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Abstract
Our society’s reliance on computer-controlled systems is rapidly growing. Such
systems are found in various devices, ranging from simple light switches to
safety-critical systems like autonomous vehicles. In the context of safety-
critical systems, safety and correctness are of utmost importance. Faults
and errors could have catastrophic consequences. Thus, there is a need for
rigorous methodologies that help provide guarantees of safety and correctness.
Supervisor synthesis, the concept of being able to mathematically synthesize
a supervisor that ensures that the closed-loop system behaves in accordance
with known requirements, can indeed help.
This thesis introduces supervisor learning, an approach to help automate

the learning of supervisors in the absence of plant models. Traditionally,
supervisor synthesis makes use of plant models and specification models to ob-
tain a supervisor. Industrial adoption of this method is limited due to, among
other things, the difficulty in obtaining usable plant models. Manually creat-
ing these plant models is an error-prone and time-consuming process. Thus,
supervisor learning intends to improve the industrial adoption of supervisory
control by automating the process of generating supervisors in the absence of
plant models.
The idea here is to learn a supervisor for the system under learning (SUL)

by active interaction and experimentation. To this end, we present two al-
gorithms, SupL∗, and MSL, that directly learn supervisors when provided
with a simulator of the SUL and its corresponding specifications. SupL∗ is a
language-based learner that learns one supervisor for the entire system. MSL,
on the other hand, learns a modular supervisor, that is, several smaller su-
pervisors, one for each specification. Additionally, a third algorithm, MPL, is
introduced for learning a modular plant model.
The approach is realized in the tool MIDES and has been used to learn

supervisors in a virtual manufacturing setting for theMachine Buffer Machine
example, as well as learning a model of the Lateral State Manager, a sub-
component of a self-driving car. These case studies show the feasibility and
applicability of the proposed approach, in addition to helping identify future
directions for research.

Keywords: Model learning, Automata learning, Active learning, Supervisory
control theory, Discrete-event systems, Finite-state machines.
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CHAPTER 1
INTRODUCTION

In 2018 two students working on their master’s thesis found a critical bug
in a sub-module of a self-driving vehicle [1]. The students were translating
the program of the sub-module into a state machine model. Using this model,
they were able to produce an error trace that allowed the engineers to simulate
the incorrect behavior and then provide a fix.
The above is undoubtedly not a one-off case. History is replete with exam-

ples of unintended programming mistakes that have led to fatal accidents. Due
to faulty code, the Ariane-5 exploded mid-air 37 seconds after its launch [2].
Malfunction of the Therac-25 caused radiation overdoses, killing three pa-
tients [3]. Knight Capital Group lost $450 million after a software update [4].
Another famous instance is Intel’s “Pentium FDIV bug”, which was a hard-
ware bug found in 1994, leading Intel to replace defective chips, costing the
company some half-billion dollars [5]. Subsequently, Intel began expanding
their staff with formal methods experts [6].

Today, safety-critical and security-critical systems are being integrated into
our daily lives. For example, autonomous vehicles are soon the default and
no longer a luxury. Robots are being actively used for medical surgeries [7].
Software and computers are used in medical implants [8], [9]. Many of us rely
on security for online banking, shopping, and so on. The inclusion of such
systems into our daily lives is coupled with their increased complexity and
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Chapter 1 Introduction

functionality.
Formal methods are techniques used to model complex systems as math-

ematical entities. By building such a model, designers can then verify the
system’s properties. Additionally, mathematical proofs can be offered as a
complement to the system tests to show correctness. For a long time, formal
methods have been proclaimed to be the best means available for developing
safe and reliable systems. To many researchers, the necessity of formal meth-
ods is now a given. However, from an industrial perspective, this has not been
the case.
There has been some level of industrial acceptance of formal methods in the

last few years. However, it is still a long way before formal methods are part of
the industrial development process. There have been several studies that focus
on understanding the reasons for the lack of adoption of formal methods by
the industry [10]–[12]. Several reasons have been suggested for this situation,
including lack of accessible tools, high costs, incompatibility with existing
development techniques, and that these methods require a certain level of
mathematical sophistication.
This thesis aims to provide tools and techniques to help enable the adop-

tion of formal methods. More specifically, the focus is on formal methods
that are employed for model-based verification of systems designs. The aim
is to provide a tool that helps integrate formal methods into the existing de-
velopmental life-cycle for model-based development. It does so by helping
engineers obtain of the target system a logical model that can be used for
formal analysis.
In this context, models are mathematical descriptions of a system. These

mathematical descriptions are abstractions that define a particular aspect or
property of the system. Hence, there exist several valid models, each describ-
ing a particular aspect, for any given system.
Consider a coffee machine. One model can be built from the knowledge of

the system’s physical components using differential equations to represent the
brewing process. On the other hand, another model can be created to define
the machine’s interactions with the user. For example, the model can show
that the machine can be switched on or off using the power button. When it
is powered on, the machine is in a Standby state until the user requests either
tea or coffee using the appropriate button. Once the choice of beverage is
dispensed, the machine goes back into its Standby state. These models can be
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1.1 Problem Description

visualized as seen in Figure 1.1. Such systems are referred to as discrete event
systems (DES) and are the main focus of this thesis. Discrete event systems
are modeled using a formalism such as finite-state machines [13].

start

Off StandBy Dispenseon coffee

off done

Figure 1.1: Simple model of a coffee machine

These models are then used for formal analysis. Model checking [14] and
Supervisory Control Theory (SCT) [15], [16] are two common formal methods.
In model checking, given a model of a system and some specifications that the
model must satisfy, the model checker answers with a yes if the model satisfies
the specifications; else, the model checker provides a counterexample with a no
response. The model (and correspondingly the original system) is manually
updated, in an iterative process, till it satisfies all of its specifications. SCT,
on the other hand, performs synthesis by taking a model of the system and its
specifications to automatically produce a supervisor. This supervisor is used
in combination with the original system to ensure the closed-loop system does
not violate any of the the specifications. Manually building such models is
an error-prone and time-consuming process. Providing tools to enable engi-
neers in the process of building models is essential. This thesis looks into the
possibilities of automatically learning a discrete model.

1.1 Problem Description
SCT has gained a lot of traction within the academic community. Unfortu-
nately, it has not been fully adopted into industrial practice. This is quite
unfortunate, since SCT provides a promising approach to design and develop
industrial control systems. There are several reasons for why SCT has not
been able to gain a footing in the industry. We believe the most crucial rea-
son is related to the access of useful models. Here, the problem is two-fold.
Constructing models manually is challenging. Maintaining these models such
that they always conform to the system requires additional effort.
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Chapter 1 Introduction

As mentioned, SCT relies on the existence of a logical model describing the
system. Defining such a model is a creative task requiring the engineers to
make crucial decisions on what abstraction level to adopt. These abstractions
necessarily focus on capturing some aspects at a certain level of detail of the
system. If the aspects and their detail are adequate for what the model is used
for, the model is useful. Else it is not. Furthermore, the level of abstraction
determines the complexity of the model. It is not uncommon to develop several
models each with a different level of abstraction. Consequently, constructing
these models is an expensive undertaking that not many industries can justify.
Hence, access to logical models is limited.
A much more significant problem pertains to the maintenance of these mod-

els. The target system is not fixed; it keeps evolving. When the system is
updated, the model of the system needs to be updated along with its imple-
mentation. Additionally, the updated system and its model must be verified
and corrected in case of model checking. In the case of SCT, the updated
model is used to synthesize a new supervisor, which then has to be imple-
mented to interact with the target system to ensure that the system behaves
according to the specifications. Repeating the verification or synthesis pro-
cedure every time the system is updated is time-consuming. Hence, a com-
mon practice is only to update the system implementation, neglecting the
model. The challenge of maintaining the usefulness of the model as the sys-
tem is updated impacts the adoption of formal methods. The ability to have
bi-directional updating of the model and the corresponding system and an
automated workflow to obtain the supervisors would significantly improve the
adoption of formal methods.
Therefore, to reap the benefits of formal methods, and SCT in particular,

there is a need for tools and techniques to assist engineers in building mod-
els. Furthermore, automated workflows that integrate model building and
supervisor synthesis will go a long way in popularizing formal methods in
general. Such methods will help find and avoid potential errors as they can
automatically generate models and apply formal techniques at regular inter-
vals. Automatically constructing formal models can also help understand and
reason about ill-documented legacy systems, something that is crucial for the
quality assurance of large-scale and complex systems.
The work in this thesis is grounded in the belief that it is possible to learn a

system’s logical model by interacting with the target system. Humans interact
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with and learn unknown systems by repeatedly forming conjectures about the
system and falsifying these conjectures until they cannot be falsified. Doing
the same algorithmically has been studied under the field commonly known
as active automata learning [17]–[20]. Active automata learning is a field of
research that addresses the problem of automatic model construction. These
approaches constitute a class of machine learning algorithms that aim to de-
duce, by actively interacting with the target system, a finite-state machine
that describes the system’s logical behavior.
Interacting with the physical system to learn a model, though possible, is

impractical. Physical systems are expensive to build, maintain and are prone
to wear and tear. Furthermore, using physical systems to learn a model is
potentially unsafe as it can lead to unforeseen collisions. Interacting with a
simulation of the system rather than the physical system is a more feasible ap-
proach. Simulation-based design is being adopted in the industry [21]. These
techniques include building a virtual replica of the target system, usually a
digital twin [22], that behaves just like its physical counterpart. Since such
simulation models behave like their physical counterparts, they can be used
instead of the physical systems to interact with to learn the system’s logical
model.

1.2 Research Questions
In order to enable industrial adoption of SCT, we want to, in the best of
scenarios, use a simulation to directly learn a supervisor that can control the
simulation or its physical counterpart, such that the controlled system behaves
correctly according to some specifications. In case it is not possible to directly
learn a supervisor, the work in this thesis aims to learn a model describing
the behavior of the system, which can then be used to synthesize a supervisor.
Hence, we pose the following questions:

RQ1 How can we integrate automata learning techniques and SCT to help
design systems that are correct-by-construction?

As mentioned previously, obtaining models to apply SCT is a tedious
task. Active automata learning presents an approach to learn a model
by interacting with the target system. Supervisor synthesis can then be
applied to remove the unwanted behaviors from this model and obtain

7



Chapter 1 Introduction

the supervisor to ensure that the controlled system behaves according
to the specifications. Integrating the learning and the synthesis into
a single step will help, in the best of cases, to learn a smaller model
where the unwanted behaviors are absent, avoiding the computationally
expensive synthesis step.

RQ2 What techniques can help learn models for larger and complex systems?

SCT is known to be an NP-hard problem [23]. Hence, it becomes impos-
sible to obtain a supervisor for large and complex systems. Therefore,
there is a need to investigate innovative methods that can solve the
problem under special cases.

RQ3 What are the challenges faced when applying these methods to real-world
scenarios?

We intend to provide tools and techniques to help industries develop
systems that are correct-by-construction by applying formal methods,
SCT in particular, in their day-to-day development. A natural step as
part of this thesis is to investigate challenges faced when applying the
research in this thesis on practical, real-world problems.

1.3 Main Contributions
Attempting to answer the above research questions this thesis results in the
following contributions:

• The SupL∗ (see Paper A) algorithm is presented that is an extension
of the well-known L∗ algorithm. The presented algorithm can learn a
supervisor of a target system when the specification is available; else, it
learns a model describing the system’s logical behavior.

• A case study applying SupL∗ to learn a supervisor of the MBM , a well-
known example in the SCT community, is presented in Paper A. The
system is simulated in a virtual environment and controlled using a PLC
program to emulate the virtual commissioning set up to create a more
realistic scenario. The learning algorithm then interacts with the PLC
to learn a supervisor.

8
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• Two novel algorithms, the Modular Plant Learner in Paper B to learn
a model, and the Modular Supervisor Learner in Paper C to learn a
supervisor are introduced. The resulting automata obtained from these
algorithms are composed of smaller modules that, taken together, de-
fine the system’s behavior. Hence, the algorithms can be used to learn
models for large and complex systems.

• Another case study where a model of a sub-component of a self-driving
vehicle is learned (see Paper D) is presented. This is done by interacting
with the MATLAB code of this component. Algorithms from papers A
and B are evaluated.

• All the algorithms discussed in this thesis are implemented in MIDES [24],
a tool for automatic learning of models and supervisors for discrete event
systems. Apart from the algorithms, the tool provides interfaces for
MATLAB code and OPC-UA for PLC programs to be used as simu-
lators, from which models can be learned. The tool is designed in a
modular manner to enable easy integration of custom simulators and
algorithms for rapid prototyping purposes.

1.4 Research Methods
The work done in this thesis is applied in nature. Most of the activities are
related to conceptual analysis and implementation [25]. That is to say, a
significant portion of the research focuses on prototyping and validating the
ideas. From a high level, the core research method is to form a hypothesis
and develop a proof of concept to test this hypothesis. It is natural, in this
process, to continuously update and refine the hypothesis from the insights
gained during the process of developing the proof of concept.
Before jumping into the implementations, a first step is to engage with the

literature to discover promising methodologies of interest. In this thesis, the
literature study revealed several existing algorithms to learn models. However,
most, if not all, automata learning algorithms build upon the L∗ algorithm,
which is foundational within the research field commonly known as “active
automata learning”.
The next step is to form a hypothesis to integrate automata learning and

SCT. In our first hypothesis, we are interested in using L∗ to synthesize a
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supervisor. Doing so provides an initial proof of validity about the integra-
tion and also leverages upon the known foundations. The work thus far is
built upon incrementally updating and refining the hypothesis to tackle the
problems faced at each stage.
To test and evaluate our proof of concept hypothesis, we use existing toy

examples known in the supervisory community. One example is the Machine
Buffer Machine (MBM ) introduced in Chapter 2. MBM is a simple example
whose supervisor has all the properties we are interested in studying, such
as controllability and non-blocking defined in Chapter 3. Furthermore, the
MBM has certain additional properties that make it interesting to study,
such as being extendable either by cascading several other MBM s or varying
the buffer’s size to obtain larger models. Apart from the MBM , the Cat and
Mouse example seen in Paper C is used to evaluate the algorithms. Validating
the obtained results is a relatively easy task in the case of the toy examples
as their models are known.
In addition to the toy examples, a sub-component of a self-driving car is

learned. Validating the results, in this case, is a challenging task since the
complete behavior is unknown. Hence, we rely on simulation-based methods
and visual inspection (see Section D7).

1.5 Outline
This thesis consists of two parts. Part I is a general introduction that puts the
appended papers into context. Part II contains the appended papers. Part I is
organized as follows: Chapter 2 gives a background to discrete event systems
and introduces the modeling formalism used in this thesis. Chapter 3 provides
some definitions and introduces supervisory control. Chapter 4 introduces
the field of active automata learning. In Chapter 5 the main contributions
of this thesis are summarized. In Chapter 6 arguments for the correctness of
the modular approach are discussed. Chapter 7 contains a summary of the
appended papers. Part I ends with some closing remarks and directions for
future work in Chapter 8.
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CHAPTER 2
PRELIMINARIES

The systems dealt with in this thesis relate to a class of systems called dis-
crete event systems (DESs) [13]. These systems can be modeled using states
and transitions, where the system occupies a state at any given time and can
transit between the states as defined by the transitions. Common examples
include traffic control systems, automated manufacturing systems, and com-
munication protocols. In this chapter, a formalism to model and study DESs
is introduced.

2.1 Modeling Formalism
There are several different formalisms to model a discrete event system, for
instance Petri nets [26], Transition Graphs [27], and Formal Languages [13],
[15]. This thesis we will use deterministic finite-state automata [28] as the
modeling formalism.

Deterministic Finite-State Automata
Deterministic finite-state automata (DFA) a.k.a deterministic finite state ma-
chines or simply automata [28] are commonly used to model discrete-event
systems. In this formalism the system is abstracted into states, where a state
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M1 B M2
l1 u1 l2 u2

Figure 2.1: Machine Buffer Machine

defines a particular configuration of the system. The system transits from
one state to another according to some defined transition. Each transition is
labeled with an event. The state changes, in the DFA, are considered to be
atomic, hence are instantaneous and so take zero time. Before any transition,
the system is in its initial state. A particular string of events can lead the
system, from its initial state, to some desired state; such a desired state is
called a marked state, and signifies a state of particular importance. The set
of all events of the automaton is known as the alphabet.

Definition 1 (DFA): A DFA is defined as a 5-tuple 〈Q,Σ, δ, qi, Qm〉, where:

• Q is the finite set of states;

• Σ is the alphabet containing the finite set of events;

• δ : Q× Σ ⇀ Q is the partial transition function;

• qi ∈ Q is the initial state;

• Qm ⊆ Q is the set of marked states.

A DFA can be visualized using a directed graph with nodes that represent
the states, and edges that represented the transitions.

i

w

l1 u1

(a) Machine 1

e

f

u1 l2

(b) Buffer

i

w

l2 u2

(c) Machine 2

Figure 2.2: Models for the Machine Buffer Machine
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2.1 Modeling Formalism

Example 1. Consider the example with two machines and a buffer, called
MBM, shown in Figure 2.1 [15]. Two identical machines M1 and M2 are
connected with a buffer B in-between. Each machine can load a part and then
unload it, represented by the events l1 and u1, respectively, for M1, and l2 and
u2 for M2. When M1 unloads a part, the part moves to the buffer; when M2
loads a part it does so from the buffer. The models representing the behaviors
of M1, M2, and B are shown in Figure 2.2.

Modular Model

Modeling all possible behaviors as a single DFA, referred to as a monolithic
model, is not an easy task. Even small practical systems end up with sev-
eral thousand states. Thus, making the task of modeling error-prone and
time-consuming. Instead, it is beneficial to model smaller interacting mod-
ules. Each of these modules defines the behavior of one part of the system. In
Example 1 discusses the behavior of the MBM that is modeled using three au-
tomata seen in Figure 2.2. The automaton in figures 2.2a and 2.2c correspond
to the machines M1 and M2, and Figure 2.2b models the buffer B. The com-
plete behavior can then be obtained by performing synchronous composition
over all the small models.

Definition 2 (Synchronous Composition): Let G1 = 〈Q1,Σ1, δ1, qi1 , Qm1〉
and G2 = 〈Q2,Σ2, δ2, qi2 , Qm2〉 be two automata. The synchronous composi-
tion of G1 and G2 is given by:

G1‖G2 = 〈Q1 ×Q2,Σ1 ∪ Σ2, δ, (qi1 , qi2), Qm1 ×Qm2〉,

where:

δ(〈q1, q2〉, e) =


{δ1(q1, e)} × {δ2(q2, e)} if e ∈ (Σ1 ∩ Σ2),
{δ1(q1, e)} × {q2}, if e ∈ (Σ1\Σ2),
{q1} × {δ2(q2, e)}, if e ∈ (Σ2\Σ1),
undefined, otherwise.

The worst case number of states for the synchronized result of two automata
G1 and G2 is |Q1|× |Q2|. Hence, the number of states increases exponentially
with the number of modules, and very quickly becomes unmanageable. This
is known as the state-space explosion problem.
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Chapter 2 Preliminaries

Alphabets, Strings, and Languages
Recall that the alphabet Σ is a finite set of events. Let Σ2 be defined as
Σ Σ, i.e the set of sequences of events, called strings, of length 2 formed by
concatenation. Similarly, Σ(n+1) = Σn Σ, and Σ∗ denotes the set of all strings
of finite length including Σ0 = {ε}, the empty string.
A string s is a prefix of a string u, if there exists a string t such that u = st;

t is then a suffix of u. For a string s ∈ Σ∗, its prefix-closure s is the set of all
prefixes of s, including s itself and ε. A set Pr is said to be prefix-closed if
the prefix-closures of all strings are also in Pr, that is Pr = Pr. Similarly,
for a string s ∈ Σ∗, its suffix-closure s is the set of all suffixes of s, including
s itself and ε. A set Su is said to be suffix-closed if the suffix-closures of all
strings are also in Su, that is Su = Su.
The transition function δ(q, σ) denotes the state reached by the transition

labeled with σ from the state q, if δ(q, σ) is defined. This notation can be
extended to strings, and defined recursively as follows, with q ∈ Q, σ ∈ Σ,
s ∈ Σ∗:

q = δ(q, ε),

δ(q, σ s) = δ(δ(q, σ), s).

A language L ⊆ Σ∗ is a set of strings over Σ. This gives rise to the notion
of languages defined by a DFA. Consider the set of all deterministic finite
automata denoted by A. Given A ∈ A, the language generated by A, L(A) =
{s ∈ Σ∗ | δ(q0, s) is defined}, is the set of all strings defined from A’s initial
state, q0; the marked language, Lm(A) = { s ∈ L(A) | δ(q0, s) ∈ Qm } is
the set of all strings that lead to a marked state [13]. While the generated
language denotes behavior that is possible but not necessarily accepted, the
marked language denotes possible behavior that is accepted.

Converting Regular Languages to Deterministic Automata
In this thesis, we focus on regular languages [28]. These are a class of languages
that can be represented using DFA. There are several automata that represent
a given regular language. However, for every regular language there always
exists a unique automaton that has the least number of states and this is
called the minimal automaton [13]. Furthermore, this minimal automaton
can be calculated efficiently [29].
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2.1 Modeling Formalism

TheMyhill-Nerode theorem [28], [30], introduced in the 1958 by Anil Nerode
and James Myhill, provides a way to construct the minimal automaton. The
theorem introduces an equivalence relation on the strings, known as the Nerode
Equivalence. This equivalence relation partitions the set of strings into equiv-
alence classes. Each of these equivalence classes corresponds to a state in the
automaton.
Definition 3 (Nerode Equivalence): Given a language L over the alphabet

Σ, two strings u, v ∈ Σ∗ are Nerode equivalent, denoted by u ≡L v, if for all
w ∈ Σ∗, uw ∈ L if and only if v w ∈ L.
According to this definition, two strings u and v in a language are equivalent,

if when extended with a given suffix w the extended strings uw and v w

are either both in the language or not. Conversely, if two strings are not
equivalent, there exists a distinguishing suffix that, when appended to both
the strings, will result in one of the extended strings existing in the language
and the other not being in the language.
The Nerode equivalence for a regular language results in a finite set of

equivalence classes. Each equivalence class maps to one state in the minimal
automaton; this mapping is one-to-one. Thus, the number of equivalence
classes are equivalent to the number of states in the minimal automaton.
This is given by the Myhill-Nerode Theorem.
Theorem 1 (Myhill-Nerode Theorem): The language L ⊆ Σ∗ is regular if

and only if the equivalence relation ≡L represents a finite number of equiva-
lence classes. Furthermore, there exists a DFAM that represents the language
L and has exactly one state for each equivalence class of ≡L, and M is the
minimal automaton.
The Myhill-Nerode theorem shows whether a language is regular (or not),

but more importantly it is leveraged in Paper A to learn a minimal automaton
of a system under learning.

A Note on the Use of DFAs in this Thesis
In this thesis, the above presented definition of DFA is used. However, it is
important to point out a subtle difference in how the notion of states is used
in Paper A vs Paper B and Paper C. Paper A uses the definition of states as
defined above. Here, the states do not hold any information about the system.
They are locations used to represent the state reached by a string. Two states
can be differentiated according to the Nerode equivalence. Hence, two different
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states can correspond to the same configuration of the system. On the other
hand, in papers B and C the state explicitly holds the values of some variables
of the system. That is, the state is defined as the valuation of the variables.
Hence two different states cannot represent the same configuration. This is
presented formally in Section B2. This subtle but important difference forms
the bedrock for the two algorithms presented in papers B and C.
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CHAPTER 3
SUPERVISORY CONTROL

Supervisory Control Theory (SCT) introduced in [15] by Ramadge and Won-
ham provides a mathematical framework to synthesize supervisors that ensure
a DES satisfies certain specifications. The assumption here is that the plant
– that needs to be controlled – does not meet certain specifications. Hence,
using SCT, a supervisor can be calculated. This supervisor interacting with
the plant forms a closed-loop system. Here, the supervisor can dynamically
disables certain events that the plant could have otherwise generated. Thus,
ensuring that the controlled system behaves in accordance with the specifica-
tions.
The DES model of the plant (denoted by G) captures everything the system

is capable of doing. The specification (denoted by K) expresses the system’s
required behavior, including the aspects that ensure the system operates safely
and ultimately can reach its intended goal. Given complete freedom, the plant
would violate the specification. The objective is to calculate a supervisor
(denoted by S) – a device to restrict the behavior of the plant. This supervisor
ensures that the plant does not violate the specification and fulfills its intended
goal. It is worth noting that the supervisor can only restrict the behavior by
disabling certain events. It is the plant (or an external system) that decides
which transition to take.

To restrict the behavior of the plant, the supervisor needs to be connected
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Chapter 3 Supervisory Control

Figure 3.1: Feedback loop of supervisory control.

to the plant in a feedback loop as seen in Figure 3.1. The supervisor contin-
uously listens to the events generated by the plant. It can disable a subset
of controllable events based on past behavior (according to some function) to
ensure that the specifications are not violated. The closed-loop behavior of
the plant under control is given by the synchronous composition G ||S.
Note that in the above explanation, and the rest of the thesis, we assume

that all the events are observable by the supervisor.
Originally, SCT was introduced based on a language formulation [15]. In [31]

it was shown that, when modeled as DFA, the synchronous composition can
describe the behavior of the plant under the control of the supervisor.

3.1 Properties of the Supervisor
The supervisor calculated using the SCT framework satisfies certain proper-
ties. Here, we look at the properties important for this thesis.

Controllability
Recall that the DES consists of transitions that take the system from one
state to the next. Each transition is associated with an event. The event set
is partitioned into into two disjoint subsets, Σc containing the controllable
events and Σu containing the uncontrollable events. The plant is allowed to
take a transition labeled with an uncontrollable event anytime such an event
is enabled in a state. Thus, the supervisor is allowed to disable only the
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controllable events and not the uncontrollable ones. Hence, we can say that
a supervisor is controllable if the synchronous composition of the supervisor
and the plant never disables a transition labeled with an uncontrollable event.
Formally, this is expressed as:
Definition 4 (Controllability): For a plant G and uncontrollable events

Σu, a supervisor S is said to be controllable if ∀s ∈ L(G ||S), σ ∈ Σu : sσ ∈
L(G) =⇒ sσ ∈ L(G ||S)

To distinguish between controllable and uncontrollable events, uncontrol-
lable events are marked with an exclamation mark (!) in the figures.

Non-blocking
A controllable supervisor need not always be useful. The controllable supervi-
sor guarantees that the plant does not violate the specification; however, the
case may be that the supervisor does not let the plant do what it is supposed
to. For example, the supervisor might allow the plant to reach a state from
which the plant cannot continue; or, the plant enters into an endless loop. To
avoid such a scenario, the desired goal of the plant needs to be defined by the
specification. This is achieved using the notion of marked states. The super-
visor calculated should then ensure that the plant can always reach one or
more of these marked states. That is, the supervisor should be non-blocking.
In other words, non-blocking is used to guarantee that the supervisor does
not restrict the plant from doing what it is supposed to do.

Definition 5 (Non-blocking): For a plant G, a supervisor S is said to be
non-blocking if the closed-loop system G ||S is non-blocking, that is L(G ||S) =
Lm(G ||S).

In other words, the closed-loop system is non-blocking if every reachable
state can continue to reach some marked state.

Maximally Permissive
Given a plant and its specifications, several controllable and non-blocking su-
pervisors exist that satisfy the specifications. The difference between these
supervisors is in how aggressive they are in restricting the plant’s behavior.
In an aggressive approach, the supervisor restricts as much behavior of the
plant as possible, resulting in a minimal behavior of the controlled system.
On the other hand, the least restrictive (aka maximally permissive) approach
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produces a supervisor that restricts the plant only when needed. Thus, the
resulting controlled system contains all possible behaviors satisfying the spec-
ifications.
In this thesis, the goal is to calculate the maximally permissive, controllable,

and non-blocking supervisor. The conditions under which such a supervisor
exists are well established in literature [32]. Furthermore, it is known that such
a supervisor is unique for a given plant and specification [16]. It is also known
that it is computable (that the computation of it will terminate). However,
it does not always exist, which is when the computation terminates with the
degenerate null supervisor.

3.2 Synthesis
One of the many ways to calculate a supervisor is by converting the initial
controllability problem into one of non-blocking using the plantification [33]
step. In this step, each specification automaton K, in the set of specifications,
is transformed into a Σu-saturated automaton K⊥, by adding to every state,
for every uncontrollable event not enabled in that state, a transition to a new
blocking state ⊥.
The synthesis algorithm first calculates the synchronous composition of the

plant G and the plantified specification K⊥. The result is then iteratively
pruned to remove all blocking and uncontrollable states. By removing all
states (and their corresponding transitions) that violate the properties con-
trollability and non-blocking, and keeping all the other states results in the
maximally permissive controllable and non-blocking supervisor [34].

Definition 6 (Plantification): For K = 〈Q,Σ, δ, q0, Qm〉, the Σu-saturated
automaton K⊥ is given by K⊥ = 〈Q ∪ {⊥},Σ, δ⊥, q0, Qm〉, where ⊥ is a new
state, and

δ⊥(q, u) =
{
⊥ q ∈ Q, u ∈ Σu, δ(q, u)is undefined
δ(q, u), otherwise.

Example 2. To illustrate the different properties and the synthesis steps con-
sider MBM. The events corresponding to unloading a part from the machines
are uncontrollable and hence written as !u1 and !u2. Machine M1 and M2
form the plant, and B is treated as the specification. The model obtained by
synchronizing the three components consists of eight states and twelve transi-
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Figure 3.2: The synchronous composition of M1, B, and M2
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Figure 3.3: Plantified B

tions as seen in Figure 3.2.
It is evident that the obtained model is non-blocking, i.e., it is possible to

reach the marked state from every state. However, this model is uncontrol-
lable as the two states to the right, 〈w, f, i〉 and 〈w, f, w〉, have the !u1 event
disabled. According to the plant model, M1 can, by the !u1 event, unload a
part into the buffer. However, since the buffer is already full, it cannot take
an additional part. Hence, a supervisor needs to be synthesized.
Figure 3.3 shows the plantified specification for B⊥. This specification

reaches a blocked state ⊥ if M1 unloads two parts without M2 loading a part in
between. The synchronous composition M1 ||M2 ||B⊥ is seen in Figure 3.4.
It can be seen here that states 〈w,⊥, w〉 and 〈i,⊥, i〉 are blocking and no state
is uncontrollable.
The synthesis algorithm disables event l1 from the states 〈i, f, i〉 and 〈i, f, w〉

avoiding the possibility of reaching the blocked states. The resulting automaton
is the maximally permissive controllable and non-blocking supervisor is seen
in Figure 3.5.
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Figure 3.5: The maximally permissive controllable and non-blocking supervisor

22



3.3 Note about Marked States in the Plant
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Figure 3.6: Modular supervisor for MBM

Modular Synthesis
Given a modular plant G = {G1, G2, . . . , Gn} and its corresponding specifica-
tion K = {K1,K2, . . . ,Kn}, it is known [35] that a controllable modular su-
pervisor can be calculated by selecting for each specification Ki ∈ K, all plant
components Gj ∈ G such that ΣKi

∩ΣGj
∩Σu 6= ∅ and performing monolithic

synthesis on this sub-system. To guarantee a maximally permissive modular
supervisor, also all plant components Gk ∈ G such that ΣGk

∩ΣGj
∩Σu 6= ∅ for

each Gj previously selected have to be included. This selection of new plant
components sharing uncontrollable events with the already selected ones has
to be iterated until a fix-point. However, these latter Gk plant components
can be included incrementally, as needed [35], to lessen the risk of including
the monolithic plant. However, it must be noted that the modular supervisor
does not guarantee non-blocking behavior.

Example 3. The specification in MBM shares uncontrollable events with only
M1, and M1 does not share uncontrollable events with any other components.
Hence, it is sufficient to calculate a supervisor for specification B taking only
M1 into consideration. The resulting supervisor is much smaller as seen in
Figure 3.6.

3.3 Note about Marked States in the Plant
A point to highlight is that the marked states can be defined in the plant,
the specification, or both plant and specification. The premise of this thesis is
that the plant models do not exist. When the model does not exist, defining
the marked states would require extensive knowledge of the system, akin to
manually modeling the system. However, the author’s view is that it is the
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specification’s role to define these marked states. The plant must merely define
all possible behaviors of the system modeled. Hence, the work in this thesis
assumes all the states in the plant to be marked.
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CHAPTER 4
ACTIVE AUTOMATA LEARNING

The behavior of many technical systems can be described using regular lan-
guages. Such systems include traffic control systems, manufacturing systems
etc [13]. Manually describing the behavior of these systems is not easy. There
exist techniques known as automata learning to automatically learn the be-
havior and represent it using automata.
Automata learning has been studied both as a theoretical problem, where

its goal is to uncover some hidden function, and as a practical problem of at-
tempting to represent some knowledge using a mathematical formalism such
as an automaton [20]. Automata learning finds its origin in various fields
of study: computational linguistics, machine learning, formal learning the-
ory, pattern recognition, and computational biology. Hence, it is also known
by different names depending on the field: Model learning, Model inference,
Grammar induction, Grammar inference, etc. Though the different names
can have different connotations, they all refer to similar ideas and processes.
This chapter provides a broad overview of the field of automata learning and
its application.

An automata learning algorithm, referred to as a learner, aims to learn a
model that captures the behavior of the system under learning (SUL). These
algorithms are broadly classified as passive learning when the learner is pro-
vided with data logs of the SUL, or active learning when the learner can
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directly interact with the SUL. Passive learning is a setting in which labeled
data is provided to the learner. The learner is tasked to find a model that
represents this data [36]–[38]. The data is usually an observation log from the
SUL. The observations are labeled as accepted (or rejected) if they belong (or
do not belong) to the marked language. Thus, the models learned using pas-
sive learning methods are in-exact; they represent only those behaviors that
were provided in the observation logs. Behaviors possible by the SUL but not
observed in the log (for example, observations of errors that rarely manifest)
are not included in the model. However, we are interested in learning a model
that contains all possible behaviors of the SUL, with the intention to synthe-
size a controllable and non-blocking supervisor. Doing so is possible using
active learning, thus making it the focus of this thesis.

4.1 Active Learning
Active learning, in contrast to passive learning, learns a model by experimen-
tation. Given a SUL, the goal is to find an automaton model that represents
the behavior of the SUL. To this end, the learner observes the behavior of
the SUL for some set of inputs. The term active implies that the inputs are
chosen by the learner.
The active learner can pose queries to a teacher. Based on the responses

from the teacher, the learner updates its knowledge about the SUL. It is
assumed that this teacher is an abstract entity that knows the language of the
SUL and can correctly answer certain types of queries.
There are several types of queries depending on the application and field of

study [20]. For the purposes of this thesis, we are interested in the following
two types of queries (interested readers are directed to [20] for a more extensive
list of queries):

• Membership Queries (MQs): are made by asking the teacher if a
given string is allowed by the SUL. The teacher responds with a YES or
NO.

• Equivalence Queries (EQs): are made by the learner presenting a
hypothesis automaton that the learner believes to represent the SUL.
The teacher replies positively if this hypothesis correctly represents the
SUL. Else, a counterexample needs to be provided that differentiates

26



4.1 Active Learning

between the SUL and the submitted hypothesis. This counterexample
is a string that is allowed in the SUL but not in the hypothesis, or the
other way around.

Learning a DFA that correctly represents the language of the SUL cannot be
done using only MQs or only EQs [20], [39], [40]. However, [17] shows that it
is possible to learn such a DFA by using both MQs and EQs, and presents L∗
an algorithm for doing this. Moreover, [17] introduces the concept of minimal
adequate teacher, a teacher that can answer both MQs and EQs.

The Archetype Learner

Algorithm 1: The learning loop
Input: Access to a MAT answering MQs and EQs w.r.t a target DFA

A
Build initial hypothesis H using MQs
while EQ for the H does not succeed do

Let c ∈ Σ∗ be the counterexample returned by the MAT
Update H using MQs taking c into account

end
return Final hypothesis H that is equivalent to A

Nearly all algorithms that are developed using the MAT model follow the
same structure. The pseudo-code for this is provided in Algorithm 1 which
we refer to as the learning loop. The learner starts by creating an initial hy-
pothesis using only MQs. This hypothesis is then used to pose an EQ. If a
counterexample is found, it is taken into consideration to refine the hypoth-
esis (using MQs). The refined hypothesis is again used to pose an EQ, and
this process continues until no counterexample can be found. Since this loop
terminates only when no counterexample is found, it inherently provides some
guarantee for the correctness of the algorithm.
L∗ was the first algorithm that showed the possibility of learning a DFA

for some unknown language. The learner, L∗, makes MQs and stores the
responses in an observation table. This observation table is a data structure
from which a hypothesis automaton is obtained. The MQs are made until the
observation table is closed and consistent. A closed table ensures that all tran-
sitions in the corresponding automaton lead to valid states, while a consistent
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table ensures there exists no non-deterministic behavior in the automaton.
When a closed and consistent table is obtained, L∗ generates a hypothesis to
pose an EQ. A counterexample, if obtained, is used to extend the observation
table, and the learning continues repeating the process in accordance with
Algorithm 1.
The theoretical worst-case size of the observation table, in L∗, is calculated

to be (k+1)(n+m(n−1))n, where k = |Σ| is the size of the alphabet, n = |Q|
is the number of states, and m is the maximum length of any counterexample
presented by the MAT [17]. This is also the upper bound for the number of
MQs, and thus the complexity is O(m|Σ||Q|2). Assuming that m = |Q| in
the worst case, the number of MQs (and the size of the observation table) is
O(|Σ||Q|3).
It must also be noted that learning a prefix-closed language results in a

larger number of MQs and EQs compared to learning non-prefix-closed lan-
guages. For instance, [41] observes that the required number of MQs grows
quadratically in the number of transitions when learning prefix-closed lan-
guages. Further empirical studies in [42] show that in general more queries
are required (i.e., it is harder) to learn a DFA with more marked states (≈ |Q|)
and that the number of MQs per EQ grows linearly as a function of |Σ| and
|Q|.
The work in this thesis shows a way to extend L∗ to learn a supervisor

of the SUL. The modifications to L∗ presented in Paper A can be ported
(with minimal effort) to other algorithms developed around L∗. The following
section provides a glimpse into learning algorithms that build upon L∗.

Algorithms that build upon L∗

There have been a handful of algorithms that build upon L∗. Some of these
algorithms improve upon the complexity of the learning algorithms. This is
mainly achieved by using more efficient data structures. The Kearns-Vazirani
algorithm [43] builds upon L∗ but stores the gained knowledge of the SUL in a
tree data structure – discrimination trees – rather than an observation table.
In principle, the algorithm uses MQs and EQs to refine the discrimination tree.
The update is, in essence, sifting strings into the tree, thus increasing the size
of the tree to include an additional node and leaf. Such growth in size is
much better in comparison to the observation table. The Rivest and Schapire
algorithm [44] improves on L∗ by handling counterexamples that include a
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homing sequence when it is not possible to reset the SUL. Here, [44] introduce
binary search to find a suffix of a counterexample that refines the hypothesis.
Using only the interesting information in the counterexample leads to better
performance of the algorithm. The idea of discrimination trees and homing
sequence is combined in [45] to introduce Observation Packs. These are trees
of the information collected called components. Each component corresponds
to one state in the hypothesis. A component consists of suffix, prefix, and an
access sequence, as well as a local observation table derived from the suffix
and prefix associated with that corresponding state. The idea of Observation
Packs is further explored by Malte et al. [46] who suggest the TTT1 algorithm.
The idea behind TTT is that it continuously maintains the counterexamples
in trie structures, efficiently eliminating the evaluation of redundant queries.
In general, L∗ performs the largest number of MQs, compared to the other

algorithms, before the final model is created. But because L∗ collects more
information before presenting a hypothesis, it is also more likely to produce
fewer false hypotheses and fewer EQs compared to the other algorithms [47].
However, the upper bound on the number of EQs is the same for all algo-
rithms [41].
Apart from improving the complexity, another class of algorithms aims

to learn different formalisms depending upon the application. For example,
the NL∗ algorithm learns a non-deterministic automaton [48]; in [49], [50]
an approach to learn symbolic register automata is presented; learning of
weighted automata is presented in [51]; automata learning from a categorical
perspective is done in [52], [53].

Automata Learning Integrated into Other Model-Based
Techniques
Model checking [14] is a technique to automatically verify if a given model
satisfies certain properties. Combining automata learning and model checking
has been introduced in [54], [55] and is called adaptive model checking.

The basic idea in adaptive model checking is to use automata learning
techniques to learn a system model. Then, use model checking algorithms to
verify if the learned model satisfies certain properties needed by the system. If
the properties hold, the learning algorithm makes EQs and continues according

1The name is derived from Spanning Tree, Discrimination Tree, and Discriminator Trie;
the three concepts fundamental to the algorithm.
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to the learning loop.
If the properties do not hold, an error trace is provided by the model check-

ing algorithm. This error trace is a string that violates one of the properties
when traversed by the system. The adaptive model checking algorithm ex-
ecutes the string on the real system and observes if it indeed violates some
property. If it does, the adaptive learning algorithm concludes that the system
does not satisfy one or more properties. On the other hand, if the system cor-
rectly executes the error trace without violating the property, the error trace
is used as a counterexample, and the learning algorithm updates its knowledge
and continues learning.
Learning-based testing [56], [57] is another approach where automata learn-

ing (both active and passive) approaches are integrated into, and used for,
testing whether the system satisfies its specifications. In this approach, a
hypothesis model is first created using the inputs to a system and their cor-
responding outputs. A model is synthesized based on the input/output pairs.
The testing algorithm tries to find a counterexample where the model violates
the specifications. This counterexample is then tested in the actual system.
If the test fails, the testing algorithm terminates, producing a failure report.
If the test passes, the input/output pair is taken as input to the learning
algorithm to create a new model, and the testing continues. The algorithm
terminates when a bound on the maximum testing time is reached or a bound
on the maximum number of test cases is fulfilled.

4.2 Applications of Active Model Learning
This thesis contains one real-world example in Paper D, it is good to mention
a few others that use active learning. This is by no means a complete list:

• Verifying communication protocols: Active automata learning has
been applied to verify communication protocols using Mealy machines [18],
[58]. In [59] automata learning is used to find bugs in the closed-source
implementation of the TCP protocol in Windows. Furthermore, in [60]
the authors found a bug in the sliding window TCP implementation in
Linux. Other protocols like the MQTT [61], TLS [62], and SSH [63] have
been learned using active automata learning. In [64] active automata
learning is applied to SSL/TLS for hostname verification. Several differ-
ent implementations are learned and analyzed, discovering eight unique
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vulnerabilities.

• Verifying smart cards and passports: In [65] a model of bank cards
is learned. This is a really good example of a real black-box system
since it is not possible to access the code or perform any other type
of monitoring for these cards. In [66] a lego machine to operate the
bank card machine is constructed to automatically test inputs. Using
this machine as an interface for active learning, the authors could find
a security flaw in the card reader. In [67] an abstracted model of the
biometric passport protocol is learned.

• Learning models of software systems: In [68] active automata
learning is applied to learning register automata models of software pro-
grams. [69] focus on learning embedded software programs for indus-
trial printers. [70] apply automata learning to learn the control system
of legacy software systems at Philips. They learn both an old version
and a new version of the same component. Comparing these models
presents an insight into the differences between them, giving developers
the opportunity to solve problems before replacing the old components.
There have been some attempts to apply automata learning to automo-
tive systems in [56], [71].

4.3 Available Tools
There exists a handful of automata learning tools, each with its own special-
ization, requirements, and benefits. The following is a brief overview of the
most well-known tools:

• LearnLib: LearnLib [72] is a free and open source library for automata
learning, written in Java and being actively developed. It provides a
framework for conducting research on learning algorithms and their ap-
plication. LearnLib supports a number of learning algorithms for active
as well as passive learning. Though most of the work in LearnLib fo-
cuses on Mealy machines, it does support other modeling formalism
such as non-deterministic automata, deterministic automata, and visi-
bly pushdown automata. Additionally, it provides several equivalence
approximation strategies including variations of the W-method [73], Wp-
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method [74], and random walks. It also provides logging facilities to an-
alyze the learning statistics including number of MQs and EQs, running
time, and memory consumption.
Recently, there has been a number of new tools that use LearnLib as
the learning engine, RALib [75], ALEX [76] and Tomte [77] are notable
mentions. RALib is used to learn register automata. ALEX (Automata
Learning Experience) provides an easy to use mechanism to learn models
of web applications. And Tomte makes it possible to learn models that
have a large or even infinite alphabet.

• LibAlf: The libalf [78] library is an open-source library for learning
finite-state automata written in C++. It provides well-known learning
techniques, such as Angluin’s L∗ [17] for active learning, and Biermann’s
learning [79] approach for passive learning. However, it has not been in
active development in recent times.

• RALT: RALT [80] (Rich Automata Learning and Testing) is a closed-
source tool developed for France Telecom. This tool is focused on in-
tegration testing in the absence of a model. It first learns a hypothesis
model of the system, and then generates test strings to test it. RALT
supports algorithms for deterministic finite automata, mealy machines,
and simple parameterized machines.
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CHAPTER 5
LEARNING SUPERVISORS

Chapter 3 introduced supervisor synthesis, an approach to automatically com-
pute supervisors for a given plant and specification. These methods assume
access to usable plant and specification models. However, manually construct-
ing these models is difficult, time-consuming, and prone to errors. Automata
learning, introduced in Chapter 4, provides an approach to interact with a
SUL and learn a model that represents its behavior. Using automata learning
to replace the manual step of constructing the supervisor would indeed benefit
the SCT community. This chapter discusses an approach to integrate the two
fields of study. First, some related work is presented.
Within the supervisory control community, there have been a handful of

works that incorporate active automata learning, specifically L∗, to calculate
supervisors. A synthesis approach for concurrent systems where the specifi-
cation is not explicitly defined but known to the designer is presented in [81].
In [82] an algorithm S∗ is presented that extends upon L∗ to synthesize a
maximally permissive supervisor when the specification is not available in a
known format. An example is studied to show the synthesis of a supervisor
when the specification is not a regular language. The main difference be-
tween [81] and [82] is that the latter presents a way to implement the teacher
queries, whereas [81] treats the designer as the teacher.
Both [83] and [84] use L∗ to learn a supervisor without having access to
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the plant. The former modifies L∗ to learn an N-step controllable supervisor,
and the latter learns a maximally permissive controllable supervisor. In [85]
automata learning is used to learn a decentralized controller for multi-robot
coordination.

5.1 Missing Pieces
Recall that automata learning methods assume access to a teacher responsible
for answering certain queries. The question arises, how does the teacher answer
these queries?
In the original L∗ the teacher is assumed to be an abstract entity that has

complete knowledge of the unknown language. However, to practically apply
active learning, we require concrete techniques to answer the two types of
queries, membership queries and equivalence queries. To this end, we use a
simulator that can, by simulating the SUL, answer MQs. Furthermore, we
adopt ideas from the testing community to use the simulation to test the
hypotheses and find counterexamples.

Simulation
Simulations provide several advantages in comparison to using a physical sys-
tem. Unlike the physical system, the simulation can run faster than real-time,
even multiple instances in parallel, thereby speeding up the learning process.
Event sequences that might result in dangerous collisions and unforeseen er-
rors are confined to the simulation, providing a safe learning environment.
Additionally, once a simulation is available, the necessary financial investment
relates to obtaining powerful computers, which in today’s world is relatively
cheap.
Simulation-based design and development is well adopted in most indus-

tries [21]. For example, the manufacturing industry has seen an interest in
virtual commissioning [86] where a virtual model of the system is first cre-
ated and tested along with its actual control code before physically building
the system. Hence, there already exists the practice of developing simulation
models, these can be used to learn logical models of the systems.
It is important to highlight the requirements of the simulation in light of

this thesis. This work aims to learn a discrete model; hence, we assume the

34



5.1 Missing Pieces

simulator to be a discrete system as well. In most cases, these are not discrete,
neither in time nor variable values. However, we assume that the simulation
can be abstracted to behave like a discretized system.
Discrete systems work with the assumption of instantaneous events. That

is, a transition from one state to another takes no time. At each state, the
simulation has enabled events that can be executed, via an interface, to per-
form specific actions. When such an action has been performed, the state
of the simulation is updated, resulting in a new set of enabled events. Thus
a string of events can be executed, taking the simulation from one state to
another. If an event is requested to be executed that is not enabled by the
simulator at a particular state, the simulator replies with an error message.

Though theoretically useful, the idea of instantaneous events does not trans-
late well to real-world systems where the transition from one state to another
takes time. For such systems, an abstraction of operations can be used, where
an operation in the real system relates to an event. In this work we will define
two types of operations, two-state operations and three-state operations [87].
Two-state operations are similar to instantaneous events and are usually

used for a simulator where state changes are a matter of updating vari-
ables, and hence instantaneous. Three-state operations have the three states
initial, executing, and finished. A three-state operation is triggered
from its initial state. The operation is in the executing state while the
simulator executes the operation. Only when the operation has completed
and is in its finished state, is the learning algorithm notified to continue.
Thus, of interest to the learning algorithm are the initial and finished
states. Three-state operations are used particularly in the PLC simulator
using OPC-UA of Paper A.
Furthermore, it should be possible to observe a subset of the variables used

in the simulation. Specifically, those variables that relate to the logical behav-
ior of the system. This specific requirement applies mainly to the algorithms
contained in papers B and C.

Finding Counterexamples
An important step during active learning is equivalence checking: given a hy-
pothesis, does this hypothesis describe the behavior of the SUL? An obvious
way is to test every string in the hypothesis against the SUL. However, this is
an arduous task as the error can be hidden deep within the state-space. The
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presence of loops in the hypothesis adds to the complexity. Also, there is a
need to run a possibly unbounded number of test cases to find counterexam-
ples. Under the condition that we aim to learn a model that has a minimal
number of states, there exist testing methods [88], [89] that can be leveraged
to find counterexamples for the purposes of active learning.
Some of the commonly used methods are random walk [90], the W-method [73],

the Wp-method [74], and the HSI-method [91]. Using the random walk al-
gorithm does not guarantee full coverage of the state-space. Hence, they are
usually used for learning models that are not required to be fully correct [17].
The W-method provides a way to generate test cases for a given number of
states. This idea is further developed in the Wp-method and the HSI-method
to reduce the number of test cases generated. For this thesis, the W-method
sufficed and was used in Paper A, where details are found in Section A2.3.
To apply the W-method, we assume a known bound on the number of

states in the SUL. However, in practice, this information is not always known
in advance. Setting a bound lower than the actual will terminate the learning
algorithm prematurely, resulting in an incomplete model. On the other hand,
a higher value could result in the non-termination of the algorithm. One
option to avoid setting the upper bound is to look for counterexamples for
only N-step ahead. Such an option works, reducing the burden on validating
if the learned model completely represents the language of the SUL or not. In
this thesis, the learned automaton represents the generated language. Thus,
making it feasible to use a 1-step or a 2-step look ahead counterexample
generator.
An unwanted consequence of using testing methods to find counterexamples

is the exponential growth of MQs. The test strings generated are used to per-
form MQs in the SUL. The responses obtained are compared to the expected
value from the hypothesis.

5.2 Learning Supervisors
To learn a supervisor, a new algorithm SupL∗, based on L∗, is presented in
Paper A. Unlike the original L∗ the membership queries include querying, not
just the simulated plant but also the specifications. The details on what these
queries contain are found in Section 2.2. It suffices to here say that these
queries can return values {0, 1, 2} instead of only {0, 1}. Here, the value 2
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corresponds to strings that belong to the marked language. 1 corresponds to
strings in the generated language; invalid strings have a value 0.
It is now guaranteed that the above modifications will always result in a

maximally permissive controllable supervisor. For this, the controllability
problem must be converted into one of non-blocking by plantification of the
specification, as introduced in Chapter 3. As a consequence of plantification,
the total number of states in the learned automaton increases. The resulting
learned automaton is the maximally permissive controllable supervisor. The
blocking states added due to plantification need to be deleted, along with any
uncontrollable states, to obtain the maximally permissive controllable and
non-blocking supervisor. However, the practical cases to which this algorithm
can be applied are limited as the resulting model is monolithic and suffers
from the state-space explosion [14] problem. Also, as observed in Paper D,
the counterexample generation suffers due to the large number of states and
transitions resulting in non-termination. Hence, we turn our attention to
learning modular models instead of large monolithic ones.

Taming the State-Space Explosion Problem
The SupL∗ takes a language-based approach. That is, the SUL is treated
as a black-box entity to which inputs can be provided and outputs can be
observed. More specifically, the inputs are strings of events, and the output
indicates if the provided input is executable by the SUL or not. These event
sequences are what give meaning to the states (in the automaton). Thus, it is
not possible to directly learn a modular model just by observing these event
sequences. Indirectly learning a modular model would still require exploration
of the complete state-space.

There is the possibility of defining states based on the system’s internal
observations when it comes to cyber-physical systems. These observations
include internal variables, sensor reading, and actuator values of the SUL. In
such a setting, it is possible to explore the system’s behavior and identify indi-
vidual states based on the valuation of the internal variables, sensor reading,
and actuator values. Starting from the initial state, the next states can be
discovered by attempting to run all possible events in the simulator. The new
states observed are further explored in a breath-first search manner until no
new states can be discovered. Such an approach is adopted in papers B and C.

By default, such an exploration will result in traversing the entire state-
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space resulting in the state-space explosion problem. Additional information
about the system is required to perform the search in a smart manner, such
that searching the monolithic state-space is avoided. Section B3.3 introduces
the Plant Structure Hypothesis (PSH) that provides information defining the
different interacting components in the SUL. The learning algorithm can then
exploit this knowledge to divide the learned information into separate modules
and reduce the search space, thereby mitigating the state-space explosion
problem.
Paper B introduces the Modular Plant Learner (MPL) algorithm that uses

a PSH and a simulation to smartly explore the state-space to learn a modular
model describing the SUL. Defining the PSH is not an easy task; it requires
skill and in-depth knowledge of the SUL. Chapter 6 introduces the properties
a PSH must adhere to and provides arguments for the correctness of modular
learning using the PSH.
MPL interacts with the simulation to learn a modular plant model of the

SUL. This model can then be used to synthesize a modular supervisor using
well-known algorithms [34]. Instead of this two-step process, Modular Super-
visor Learner (MSL), an algorithm for directly learning modular supervisors,
is introduced in Paper C. Given a set of specification, MSL learns one super-
visor for each specification. The results are promising as it was possible to
learn a modular supervisor for the Cat and Mouse example [16] and the AGV
example [92]. The latter is well known for its computational complexity in
the monolithic setting.

5.3 MIDES – A Tool for Model Learning of
Supervisors

This section presents MIDES (Model Inference for Discrete-Event Systems)
a tool to learn finite-state models and supervisors. MIDES is a tool that is
constantly updated, and the source can be found on Github [24].
MIDES is aimed to be used within the supervisory control [16] context.

Hence, it is built to be used alongside Supremica [93] and uses the data
structures available in Supremica, namely that of DFA described in Chap-
ter 2.
MIDES contains implementations of the algorithms discussed in this thesis.

Additionally, it contains interfaces to interact with external systems to act as
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simulators.

Tool Structure

MIDES is focused on a simulation-based approach to learning DFA models.
It caters to both a minimally adequate teacher [17] and exploration-based
learning. Its high-level structure is shown in Figure 5.1.
The user input consists of the simulation and the meta-model that make up

the SUL. These are interfaced with MIDES using the appropriate interfaces.
The learning algorithms in MIDES interact with the SUL through these inter-
faces. There is a possibility to learn either a supervisor when the meta-model
provides specifications, or a plant model in the absence of specifications. As
it is built upon the data-structures present in Supremica, the learning algo-
rithms can use algorithms provided by Supremica.

Figure 5.1: High-level structure of MIDES

System Under Learning (SUL)

The SUL is made up of two parts, the simulation and its corresponding meta-
model. These need to be interfaced with MIDES using appropriate interfaces.
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Simulation

Currently, MIDES supports PLC simulators, using the OPC-UA [94] proto-
col, a MATLAB [95] interface to communicate with MATLAB code, and an
internal code simulator that simulates the behavior of a system defined using
variables and logical predicates. Furthermore, an interface is provided to allow
other simulation tools to be integrated.

Meta-Models

The learning algorithm also requires some additional information – a meta-
model – to help interface with the simulation. This includes the alphabet of the
SUL, the type of model (modular or monolithic) to learn, the state variables
to monitor, and the system’s initial and marked states. Additionally, in the
case of learning supervisors, the specifications of the system are needed. In
the case of learning a modular model, a Plant Structure Hypothesis (PSH) is
required as described in Paper B.

5.4 Insights from the Case Studies
The usability of the work in this thesis is demonstrated by applying the im-
plemented algorithms on two use-cases presented in Paper A and Paper D.
The motivation for the case studies was to identify the bottlenecks in applying
supervisor learning techniques in real-world applications. This section briefly
highlights the experience and learning outcomes from these two methods.
Paper A studies the feasibility of these methods in a virtual commissioning

setting. Here, MBM introduced in Example 1 is recreated in a simulation
environment using the 3D simulation and virtual commissioning tool Xcelgo
Experior [96], which is then controlled using a PLC. To reduce the complexity
of the simulation model, the simulation is made using pushers and sensors.
The pushers can push an object from one platform to another. The sensors
are used to check if an object exists on a platform. We then use the SupL∗
algorithm to learn a model describing the system, as well as its supervisor.
Paper D looks at learning a model for the Lateral State Manager (LSM ) of

an autonomous car. The LSM , implemented in MATLAB, is a sub-component
of the planning module that keeps track of the process of switching between
lanes during autonomous driving. In this case study, a model of the LSM is

40



5.4 Insights from the Case Studies

learned by actively interacting with its implementation. Here, we use SupL∗–
without specifications, hence learning a model of the system – and MPL. The
paper discusses the reasons for the failure of SupL∗ to learn a model of the
LSM . MPL, though used to learn a monolithic model in this case, had no
problems learning a model of the LSM .
Both these studies highlighted certain issues that need to be addressed when

using supervisor learning techniques in practical applications.

Choosing the Abstraction

Both cases show the importance of deciding on a relevant level of abstraction
to learn the model. In both cases, the level of abstraction needs to conform
with the implementation of the system. If not, it becomes difficult to establish
an interface between the learner and the SUL. From the perspective of the
algorithms, the decision on the abstraction level plays a crucial role in the
modular learning algorithms. Both MPL and MSL require a PSH that defines
the system’s modular structure. Moreover, this modular structure ties into
the intended level of abstraction, which in turn impacts the search strategy.

The level of abstraction also plays a key role in determining the time needed
to learn a model. For example, in learning from the virtual commissioning
example, it was noted that having more complex simulation models resulted
in a long time for learning the model. Changing the simulation, without
any change to the PLC logic, to reduce the simulation time helped reduce
learning time from almost 50 hours to about 20 hours. Since the change does
not impact the system’s logical behavior, the resulting models in both cases
are the same.

The decisions made regarding the abstraction levels also determine the size
of the resulting model, and ultimately the applicability of these methods. The
learning can be applied at the level of sensors and actuators, which can result
in a huge model that contains the detailed behaviors of these components.
Alternatively, it can be applied at a higher level, as it is done at the abstraction
level of operations in Paper A. In the case of LSM , the abstraction decided
the size of the alphabet resulting in a trade-off between the events and states
discussed in Section D8.2.
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Access to Specifications
This thesis aims to calculate supervisors that ensure that the SUL, when
controlled, behaves according to certain specifications. However, these spec-
ifications do not always exist in a usable format. When learning a model of
LSM , it was noted that though there existed natural language specifications,
these were not useful. The specifications had to be converted from natural
language to something more useful, such as an automaton that has the same
level of abstraction as the model. However, since no information about the
model (for example, the alphabet) existed from the start, no usable speci-
fication could be created. This is partially a modeling problem but is also
connected to the previously mentioned issue with defining abstractions.

Model Validation
Evaluating if the learned model describes the behavior of the SUL correctly
is not always easy. If some behavior does not exist in the model or the other
way around, it is essential to establish where the error originates. The in-
correct behavior could result from bad specification, wrong simulation model,
nonconforming meta-model, etc. In Paper D, manually simulating the model
and the implemented code side-by-side was one way to validate the model.
However, it is infeasible to scale such an approach. Thus, there is a need for
approaches to determine the validity of the resulting model.
The existence of a software bug in the LSM was known in advance. Hence,

the manifestation of this bug in the learned model provided a way to validate
the learned model in Paper D.
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CHAPTER 6
ON THE CORRECTNESS OF MODULAR

LEARNING

Paper B presents MPL, an algorithm to learn a modular model of a SUL by
actively interacting with a simulation of the SUL. Additionally, an algorithm
to learn a modular supervisor, MSL, is presented in Paper C. Both these
algorithms require a PSH that provides some assumptions about the modular
structure of the SUL. The algorithms use these assumptions to avoid exploring
the monolithic state-space and instead learn a modular model. This chapter
provides some insights into the properties that the PSH must satisfy, and also
reasons about the correctness of the MPL. MSL extends the MPL and hence
the same arguments follow.

6.1 Prerequisites
Let I be a totally ordered index set. Let V = { vi | i ∈ I } be a set of variables
such that each variable is indexed by one element of the indexing set, that
is |V | = |I|. Let V ′ = { vi′ ∈ V | i′ ∈ I ′ ⊆ I } be a subset of variables of V
respecting the indexing order, with |V ′| = |I ′|. Each variable vi has a (finite
discrete) domain Di, and let the domain of V be DV = Di1×Di2×· · ·×Di|I| ,
where the indices ij ∈ I (for j ∈ 1..|I|) respect the indexing order. In the same
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way, the domain of V ′ is given as the Cartesian product over the domains of
the variables of V ′ in the order defined by the indexing subset I ′ ⊆ I.
Let a state q be defined as an element of the domain of V , that is, q ∈ DV .

Thus, a state q is a valuation of the variables of V . Likewise, let a sub-state
q′ be a valuation over V ′. Define the projection of a state q ∈ DV onto a sub-
state q′ ∈ DV ′ as PV ′(q) = q′, such that all vi ∈ q′ have the same valuation
as in q. For a set of states Q, let PV ′(Q) = Q′ denote the projection of each
element in Q on V ′, that is Q′ =

⋃
q∈Q

PV ′(q).

Let Σ, called an alphabet, be a finite set of events. Denote by τ the silent
event, not part of Σ.

Definition 7 (DFA): A (deterministic finite) automaton is defined as a
4-tuple 〈Q,Σ, T, q0〉,where:

• Q is the set of states;

• Σ is the alphabet containing the events;

• T ⊆ Q× Σ×Q, is the transition relation;

• q0 ∈ Q is the initial state.

Plant modules

Let Gi = 〈Qi,Σi, δi, q0i〉 be a DFA that describes the behavior of a plant
module. The full behavior of the plant is then described by a set of all its in-
dividual modules given by G = {G1, G2, ...Gn}, known as the modular model.
The synchronous composition [13] of all the modules G1 ‖ G2 ‖ ... ‖ Gn results
in the complete behavior of the plant referred to as the monolithic model.

6.2 On Conformance Between the Simulation and
PSH

Consider a discrete-event system whose simulation is represented by a set of
variables V . The valuation of all the variables at any given point in time
determines the state of the system. All the possible events that the system
can perform are represented by the alphabet Σ. The system can change its
state on the occurrence of an event e ∈ Σ. The occurrence of event e updates
a subset of variables V̂ ⊆ V , resulting in a new valuation V ′. Let DepV map
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events to the corresponding variables they update.

DepV : Σ→ 2V

Let Fe be a function that defines the update performed by each event e on
the set of variables Ve ⊆ V , such that V̂ ′e = Fe(V̂e), where V̂e is the current
valuation of set Ve, and V̂ ′e is the updated valuation when applying function
Fe to the current valuation.

A DFA modeling the system can in principle be obtained by exploring the
system in a breath-first search manner to discover all the possible states and
transitions. However, doing so is expensive and requires exploration of the
complete state-space. Instead, it might be possible to explore a subset of the
state-space and learn several smaller DFA’s that together define the system’s
complete behavior by synchronous composition.

To do so, some knowledge about the different interacting components (in
the simulation) is needed. Firstly, the subset of the alphabet for each of these
components is required. Secondly, a mapping between the events and the vari-
ables that they affect is needed. The former is usually easier to obtain/guess
based on, say, the physical partitioning of the system. The latter, however,
requires creativity and deeper knowledge about the system.

In essence, we assume that the simulation is a gray-box that defines the
behavior of several automata under synchronous composition. We can only
execute an event and observe its behavior. The task is then to identify the
different components. Since this is a simulation, we have fine-grained control
over how we choose to execute these events. All the events are assumed to
be atomic and instantaneous. Thus, we can assume that this hidden DFA’s
behavior consists of n ∈ N automata. Let Gs = {G1, G2, . . . , Gn} be the set
of all automata in the simulation, each of them having an alphabet defined by
Σn. Furthermore, the function Lv maps an automaton to its corresponding
set of variables in the simulation. This would then mean there are at least n
variables, each corresponding to one automaton having a domain defined by
the corresponding automaton’s state labels. The set of variables defined by
Lv(g), for g ∈ Gs is called the local variables for that module.
MPL uses such a simulation to learn a modular model. To do so it requires

a Plant Structure Hypothesis (PSH). The PSH is defined using three pieces of
information. Firstly, a set M provides a unique name for each module that is
to be learned. The cardinality ofM defines the number of modules that will be
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learned. Secondly, a mapping E, called event mapping, defines which events of
the global alphabet Σ belong to which modulem ∈M . Thus, E(m) ⊆ Σ is the
local alphabet of the module m. That an event is part of the event mapping
implies that the corresponding module is involved in executing the event and,
furthermore, that it requires this event to be represented as transitions in the
automaton of the module. Finally, a mapping S, called state mapping, defines
the relation between the modules and the set of variables in the simulation.
That is, for allm ∈M , S(m) ⊆ V contains those variables that either affect or
are affected by events in the module. Variables that are not part of a specific
state mapping can be ignored by that module. Thus, for a given module
m ∈ M , two global states qi, qj ∈ DV are equal within the module if their
projections onto S(m) are equal, that is, if PS(m)(qi) = PS(m)(qj). Hereinafter
the projection of a state q onto a state mapping S(m) is denoted Pm(q).
Definition 8 (PSH): Formally, the PSH is a 3-tuple H = 〈M,E, S〉,

where:
• M is a set of identifiers for the modules;
• E : M −→ 2Σ is the event mapping;
• S : M −→ 2V is the state mapping;

To guarantee that the MPL explores the full plant, the union of all event
mappings should encompass the whole alphabet Σ and the union of all state
mappings should encompass the whole of V . That is, each event σ ∈ Σ and
variable v ∈ V must be included in the event and state mapping of at least
one module, respectively. For any given system there may exist multiple PSH
of various coarseness; the coarsest one being a PSH defining only a single
module m with E(m) = Σ and S(m) = V . This does satisfy the criteria
and will ensure that a full plant model is learned but the learning will result
in exploring the monolithic plant, since there is no modular information to
exploit. In many cases a PSH can be refined by considering the physical struc-
ture of the plant, defining separate modules for subsystems, such as machines,
robots, or vehicles. In other cases it may be more efficient to combine mul-
tiple strongly connected subsystems into a single module, since their shared
behavior otherwise needs to be represented redundantly in each module, or
to define modules that capture specific operations or actions regardless of the
subsystems involved.
In the best of scenarios a PSH would consist of nmodules namedm1,m2, . . .mn

where E(mi) = Σi. Note, however, that the design engineer does not always
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know the simulation’s internal logic and structure. It is, of course, possible to
know or infer some aspects of the system. For example, in the case of physical
systems, the engineer can guess how many components exist and the event set
for each of these components. The greater knowledge that the engineer has,
the more accurate is the PSH. Yet, defining the PSH is a modeling problem
requiring creativity and skill.
The PSH should fulfill the following properties:

Property 1. Each module defined in M must correspond to one or more
components in the simulation.
Let there be a mappingMo : M −→ 2Gs \ {∅ }

Property 2. All events that update one or more local variables of the simu-
lation component must be included in the alphabet of the module.
For each module m ∈M ,

E(m) = { e ∈ Σ | ∃g ∈Mo(m) s.t. Lv(g) ∩DepV (e) 6= ∅ }

Property 3. All variables updated by the events in the module are present in
the state mapping
For each module m ∈M , ⋃

e∈E(m)

DepV (e) ⊆ S(m)

Property 4. All the events in all of the modules constitute the alphabet Σ⋃
m∈M

E(m) = Σ

Example 4. Consider MBM introduced in Example 1. A simulation contain-
ing the three automata has the variables V = {v1, vB , v2}, internal automata
Gs = {GM1 , GB , GM2} and the alphabet Σ = {l1, u1, l2, u2}.
A potential PSH, H = 〈M,E, S〉, could have M = {M1, B,M2}. The

simulation has local variables as:

• Lv(GM1) = {v1}

• Lv(GB) = {vB}

• Lv(GM2) = {v2}
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and dependencies:

• DepV (l1) = {v1}

• DepV (u1) = {v1, vB}

• DepV (l2) = {vB , v2}

• DepV (u2) = {v2}

Based on the above we can define the event mapping:

• E(M1) = {l1, u1}, as DepV (l1) and DepV (u1) both contain v1

• E(B) = {u1, l2}, as DepV (u1) and DepV (l2) both contain vB

• E(M2) = {l2, u2}, as DepV (l2) and DepV (u2) both contain v2

6.3 Modular Plant Learner
The Modular Plant Learner (MPL) is a state-based active learning algorithm
developed to learn a modular model, that is, one composed of a set of interact-
ing automata. These modules together define the behavior of the SUL. MPL
does so by actively exploring the state-space of a program in a breadth-first
search manner. It exploits structural knowledge of the SUL to search smartly.
Hence, it requires access to the SUL’s variables and a PSH defining the struc-
ture of the SUL. MPL consists of an Explorer and one ModuleBuilder for each
module to learn. The Explorer is responsible for exploring new states, while
each ModuleBuilder keeps track of its module as it is learned. The Explorer
and the ModuleBuilders are initialized and managed by the Main routine.
Pseudo-code for the MPL is given in Algorithm 2.
The Explorer maintains a queue of states that need to be explored, ter-

minating the algorithm when the queue is empty. The learning is initialized
with the SUL’s initial state in the queue, which becomes the search’s starting
state. For each state in the queue, the Explorer checks if an event from the
alphabet Σ can be executed (lines 15-18). If a transition is possible, the Ex-
plorer sends the current state (q), the event (σ), and the state reached (q′) to
all the ModuleBuilders.

The ModuleBuilder tracks the learning of each module as an automaton.
This is done by maintaining a set Qm containing the module’s states and a
transition function Tm : Qm × Σm ⇀ Qm, for each module m ∈ M . Once
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the transition is processed, the ModuleBuilder waits for the Explorer to send
the next transition. Each of the ModuleBuilders evaluates if the received
transition is relevant to its particular module. If it is, the transition 〈q, σ, q′〉
is added to the module; else the transition 〈q, τ, q′〉 is added to the module
(lines 30-31). These τ -transitions are placeholders for transitions that impact
some variable in the module but do not directly contribute to the behavior of
the module. The algorithm terminates when all ModuleBuilders are waiting,
the exploration queue is empty, and there are no other transitions to process.
Each ModuleBuilder can now construct and return an automaton based on
Qm and Tm (line 44).

The automata obtained could possibly contain τ -transitions; these need to
be removed as they correspond to events not part of the module. Algorithm 3
provides the pseudo-code for the removal of τ -transitions. After the initializa-
tion step, the algorithm starts by identifying the set of variables, V ′, that have
been updated as part of any τ -transition (lines 4-6). A new set of transitions
can be created containing all non-τ -transitions. Additionally, all the states in
the automaton are projected such that the states do not contain the set of
variables V ′ (lines 9 and 12).
In addition to all that is described above, the implemented MPL requires

some way to establish communication between the Explorer , ModuleBuilders,
and the Main. Additionally, the Main routine needs to coordinate between
the Explorer , and all the ModuleBuilders to ensure the algorithm terminates
only when it has completed. Further optimizations, such as maintaining a set
of visited states; using multiple instances of the simulation to parallelize the
exploration, could be made to improve the algorithm’s efficiency.

Termination of MPL

The algorithm works by exploring the state-space of the system. Since the
state-space is finite and the ModuleBuilder only adds previously unseen states
to the Explorer queue (lines 37-39 in Algorithm 2), the Explorer cannot ex-
plore more states than what exist. Furthermore, there is nothing in the Mod-
uleBuilder that might prevent the processing of transitions. Hence, the MPL
must terminate.
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Algorithm 2: The Modular Plant Learner
Input: The simulation of the SUL, the initial state, q0, and a PSH H = {M,E, S}.
Result: A set G of modular plant components, Gm ∈ G, ∀m ∈M .

1 begin
2 Procedure Main
3 QG ←− {q0} and Run ←− true
4 foreach m ∈M do
5 - run ModuleBuilder(m)
6 end
7 - run Explorer()
8 - Wait until QG is empty, and ModuleBuilders are waiting.
9 - Run ←− false

10 - Call Algorithm 3 for each learned automaton Gm returned by
ModuleBuilders, and store the results in set G.

11 return G

12 end
13 Procedure Explorer
14 while Run do
15 for q ∈ QG do
16 for σ ∈ Σ do
17 - Broadcast the transition 〈q, σ, q′〉, if q′ is reached by

executing σ from state q in the simulator.
18 end
19 - Remove q from QG

20 end
21 end
22 end
23 Procedure ModuleBuilder(m)
24 Q(m)←− {Pm(q0)}, T (m)←− ∅
25 while Run do
26 if 〈q, σ, q′〉 received then
27 V ′ ←− {v ∈ V | q(v) 6= q′(v)}
28 newState←− False;
29 if σ ∈ E(m) or S(m) ∩ V ′ 6= ∅ then
30 σ′ ←− if σ ∈ E(m) then σ else τ
31 T (m)←− T (m) ∪ {〈Pm(q), σ′, Pm(q′)〉}
32 if Pm(q′) /∈ Q(m) then
33 Q(m)←− Q(m) ∪ {Pm(q′)}
34 newState←− True
35 end
36 end
37 if newState then
38 QG ←− QG ∪ {q′}
39 end
40 else
41 - wait for broadcast
42 end
43 end
44 return Gm = 〈Q(m), E(m), T (m), Pm(q0)〉
45 end
46 end

50



6.3 Modular Plant Learner

Algorithm 3: Algorithm for the removal of τ events.
Input: An automaton A = 〈Q,Σ, δ, q0〉
Result: An updated automaton A′ with that contains no τ -transitions

1 begin
2 Procedure RemoveTau(A)
3 Initialize V ′ ←− ∅, δ′ ←− ∅
4 foreach 〈q, τ, q′〉 ∈ δ do
5 V ′ ←− V ′ ∪ { v ∈ V | q(v) 6= q′(v) }
6 end
7 foreach 〈q, σ, q′〉 ∈ δ do
8 if σ 6= τ then
9 δ′ ←− δ′ ∪ { 〈PV ′ (q), σ, PV ′ (q′)〉 }

10 end
11 end
12 return 〈PV ′ (Q),Σ, δ′, PV ′ (q0)〉
13 end
14 end

Correctness of MPL
Theorem 2: When given a PSH that defines just one module m, with

E(m) = Σ, and S(m) = V ; where Σ is the set of events, and V is the set of
variables in the simulation, MPL explores the reachable state-space, resulting
in a single automaton.

Proof. Since there is just one module m, MPL creates only one instance of
the ModuleBuilder. Lines 29 and 30 always evaluate to True since E(m) = Σ.
Thus, line 31 adds every transition received by the ModuleBuilder. If the state
reached by the transition has not been seen previously, it is added to the sets
Q(m) and QG. Note that the projection operator Pm does not have any effect
since S(m) = V . Thus, every state reachable (from the initial state) in the
SUL is added to QG and is explored. The obtained set of transitions and
their corresponding states are used to create the final automaton according to
line 44.

Theorem 3: Given a PSH that satisfies properties 1-4, and a simulation
as described above, MPL learns several models, one for each module defined
in the PSH, that together define the behavior of the simulation.
The theorem can be proved using the following lemmas.
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Lemma 1: Consider a simulation with the set of variables V whose val-
uations represent the behavior of n automata, each having an alphabet Σ1,
Σ2, . . ., Σn. A PSH with n modules, M = {m1,m2, . . . ,mn }, that correctly
maps the events for each module to the corresponding alphabet in the simula-
tion (i.e. E(mi) = Σi), and where each state mapping includes all variables,
S(mi) = V . In such a case, each of the n ModuleBuilders will result in a
similar structured monolithic automaton. The difference between them being,
those transitions that are labeled with σ /∈ E(m), during the exploration, will
instead have the label τ during the learning.

Proof. Consider a module m ∈ M , the ModuleBuilder for this module enters
the if-condition on line 26 when a transition 〈q, σ, q′〉 is received from the
Explorer . The condition on line 29 will always evaluate to True since S(m) =
V and V ′ ⊆ V , ensuring that T (m) is updated with 〈q, σ, q′〉, if σ ∈ E(m), or
〈q, τ, q′〉, if σ /∈ E(m) according to lines 30 and 31. Hence, every transition
explored is represented in the output of the ModuleBuilder.
Since, S(m) = V , the projection operator does not have any impact, i.e.

Pm(q′) = q′. Thus, if q′ has not been seen before, it is added to Q(m) and
QG, ensuring every reachable state is explored.
The ModuleBuilder results in an automaton that contains all reachable

states of the monolithic model. The transitions between these states keep the
same label according to what was explored if σ ∈ E(m) else they are labeled
with τ . Hence, all ModuleBuilders learn the similarly structured automata
with differently labeled transitions.

Lemma 2: Removal of τ -transitions in Algorithm 3 does not result in non-
determinism.

Proof. Non-determinism could occur due to one of three reasons.

1. Multiple initial states: Algorithm 3 does not alter the initial state, and
deletion of a transition cannot create new initial states.

2. Existence of τ -transitions: Since all transitions labeled with τ are re-
moved the resulting automaton cannot have any τ -transitions remaining.
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Figure 6.1: An example of potential non-determinism.

3. Multiple same-labeled transitions with the same source state but differ-
ent target states: Deleting τ -transitions could potentially lead to states
having multiple same-labeled transitions.

It is clear that points 1 and 2 cannot occur. Hence, to prove this theorem
we need to show that same-labeled transitions from the same source state will
not occur.

Consider the following three transitions: 〈v̂1v̂2, b, v̂
′
1v̂2〉, 〈v̂1v̂2, a, v̂1v̂

′
2〉,

〈v̂′1v̂2, a, v̂1v̂
′′
2 〉.

Let these three transitions be processed by aModuleBuilder for modulem ∈
M , with a ∈ E(m) and b /∈ E(m). According to line 30, the transition labeled
with b has its labeled changed to τ . Figure 6.1a illustrates this scenario.
Removal of τ would merge state v̂1v̂2 and v̂′1v̂2 causing non-determinism.

According to Algorithm 3, the first step (lines 4-6) is to identify all variables
that are updated by the τ -transition. In this case, the τ -transition updates v1
(from v̂1 to v̂′1 in Figure 6.1a). Hence, according to lines 7-11, non-τ -transition
are selected and the projection operator Pv1 is applied to the states. This
results in two transitions 〈v̂2, a, v̂

′
2〉 and 〈v̂2, a, v̂

′′
2 〉 as in Figure 6.1b. The

source and target state of the τ -transition are merged into a single state as
they are represented by the same valuation of the variables. This would seem
to result in non-determinism. However, the update function Fa for an event a
will result in the same output value for a given input. Therefore, v̂′2 must be
the same as v̂′′2 , as they are the result of the function Fa(v̂2). Thus, deletion
of τ events will not result in non-determinism.

Lemma 3: Consider a simulation with a set of variables V whose valua-
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tions represent the behavior of n automata, each having an alphabet Σ1, Σ2,
. . ., Σn, respectively. A PSH with n modules, M = {m1,m2, . . . ,mn }, that
correctly maps the events for each module to the corresponding alphabet in
the simulation (i.e. E(mi) = Σi), and where each state mapping includes all
variables, S(mi) = V . Removal of τ -transitions preserves the behavior of the
module.

Proof. It is known from 1 such a PSH results in the monolithic model for each
of the modules. Recall that the behavior of a component (in the simulation)
is defined by its local variables Lv(g), for g ∈ Gs. Since Property 2 holds,
∀m ∈ M , any event that updates Lv(g), for g ∈ Mo(m), is present in E(m).
Thus, no transition where a variable in Lv(g) is updated will be re-labeled
to a τ -transition (according to line 30). Therefore, removal of τ -transitions
will not impact the variables in L(g) , thus the behavior of the module is
preserved.

Lemma 4: Consider a SUL with a set of variables V whose valuations
represent the behavior of n automata, each having an alphabet Σ1,Σ2, . . . ,Σn.
A PSH with n modules, M = {m1,m2, . . . ,mn }, that correctly maps the
events for each module to the corresponding alphabet in the simulation (i.e.
E(mi) = Σi), then the state mapping ∀m ∈ M , S(m) =

⋃
e∈E(m)

DepV (e)

is sufficient to learn a set of automata that interacting through synchronous
composition result in a model with the same language as the SUL.

Proof. Assume for now that ∀m ∈M , S(m) = V .
Let the Explorer broadcast the transition t = 〈q, σ, q′〉, with v being the

variable updated in q′.
For a module m ∈ M , with σ /∈ E(m), meaning v /∈

⋃
e∈E(m)

DepV (e)

(according to Property 2), the ModuleBuilder for m stores the transition as
〈q, τ, q′〉 based on lines 30-31.
Since, Property 4 holds, ∃m′ ∈ M , where σ ∈ E(m′) , implying v ∈⋃

e∈E(m′)
DepV (e) (according to Property 2). Hence, the label of transition

t is not changed into a τ -transition for m′, as S(m′) = V .
Since, v ∈ S(m) and v ∈ S(m′), the ModuleBuilders for both these modules

will evaluate the change to v and add the state reached to the exploration
queue if the updated value of v is a previously unseen. It is however, sufficient
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if one module tracks the changes of this variable to identify the new state that
arise due to the valuation change of v.
Thus, it is possible to remove v from S(m) while still preserving Property 3.

In doing so, module m will ignore updates to v, as line 29 will always eval-
uate to False (since, e 6∈ E(m) and v 6∈ S(m)); therefore ModuleBuilder m
will not contribute to finding new, previously unexplored, states that are a
consequence of a valuation of v. Since, Property 4 holds, there will always be
another module that will keep track of exploring v.
For m ∈ M , the above can be iteratively applied for all variables v /∈⋃

e∈E(m)
DepV (e), but v ∈ S(m), resulting in S(m) =

⋃
e∈E(m)

DepV (e).

Now we are ready for the proof of Theorem 3.

Proof. Lemma 1 shows that if all modules m ∈ M of the PSH, and their
corresponding event mappings E(m), are in conformance with the simulation,
and the state mappings contain all variables of the simulation S(m) = V ,
MPL learns a monolithic model for each of the modules. The transitions in
the obtained model have an event label τ if the corresponding exploration
transition had an event label s /∈ E(m),m ∈ M . Lemmas 3 and 2 show that
the removal of these τ -transitions will preserve the behavior of the module
and not introduce any non-determinism. Thus, MPL learns a modular model
that corresponds to one or more internal automata in the simulation.

Example 5. Based on Lemma 4, the state mapping in example 4 can be
defined as follows:

• S(M1) = {v1, vB}, as DepV (l1) = {v1} and DepV (u1) = {v1, vB}.
• S(B) = {v1, vB , v2}, as DepV (u1) = {v1, vB} and DepV (l2) = {vB , v2}.
• S(M2) = {vB , v2}, as DepV (l2) = {vB , v2} and DepV (u2) = {v2}.

Satisfying Property 3 ensures, if possible, to avoid the monolithic search.
However, depending on the simulation it might be possible to further reduce
the size of S(m). A possible example of this has been shown in Section B4.
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CHAPTER 7
SUMMARY OF INCLUDED PAPERS

This chapter provides a summary of the included papers.

7.1 Paper A
Ashfaq Farooqui, Ramon Tijsse Claase, Martin Fabian
On Plant-Free Active Learning of Supervisors
Submitted to IEEE Transactions on Automation Science and Engineer-
ing (TASE).

Paper A suggests a plant-free approach to obtain the maximally permissive
controllable and non-blocking supervisor. This is done in two stages, first,
SupL∗, an algorithm to learn supervisors, is introduced to learn a maximally
permissive controllable supervisor. Second, if this supervisor is blocking, ex-
isting synthesis techniques can be used to obtain the non-blocking supervisor.

Identifying uncontrollable strings during learning presents a challenge to us-
ing SupL∗. Hence, a method to convert the controllability problem into
one of non-blocking is presented. Here, the specification is converted to a
Σu-saturated specification before running the learning algorithm. This results
in a controllable but blocking supervisor from which the maximally permissive
controllable and non-blocking supervisor can be synthesized.
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Furthermore, the paper presents a case study where SupL∗ is used to learn
a supervisor in a virtual commissioning setting. Here, a simplified version of
MBM is created in the simulation software Experior, and is controlled using a
PLC. We then interface to the PLC through the OPC-UA protocol to interact
with and learn a model of the system.
My contributions: I am the main responsible for developing, implementing,
and proving the algorithm. Also, I was involved in implementing the commu-
nication interface between MIDES and OPC-UA. I supervised the Master’s
project that involved developing the simulation model and its control software
to finally learn a model. I am the primary author of the paper.

7.2 Paper B
Ashfaq Farooqui, Fredrik Hagebring, Martin Fabian
Active Learning of Modular Plant Models
15th IFAC Workshop on Discrete Event Systems, November 2020.

Paper B tackles the state-space explosion for learning models. This pa-
per introduces the Modular Plant Learner (MPL) algorithm. The MPL is a
state-based active learning algorithm specifically developed to learn a modular
model, composed of a set of interacting automata. These modules together
define the behavior of a system. The MPL learns by actively exploring the
state-space in a breadth-first search manner. To do so, MPL requires a Plant
Structure Hypothesis (PSH) that defines the structure of the SUL. By using
the PSH, the MPL explores, in a smart way, only a subset of the state-space
to learn a modular model of the SUL.
My contributions: I was involved in developing the idea of PSH apart from
implementing MPL for modular learning. Also, I was involved in authoring
the paper.

7.3 Paper C
Fredrik Hagebring, Ashfaq Farooqui, Martin Fabian
Modular Supervisory Synthesis for Unknown Plant Models Using Active
Learning
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7.4 Paper D

In proceeding of the 15th IFAC Workshop on Discrete Event Systems,
November 2020.

Modular Supervisor Learner (MSL), an algorithm for learning modular su-
pervisors, is introduced in Paper C. MSL extends the MPL (from Paper B) to
include knowledge of the specifications and thus learn a modular maximally
permissive controllable supervisor. Here, a supervisor is learned for each spec-
ification in the set of specifications.
To this end, a new mapping is calculated where each specification is matched
with a subset of modules in the PSH that directly or indirectly share uncon-
trollable events—the learning results in the maximally permissive controllable
supervisor. Unfortunately, in some cases, the obtained new mapping could
potentially result in searching the monolithic state-space. To avoid this, the
paper suggests learning a modular supervisor and only those modules that di-
rectly share uncontrollable events with the specifications. Additionally, mod-
ules not included in any supervisor need to be learned as plant models. Then,
the obtained supervisors and plant models can be used to check for uncon-
trollability issues. If any exist, traditional synthesis techniques can be used to
compute the modular maximally permissive controllable supervisor. It must
be noted that the obtained modular supervisors need not be non-blocking.
Furthermore, the paper demonstrates the use of MSL to the well-known Cat
and Mouse example.
My contributions: I developed and implemented the idea to extend the PSH
and generate the supervisor mapping, apart from implementing the MSL,
running experiments, and authoring the paper.

7.4 Paper D
Yuvaraj Selvaraj, Ashfaq Farooqui, Ghazala Panahandeh, Wolfgang
Ahrendt, Martin Fabian
Automatically Learning Formal Models from Autonomous Driving Soft-
ware
Submitted to the Special Issue on Recent Trends in Model-based Engi-
neering of Automotive Systems, JASE.

Paper D presents a case study in which the MPL algorithm from Paper B
and the SupL∗ algorithm presented in Paper A are applied to learn a model of
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the Lateral State Manager (LSM), a sub-component of a self-driving car. The
paper first gives an illustrative example of the working of the two algorithms.
It then presents the setup made to interface MIDES, the learning tool, and
the LSM . Here, the paper shows how the LSM is first abstracted and then
interfaced with the learning tool. Finally, the paper discusses the resulting
models and the insights gained from these experiments.
My contributions: I developed and implemented the algorithms in addition
to the communication interface to MATLAB. I contributed to the discussions
about abstractions and finally implemented a semi-automated way to create
the abstraction interface in MIDES. I ran the experiments and collected the
results using the implementations. I also contributed to authoring the paper,
specifically the parts that relate to learning.
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CHAPTER 8
CONCLUDING REMARKS AND FUTURE WORK

Supervisory Control Theory (SCT) provides a promising approach to design
and develop industrial control systems. Using SCT, a supervisor is synthe-
sized using a plant model describing the behavior of the system and its relevant
specifications. The obtained supervisor is used in conjunction with the plant,
where the supervisor is allowed to disable certain plant events, thus ensur-
ing that the closed-loop system behaves according to the specifications. The
usefulness of the supervisor depends on how well the plant model describes
the behavior of the system. Manually creating plant models is error-prone
and time-consuming. Thus, the cost of developing and maintaining models is,
among other things, an obstacle for the industrial adoption of SCT.

The objective of this thesis has been to develop tools and techniques to
obtain a supervisor in the unavailability of plant models, thereby improving
the industrial adoption of SCT. To this end, this thesis introduces algorithms
to learn supervisors for a given system and its specifications automatically.
In the absence of usable specifications, it is possible to learn a plant model
that can then be used appropriately to obtain a supervisor. Two case studies
are performed, first to apply supervisor learning in a virtual commissioning
setting. In the second case, automata learning is used to learn a model of the
lateral state manager of a self-driving car.
More specifically the contributions of the thesis are grouped around the
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research questions:

RQ1 How can we integrate automata learning techniques and SCT to help
design systems that are correct-by-construction?
Automata learning techniques (introduced in Chapter 4) show a promis-
ing approach to obtaining a system model. SCT (from Chapter 3) are
formal techniques to generate supervisors that can ensure the controlled
system behaves according to given specifications, and hence the con-
trolled system is correct-by-construction. This thesis shows a way to in-
tegrate the two. To this end, two algorithms are presented that interact
with the system under learning (SUL) to learn a maximally permissive
controllable supervisor. The SupL∗, from Paper A, extends upon and
modifies L∗ algorithm by providing a practical way to interact with the
SUL and learn a supervisor. The MSL, introduced in Paper C, is the
other algorithm. The MSL uses knowledge of the interacting modules
in the SUL to explore the state-space in an intelligent way to obtain a
modular supervisor.
Papers A and C introduce their respective algorithms and demonstrate
using an example how automata learning can be used to obtain super-
visors. The main requirement in both the algorithms is an interface
to a simulation model of the system. Furthermore, the SupL∗ requires
a way to falsify its hypotheses, and the MSL requires some meta-level
knowledge about the SUL. Given this, we show how it is possible to
learn a maximally permissive controllable supervisor in the absence of
plant models. Furthermore, a tool MIDES [24] is presented in Paper E
that implements the algorithms presented in this thesis.

RQ2 What techniques can help learn models for larger and complex systems?
The state-space explosion is a well-known problem within SCT. In brief,
the problem arises due to the combinatorial growth of the number of
states as the models are built. The computation required to learn super-
visors for large systems may fail due to time and memory. One technique
to learn supervisors for large systems is to learn many smaller supervisors
that, when taken together, result in the maximally permissive control-
lable supervisor. Paper B introduces an approach to smartly explore the
system thus learning a modular model. This approach is extended in
Paper C to compute the maximally permissive controllable supervisor

62



in the absence of a plant model. The modular learning method, being
work-in-progress, needs more development before its efficiency can be
evaluated. However, preliminary results show that the number of states
that need to be explored can be reduced considerably, making it possible
to obtain supervisors for larger systems.

RQ3 What are the challenges faced when applying these methods to real-world
scenarios?

This thesis presents two case studies. In the first, the well-known Ma-
chine Buffer Machine was simulated in Experior and controlled using a
PLC to emulate the virtual commissioning process. The maximally per-
missive controllable supervisor of the MBM is learned using the SupL∗
algorithm by interacting with the PLC. In the second study, the learning
algorithms, SupL∗ and MPL, were applied to the lateral state manager
module of a self-driving car.

Several challenges were identified during these case studies. Firstly,
choosing the right abstraction to learn is crucial. However, several fac-
tors need to be considered while choosing such an abstraction. Learn-
ing a particular abstraction might require making modifications to the
SUL, which might not always be possible. Furthermore, the specifica-
tions might not be available on the same abstraction level, and hence the
specifications cannot be used directly. Also, validation of the obtained
supervisors is tricky. Incorrect behavior could arise for several reasons,
including inadequate specifications, incorrect simulation models, or non-
conformant meta-models. Identifying incorrect behaviors is a challenge.
Additionally, in the case of modular learning, obtaining a useful PSH
requires in-depth knowledge of the internals of the SUL. Hence, defining
a PSH for a black-box system is a challenging task.

The overall work in this thesis is but one step towards introducing super-
visory control theory techniques into day-to-day industrial practice. Hence,
there are several open avenues for future improvement and extensions.

Future Work
Models are not perfect; they represent only a part of reality. Determining
the validity of the learned models is no trivial task. A major challenge lies in
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reasoning about the quality and usability of the obtained models. Thus, to be
able to reason and make decisions by using these models, there needs to be
some metric to help classify them. These metrics can provide the engineer with
a degree of confidence when performing analysis on the model and help reason
about the meaning of these results in relation to the system. Investigation into
methods and tools that can validate the models, and including these tools as
part of the learning process can possibly help in the adoption of automatic
model learning.
Now that we know a supervisor can be learned in the absence of plant mod-

els, the next step is to use more efficient data structures and algorithms [43],
[45], [46] to apply supervisor learning in practice. Research into more efficient
data structures like BDDs [97] and the ability to learn richer formalisms, no-
tably Extended Finite State Machines [98], is needed. These techniques may
improve the efficiency of learning and allow the application os supervisor learn-
ing on larger, more complex systems. Furthermore, it would be interesting to
study the possibilities to learn supervisors as symbolic automata [50].
The MPL and MSL algorithms put some strict requirements on the sim-

ulation. Further research into relaxing these requirements may broaden the
application domains for these algorithms. Furthermore, a pain point in this
method is the creation of the PSH. Methods to automate and help designers
define the PSH will significantly improve the algorithms usability.
The SupL∗ algorithm in its current state uses plantified specifications that

convert initial controllability problems into non-blocking problems. This, how-
ever, results in additional states that will eventually be deleted. Further work
is needed to improve the SupL∗ to learn the maximally permissive controllable
and non-blocking sub-automaton directly.
As pointed out in Chapter 5, performing equivalence queries is a signifi-

cant bottleneck. Research into leveraging domain-specific knowledge to find
counterexamples might provide valuable insights.
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