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ABSTRACT

We considered a nanoelectromechanical system consisting of a movable Cooper-pair box qubit, which is subject to an electrostatic field, and
coupled to the two bulk superconductors via tunneling processes. We suggest that qubit dynamics is related to that of a quantum oscillator
and demonstrate that a bias voltage applied between superconductors generates states represented by the entanglement of qubit states and
coherent states of the oscillator if certain resonant conditions are fulfilled. It is shown that a structure of this entanglement may be con-
trolled by the bias voltage in a way that gives rise to the entanglement incorporating so-called cat-states—the superposition of coherent
states. We characterize the formation and development of such states analyzing the entropy of entanglement and corresponding Wigner
function. The experimentally feasible detection of the effect by measuring the average current is also considered.

Published under license by AIP Publishing. https://doi.org/10.1063/10.0003739

1. INTRODUCTION

Electro-mechanical phenomena on the nanometer scale have
attracted significant attention during the last two decades.1 Recent
advantages in nanotechnologies acquire a promising platform for
studying the fundamental phenomena generated by the interplay
between quasi-classical and pure quantum subsystems. A charge
qubit formed by a tiny superconducting island [Cooper-pair box
(CPB)] whose basis states are charge states (e.g., states which repre-
sent the presence or absence of excess Cooper pairs on the island),
is one of a large group of pure quantum systems.2 At the same
time, modern nanomechanical resonators, whose dynamics accord-
ing to the Ehrenfest theorem to a great extent is described by classi-
cal equations, are ideal representatives of quasiclassical subsystem.3

Systems, whose dynamics is determined by the mutual influence
between a superconducting qubit and a nanomechanical resonator,
are a subject of cutting-edge research in quantum physics, espe-
cially in quantum communication (see, for example, Refs. 4–9).

There are two main questions that arise related to an interplay
between quasi-classical dynamics of the mechanical resonator and
quantum dynamics of the charge qubit.

The first one is how quasi-classical motion may affect pure
quantum phenomena. Considering this question, it was shown that
the superconducting current between two remote superconductors
can be established by mechanical transportation of Cooper pairs
performed by an oscillating CPB.10 Even more, it was demonstrated
that such transportation may generate correlations between the
phases of space-separated superconductors.11 Another question is
how coherent Josephson dynamics of a charge qubit will affect the
dynamics of the quasi-classical resonator, in particular, whether
the quantum entanglement between a superconducting qubit and
mechanical vibrations can be achieved. Recently, it was demon-
strated that individual phonons can be controlled and detected by a
superconducting qubit enabling coherent generation and registra-
tion of quantum superposition of zero and one-phonon Fock
states.4,5 At the same time, nanomechanical resonators provide the
possibility to store quantum information in the complex multi-
phonon coherent states. Such states, in contrast to single-phonon
states, where mechanical losses irreversibly delete the quantum
information, allow their detection and correction.12,13 Motivated by
such a challenge, in this paper, we demonstrate the possibility to
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generate quantum entanglement between the charge qubit states
and mechanical coherent ones in a particular nanoelectromechani-
cal system (NEMS) where mechanical vibrations are highly affected
due to the weak coupling with movable a Cooper-pair box.

2. MODEL AND HAMILTONIAN

Schematic representation of the NEMS prototype considered
in this article is presented in Fig. 1. It consists of the superconduct-
ing nanowire (SCNW),14–16 which is suspended between two bulk
superconductors and is capacitively coupled to the two side gate
electrodes. In this paper, we will consider the case when SCNW
represents a superconducting island that can be treated as a charge
qubit (Cooper-pair box) whose basis states are charge states—states
which represent the presence or absence of excess Cooper pairs on
the island. Below we will refer to these states as charge and neutral
states correspondingly. As this takes place, the gate voltage VG and
the voltage applied between the gates Vε are chosen in a way that
the difference in the electrostatic energies of the charged and
neutral states equals to zero at the straight configuration of the
nanowire, while nanowire bending removes this degeneracy. We
also reduce the bending dynamics of the SCNW to the dynamics of
the fundamental flexural mode described by the harmonic
oscillator.

Joint Cooper pairs dynamics and mechanical one of this
system is described by the Hamiltonian which can be presented in
the form,

H ¼ Hq þHm þ Hint, (1)

Hq ¼ �EJσ1 cosΦ, Hm ¼ �hω
2

x̂2 þ p̂2
� �

,

Hint ¼ εx̂σ3:

Here, Hamiltonian Hq represents Josephson coupling between CPB
and bulk superconductors. The constant EJ is the Josephson

coupling energy (in this paper we will consider only the case of
symmetric coupling), Φ ¼ Φ(t) is the superconducting phase dif-
ference between electrodes, σi (i = 1, 2, 3) are the Pauli matrices
acting in the qubit Hilbert space in a basis where vectors (1,0)T

and (0,1)T represent charged and neutral states, respectively.
Hamiltonian Hm in Eq. (1) represents dynamics of the fundamental
bending mode described by the harmonic oscillator with frequency
ω (here momentum and coordinate operators, p̂ and x̂, are normal-
ized on the amplitude of zero-point oscillations x0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
�h/Mω

p
, M is

an effective mass, x̂, p̂½ � ¼ i) . The third term Hint describes an
electromechanical coupling between the charge qubit and the
mechanical oscillator induced by the electrostatic force acting on
the charged state of the qubit, ε ¼ eEx0 . In the last equality, E is
an effective electrostatic field that is controlled by the difference of
the applied voltages VG and VE . Below we will assume ε � �hω, Ej,
that corresponds to the typical experimental situation.4,9,17

The states of the system described by the Hamiltonian,
Eq. (1), are a superposition of direct products of qubit states, e+i ,
and eigenstates of the oscillator jni (here and below eκi , denotes the
eigenvectors of the Pauli matrices σί with eigenvalues κ = ±1).

If ε ¼ 0, the interaction between the qubit and the mechanical
subsystem is switched off and stationary states of the Hamiltonian,
Eq. (1), are pure states (the entropy of entanglement is an integral
of motion, i.e., if the system is initially in a pure state, it will be in a
pure state at any moment of time). Synchronous switching on the
electrical field E and the bias voltage between superconducting
leads _ΦðtÞ ¼ 2eV/�h) results in the evolution of such pure states in
the states represented by entanglement between the qubit and oscil-
lator states.

3. TIME EVOLUTION

To carry out an analysis of this evolution, we introduce the
dimensionless time and energies, ωt ! t, EJ /�hω ! EJ , ε/�hω ! ε
and assume that at the moment of switching on the interaction
between the subsystems (t = 0), the difference between the super-
conducting phases is Φ =Φ0 and the system has been initial in a
pure state:

jΨ(0)ij ¼ ein � j0i: (2)

At t > 0, according to the Josephson relation, Φ(t) ¼ 2eVt/�hωþΦ0.
The Hamiltonian, Eq. (1), and, as a consequence, the time evolu-
tion operator Û(t, t’), which is defining evolution of the arbitrarily
initial state, has the properties

Ĥ(t þ TV ) ¼ Ĥ(t), Û(t, t0) ¼ Û(t þ TV , t
0 þ TV ), (3)

where TV ¼ 2π/ΩV ¼ π�hω/ejV j . To analyze the evolution opera-
tor, one can use the interaction picture taking

Û(t, t0) ¼ Ûη(t)Ûη(t, t
0)Ûyη (t0), (4)

where

Ûη(t) ¼ exp
{EJ
ΩV

σ1sin(ΩVt þ ηΦ0Þ � iayat
� �

: (5)

FIG. 1. Schematic illustration of the NEMS under consideration. The supercon-
ducting nanowire, treated as a charge qubit, is tunnel coupled to two bulk super-
conductors (S) with the superconducting phase difference Φ and capacitively
coupled to the two gate electrodes. The bending oscillations in the x direction
are described by the harmonic oscillator.
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The parameter η ¼ sgn(V/jV j) ¼ + characterizes the direction of
the bias voltage drop. The operator Ûη(t, t0) obeys the following
equation:

i
@Ûη(t, t0)

@t
¼ Ĥη(t)Ûη(t, t

0),

Ĥη(t) ¼ εx̂(t)σ3(t), Ûðt; tÞ ¼ Î:

(6)

Here,

x̂(t)¼ 1ffiffiffi
2

p (âe�it þ âyeit),

σ3(t)¼ σ3 cos
EJ
ΩV

sin(ΩVtþηΦ0)

� �
�σ2 sin

EJ
ΩV

sin(ΩVtþηΦ0)

� �
:

(7)

If the frequencies ω and Ωv are incommensurable, the opera-
tor Ĥη(t) is a quasiperiodic function of time. In such a case one
can expect that the mechanical subsystem, being initially in the
ground state, does not significantly deviate from this state in the
process of evolution. However, a rigorous consideration of this case
requires independent research and will be done elsewhere. In this
paper, we will consider the resonant case when ΩV = ω and will
assume that ε � 1 . The first condition stipulates the following
properties of the evolution operator,

Ûη(2πN , 2πN 0) ¼ Ûη(2π, 0)
	 
N�N 0

, (8)

where Ν, Ν0 are the natural numbers. The second assumption
allows us to make the following substitution in a leading approxi-
mation regarding small ε,

Ûη(t, t
0) ¼ Ûη(2πN , 2πN 0), (9)

where Ν (Ν0) = [t(t0)/2π] ([x] is an integer part of x), and obtain an
expression for Ûη(2π, 0) which can be written as

Ûη(2π, 0) ¼ exp i~εσ2 p̂(ηΦ0)þ ε2O(̂I)
	 


,

p̂(Φ) ¼ p̂ cosΦþ x̂ sinΦ:
(10)

Here ~ε ¼ 2πεJ1(2EJ ) and J1(x) the Bessel function of the first kind.
Using the above relations one can obtain an expression for the evo-
lution operator Û(t, t0), which in the main approximation regard-
ing ε has a form

Û(t, t0) ¼ Ûη(t) exp i~εσ2 p̂(ηΦ0)(t � t0)½ �Ûyη (t0): (11)

Using Eqs. (2) and (11) one gets that at the time t, with the
accuracy to small parameter ~ε � 1, the state of the system jΨ(t)i is
given by an expression,

jΨ(t)i ¼
X
κ

Aη
κe

κ
2(t, ηΦ0)� j � κz(t, η)/

ffiffiffi
2

p E
: (12)

Here,

eκ2(t, ηΦ0) ¼ eκ2exp[iEJσ1sin(t þ ηΦ0)]

and eκ2 ¼ σ1e�κ
2 are the eigenvectors of Pauli matrix σ2 with eigen-

values κ = ±1, Aη
κ ¼ (eη2(0, ηΦ0), ein) . The symbol jαi (where α is

a complex number) denotes the coherent states of the oscillator
âjαi ¼ αjαi, while a complex function z(t, η) is defined as

z(t, η) ¼ ~εt exp[�i(t þ ηΦ0)]: (13)

It should be stressed that Eq. (12) is valid only for restricted
time interval t � ~ε�2 . Time t should be also shorter than any
dephasing and relaxation times. From Eq. (12) one can see that ini-
tially pure state jΨ(t ¼ 0)i ¼ ein � j0i evolves into the state repre-
sented by the entanglement between the two qubit states and two
coherent states of the mechanical resonator. Moreover, the details
of this entanglement depend on switching time (parameter Φ0) and
direction of the bias voltage (parameter η). These circumstances
allow one to manipulate the described above entanglement by
switching the bias voltage direction.

4. GENERATION OF “CAT-STATES”

To demonstrate the effect of the entanglement between the
charge qubit and mechanical vibrations that comprehends the for-
mation of so-called Schrodinger-cat states of nanomechanical reso-
nator, we consider the following time protocol for V (t):

2eV(t) ¼ ��hωθðtÞ[1� 2θ(t� ts)]:

Namely, during the time interval 0 <t < ts the bias voltage
VðtÞ ¼ ��hω/2e and then it switches its sign.

Using Eqs. (4), (8), and (10), one gets that at t > ts,

Û(t, 0) ¼ Ûþ(t)eiσ2Äε(t�tS) p̂(Φ0)Ŝeiσ2~εts p̂(�Φ0)Û (0),

Ŝ ¼ Ûyþ(ts)Û (ts) ; ρ(ts, Φ0)þ iτ(ts, Φ0)σ1,

ρ(ts, Φ0) ¼ cos(2EJ cos ts sinΦ0),

τ(ts, Φ0) ¼ �sin(2EJ cos ts sinΦ0):

(14)

As a result, the state of the system after changing the direction of
the bias voltage has a form:

jΨ(t)i ¼
X
κ

eκ2(t, Φ)� ρA�
κ j � κzþ=

ffiffiffi
2

p i þ iτA�
�κjκz /

ffiffiffi
2

p E� �
,

(15)

where z± = z1 ± z2 and

z1 ¼ e�i(t�Φ0)~εts, z2 ¼ e�i(tþΦ0)~ε(t � ts) (16)

(see Fig. 2). It can be seen from this equation that the state of the
system is represented by the entanglement of two qubit’s state with
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two so-called “cat-states” (superposition of coherent states) whose
structure is controlled by the parameters EJ and Φ0. As it follows
from Eqs. (15) and (16), the bias voltage switching does not affect
the dynamics of the system if Φ0 = 0, π.

Below we will limit ourselves to considering a most interesting,
from our point of view, case when Φ0 = π/2 and put
ein ¼ (eþ2 þe�2 )/

ffiffiffi
2

p
, that is, we suppose that immediately before the

interaction was switched on, the qubit was in the eigenstate of the
operator Ĥq(t ¼ 0� δ) . These assumptions lead to the following
relations A�

þ¼A�
�¼exp(iEJ)/

ffiffiffi
2

p
in Eq. (15). To characterize the

entanglement between the qubit states and the states of the
mechanical oscillator, we introduce the reduced density matrices,
ρ̂q(m)(t) ¼ Trm(q)ρ̂, where ρ̂ ¼ jΨ(t)i Ψ(t)h j is a complete density
matrix of the system and Trm(q) denotes the trace over mechanical
(qubit) degrees of freedom. Using Eqs. (12) and (15), one can get
the following expression for the ρ̂q,

ρ̂q(t) ¼
I þ λ(t, ts)σ1

2
, (17)

where

λ(t, ts) ¼ exp(�~ε2t2), 0 , t � ts, (18)

λ(t, ts) ¼ ρ2exp[�~ε2(t � 2ts)
2]þ τ2exp(~ε2t2), t . ts: (19)

In deriving this equation, we took into account relation
eþ2 � e�2 þe�2 � eþ2 ¼ σ1 . Using Eq. (17) one can calculate the

entropy of entanglement,

Sen(t) ; �Trϱ̂mðtÞ logbϱmðtÞ ¼ �Trρ̂q(t) log ρ̂m(t): (20)

One can find that Sen(t) monotonically increases in time
within intervals 0 < t < ts and 2ts < t < x saturating to the maximal
value S(max )

e ¼ log 2 at t ! 1. Within interval ts < t < 2ts the
behavior of the entanglement entropy depends on the relation
between ρ and τ. In particular, for ρ2 > τ2 the entanglement entropy
Sen(t) starts to decrease after switching, reaching some minimal
value (equals zero for the ρ2 = 1) within interval ts < t < 2ts. If
ρ2 < τ2, the entropy continues to grow just after the switching.
However, its derivative might be also negative within some time
interval whose existence is controlled by the parameters ~εts and τ2 /
ρ2. The plot of Sen (t) for ~εts ¼ 1 and different values of ρ is pre-
sented in Fig. 3.

5. EVOLUTION OF MECHANICAL SUBSYSTEM AND
AVERAGE CURRENT

To describe the evolution of the mechanical subsystem, we
consider the reduced density matrix ρ̂m(t). From Eq. (15), one gets
that at t > ts,

ρ̂m(t) ¼
"
1
2

X
κ

[ρ2jκzþ/
ffiffiffi
2

p E
κzþ/

ffiffiffi
2

pD
j þ τ2jκz�/

ffiffiffi
2

p E
κz�/

ffiffiffi
2

p j
D

:

�iρτ j � κzþ/
ffiffiffi
2

p E
κz�/

ffiffiffi
2

p j
D

�H:c:
� �#

: (21)

To visualize the state of the mechanical subsystem, it is conve-
nient to use the Wigner function representation for the density

FIG. 2. Schematic illustration of the positions of the coherent states described
by the complex numbers zl,2 and their combinations z± in the complex plane. It
denotes the time evolution of the coherent states, on the one hand, and the
dependence on the initial phase difference Φ0, on the other one.

FIG. 3. The entanglement entropy dependent on time (in units of εω ), for differ-
ent values of ρ ¼ 0, 1/

ffiffiffi
2

p
, 0:9, 1 (blue, yellow, orange, and red curves online).

The thin dotted line indicates the bias voltage switching time. The dashed curve
corresponds to the maximal value of the entanglement, log 2.
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matrix ρ̂m(t),

W(x, p, t) ¼ 1
π

ð
ρm(x þ y, x � y, t)exp(2ipy)dy,

where ρm(x, x
0, t) ¼ xjρ̂m(t)jx0h i. Using Eq. (21), one gets

W(x, p, t) ¼ Wt(x cos t � p sin t, p cos t þ x sin t), (22)

where the function Wt (x, p) is defined according to the relation

Wt(x, p) ¼ 1
2

X
κ

[ρ2W0(x, pþ κjzþj)þ τ2W0(x, p� κjz�j)

þ2ρτsin(2κZ�x)W0(x, pþ κZþ)]: (23)

In Eq. (23), Z+¼(jz�j+ jzþj)/2 and

W0(x, p) ¼ 1
π
exp[�(x2 þ p2)] (24)

is the Wigner function corresponding to the ground state of the
oscillator. The plot of W (x, p, t) for t = 2πN, ρ = 0, ρ = 1 and
ρ ¼ τ ¼ 1

ffiffiffi
2

p
at | z+| = 3 and | z−| = 9 is presented in Figs. 4 and 5.

From Eqs. (21) and (23) one can see that in the case when ρ is
equal to zero or one (in particular, when ts = 0) the Wigner
function is positive and has two maxima, demonstrating the entan-
glement between two states of the qubit and two coherent states
(see Fig. 4). In the general case ρτ = 0, and the Wigner function
takes both positive and negative values at t > ts, demonstrating the
entanglement of two states of the qubit with two states of the nano-
mechanical resonator (see Fig. 5).

As it follows from the above consideration, the amplitude of
mechanical fluctuations, and therefore the energy stored in the
mechanical subsystem, changes over time. This energy comes from
the electronic subsystem causing a rectification of ac current. To
analyze this phenomenon, we calculate the dimensionless (normal-
ized to I0 ¼ 2e/�h) ac Josephson current averaged over the Nth
period of the Josephson oscillations:

IN ¼ 1
2π

ð2πN
2π(N�1)

dtTr
@Ĥq(t)

@Φ
ρ̂(t)

 !
:

Taking into account that @Ĥq/@Φ ¼ η@Ĥ/@t and
Ĥq(t ¼ 2πN) ¼ 0, one gets the following expression for IN,

IN ¼ η

2π
∇NTr Ĥm þ Ĥint

� �
ρ̂(2πN)

¼ η

2π
∇N [Em(N)þ Eint(N)], (25)

where ∇Nf (N) ; f (N)� f (N � 1) is the first difference. From this
equation, one can see that the average current is given by the
change of the mechanical energy Em and the energy of interaction
Eint after Nth period. One can find that at N . Ns ¼ [ts/2π]þ 1
the functions Em(N) and Eint (N) can be written as follows:

Em(N) ¼ 2π2~ε2(ρ2(2Ns � N)2 þ τ2N2),

Eint(N) ¼ 2πε~ε[ρ2(N � 2Ns)e
�(2π~ε)2(N�2Ns)

2 þ τ2Ne�(2π~εN)2 ]:
(26)

The change in the interaction energy contributes to the aver-
aged current as well as the mechanical energy. However, this

FIG. 4. The Wigner functions W(x,p,t = 2πN) for ρ = 1 (a) and ρ = 0 (b). It takes
only positive values and have two maxima demonstrating entanglement between
two qubit states and two coherent states of the nanomechanical resonator.
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contribution is of the order of ~ε2 and important only for periods
for which I(N)~ε ≃ ~ε2. So, the average current is determined by the
change of mechanical energy mainly, and is defined by the follow-
ing equations:

I(N)
~ε

� Im(N) ¼ �2π~εN , N � Ns � 1 (27)

I(N)
~ε

� 2π~ε(N � 2ρ2Ns), N . Ns: (28)

From Fig. 6, one can see that the averaged current exhibits a
jump equal to �ρ2IðNsÞ after the period during which the bias
voltage is switched. It originates in the fact that when we switch the
sign of the bias voltage (at t = ts) the power, pumped into the
mechanical subsystem, changes depending on the magnitude of ρ2.
For ρ = 1, the supplied power, P = IV, just changes its sign with the
bias voltage, and the current continues to flow in the same direc-
tion as it did before switching. For ρ = 0 supplied power is not
changed and consequently the current direction changes after
switching.

In conclusion, we have analyzed quantum dynamics of the
NEMS comprising the movable CPB qubit, subjected to an electro-
static field and coupled to the two bulk superconductors, controlled
by the bias voltage, via tunneling processes. We demonstrate ana-
lytically that if the ac Josephson frequency of superconductors, con-
trolled by the bias voltage, is in resonance with the mechanical
frequency of the CPB, the initial pure state (direct product of the
CPB state and ground state of the oscillator) evolves in time into
the coherent states of the mechanical oscillator entangled with the
qubit states. Furthermore, we established the protocol of the bias
voltage manipulation, which results in the formation of entangled

states incorporating so-called cat-states (the quantum superposition
of the coherent states). The organization of such states is confirmed
by the analysis of the corresponding Wigner function taking nega-
tive values, while their specific features provide the possibility for
their experimental detection by measuring the average current. The
discussed phenomena may serve as a foundation for the encoding
of quantum information from charge qubits into a superposition of
the coherent mechanical states. It may constitute interest for the
field of quantum communications due to the robustness of such
multiphonon states regarding external perturbation, comparing to
the single-phonon Fock state. However, the discussion of the spe-
cific protocols for such encoding is out of the scope of this paper
and will be presented elsewhere.
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