) by introducing a
dynamic acceleration confinement term to further ensure that under no circumstances will the model produce any overre-
acted maneuvers. As for finalizing the c-FVDmodel, there are a total of 12 parameters that needs to be determined: the first 6
parameters (s, k, V1, V2,lint and b) are inherited from the original FVD model and are used to generate the original predicted
acceleration based on inputs; the other 6 parameters (acap, amax, dcap, dmax, rþ and r�ini) are used by the dynamic acceleration
confinement term of the c-FVD model to further control the rationality of the predicted acceleration. To scale down the cal-
ibration complexities of c-FVD model without compromising the calibration quality, we decide to only calibrate the first 6
model parameters (s, k, V1, V2,lint and b) which directly determines how the accelerations of following vehicles are generated
based on current vehicle/traffic conditions. By contrast, we directly adopt the values from Yu et al. (2019) for the other 6
model parameters since their values are mainly decided by the physical performance limits of vehicles and common prac-
tices of drivers, both of which do not vary a lot in different calibration data.

As for IDM, it can produce collision-free car following behaviours as well as a self-organized characteristic so that the
model can reproduce smooth traffic flow and simulate bottleneck congestions (Zhou et al., 2017a). There are 6 model param-
eters to be calibrated in the IDM as well: v0, T, a, b, d, s0.

To enable a fair performance comparison between the same model calibrated by different approaches, we adopt the same
calibration dataset for all calibrations in this study. The calibration dataset consisting of 10 stable following-the-leader data
samples (10 pairs of leader–follower data pairs) are stochastically selected from either the US 101 dataset or the I-80 dataset
from the NGSIM program (FHWA, 2008). Same as previous studies such as Yu et al. (2019) and Zhou et al. (2017b), the raw
trajectory data of all adopted data samples are pre-processed using a symmetric exponential moving average filter
(Thiemann et al., 2008) with a smoothing width of 0.5 s, which eliminates mutated and false position values in the field data
and smooths the trajectories of both real leaders and followers. After that, the smoothed speed or acceleration values at each
time step are obtained from the first or second order finite differentiations of the corresponding position (trajectory) values.
By doing so, the quality of the calibration dataset is effectively improved. Besides, the updating/simulation/prediction inter-
val of the two car following models are both set as 0.1 s, which is consistent with the scan interval of the NGSIM data. During
the calibration process of both calibration methods, only the complete trajectory/speed/acceleration data of the leader and
the initial boundary conditions of the following vehicle are given while the complete trajectory and movements of the fol-
lowing vehicle are simulated by the car following model with specific parameter set. At last, as an important baseline to
judge the calibration results, the average speeds of leading/following vehicles of all adopted data samples are calculated
and the results range between 35km=h and 70km=h.

Before the start of the calibration, the values of all hyper-parameters in both calibration approaches are reasonably deter-
mined as shown below in Table 1.

At last, as was introduced in the beginning of Section 2, the first two steps of both GA-based calibration methods is to
initialize the parameter values of each individual for the first generation, which requires us to firstly define a wide but rea-
sonable value range to serve as the constraints for each of the model parameters in c-FVD model or IDM. To enable both car
following models to be calibrated under fair conditions, the parameter value ranges and constraints for similar parameters
(e.g. maximum free-flow speed) in both car following models are designed as the same, all of which are listed as below.
For c-FVD model:

� The relaxation time s is in the range of 0:1;4½ �s;
� The sensitivity parameter k is in the range of 0:1;3½ �s�1;
� V1 > 0m=s , V2 > 0m=s;
� The maximum free-flow speed V1þ V2 is in the range of 15;35½ �m=s;
� The interaction length lint is in the range of 0:1;80½ �m;
� The unitless parameter b is in the range of 0:1;6½ �;
� V1 þ V2tanh �bð Þ < 0 since every vehicle should at least stop when its net space headway Dx� lð Þ becomes 0m, which can
be easily derived from the Optimal Velocity function in the c-FVD model.
Table 1
Hyper-parameter values for the modified GA-based calibration method (unit: vlimit – m/s, Dx – m, hw – s, epenalty – litres/s). The first three parameter values are
also used by the original GA-based calibration method.

Max iterations Population Pbm vlimit Dxmax hwmax Dxmin hwmin epenalty

300 4000 0.1 33.33 20 4 1 0.6 2

5
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For IDM:

� The desired free-flow speed v0 is in the range of 15;35½ �m=s;
� The safe time headway T is in the range of 0:1;4½ �s;
� The maximum acceleration a is in the range of 0:1;3:5½ �m=s2;
� The desired deceleration b is in the range of 0:1;3:5½ �m=s2;
� The acceleration exponent d is in the range of 1;10½ �;
� The minimum jam distance s0is in the range of 0:1;10½ �m.

The calibration results of both car following models under different calibration approaches are presented in Tables 2 and
3, respectively.

4. Comparisons of calibrated model performances and validations of the proposed calibration approach

In this section, we attempt to comprehensively compare the two c-FVD models (the two IDMs) determined by both cal-
ibration methods in order to validate the effectiveness of the modified GA-based calibration method. All the experimental
simulation tests in this section is conducted in a single-lane scenario without lane changes.

4.1. Model performance comparisons in simulating a single following vehicle

Firstly, the performances of the two c-FVD models (the two IDMs) in simulating/controlling a single following vehicle are
tested and compared. Given that the accumulated fuel consumption of a vehicle in a longer period tends to be a more stable
value that can better represent the fuel consumption level of a car following model, we decided to initialize a virtual leading
vehicle which travels for 10 minutes (6000 time steps) with random acceleration/deceleration maneuvers, whose details are
listed as follows:

� The initial speed of the leader is 15m=sð54km=hÞ;
� The initial acceleration of the leader is 0m=s2;
� The leader starts driving from the position of 30 m, enabling an initial space headway of 30 m for the immediate following
vehicle;

� For every 10 time steps (every 1 s), an acceleration variation value will be stochastically generated according to a Gaus-
sian distribution with mean value 0 and standard deviation 0.5. The variation value will then be added to the current
acceleration of the leader to reproduce a real leading vehicle with random but continuous acceleration/deceleration
maneuvers;

� Accelerations of the leader will always be truncated within the range of �3:41;3:41½ �m=s2, which is consistent with both
the range in NGSIM datasets and the deceleration values used in determining the stopping sight distance (Contributors,
2015; Fambro et al., 1997);

� Acceleration of the leader at current time step will be auto-adjusted if it will make the vehicle to reach a new speed at the
next step that is out of the range 0;20½ �m=s ( 0;72½ �km=h). This is to ensure that the speed profile of the leader is consistent
with those of real leaders in the calibration dataset.

Correspondingly, the initial boundary condition for the following vehicle is set as:

� The initial speed of the follower is 15m=sð54km=hÞ;
� The initial acceleration of the follower is 0m=s2;
Table 2
Calibrated parameter values for the c-FVD model.

FVDM parameter Τ k V1 V2 lint b

Values by modified GA method 3.703 0.557 1.882 18.393 42.135 0.106
Values by original GA method 3.999 0.721 14.318 20.681 24.419 0.859

Table 3
Calibrated parameter values for the IDM.

IDM parameter v0 T a b d s0

Values by modified GA method 19.898 1.288 2.671 3.057 2.643 1.216
Values by original GA method 34.995 1.259 1.491 1.226 9.998 2.212

6
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� The follower starts driving from the position of 0 m, enabling an initial space headway of 30 m or an initial time headway
of 2 s.

A total of 10 tests are conducted for the two c-FVD models as well as the two IDMs. To justify the capability of the mod-
ified GA-based method in enabling eco-driving, we still use the VT-Micro model defined by Eq. (2) to calculate the fuel con-
sumptions of the follower while adopt the inverse time-to-collision (iTTC) (Balas and Balas, 2006) to measure driving safety
risks of the follower. In addition, the travel efficiency of the follower can be easily described by its total travel distance given
that the travel time of the follower is fixed as 10 minutes. The iTTC of a following vehicle is described by the following
equation:
Table 4
Perform
Note: In
model c

Test

Tota
Norm

Fuel
FV

Fuel
iTTC ¼
Z
t
max 0;

_�Dx tð Þ
Dx tð Þ � l

" #
dt ð5Þ
where _�Dx tð Þ refers to the approaching rate of the following vehicle while Dx tð Þ � l is the net space headway.
The comprehensive results of the 10 tests are listed below in Tables 4 and 5.
It is easy to derive from Tables 4 and 5 that for both car following models, when compared to the model calibrated by the

original GA-based method, the same model always performs much better in fuel efficiency when it is calibrated by the mod-
ified method with Eqs. (2)–(4) as the objective function. To be specific, in all the 10 tests with different leader movement
profiles, the modified GA-based method enables both c-FVD model and IDM to control the following vehicle to drive in a
more fuel-efficient way because the average fuel consumption per km in all tests are reduced for at least 10.24% (at least
10.24% fuel efficiency improvement) without any exceptions. And the average fuel efficiency improvements across all 10
tests for both c-FVD model and IDM are very similar and are identified as 11.73% and 12.29%, respectively.

Despite of the stable fuel efficiency improvements, models calibrated by the modified GA-based method also presents a
highly-acceptable travel efficiency since in all 10 tests, the follower controlled by the fuel-efficient c-FVD model (calibrated
by the modified GA-based method) travels almost the same distance as the followers controlled by the normal c-FVD model
(calibrated by the original GA-based method). This can be further proved by the fact that the average travel distance of the 10
followers controlled by the fuel-efficient c-FVD model is about 5932m while that is 5947m for the followers controlled by
normal c-FVD model, which indicates a negligible difference. The same conclusion on travel efficiency can be easily drawn
for the 10 IDM tests from Table 5. In other words, the modified GA-based calibration method achieves significant improve-
ment in fuel efficiency almost without sacrificing travel efficiency.

Nowwe take a look at driving safety issues. For the 10 c-FVD tests (Table 4), the average iTTC result of the followers by the
fuel-efficient c-FVD model (29.750) is significantly lower than that of the followers by the normal c-FVD model (36.139).
Given that iTTC index is proportional to safety risks, the above result indicates that the modified GA-based method also
enables car following models to drive in a safer (lower risk) way. The above is further supported by the fact that the average
space headway produced by the fuel-efficient c-FVD model (32:411m) is much larger than that of the normal c-FVD model
(19:934m). Nonetheless, considering that 1) the average speeds of the followers controlled by both c-FVD models are only
about 10m=s such that even the average time headway produced by the normal c-FVD model still reaches around 2 s; 2)
ance comparisons of two c-FVD models calibrated by modified GA method and original GA method respectively in simulating a single following vehicle.
the rest of the tables and figures, the c-FVD model calibrated by the modified GA method is described as the fuel-efficient c-FVD model yet the c-FVD
alibrated by the original GA method is described as the normal c-FVD model.

No. Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 Test 8 Test 9 Test
10

Avg
Value

l time steps (0.1 s per step) 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000
al c-FVDM Total fuel

consumption (l)
1.126 0.935 1.164 0.977 1.029 1.029 1.122 1.072 1.067 1.018 1.054

Total iTTC 34.769 40.019 36.506 33.076 37.373 35.730 39.359 33.462 36.029 35.063 36.139
Total travel
distance (m)

6396 5086 6220 5599 5644 6123 6113 6479 5794 6017 5947

Avg headway (m) 20.858 17.809 20.568 19.204 19.332 20.326 20.320 21.128 19.694 20.104 19.934
Min headway (m) 5.458 5.492 5.669 6.245 6.107 5.543 5.827 5.657 6.089 6.036 5.812
Avg fuel cost per
km

0.176 0.184 0.187 0.175 0.183 0.168 0.184 0.165 0.184 0.169 0.177

-efficient c-
DM

Total fuel
consumption (l)

0.984 0.833 1.002 0.875 0.907 0.913 0.980 0.942 0.935 0.902 0.927

Total iTTC 27.101 35.138 30.227 26.755 31.372 29.451 31.543 27.992 28.669 29.250 29.750
Total travel
distance (m)

6380 5068 6199 5583 5643 6111 6088 6479 5767 6001 5932

Avg headway (m) 35.151 28.392 33.589 30.043 30.558 33.746 32.805 35.802 31.134 32.896 32.411
Min headway (m) 6.705 5.521 5.5166 6.645 6.328 5.880 6.284 5.737 6.107 5.997 6.072
Avg fuel cost per
km

0.154 0.165 0.162 0.157 0.161 0.149 0.161 0.145 0.162 0.150 0.156

efficiency improvement 12.38% 10.52% 13.63% 10.24% 11.88% 11.10% 12.30% 12.11% 11.97% 11.21% 11.73%
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Table 5
Performance comparisons of two IDMs calibrated by modified GA method and original GA method respectively in simulating a single following vehicle. Note: In
the rest of the tables and figures, the IDM calibrated by the modified GA method is described as the fuel-efficient IDM while the IDM calibrated by the original
GA method is described as the normal IDM.

Test No. Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 Test 8 Test 9 Test
10

Avg
Value

Total time steps (0.1 s per step) 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000
Normal IDM Total fuel

consumption (l)
1.109 0.923 1.103 0.992 1.007 1.015 1.092 1.019 1.022 1.006 1.029

Total iTTC 34.374 34.819 37.179 34.146 38.965 33.667 39.087 33.996 35.998 34.117 35.635
Total travel distance
(m)

6387 5081 6216 5595 5643 6122 6077 6478 5791 6016 5941

Avg headway (m) 27.865 22.468 27.001 22.382 24.199 23.971 25.925 26.308 24.109 22.893 24.712
Min headway (m) 7.204 7.182 7.182 7.184 7.184 7.182 7.182 7.182 7.182 7.183 7.185
Avg fuel cost per
km

0.174 0.182 0.178 0.177 0.178 0.166 0.180 0.157 0.176 0.167 0.173

Fuel-efficient
IDM

Total fuel
consumption (l)

0.947 0.814 0.958 0.866 0.888 0.882 0.962 0.913 0.910 0.874 0.901

Total iTTC 39.769 41.477 42.297 39.547 45.167 39.934 45.224 39.167 42.015 40.503 41.510
Total travel distance
(m)

6385 5077 6203 5590 5644 6123 6086 6479 5770 6014 5937

Avg headway (m) 30.760 24.777 28.840 24.926 25.947 28.942 27.768 31.513 26.755 28.173 27.840
Min headway (m) 6.269 6.220 6.217 6.297 6.262 6.216 6.220 6.222 6.249 6.225 6.240
Avg fuel cost per
km

0.148 0.160 0.155 0.155 0.157 0.144 0.158 0.141 0.158 0.145 0.152

Fuel efficiency improvement 14.56% 11.70% 12.97% 12.66% 11.83% 13.10% 12.03% 10.41% 10.55% 13.08% 12.29%
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the minimum space headways in all tests for both c-FVD models are always larger than the vehicle length of 5m, we can
simply conclude that the c-FVD models calibrated by both approaches can both enable the following vehicle to drive in a
very safe manner, while the modified GA-based calibration method does lead to even better safety results.

Similar findings can be derived from Table 5 for the 10 IDM tests: the average space headway produced by the fuel-
efficient IDM (27:840m) is also larger than that of the normal IDM (24:712m) while the minimum space headways in all tests
for both IDMs are always larger than the typical vehicle length. The only difference from the c-FVD test results is that the
average iTTC result of the followers by the fuel-efficient IDM (41.510) is higher than that of the followers by the normal
IDM (35.635), which is merely caused by the fact that the calibrated net minimum jam distance s0 ¼ 1:216m for the fuel-
efficient IDM while s0 ¼ 2:212m for the calibrated normal IDM (see Table 3) such that the actual minimum space headway
kept by fuel-efficient IDM (6:240m, including leading vehicle length of 5m) is slightly smaller than that of normal IDM
(7:185m, see Table 5). Nonetheless, given that the IDM is calibrated by field data with medium/low average vehicle speed
(no more than 20m=s or 72km=h), a standstill net gap of more than 1:240m is already sufficiently safe and reasonable. There-
fore, we can still conclude that both IDMs can enable safe following behaviours in all the tests.

To conclude, when simulating a single vehicle following a speed-changing leader, car following models calibrated by the
proposed GA-based method do enable the following vehicle to achieve a higher fuel efficiency while maintaining good driv-
ing safety and travel efficiency. In other words, the proposed GA-based method does enable conventional car following mod-
els to simulate/control vehicles in a more eco-driving manner. There are mainly two reasons why the proposed calibration
method can achieve the above:

� It encourages more moderate accelerations and decelerations while discourages large speeds by tuning down the param-
eter value of ‘maximum free-flow speed’ (and adjusting other parameter values) in the car following models during cal-
ibration process, which is proved by model calibration results in Tables 2 and 3;

� It encourages to keep relatively larger space headways when the traffic is smooth so that the movement of the following
vehicles is also smoother with less sudden accelerations or decelerations (drives in a more relaxed way), which can be
supported by the predicted average space headways listed in Tables 4 and 5, as well as the plots in Figs. 1 and 2. In
the two figures, the trajectory, space headway, speed, and acceleration profiles of the follower simulated by both c-
FVD models in Test 1 are plotted, in which the follower controlled by the fuel-efficient c-FVD model (blue dashed line)
indeed keeps a larger yet still reasonable space headway (corresponds to an average time headway of around 3.3 s) when
the traffic is smooth and unblocked. This is also proved by Fig. 2 (a) and (b) since whenever the leader speed increase
towards or reaches each crest (see the crests in Fig. 2 (b)), the space headway kept by the fuel-efficient c-FVD model
is always larger than the space headway kept by the normal c-FVD model (see the corresponding crests in Fig. 2 (a)).
4.2. Model performance comparisons in simulating vehicle platoon

Secondly, the performances of the two c-FVDmodels (the two IDMs) in simulating/controlling a vehicle platoon following
a speed-changing vehicle are tested and compared. We still adopt the same configuration for the leading vehicle and the
8



Fig. 1. Simulated follower trajectory comparison of two c-FVD models.

Fig. 2. Simulated follower status comparison of two c-FVD models: (a) space headways, (b) speeds, and (c) accelerations.
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same initial boundary conditions for all the following vehicles: the leading vehicle will still travel for 10 minutes with
stochastic accelerations decided by a Gaussian distribution; a simulated following vehicle with an initial speed of 15m=swill
be added to the road whenever the space headway between the last vehicle on road and the origin point exceeds 30 m. A
total of 50 following vehicles are created and all four calibrated car following models (two c-FVD models and two IDMs)
are tested. The comprehensive results of the test are listed below in Tables 6 and 7.

As can be easily observed from Table 6, while all four sample followers (the 1st, 10th, 30th, 50th followers) in the platoon
controlled by the fuel-efficient c-FVDmodel have achieved obvious fuel efficiency improvements when compared to the cor-
responding followers in the platoon controlled by the normal c-FVD model, the improvements made by vehicles in the
9



Table 6
Performance comparisons of two c-FVD models calibrated by modified GA method and original GA method respectively in simulating a vehicle platoon.

ith Follower Follower 1 Follower 10 Follower 30 Follower 50
Total time steps (0.1 s per step) 6000 6000 6000 6000
Normal c-FVDM Total fuel consumption (l) 1.140 0.985 0.806 0.704

Total iTTC 30.534 16.595 11.442 8.158
Total travel distance (m) 7070 6842 6414 5990
Avg headway (m) 22.572 22.640 22.740 22.986
Min headway (m) 6.522 9.635 10.923 12.080
Avg fuel cost per km 0.161 0.144 0.126 0.117

Fuel-efficient c-FVDM Total fuel consumption (l) 1.003 0.659 0.557 0.491
Total iTTC 23.520 5.749 1.532 1.047
Total travel distance (m) 7053 6699 6074 5363
Avg headway (m) 38.072 34.857 34.256 33.748
Min headway (m) 7.896 14.333 20.008 18.911
Avg fuel cost per km 0.142 0.098 0.092 0.092

Fuel efficiency improvement 11.78% 31.65% 27.01% 22.01%

Table 7
Performance comparisons of two IDMs calibrated by modified GA method and original GA method respectively in simulating a vehicle platoon.

ith Follower Follower 1 Follower 10 Follower 30 Follower 50
Total time steps (0.1 s per step) 6000 6000 6000 6000
Normal IDM Total fuel consumption (l) 1.124 1.039 0.856 0.755

Total iTTC 33.268 21.321 14.760 10.820
Total travel distance (m) 7069 6807 6417 6010
Avg headway (m) 28.196 23.330 22.878 22.856
Min headway (m) 7.182 7.681 8.804 9.848
Avg fuel cost per km 0.159 0.153 0.133 0.126

Fuel-efficient IDM Total fuel consumption (l) 0.976 0.732 0.600 0.536
Total iTTC 38.645 14.654 4.677 2.635
Total travel distance (m) 7066 6767 6390 5880
Avg headway (m) 32.947 25.699 24.813 24.534
Min headway (m) 6.250 8.153 9.891 12.340
Avg fuel cost per km 0.138 0.108 0.094 0.091

Fuel efficiency improvement 13.17% 29.18% 29.63% 27.48%
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middle or rear of the platoon (up to 31.65% improvement in fuel efficiency) are significantly higher than that of the first fol-
lower (11.78%). In addition, although the iTTCs representing safety risks are keeping reducing towards the end of the platoon
for both c-FVD models, the reducing degree of iTTC in the fuel-efficient c-FVD platoon is much more significant such that the
iTTC of the 50th follower in the normal c-FVD platoon (8.158) is about 8 times the iTTC for the 50th follower in the fuel-
efficient c-FVD platoon (1.047). In other words, the last follower in the fuel-efficient c-FVD platoon is driving in a much safer
manner with much lower safety risks. By contrast, while the travel distance for the 50th follower in the fuel-efficient c-FVD
platoon (5363m) is indeed smaller than that of the 50th follower in the normal c-FVD platoon (5990m), this is already the
maximum sacrifice on travel efficiency among all vehicles and is only measured as �10.47%. If we further measure travel
efficiencies of both platoons by calculating traffic flow at the reference point of 5000m (see the crosslines in Fig. 3 (a) and
(b)), one can find that for the normal c-FVD platoon, it takes around 519s for the leading vehicle and all 50 following vehicles
to pass the reference point, which corresponds to a throughput of 354vehs=h. By contrast, all 51 vehicles in the fuel-efficient
c-FVD platoon take 570s to pass the reference point with a throughput of 322vehs=h. Hence, the platoon travel efficiency
sacrifice of the fuel-efficient platoon is measured as �9.04%, which is indeed smaller than the travel efficiency sacrifice of
the last vehicle (�10.47%). Thus, it can be fully compensated by the substantial improvements in fuel efficiency and driving
safety.

At last, by referring to Table 7, one can easily find that the performance comparison between two IDM platoons present
almost the same results and findings as the comparison between two c-FVD platoons, yet the maximum sacrifice on travel
efficiency for the fuel-efficient IDM is even smaller and only measured as �2.16% (5880 m vs. 6010 m for the last vehicles in
both IDM platoons).

Therefore, the modified GA-based calibration method indeed enables the calibrated car following models to achieve eco-
driving, especially achieve substantial improvements in both fuel efficiencies and driving safeties, in a platoon level.

Since the overall performance improvements of fuel-efficient IDM (compared to normal IDM) is highly similar to the
overall improvements of fuel-efficient c-FVD model (compared to the normal c-FVD model), we will only present several
plots regarding the comparison test results between the two c-FVD models for further illustration purposes. Fig. 3 plot
the respective trajectories of the platoon controlled by the two c-FVD models while Fig. 4 plot the tendency curves for aver-
age fuel consumptions, iTTCs, and travel distances of all 50 following vehicles in the two c-FVD vehicle platoons. Both figures
10



Fig. 3. Simulated platoon trajectory comparison of two c-FVD models: (a) normal c-FVD platoon, and (b) fuel-efficient c-FVD platoon.
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strongly support our above findings drawn from Tables 6 and 7. Moreover, Fig. 3 (b) also clearly shows that the traffic oscil-
lations (disturbances) originated from the first leading vehicle has been dissipated very effectively in the platoon controlled
by the fuel-efficient c-FVD model while this is not the case for platoon controlled by the normal c-FVD model (Fig. 3 (a)),
which indicates that the fast dissipation of oscillations is positively correlated to the implementations of eco-driving strat-
egy. In fact, both eco-driving and oscillation accommodation are the results of a more relaxed driving strategy in which space
headways between vehicles are relatively larger than usual while the frequencies and degrees of sudden accelerations/de-
celerations are relatively lower than usual, which are exactly the direction towards which the modified GA-based calibration
method changes the parameter values for a car following model.

In addition, Fig. 5 plot the curves of the space headway, speed, and acceleration for the 30th follower in the two vehicle
platoons controlled by the two c-FVD models, respectively. One can easily observe that when compared to the 30th follower
controlled by normal c-FVD model, the same follower controlled by the fuel-efficient c-FVD model goes through much
11



Fig. 4. Simulated platoon status comparison of two c-FVD models: (a) fuel consumptions, (b) iTTCs, and (c) travel distances.

Fig. 5. Performance comparison of the 30th followers in two vehicle platoons controlled by two c-FVD models respectively: (a) space headways, (b) speeds,
and (c) accelerations.
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smaller fluctuations in all three curves, which is a result of 1) the use of the fuel-efficient c-FVD model to drive this vehicle in
a more relaxed way, 2) the effective dissipation of oscillations by preceding vehicles further enabling this vehicle to move
forward in a smoother traffic condition without much need for large speed changes so that eco-driving can be achieved even
more easily.

To summarize, the modified GA-based calibration method does enable the calibrated car following models to better
achieve eco-driving and oscillation dissipations simultaneously when simulating/controlling a platoon of vehicles.
12
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4.3. Model performance comparisons as per driving safeties under urgent scenario

At last, we attempt to test and validate whether car following models calibrated by the modified GA-based method can
still avoid accidents in urgent scenarios by generating very strong but reasonable decelerations.

We define a very urgent scenario which is highly similar with the one used in both Zhao and Gao (2005) and Yu et al.
(2019) to carry out the test. The details are defined as follows: Two successive vehicles are initially moving forward with
an identical speed of 20m=s and a space headway of just 30m (net gap 25m), then the leader begins to decelerate with an
extremely strong deceleration of �5:5m=s2 until it totally stops. We need to verify whether the c-FVD model and IDM cal-
ibrated by the modified GA-based method can control the follower to fully stop before rear-end collision happens. The space
headways, speeds, and decelerations of the follower simulated by two c-FVDmodels are displayed in Fig. 6 while those of the
follower simulated by two IDMs are presented in Fig. 7, respectively.

First, as can be observed from Graph (a) of both figures, the followers simulated by all four calibrated car following mod-
els successfully stops before accidents happen because the final space headways are all larger than the average vehicle length
of 5m. Yet the final space headways produced by the two fuel-efficient car following models (blue dashed line) are indeed
slightly smaller than those of the two normal car following models (red dashed line), which indicates that the modified GA-
based calibration method that can achieve eco-driving does not compromise too much the car following models’ decelera-
tion capabilities in urgent scenario and can still ensure high-level safety. More specifically, from Graph (c) of both figures we
can find that the maximum decelerations generated by both the fuel-efficient c-FVD model and fuel-efficient IDM are indeed
slightly smaller than those generated by the two normal models because the modified GA-based method encourages more
moderate acceleration or deceleration maneuvers. Yet the two fuel-efficient car following models still successfully produce a
set of considerably strong decelerations (up to about �4:5m=s2) to stop the following vehicle in time. Accordingly, the pro-
posed modified GA-based calibration method has the capability to cope with very urgent scenarios like the one above.
Finally, it is worth noting that for even worse scenarios, a car following model calibrated by the proposed calibration
approach may not be able to fully avoid an accident. However, the same would possibly happen to the samemodel calibrated
by other approaches as well since the capability of a car following model to handle specific extreme situations is more
related to the model structure/logics than the way to calibrate it.
5. Further discussions and conclusion

The majority of microscopic traffic flow (car following) models, especially conventional parametric models, usually con-
sist of one or more mathematical equations with some unknown parameters. Thus, the performances and capabilities of
these parametric car following models would largely lie on the quality of the calibration data and how the model parameters
Fig. 6. Test results of a follower simulated by two c-FVD models respectively under an urgent traffic scenario: Comparison of (a) space headways, (b)
speeds, and (c) accelerations.

13



Fig. 7. Test results of a follower simulated by two IDMs respectively under an urgent traffic scenario: Comparison of (a) space headways, (b) speeds, and (c)
accelerations.
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are calibrated. However, regardless of different calibration data, the majority of current approaches for calibrating paramet-
ric models will drive the model parameters towards best fitting following-the-leader field data. Thus, these calibrated mod-
els tend to excel at predicting human-driven following vehicles. Yet they may not be capable of simulating or controlling the
following vehicles to solve various traffic challenges that human drivers are hard to handle, e.g. to achieve high fuel effi-
ciency along with good driving safety and travel efficiency, which is known as eco-driving strategy.

In this study, we propose a modified genetic algorithm (GA) based calibration method that enables the calibrated car fol-
lowing models to simulate or control vehicles in the eco-driving mode. By developing a novel objective function for the GA
method based on the widely-used VT-Micro fuel consumption model, the modified GA-based method can calibrate model
parameters towards reducing fuel consumptions. In addition, by subtly using heavy fuel consumptions as a surrogate index
to represent low travel efficiency or dangerous driving strategies, the proposed objective function can guide the calibration
method to drive the calibrated model towards simultaneously achieving high fuel efficiency, good driving safety, and accept-
able travel efficiency, which corresponds to achieving eco-driving. Experimental simulation results further indicate that
parametric car following models calibrated by the modified GA-based method can also alleviate traffic disturbances and
oscillations in a more effective manner.

Despite of all the above great advantages of the modified GA-based calibration method, it is still worth noting that the
time complexity of this calibration method is very low, which can easily take a normal computer several hours to complete
one calibration process. However, the low computational efficiency is an inherent feature of all GA-based calibration method
that is hard to overcome, which is caused by the fact that in the genetic algorithm, the population N of each generation, the
maximum allowable generations/iterations gmax, and the size (total time steps) of the calibration dataset sdata need to be suf-
ficiently large in order to enable better calibration results (better convergence). Given that the time complexity of a typical
GA-based calibration method is OðNgmaxsdataÞ if producing a single output by the car following model based on a specific
parameter set is regarded as the basic operation, it is easy to understand why the GA-based method is so time costly when
all the three values are sufficiently large2.

Therefore, one meaningful future research direction extended from this study is to modify the objective functions for
other types of optimization/calibration approaches such as the least square errors (LSE) method to validate whether similar
performance improvements can be achieved with higher calibration efficiencies. In addition, in this study, given that the
modified GA-based calibration method adopt the 10 following-the-leader data samples (leader in each sample has limited
time steps) used by the original method as the calibration dataset in order to enable a fair performance comparison, another
future research direction is to use a single artificial leader sample (such as the practices in Section 4) which travels for longer
time steps as the calibration dataset so that the modified calibration method may converge to better results.
2 In this study, N, gmax , and sdata are 4000, 300, and 3500 (approx.), respectively.
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