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ABSTRACT

Marine propeller design is a complex engineering problem that depends on the collaboration
of several scientific disciplines. During the design process, the blade designers need to
consider contradicting requirements and come up with one optimal propeller design as
a solution to the specific problem. This solution is usually the trade-off between the
stakeholders’ requirements and the objectives and constraints of the problem.

The significant amount of design variables related to blade design problems requires a
systematic search in a large design space. Automated optimisation has been utilised for a
number of blade design applications, as it has the advantage of creating a large set of
design alternatives in a short period of time. However, automated optimisation has failed
to be used in industrial applications, due to its complex set-up and the fact that in more
complex scenarios the majority of the non-dominated design alternatives are infeasible.
This necessitates a way of enabling the blade designers to interact with the algorithm
during the optimisation process.

The purpose of this thesis is to develop a methodology that supports the blade designers
during the design process and to enable them to interact with the design tools and assess
design characteristics during the optimisation. The overall aim is to improve the design
performance and speed. According to the proposed methodology, blade designers are
called during intermediate stages of the optimisation to provide information about the
designs and then this information is input in the algorithm. The goal is to steer the
optimisation to an area of the design space with feasible Pareto designs, based on the
designer’s preference. Since there are objectives and constraints that cannot be quantified
with the available computational tools, keeping the "human in the loop” is essential, as a
means to obtain feasible designs and quickly eliminate designs that are impractical or
unrealistic.

The results of this research suggest that through the proposed methodology the
designers have more control over the whole optimisation procedure and they obtain
detailed Pareto frontiers that involve designs that are characterised by high performance
and follow the user preference.

Keywords: marine propeller design, optimisation, NSGA-II, progressively interactive
evolutionary computation, interactive genetic algorithms, machine learning, support-
vector machines
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Part 1
Extended Summary

1 Introduction

Waterborne transport is responsible for 90% of the world’s trade nowadays and therefore,
designing ships that travel safely and efficiently should be the responsibility and goal of
the shipping industry on a global scale. The environmental impact of shipping is huge
though, and in recent years, it has been urgent to add another goal: designing vessels in a
sustainable manner with the aim to achieve the decarbonisation of the industry. Focusing
on the development of more efficient technologies in all stages of the ship design process,
contributes towards attaining this goal.

The selection of the propulsion system is an important part of the ship design process
and the overall goal is to design a unique, efficient propeller, which matches the hull and
machinery system, creates the required thrust and fulfils the requirements, set from the
stakeholders. The requirements from each stakeholder are different and often contradicting
and the blade designers need to take them into consideration and decide on a geometry that
is the best compromise between all these requirements. Except propeller efficiency, other
crucial requirements are fuel consumption, overall cost, comfort, cavitation, propeller-hull
induced pressure pulses, classification regulations etc. All things considered, the blade
design process in an industrial framework has to be straightforward, well-developed and
be completed in a limited time frame.

1.1 Motivation and Objectives

Engineering systems have increasingly become more difficult to design and manage, due
to their complexity. They combine several disciplines that require collaboration, which is
a difficult task to achieve successfully, since a large number of design variables, complex
physics phenomena, computationally expensive simulations etc. need to be handled in
parallel. Multidisciplinary design optimisation (MDQO) processes are used as a tool for
solving problems of complex engineering systems. The goals are set as objective functions
in a systematic way and through optimisation, the best solutions are found. However,
objective functions do not always achieve solutions that satisfy all the components of
the systems. The importance of involving the human in MDO processes has increased
nowadays, due to the human ability of eliminating ineffective solutions and understanding
the aim of each component [26].

Blade design is a MDO process that combines many disciplines and in parallel has
several objectives, related to the previously mentioned requirements. Its wide design
space and contradicting requirements have made the blade design process very complex
to handle and automated optimisation has proved to be insufficient for complex scenarios
in industrial applications. Including blade designers in the optimisation process appears
to be more necessary.



The purpose of the thesis is to develop a methodology that supports the blade
designers during the design process and enables them to interact with the design tools
and assess design characteristics during the optimisation, with the aim to improve the
design performance and speed.

With the proposed methodology, the behaviour of a user-guided interactive optimisation
method is investigated as one component in an improved industrial propeller design process.
Objectives of the proposed methodology are the following:

o Assess cavitation characteristics by displaying the cavity shape on the blade to the
blade designers instead of using quantitative cavitation constraints.

e Implement the user-code interaction in the existing optimisation methodology by
using interactive evolutionary computation.

e Solve the problem of user-fatigue that is connected to interactive optimisation.

e Obtain a detailed Pareto frontier at the end of the optimisation with efficient and
realistic propeller geometries in a short time frame.

This process aims at empowering the blade designers, instead on substituting them,
and gives them the opportunity to have control over the whole optimisation process.

1.2 Outline

This thesis is a summary of the appended papers A and B. Paper A is the first step of the
proposed methodology towards interactive optimisation for a blade design problem. The
designers select interesting areas in the Pareto plots and prioritise them for the following
generations. In paper B, the methodology is extended and involves one more interactive
step, where the designers assess cavitation characteristics. A support-vector machine
model is also implemented as surrogate model in the methodology. The results of the two
appended papers are reported in chapter 5.

The rest of the thesis is organised as follows. In chapter 2, the different stages of the
marine propeller design process are described, with focus on an industrial design task.
A review on automated optimisation for several blade design applications is done and
the benefits and limitations of automated approaches are discussed. Chapter 3 presents
the interactive optimisation and the various approaches of the interactive evolutionary
computation with a literature review on several applications. The proposed methodology
is explained step by step in chapter 4 and the mathematical model of the support-vector
machines is briefly described. Finally, there is a discussion on the conclusions for the
proposed methodology in chapter 6 and on how it can be further developed.



2 Marine propeller design process

2.1 Industrial design task and current procedures

The selection and design of a marine propeller is a complex procedure that involves several
stakeholders and requires expertise in different scientific fields. Due to its multidisciplinary
and multi-objective nature, the final blade design depicts a trade-off for often contradicting
techno-economic requirements, objectives and constraints. Propeller design is an important
part of the ship design spiral, and its process can be represented from a spiral as well,
since it is iterative and entails several stages that interact and interconnect. The design
process can be divided in the three following main stages, which will be described in
detail:

e Concept design
e Preliminary design
e Detailed design

After the completion of the design process, the blade designers decide on one propeller
that will later be manufactured.

2.1.1 Concept Design

The propeller selection and design process start with the concept design stage. The
customer (shipping company, ship owner, shipyard etc.) informs the propeller supplier on
the vessel’s mission along with its propulsion needs. The aim of this stage is to translate
the mission requirements into realistic propulsion characteristics, in order to select the
correct propeller type and design point. The customer will set requirements that are
usually related to efficiency, fuel consumption, costs, comfort, etc. and subsequently
the blade designers will consider additional requirements, such us cavitation, propeller
induced pressure pulses, classification regulations etc. Necessary input here is the vessel
type along with its main dimensions and hull characteristics, the mission profile that
includes operating conditions, ship route and service life and the requirements related to
the engine and machinery system. Information related to ship resistance along with data
from model tests are essential and they usually have been defined or collected in earlier
stages of the ship design spiral. However, it is possible that some important data are
lacking, hence empirical formulas can be used or CFD simulations might be performed, in
order to extract the missing information.

Matching the propeller towards the hull and the machinery system is essential in order
to fulfil the power requirements and attain the desirable performance. The majority
of the conventional cargo ships operate for the most part of their voyages under one
condition (design condition) with a specific speed. However, for the design of the propeller,
all operational conditions need to be taken into consideration and the designer has to
select a suitable design point that will lead to good performance of the engine even for
off-design conditions that the vessel will encounter during its service life. Hence, a sea



margin of 10-25% is applied, in order to take into account conditions with increased
resistance due to the vessel’s loading, harsh sea state, hull and propeller roughness, shallow
waters, trimming etc.[1]; this leads to having more than one propeller demand curve. In
addition to this, an engine margin of 10-15% of the maximum continuous rating (MCR) is
applied, in order to decrease fuel costs and enable increased power for off-design conditions
[1]. Different blade designers might select different design points for the same problem,
something that will eventually lead to a different propeller design. Therefore, the selection
of the right design point requires great attention. For commercial propeller suppliers that
have large databases with designs from older projects, it is common practice to use this
information for the selection of the design point for projects/vessels with similar geometry
and mission requirements. Information from older propeller designs is also used in the
next design stages, especially in cases where not all essential data are available.

2.1.2 Preliminary Design

Once the propeller type and design point have been selected, the next stage is the
preliminary design of the propeller, where the aim is to define the main propeller particulars:
the propeller diameter, number of blades, mean pitch, blade area ratio and the sectional
ratios of pitch, camber, thickness, skew, rake and chord length. The selection of the
main particulars is directly linked to the requirements set on the previous design stage.
For example, if high efficiency is the goal, then the blade designers would choose a large
propeller diameter with less blades and decreased blade area ratio. In yacht design, where
usually comfort is the goal, meaning less noise and vibrations, larger propeller — hull
clearance is preferred in order to achieve lower hull pressure pulses, in combination with
a higher number of blades. If low risk of cavitation erosion is a requirement, blades with
higher blade area ratio would be preferred in this design stage [30]. Note that there
is more focus on cavitation during the next design phase, as the more detailed design
parameters have a greater effect on cavitation.

Circulation theory and the use of systematic propeller series are the tools that aid the
designers during this stage to choose the main particulars [34]. The designers choose some
initial values for the blade area ratio, thickness at the midchord and the tip, as well as
the skew and the rake distributions. It is common practice at this point to reduce the tip
loading of the blade, in order to obtain reduced pressure pulses later. Then, the optimal
pitch and camber distributions are calculated with the aid of lifting line and lifting surface
methods respectively. The aforementioned distributions are represented by spline curves
along the radius of the propeller and the designers should always check how the curvature
of the splines is formed. A means to check if the designer follows the right direction in
selecting the main particulars is to verify that the midchord bubble cavitation is within
the required limits that have been set out of experience. Consequently, the whole process
is iterated until the cavitation requirements are met. If this is not possible, then the
designers return to the concept design stage, redefine the design point and then restart
the preliminary design process with the new input.



2.1.3 Detailed Design

The purpose of this stage is to determine the final detailed geometry of the propeller that
will later be manufactured, along with information about the hub. Selecting correctly all
the detailed design parameters will lead to successfully fulfilling the requirements that
were set during concept design. The final outcome is a unique propeller for the specific
vessel that achieves all objectives as effectively as possible.

The output parameters of the preliminary design, together with the information
about the wake from the model tests or the simulations, constitute the input of the
detailed design stage. As a first step, the designers need to select the suitable design
parameters in order to achieve a fitting position of the blade on the flange of the hub and
to avoid blade collision. In addition to this, visualising these geometrical characteristics
in plots is beneficial and it speeds up the design process. Small alterations in the design
parameters are done iteratively until the correct position is achieved. The next step
involves the calculation of the static and dynamic strength of the blades. This can be
accomplished by utilising different numerical methods, such as beam theory, or finite
element method (FEM) tools. Moreover, the blade’s thickness is defined by following the
rules of classification societies. Finally, the designers need to analyse the hydrodynamic
performance of the propeller in order to calculate the propeller forces and as a result
the power consumption. This analysis can be done through different types of numerical
methods, but at this stage potential methods are usually preferred, as they are very fast.
Except the efficiency prediction, an important part of this analysis is the evaluation of
sheet cavitation, since it can lead to potential erosion damages. The designers visualise
graphically how the cavitation has been developed on the blade and assess whether it is
within the satisfactory limits or not. Additionally, according to the mission requirements,
the propeller-induced pressure pulses can be calculated either through empirical methods
like Holden [14] or through the above-mentioned numerical methods. If one of these
requirements/objectives are not fulfilled or if the designers are not fully satisfied with
the results they receive, then they iterate the procedure of the detailed design until the
desirable results are obtained. If this is not possible, then the designers need to return
to the preliminary design or in some cases even to the concept design and redefine the
important design parameters.

During the design process, there are parts, where it is possible to change geometrical
parameters systematically until the designers manage to attain specific objectives. At
the same time, there are other parts that may not vary systematically, and the designers
need to visualise and evaluate some characteristics of the propeller. The blade designers
have the control of the whole procedure when they follow a manual blade design process
and this is the most common practice for the industry nowadays. However, creating
several design alternatives can become very labour-intensive. Automating the whole
design process, with the aim to create many designs, has been used as a solution to this
problem, mostly in academic applications. This is commonly done with the aid of various
optimisation algorithms. The result of the optimisation is a set of optimal designs, also
known as Pareto frontier. The designers decide which designs offer the best trade-off
according to the requirements, objectives and constraints that were set in earlier design
stages. In many cases, depending on the project, the designers will evaluate the designs



further with tools using numerical methods of higher fidelity and finally they will decide
on the best design for the specific ship and according to the requirements.

2.2 Automated Optimisation

Automated optimisation is utilised in several different types of complex engineering
systems, as a tool to aid the engineers in finding the optimal solutions for the problems
they encounter in limited time. As previously described, blade design is dependent on
various geometrical parameters, it is an iterative process and requires the control of the
output parameters in between the different design stages. Another characteristic, especially
when blade design is performed in an industrial framework, is that the process runs under
strict time constraints. Manual blade design has proved to be a labour-intensive process,
due to its contradictive requirements that the designers need to consider. Therefore,
automated optimisation has been utilised in recent years in a number of applications, as
a means to enable blade designers to obtain a large number of design alternatives in a
short period of time.

The general concept of automated optimisation is that the most decisive design
characteristics, in terms of system performance, are being parameterised. By changing the
values of the design parameters, new designs/solutions are created, while other parameters
remain constant. This can be done more systematically with the use of optimisation
algorithms in order to search the design space efficiently and find one or a set of optimal
designs. Although deterministic optimisation algorithms search the whole design space
and would potentially find the optimal solution to the problem, it is in practice impossible
to use them in most engineering problems. Population-based, nature-inspired stochastic
optimisation algorithms, like genetic algorithms (GAs), particle swarm optimisation
(PSO), ant colony optimisation (ACO), are primarily utilised, since they cleverly guide the
exploration to areas of the design space with the optimal solutions in a fast manner. The
optimisation eventually provides the designers with a set of optimal designs, which are
referred to as Pareto frontier. All the solutions of the Pareto frontier are non-dominated,
and the selection of a unique solution/design depends on the decision of the designers.
Different designers might select a different solution according to their preference and
experience.

Many different implementations of automated optimisation in blade design have been
developed both in academia and in the industry. A common feature is that although
complex phenomena are involved, the analysis tools should be fast, meaning that high-
fidelity simulations or experiments are not feasible. Thus, numerical methods of lower
fidelity are the tools that are primarily used here, so that the optimisation process is quick.
Different combinations of numerical methods with optimisation algorithms have been
implemented, depending on the requirements of the problem. Berger et al. [2] developed a
two stage optimisation methodology, where in the first stage an evolutionary algorithm was
used for the optimisation and an in-house panel method was used for the hydrodynamic
analysis of the designs. Some of the optimal designs were selected and were further
analysed during the second stage by a numerical method that combined a viscous flow
solver with a boundary element method (BEM). Vesting et al. [35, 36] developed a fully



automated optimisation process that involved constraint handling using semi-empirical
analysis of cavitation nuisance. A Non-dominated Sorting Genetic Algorithm IT (NSGA-II)
and a PSO algorithm were utilised together with a vortex lattice method (VLM) tool for
the calculation of the propeller’s hydrodynamic performance. Huisman and Foeth [15]
used the NSGA-II algorithm for the optimisation together with a BEM for two different
propeller optimisation problems. Gaggero et al. [9] combined a GA with a BEM tool
and a viscous flow solver for the multi-objective design optimisation of a propeller for
a high-speed craft. A more practical optimisation tool was developed by Valdenazzi et
al. [31], for the hydro-acoustic optimisation of naval propellers. The optimisation was
performed in three levels, where the multi-objective GA was utilised, coupled with a BEM
tool in levels 1 and 2 and a CFD code of higher fidelity in level 3.

The primary advantage in automated optimisation is that the optimisation algorithms
efficiently search the most beneficial areas of the design space. After defining the most
important design variables that control the optimisation, the process runs, and the
designers obtain the Pareto frontier as output. In the meantime, they are not involved
with the code, while deep knowledge on the optimisation process is not necessary. However,
automated optimisation has failed to be utilised in an industrial framework. The definition
of the design space can get complex and hard to set-up for different propeller designs.
Design of experiments are usually utilised for defining the most important design variables
and areas of the design space, but their execution takes considerable time. In addition
to this, the majority of the Pareto frontier solutions are infeasible, since using potential
numerical methods combined with semi-empirical analysis of cavitation, often can lead
to inefficient propeller designs. Moreover, in complex problems that entail, for example,
many objectives and constraints for several operating conditions, it is difficult to develop
a single optimisation case to solve them [17]. All this has resulted in considering the
traditional manual design process as more reliable and easier to handle, compared to the
automated optimisation [35].

Most of the above-mentioned applications have found an intermediate step necessary,
which involves the blade designers in different ways in the blade design optimisation
process. However, it has not been integrated in the optimisation in a systematic and
natural way. A way to achieving this goal, is through different methods of the interactive
evolutionary computation [29], which is described in detail in chapter 3.






3 Interactive Optimisation

The more complex the engineering systems get, the need for involving the designers as
a part of those systems grows [26]. Multidisciplinary and multi-objective processes can
be simplified by integrating the human thought and knowledge in the optimisation loop
of the systems and in parallel find solutions more efficiently. Interactive evolutionary
computation (IEC) is a method that enables the integration of the code - user interaction.

3.1 Description of IEC

IEC is an optimisation method that is based on evolutionary computation and utilises
subjective human evaluation in its process. It is primarily implemented in systems that
involve criteria that make the human assessment and analysis necessary. During the
conventional evolutionary computation, the performance of the objectives is calculated
through fitness functions. However, in IEC it is impossible to develop explicit fitness
functions for those objectives that entail subjective criteria; thus the system users, who
will be referred to as users, interact with some features of the system, judge them and
return their input into the system. In this way, the new input is taken into account and
affects the output of the system. The user interaction has several different types, such as
figure visualisation, audio listening etc. A straightforward interface for user - machine
interaction is a prerequisite in most systems, such that the interaction process is executed
efficiently.

Start EC
algorithm

Present
phenotypes of |
N individuals |

to user

v
L JEH
1=

New N-1
No The user selects individuals are
the best —>{ generated based
m individual on the selected
individual

Figure 3.1: Flowchart of a standard IEC Algorithm

Satisfactory
Results?

A flowchart of a standard IEC algorithm is presented in figure 3.1. As it is shown,
the users start the optimisation with the aid of an EC algorithm and they pause it after
some generations, and the phenotypes or output systems of N individuals are presented
to the users. The phenotypes and the way they are presented to the users differ for



each problem. Phenotypes can be simple patterns, symbols, artworks, sounds, music
composition, physical representation of complex phenomena, etc. In the specific flowchart,
images of different patterns are plotted on the screen. If the users are not fully satisfied
with what they see, they should select the plot that is more suitable according to the
problem. This information is input in the optimisation algorithm and the remaining N-1
individuals are discarded. The optimisation algorithm continues and generates new N-1
individuals, based on the selected individual. The phenotypes of the N-1 new individuals
are plotted on the screen, together with the figure of the previously selected individual,
which is placed in the middle of the screen. The process is iterated until the users obtain
satisfactory results.

3.2 Background in IEC

IEC has been used over the years in several disciplines, like design, music, graphic arts,
virtual reality, image processing, data mining and others [29]. In recent years, it has
started being utilised for engineering, but mostly in applications where there are objectives
related to engineering aesthetics, for example in car design [38].

Similarly with the automated optimisation, different types of EC algorithms can be
utilised also here. Interactive genetic algorithms (IGAs) that are based on GAs are broadly
used in various types of applications. They have been utilised for example for controller
parameter optimisation in [8] with positive results in terms of performance and efficiency.
The objective of the study was to tune the parameters of a proportional-integral-derivative
regulator operating on a laboratory device, and in order to do that successfully the expertise
of human operators was necessary. IGAs have also been used for product design, as
presented in [18]. An interactive creative system for the conceptual design of a mobile
phone was developed, with the aim to improve the design procedure at an early stage.
Moreover, interactive PSO algorithms are used in several optimisation problems. In [19] an
optimisation tool was presented, based on interactive PSO for the design of an airfoil and
for the shape design of a compressor blade with several design parameters and multiple
objectives. The focus of the study was on various types of visualisation techniques for
the design space and the design features; for example heat maps and parallel coordinate
visualisation plots were used to aid the code - user interaction process. In [7], interactive
PSO was used for the architectural design of truss structures. The designers started with
an initial design after setting up the optimisation, the PSO created more individuals
that were presented to the users together with the structural weight and were compared
to the initial design. The users selected the optimal designs iteratively until there was
convergence in the solutions. Through the interactive PSO, the designers guided indeed
the optimisation to an area with designs of lower structural weight and they matched
the designer preference, as externally they were similar with the initial truss structure.
Finally, interactive ACO has also been utilised in some applications, for example in [25]
for early lifecycle software design, but according to the results it required more user
interactions, compared to other IEC algorithms.

Except selecting the suitable IEC algorithm for an optimisation problem, a key
parameter for setting up the IEC optimisation is the population size of the individuals.
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Figure 3.2: Different categories of IEC methods

The population size varies for different problems and applications. As it is shown in figure
3.2, when a small population size is utilised, a standard IEC approach is usually utilised,
which is the method described in figure 3.1. When following a standard IEC approach,
the whole population is presented to the users. For example, in [38] the users visualised
all 100 individuals of each generation and ranked them with values 0-6. In [23], IEC
was used in two modes, the automatic and the manual. During manual mode, the users
evaluated the whole population, which consisted of 9 individuals for each one of the 30
generations. Also in [21], IEC was utilised for two process engineering problems and the
users assessed all individuals of the population, where maximum seven individuals were
presented at a time.

By evaluating the whole population of an optimisation problem, a fitness value is
manually assigned to each individual, and the algorithm converges fast to a set of optimal
solutions. However, there are several applications that require a search in a large design
space and as a consequence a large population is needed. Blade design optimisation is an
example of such applications that require large populations of blade designs. In those
cases, the users do numerous manual evaluations, and after a point of visualising and
assessing designs via a graphical user interface, human fatigue is caused and the users
cannot evaluate the designs objectively any more. Human fatigue is the main disadvantage
of interactive optimisation [37]. A problem that is directly linked to it is that only a
subset of the solutions is presented to the users and some important solutions are often
overlooked, which leads to increased convergence time of the algorithm [29]. There are two
common approaches to solve those problems, as indicated in figure 3.2, the progressively
interactive optimisation methods and the use of surrogate models.

For the progressively interactive optimisation, during the problem definition, an ideal
point is defined by the users or by a function, as the reference point of the whole

11



Figure 3.3: Structure of surrogate model

optimisation. Initially there is a large design space and as the optimisation evolves,
the users are called in intermediate stages to guide the algorithm towards the reference
solution. Every time the users provide new information, the design space is updated
and narrowed down. Such an approach is implemented in [27], where the purpose of the
study was to mitigate the number of user evaluations. The optimisation started with
a large population and explored the design space; subsequently the users were called a
number of times, the performance of the designs was presented to them and they provided
information on the area of interest. After this point, the algorithm was switched to local
search for exploitation of the subspace. The same approach was followed in [10], but the
study was also focused on how to shape the areas of interest and which solutions of these
areas to choose.

Progressively interactive methods are mainly used with the aim to narrow down
the design space or focus in a specific area of the Pareto frontier. However, in many
optimisation problems, part of the optimal solutions are inefficient and the user interaction
is needed in order to visualise features of the solutions and distinguish the different solutions
in a more realistic manner. In order to solve this problem and the user fatigue, IEC
can be combined with surrogate models [28]. The users train the surrogate model by
evaluating a subset of the entire dataset and the model approximates the performance of
the remaining non-evaluated datapoints. The structure of a surrogate model is shown in
figure 3.3. In this way, a system is created where large populations are produced through
the EC algorithm, design features are presented to the users with the aid of the interactive
optimisation and the surrogate model reduces the user fatigue.

There are several types of surrogate models used in IEC optimisation processes. In [28],
a model was implemented that used two radial-basis function neural networks (NNs) and it
was trained by a semi-supervised learning method. In [22], two methods were developed for
predicting the performance of the non-evaluated solutions, a NN and Euclidean distances.
In [3], IEC was used for a music application, where a surrogate model was implemented,
since the users had to evaluate each audio separately, without being able to simultaneously
make comparisons with other audios. The surrogate model was a NN with a cascade
correlation technique. Support-vector machines (SVMs) have also been used as surrogate
models for problems that entail classification. In [24], SVMs were implemented together
with an efficient global optimisation algorithm and in [20] they were combined with partial
ordering concepts and non-domination from multi-objective optimisation.

Deciding on whether the population size is small or large, depends a lot on how the
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user interface of the application has been developed, i.e. how many designs are being
presented simultaneously, if there is a reference design for comparison, if the users are able
to alternate the geometry of the designs etc. Focusing on the user interface of systems
that use IEC methods, can lead to faster convergence of the algorithms and to more
efficient solutions.
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4 Interactive genetic algorithms supported
by support-vector machines for propeller
design optimisation

The propeller design process is multidisciplinary and multi-objective. Therefore, several
design parameters are involved in the blade design optimisation process, which lead to the
search of solutions in a wide design space. In order to search this space, large populations
of blade design individuals need to be created by the optimisation algorithm. At the same
time, the blade designers are being involved in the optimisation loop, with the aim to
guide the algorithm with their input towards areas of the design space, where there are
non-dominated solutions that represent realistic propeller designs.

In the methodology we have developed, we combine an IGA with a SVM model, used
as surrogate model. The methodology follows the concept of progressively interactive
optimisation, in the sense that the user-code interactions take place gradually (stepped
optimisation). This is shown in figure 4.1, where the optimisation starts with a large
population and the users are called in intermediate stages to evaluate the designs and
with their selections, direct the optimisation to a detailed and well-defined Pareto frontier.
In sections 4.1 and 4.2, the IGA methodology is described in detail, along with the
mathematical model of the SVM model and its function in the IGA methodology.
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4.1 Methodology - Interactive Genetic Algorithms

The central concept of the methodology is that the blade designer manually creates a
good design, which is referred to as baseline design, and begins an optimisation procedure,
by setting the baseline design as the starting point. The overall aim is to eventually gain
a set of improved designs, compared to the baseline. The user of the optimisation decides
which should be the design variables for the specific problem and defines the objectives
and constraints as well. The optimisation starts by using a GA and runs some time
for a predefined number of generations, in order to produce a large amount of designs,
before being paused. At this point, the interactive assessment of the designs by the
user is essential. As previously described, there are some important design features that
cannot be expressed accurately quantitatively, when using fast computational tools. Thus,
through the proposed methodology, images of the design features are presented to the user
and according to their experience and preference they accept or reject them. This new
information is input in the GA and the optimisation continues, by prioritising the accepted
design to continue to the following generations. The user can be called for assessment as
often as it appears necessary according to the problem and the process finishes when the
algorithm has reached good convergence with satisfactory performance, in terms of fitness
and user preference. The SVM model is used for problems with very large amounts of
designs, in order to accelerate the evaluation process. In short, the central concept is
that large populations of individuals are created by the GA, user evaluations are enabled
by the IEC in order to guide the optimisation towards areas of the design space with
approved designs, and the user fatigue, caused by several manual assessments, is solved
by using the SVM model. The flowchart of the methodology is shown in figure 4.2 and is
described in detail below.

The optimisation starts by running the NSGA-II and after N predefined generations
there is the evaluation stage, where images that present a design feature of the designs, are
presented on the screen and the user decides whether they have an acceptable performance,
according to this design feature. If the population of the designs is small, the plots of
the features of all designs are shown to the user. Alternatively, since a large population
would lead to numerous user evaluations, the SVM model is implemented, so that only a
subset of the total number of solutions is used for user evaluations. The user assesses this
subset and in this way the SVM model is trained and does a prediction for the remaining
solutions. As a result, the evaluation process is accelerated. At the end of the evaluation
stage, the non-satisfactory designs are rejected for both small and large populations of
individuals.

Thereafter, the user has the option to update the whole optimisation set-up, which con-
sists of the design variables, number of generations, individuals per generation, objectives,
constraints and optimisation parameters. It is important to have the option to control
some important parameters during the actual optimisation, instead of preconfiguring
everything, as convergence can be achieved sooner. The number of individuals per gener-
ation is an important parameter, since the first generation of the following optimisation
round consists of the accepted designs from the user evaluations or from the SVM model.
As it is not known in advance how many designs will be accepted, changing the value of
the population size is beneficial. If the user selects the following optimisation round to
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have a population size that is larger than the accepted designs, the missing individuals
are created by using mutation and crossover on the accepted individuals. If they select
a smaller population size, the accepted designs are prioritised by ranking them in the
same way as in the NSGA-IIL. Finally, if they select the same number, all accepted designs
create the first generation of the following round.

After updating the optimisation set-up, the optimisation resumes and it is paused after
M generations, in order to present the performance of the Pareto designs together with
their feature plots to the user, who in turn will decide whether the results are satisfactory
or if the optimisation should resume by iterating the evaluation stage. The evaluation
stage occurs as many times as it is needed in order to obtain satisfactory results or
according to the available time and the fatigue from the user evaluations.
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4.2 Support-Vector Machines

Support-vector machines are supervised machine learning models, based on Vapnik —
Chervonenkis theory [32]. They are used for data analysis for binary classification [4,
33], regression analysis [5] and more recently for multiclass classification [6]. In our
methodology, a SVM model is implemented for binary classification of the designs, based
on whether they have accepted or rejected design features. It is used in scenarios with
large population sizes for reducing the number of user evaluations. More specifically,
a smaller subset of the total number of designs is displayed on screen and the users
accept or reject the designs. The accepted and rejected designs get the values 1 and 0
respectively; this labelling is input in the model and it is trained. Whenever new designs
are evaluated, the SVM model is updated with the new information and the margin of
the hyperplane is recalculated. After the training process, when new designs are created
from the optimisation algorithm, the SVM model classifies them in one of the two classes.

In figure 4.3 a simple binary classification problem is presented, where the input is
a sample from data points with two features x1 and x2, which should be separated in
two classes. The model is built with information from the input and based on this, when
a new data point enters, it is classified into one of the two classes. The classification is
achieved by creating a hyperplane that separates the data in classes by maximising the
margin between them. The red straight line of the figure is the best hyperplane in this
problem, since it maximises the margin ﬁ The two parallel lines to the red lines are
the marginal hyperplanes and the four points on the hyperplanes are the support-vector
and they define the boundary of the margin. The goal when using SVMs for binary
classification is to find the optimal hyperplane that classifies the data correctly and to
maximise the margin between the classes.

Figure 4.3: SVM with two classes that are separated from the optimal hyperplane with the
largest margin.
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A brief mathematical formulation for the binary classification follows according to [13].
A training set (x;, y;) is assumed that is comprised of the multidimensional training data
x;, where i = 1,...,n and z; € R%, and the class labels y; € {-=1,1}. The hyperplane is
defined as,

"B+ By =0, (4.1)
where § is a unit vector with || 8 ||= 1 and Sy a real number.
Additionally, the marginal hyperplanes are defined as 278 + By = 1 and 278 + By = —1.
Thus the data points should be classified according to,

vi(xf B4+ Bo)>1,i=1,...,n. (4.2)

The optimal hyperplane can be found by solving the convex optimisation problem with
linear inequality constraints,

min
i 181

(4.3)
subject to yi(zl B+ Fo) >1,i=1,...,n.

The above description regards data that can be completely linearly separable. However,
in real-world applications linear separation is impossible. A solution to this is to use soft
margins that are hyperplanes that separate the data by allowing some misclassifications
with the introduction of non-negative slack variables £ = (&1,...,&,). In this case, the
optimal hyperplane can be calculated by solving the optimisation problem,

N
1 2
min — +C i
i 1517 +03 ¢

subject to & >0, y; (v B+ Bo) > 1—&;, Vi,

(4.4)

where C is a penalty parameter for the compromise between margin maximisation and
training error minimisation and ) ;" , & is the training error. Lower and higher values of
C correspond to models with strict and loose separation respectively.

Finally, in the case of non-linearly separable data, kernels can be used, which map the
input data into a high dimensional space and the optimal hyperplane with the maximum
margin is calculated in this space where the data can be linearly separable; this process is
called Kernel trick. The Kernel function is described as,

K(z,2") = (h(z), h(z")) , (4.5)

where h(x;) are the transformed feature vectors. Broadly used kernels are the linear, the
polynomial, the radial basis function and the sigmoid.
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5 Results

In this chapter, the results of the two appended papers are presented.

5.1 Summary of Paper A

In Paper A, the first step towards interactive optimisation is introduced for a simple
blade design optimisation problem. The designers select specific areas of preference in the
Pareto plots, in order to guide the optimisation towards a specific direction.

5.1.1 Description

According to the developed methodology, the optimisation starts by utilising the NSGA-II
and after a predefined number of generations, the optimisation is paused and the Pareto
plot of the objectives is presented to the users. The users select interesting, according to
the objectives, designs and they use them for the next optimisation round; the selected
designs form the first generation of the next round. At the same time, the designers have
the possibility to change some critical optimisation parameters, the mutation and the
crossover operators, with the aim to shift from the exploration of the design space to the
exploitation. The search of the design space is now more focused on areas that have been
defined from the user-selected designs. The process is repeated until satisfactory results
are obtained. The optimisation method is presented in the flowchart of figure 5.1.

l

S Evaluation of
1% Optimizati i nd Optimizati i
Start ptimization Display Pareto designs by blade 2" Optimization Display Pareto
Round (NSGA-I1) plot on screen designer Round (NSGA-I1) plot on screen

Satisfactory
Results

Figure 5.1: Flowchart of IEC Algorithm for Blade Design Optimisation

The user scenario regards the design of a controllable pitch propeller for a wind-assisted
vessel. There are nine design parameters: the pitch over the propeller diameter, the
maximum camber over the chord length of the blade and the skew angle at 20%, 70% and
100% blade radii. Additionally, the objectives are the maximisation of the efficiency in
two different operational conditions, at the MCR, where there is the engine’s maximum
continuous rated power output [1], and at the 50% of MCR. Both conditions have the
same speed and there is one constraint related to the geometry of the designs.
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5.1.2 Different assessment areas

According to this scenario, the users choose two areas of interest of the Pareto frontier
after the end of the first optimisation round. A small area that promotes all designs
with efficiency higher than 0.68 in the 50% MCR condition (approach 1). The second
area consists of all designs of the first round (approach 2). Figure 5.2 presents the
Pareto plot of the first optimisation round, together with the assessment areas of the
two approaches. Figures 5.3a and 5.3b show how the optimisation evolved during the
second round according to the two approaches. It is evident that by selecting specific
areas of interest, the algorithm searches solutions in a more targeted manner. During the
second optimisation round, both approaches are examined with 5 different combinations
of crossover and mutation operators and each combination is run for 20 times. Figure
5.4 shows the percentage of objective 2 values that are larger than 0.68 along with the
confidence interval for both approaches. The first approach reduces the search space more
than the second, since the percentage of designs having a 50% MCR efficiency higher
than 0.68 is larger than in the second approach. Both approaches have been run for the
same number of generations, but the first approach has a smaller population; hence less
computational effort is required, compared to the second approach. In addition to this,
when the mutation is equal to 0, the percentages are the highest for both approaches
in comparison with all other crossover-mutation combinations. More analytical results
related to the frequency of the values of the previously described objective, for 5 crossover-
mutation combinations, 20 runs and both approaches are presented and discussed in the
appended paper.
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5.1.3 Interactive optimisation in two steps

The methodology is investigated further by adding one more interactive step in the
optimisation process. The designers are called twice to assess two areas of interest and
the evolution of the optimisation is presented in figure 5.5. By observing the three Pareto
frontiers in 5.5d, the optimisation starts with a coarse frontier. Through the user guidance,
a wider frontier is obtained during the second round and finally a detailed frontier that is
focused only on the area of interest.
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Figure 5.5: Evolution of optimisation algorithm with two interactive steps

5.1.4 Benefits of the methodology

This methodology is the first step towards interactive optimisation for blade design
problems. The results have shown that it is possible to guide the optimisation to a specific
direction and the designers obtain a detailed Pareto frontier with several alternatives.
Moreover, when the designers select large areas of designs in the Pareto frontiers, it is
more beneficial to have a high value in the mutation operator, so that the algorithm
searches more broadly solutions in a larger design space, whereas for smaller areas, a
lower value in the mutation is preferred.
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5.2 Summary of Paper B

In Paper B, the interactive optimisation methodology, as presented in chapter 4, is used
for a blade design problem.

5.2.1 Description

The blade designers interact with the optimisation and guide a GA towards the objectives
of the design space. The methodology is based on IGAs and the NSGA-II is utilised
as the main optimisation algorithm. The blade designers visualise a cavitation related
characteristic, evaluate it and this information is input in the optimisation algorithm.
SVMs are used as a surrogate model of the methodology for binary classification, in order
to solve the user fatigue problem, since blade design requires an optimisation with large
populations of individuals and several user evaluations.

The cavitation characteristic that the designer assesses is the cavity that has been
developed on the blade at the most critical angle, where there is maximum cavity volume,
as shown in figure 5.6. This is a design feature that it is difficult to quantify accurately
by using potential methods, thus the user assessment appears to be necessary.

Figure 5.6: Cavity shape of three propellers at the most critical angle

The user scenario regards the design of a fixed pitch propeller for a single-screw
car-carrier. There are six design parameters: the pitch over the propeller diameter and
the maximum camber, at 14%, 70% and 100% (pitch) or 95% (camber) blade radii
and range +15% from the values of the baseline design. There are two objectives: the
maximisation of the efficiency and the minimisation of the maximum cavity volume at the
MCR condition. Finally, there is one quantitative constraint, a pitch adjustment based
on given threshold values for propeller thrust (£2% from the thrust value of the baseline
design).

In order to investigate the capabilities of the IGA methodology thoroughly, the
interactive methodology is performed with and without the SVM model and it is compared
with automated optimisation as well. The results are summarised in the following three
sections.
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5.2.2 Interactive optimisation

For the interactive optimisation four sequential optimisation rounds are run with a total
of 1140 designs, where the users are asked to interact with the code in between these
rounds three times. The first three rounds are small, in order to avoid user fatigue from
many evaluations. This is shown in figure 5.7, where the plots of the two objectives for
all four optimisation rounds are presented and the designs are divided in two groups of
accepted and rejected with green and red colour respectively. The optimisation started
with a small population of mostly rejected designs (figure 5.7a) and finished with a large

population of designs, where most of them are accepted (figure 5.7d).
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Figure 5.7: Accepted and rejected designs of four optimisation rounds
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5.2.3 Comparison between interactive and automated approaches

For performing the automated optimisation, the same user scenario was used for a total
of 1100 designs, in order to be able to make a comparison with the 1140 designs of the
interactive optimisation. The user pre-defines the design and optimisation parameters,
the optimisation runs and they obtain a Pareto frontier with all non-dominated designs in
the end. By comparing the Pareto frontiers of the two approaches in figures 5.8a and 5.8b,
the interactive optimisation gives 49 accepted and 10 rejected designs and the automated
optimisation gives 38 and 7 respectively. This means that the user obtains 11 more design
alternatives with the interactive optimisation.
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Figure 5.8: Final Pareto frontiers of two approaches

Another important part of the optimisation analysis is how the design space has been
explored. The automated algorithm generates 436 unique designs and the interactive 236
unique designs. Figure 5.9 presents where these designs have been generated. It shows the
parallel coordinates’ visualisation of the design variables, objectives and user evaluation
for both approaches. Each line represents one design and shows the values of its design
variables, objectives and user evaluations. The green and red colours of the lines depict
the accepted and rejected designs respectively. It is apparent that the design variables
of the interactive approach have not been explored as broadly as in the automated one.
However, the search of the interactive optimisation is more targeted on areas where there
are accepted designs. This is evident in figure 5.10, where only the accepted designs are
shown. For the automated approach, the algorithm has not searched in areas, where
the camber at 95% radius is as increased as in the interactive approach. 26 individuals,
where the camber at 95% radius has values higher than 30 mm ended up being in the
final Pareto frontier of the interactive optimisation.
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Figure 5.9: Parallel coordinate visualisation of design variables, objectives and evaluation
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Figure 5.10: Parallel coordinate visualisation - accepted designs
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5.2.4 Interactive Optimisation with SVM implementation

The results of the IGA methodology were presented in 5.2.2 without including the SVM
model. After the end of the fourth optimisation round, all designs were manually evaluated
by the user, with the purpose of showing precisely how the code evolves according to the
user preference. However, this is a labour-intensive process for the designers and can
be improved by using the SVM model during the last stage of the optimisation. The
user manually evaluated 99 designs in the first three optimisation rounds by classifying
them in groups of accepted or rejected designs and this can be used as the training
input of the SVM model. The input trains the SVM model and when the final round
finishes, the model classifies the new designs as accepted or rejected. The total number
of unique designs were 236, so the train data are 42% of the total and the test data
the remaining 58%. For the validation of the accuracy of the SVM model, the model’s
predicted classification was compared to the manual evaluations of section 5.2.2. As
shown in table 5.1, by using either the linear or the polynomial Kernel the predictability
is high, 98.5% and 97% respectively.

Table 5.1: SVM predictability of last optimisation round in interactive approach

% of training data Predictability
Linear Kernel | Polynomial Kernel
42 0.985 0.97

Figure 5.11 presents the class separation of the designs, by using a linear kernel, with
the aid of the principal component analysis (PCA) [16]. The data from the manual
evaluations are presented in figure 5.11a. The penalty parameter C' is set equal to 1 and
there are two misclassified points (outliers) from the separating hyperplane. In figure
5.11b, the predicted values are presented that have four outliers. It is evident that the
predictability of the model is satisfactory.

Additionally, the data of the automated approach were used to do a sensitivity analysis
on the SVM model’s prediction accuracy by comparing the SVM prediction with the
manual evaluations. This is shown in the summary statistics of figure 5.12 for the linear
kernel. Different training data were chosen randomly as subsets of the whole data set
and were input in the SVM; 9 different sizes of training data were considered and the
process was repeated 150 times for each size. It is observed that when the training data
is 50-90% of the data set the mean accuracy is approximately the same, with the lower
standard deviation being at 50-70% of the data set. According to these results, for the
specific problem, the user should choose to manually evaluate 50% of the unique designs,
in order to have as few manual evaluations as possible with accurate prediction.
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5.2.5 Benefits of the methodology

Through the proposed methodology, the results show that the user obtains at the end
of the optimisation a detailed Pareto frontier, with non-dominated and feasible design
solutions that have a good cavitation behaviour in line with the designer’s preference. By
doing the user evaluations in different steps, with the optimisation running in between
them, less fatigue is caused to the users. When compared to the results of the automated
approach, both have approximately the same performance, but in the automated approach

31



the design space is searched more broadly; at the same time most of those diverse solutions
are rejected by the users, as they do not fulfil the cavitation requirements. Thus the
interactive approach finds more solutions in a more targeted manner without performing
unnecessary calculations. Regarding the SVM model, it is needed when the populations
are large in order to reduce user evaluations and its predictability accuracy proved to be
satisfactory.
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6 Concluding Remarks

Marine propeller design is a multidisciplinary and multi-objective process that involves
contradicting requirements from the stakeholders and necessitates several iterations in
between its stages in order to fulfil those requirements. Although creating designs manually
results in good propeller geometries, it has proved to be labour-intensive, since there are
multiple design parameters, resulting in a large design space. In recent years, automated
optimisation has been used in some blade design applications, which has the benefit of
producing numerous design alternatives fast. If the algorithm converges in good manner,
which very often is not certain, the designs show increased performance. The blade
designers obtain at the end of any optimisation process, a Pareto frontier with all the
optimal non-dominated solutions and they select the design that represents the best
trade-off according to the requirements. It is very common though that the Pareto frontier
consists of solutions that represent infeasible propeller geometries. This happens because
with the available fast tools of the optimisation, important phenomena are not taken
into consideration and they cannot be quantified accurately, in order to be included as
constraints or objectives in the optimisation. Therefore, a need has appeared for enabling
the designers to have more control over the whole design and optimisation procedure.
This can be done by creating a process, where the blade designers interact with the
optimisation algorithms throughout the optimisation and their elicited information is
later taken into account for the continuation of the optimisation.

The development of such an interactive optimisation process is presented in this thesis.
The main purpose through interactive optimisation is to assist and support the blade
designers during the design process and enable them to interact with the design tools
during the optimisation. In Paper A, an interactive optimisation process was introduced
for a blade design problem. We followed a progressively interactive approach, where
the users were enabled to select areas of the Pareto frontier and promote them to the
following generations. The areas were selected according to the user preference for the
specific problem. In Paper B, the methodology was developed further by adding one
more interactive step and implementing a surrogate model. More specifically, images that
present the cavity on the blade of the designs, are presented on the screen and the users
decide whether the developed cavity is acceptable or not. SVMs are used as surrogate
model to the optimisation for scenarios that require large populations of individuals.

The main advantage of the proposed methodology is that the designers have control
over the optimisation procedure and the evolution of the algorithms. In both papers, the
users managed to guide the algorithm towards areas of the design space with solutions that
represented designs with the desired performance or other design characteristics. Moreover,
through the interactive optimisation, the designers gained very detailed Pareto frontiers
that offer several design alternatives. In addition to this, in Paper B, the Pareto frontier
of the interactive optimisation had more accepted designs in terms of cavitation, when
compared to the automated optimisation. This means that the interactive approach finds
more solutions in a more targeted manner without performing unnecessary calculations.
Another important finding for Paper A, is that the selection of the mutation operator
plays an important role in the search of the design space. It appears that by initiating
the optimisation with larger values of mutation leads to search in a wider design space,
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while decreasing the mutation narrows down the search of the space. Thus, depending
on whether the users select large or small areas of designs in the Pareto frontier, the
values of the mutation operator should be higher or lower respectively. In Paper B,
by implementing the SVM model in the methodology, the optimisation procedure was
accelerated and the user fatigue burden was diminished. The model’s prediction accuracy
proved to be satisfactory, by training just a small sample (42%) of the total dataset. Also,
by performing user evaluations in different steps gradually, with the optimisation running
in between them, less fatigue is caused to the users.

The proposed methodology is the beginning stage for a more systematic user-code
interaction in blade design optimisation problems. The benefits of the methodology will
be more evident in more complex scenarios though, which involve more objectives and
constraints. In the current scenario, only one operational condition was considered, but it
is common practice in blade design to optimise propellers by taking into consideration
more conditions. Especially with the increase of wind-powered and wind-assisted vessels
nowadays, where more design points and operational conditions have to be considered,
the use of interactivity will be important. Through the proposed methodology, the design
space will not be constrained from the beginning of the optimisation, but gradually
through the information from the user assessments. It is also important to extend the
methodology in order to include the variation of the propeller load due to the use of the
wind and other aspects that are connected to wind-assisted propulsion.

An essential part of interactive optimisation is how the interactivity takes place and it
is necessary to focus more on the further development of the graphical user interface in
the proposed method. A human factor research with the participation of blade designers
could aid towards that direction, in order to define how many designs should be presented
simultaneously, if there should be a reference design for comparison, if the users believe
that they should be enabled to alternate the geometry of the designs, after how many
user evaluations do they feel fatigued etc. This process will also create ideas on more new
interactive steps that could lead to faster convergence and to more efficient solutions.

In Paper B, SVMs were the only machine learning method that was utilised as a
surrogate model. More methods will be used, in order to investigate their potential for
improving the performance of the interactive optimisation. In addition to this, in the
proposed methodology, the training sample for the machine learning model is selected
randomly out of the total unique designs of the optimisation. However, it is of interest
to look into more effective ways of selecting the training sample of the machine learning
model, with the aim to further eliminate unnecessary user evaluations.
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