
Performance of deep neural networks on low-power IoT devices

Downloaded from: https://research.chalmers.se, 2025-07-02 02:36 UTC

Citation for the original published paper (version of record):
Profentzas, C., Almgren, M., Landsiedel, O. (2021). Performance of deep neural networks on
low-power IoT devices. CPS-IoTBench 2021 - Proceedings of the 2021 Benchmarking
Cyber-Physical Systems and Internet of Things. http://dx.doi.org/10.1145/3458473.3458823

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology. It
covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004. research.chalmers.se is
administrated and maintained by Chalmers Library

(article starts on next page)

Performance of Deep Neural Networks on Low-Power
IoT Devices

Christos Profentzas
Chalmers University of Technology

Gothenburg, Sweden
chrpro@chalmers.se

Magnus Almgren
Chalmers University of Technology

Gothenburg, Sweden
magnus.almgren@chalmers.se

Olaf Landsiedel
Kiel University & Chalmers
University of Technology

Kiel, Germany
ol@informatik.uni-kiel.de

Abstract
Advances in deep learning have revolutionized machine
learning by solving complex tasks such as image, speech,
and text recognition. However, training and inference of
deep neural networks are resource-intensive. Recently, re-
searchers made efforts to bring inference to IoT edge and sen-
sor devices which have become the prime data sources nowa-
days. However, running deep neural networks on low-power
IoT devices is challenging due to their resource-constraints
in memory, compute power, and energy. This paper presents
a benchmark to grasp these trade-offs by evaluating three
representative deep learning frameworks: uTensor, TF-Lite-
Micro, and CMSIS-NN. Our benchmark reveals significant
differences and trade-offs for each framework and its tool-
chain: (1) We find that uTensor is the most straightforward
framework to use, followed by TF-Micro, and then CMSIS-
NN. (2) Our evaluation shows large differences in energy,
RAM, and Flash footprints. For example, in terms of energy,
CMSIS-NN is the most efficient, followed by TF-Micro and
then uTensor, each with a significant gap.

CCSConcepts: •Computer systems organization→Em-
bedded systems; •Computingmethodologies→ Neural
networks.

Keywords: IoT, Deep Neural Networks, Low-Power

ACM Reference Format:
Christos Profentzas, Magnus Almgren, and Olaf Landsiedel. 2021.
Performance of Deep Neural Networks on Low-Power IoT Devices.
In Benchmarking Cyber-Physical Systems and Internet of Things
(CPS-IoTBench2021), May 18, 2021, Nashville, TN, USA. ACM, New
York, NY, USA, 6 pages. https://doi.org/10.1145/3458473.3458823

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
CPS-IoTBench2021, May 18, 2021, Nashville, TN, USA
© 2021 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-8439-1/21/05. . . $15.00
https://doi.org/10.1145/3458473.3458823

1 Introduction
In recent years, Deep Neural Networks (DNNs) have out-
performed other algorithms to solve complex problems in
computer vision [10], Natural Language Processing (NLP) [5],
andHumanActivity Recognition (HAR) [15]. Similarly, novel
IoT applications utilize DNNs to recognize and categorize so-
phisticated sensor data [7]. Typically, the resource-intensive
tasks of training and inference are offloaded to cloud pro-
viders. With the Internet of Things, billions of devices pro-
duce massive volumes of data to be analyzed, raising two pri-
mary concerns. First, IoT devices collecting sensitive sensor
data from users and storing them in cloud services poses pri-
vacy issues. Second, processing extensive amounts of sensor
data may overwhelm infrastructure in terms of bandwidth
and available computation. To address these concerns, re-
searchers bring inference to edge and sensor devices [13, 16].
In particular, DNN inference on low-power IoT devices

brings new challenges due to their resource-constraints. We
recognize three main challenges. First, IoT devices have a
small memory-size, typically in the range of KBs, where
an average DNN requires MBs of storage. Second, DNN
inference demands significant energy, but IoT devices re-
quire power duty cycling to preserve energy. Third, DNNs
are designed using GPU/CPU optimization libraries (e.g.,
CUDA/Intel DL Boost), unavailable on low-power IoT de-
vices.

The development process of DNNs on low-power IoT de-
vices is a tedious task, where devices are manually managing
memory and computation resources. There is a diversity of
languages and frameworks, for example, for training DNNs
in the cloud or for converting them for IoT devices, and each
framework has different tool-chains. Moreover, when de-
signing and training a DNN, it is unknown how efficient it
will be on an embedded device. In this paper, we argue that
it is essential to evaluate and reveal trade-offs of common
frameworks, including the complexity of the development
process and the resource-efficiency of their IoT run-time
environments.
This paper focuses on the inference part of Deep Neu-

ral Networks (DNNs) on low-power IoT devices, assum-
ing the training is done off-line on more powerful devices.
We present a benchmark for evaluating three deep learn-
ing frameworks for IoT devices: TensorFlow-lite-Micro[2],

https://doi.org/10.1145/3458473.3458823
https://doi.org/10.1145/3458473.3458823

CPS-IoTBench2021, May 18, 2021, Nashville, TN, USA C. Profentzas, M. Almgren and O. Landsiedel

3
2
x
3
2

3
2
x
3
2

3
2
x
3
2

1
6
x
1
6

1
6
x
1
6

8
x
8

3
InputLayer

32
Conv2D

32
MaxPooling2D

32
Conv2D

32
MaxPooling2D 2048

Flatten
10

Dense

Figure 1. Overview of the Convolution Neural Net-
work (CNN). The CNN consists of several layers stacking
together: convolution kernels, max pooling, and fully con-
nected layer. The final layer is the output number of classes.

uTensor[12], and CMSIS-NN [6]. The paper presents the
following contributions:

• We design and implement a publicly available1 bench-
mark to evaluate the performance of three deep learn-
ing frameworks for low-power IoT devices.

• We compare and report each framework’s differences,
including the development process complexity and the
resource-efficiency of their run-time environment on
low-power devices.

• Weevaluate the resource-efficiency of prevailingDNNs
on low-power IoT devices in terms of memory, com-
putation, and energy consumption.

The rest of the paper is organized as follows. Sec. 2 pro-
vides the necessary background. Sec. 3 introduces our bench-
mark. Sec. 4 presents our evaluation results. Sec. 5 discusses
related work and Sec. 6 concludes the paper.

2 Background and Motivation
In this section, we provide the necessary background on
deep learning for low-power IoT devices.

2.1 Convolutional Neural Networks
In this paper, we focus on the widely supported Convolu-
tional Neural Networks (CNNs). Other architectures like
Recurrent Neural Networks (RNN) [3] have limited support
by the three considered frameworks. Figure 1 illustrates the
architecture of a CNN. The networks consist of repetitive
layers of convolution kernels and pooling operations [3]. A
convolution kernel is a matrix applying a linear transforma-
tion to an image. Pooling operations are down-sampling the
matrix to lower dimensions by summarizing the essential
features. The training process finds the values of the weights
of the matrices by minimizing an objective loss function [3].

2.2 Quantization
A quantized neural network converts the weights from high
precision floating points to integers. The mapping function
essentially reduces the number of bits used to represent the
weights. The choice of the quantization method is an open
research question [4, 14].
1https://github.com/chrpro/TinyML-Evaluation/

Framework Code Generator Dependency Usability

uTensor C++ Auto Mbed OS Easy
TF-Micro C++ Auto None Medium
CMSIS-NN C Manual None Hard
Table 1. High-level comparison of deep learning frame-
works. The code generator is different across the platforms.
The dependency refers to other libraries needed to run in-
ference. The usability reflects the end-to-end development
process (from training to on-device inference).

2.3 IoT Deep Learning Frameworks
The frameworks used in our benchmark are the following.

uTensor. An open-source framework [12] for deep learn-
ing inference on Mbed-OS enabled IoT devices. uTensor fo-
cuses on rapid-prototyping from TensorFlow-trained neural
networks to convert them for IoT devices. uTensor is written
in C++ and provides built-in functions for quantization.

TensorFlow Lite Micro (TF-Micro). An open-source
framework [2] for supporting machine learning inference
on micro-controllers. The library is written in C++ as part
of the TensorFlow ecosystem. TF-Micro uses TensorFlow to
write and train a neural network. TF-Micro provides a wide
range of options to optimize and quantize a neural network
using the TensorFlow Lite Converter. TF-Micro can run as
stand-alone or using an operating system like Zephyr OS.

CMSIS-NN. Cortex Microcontroller Software Interface
Standard for Neural Networks is an open-source library [6]
for ARM devices. It is written in C and provides several
quantized functions like Convolution, Pooling, Softmax, and
Fully-Connected layers. CMSIS-NN does not provide training
tools or generators for the C code. The developer needs to use
another library to train, quantize, and convert the network’s
weights in C code. CMSIS-NN is designed to maximize neural
networks’ performance on the Cortex-M series by employing
the on-board DSP accelerator (CMSIS-DSP) [6].

3 Benchmark Design
In this section, we introduce the design goals of our bench-
mark and then present the actual benchmark.

3.1 Overview and Evaluation Goals
Our benchmark evaluates three deep-learning platforms:
CMSIS-NN, uTensor, and TF-Micro (see Table 1). Their tool-
chains are similar in training a network but differ signifi-
cantly on the code generation and quantization methods.
Our goal is to evaluate trade-offs between the development
process and their run-time environment’s efficiency on low-
power IoT devices. For the run-time environment, we focus
on the efficiency of running inference on low-power devices
in terms of: a) memory footprint, b) inference execution time,
and c) energy consumption.

Performance of Deep Neural Networks on Low-Power IoT Devices CPS-IoTBench2021, May 18, 2021, Nashville, TN, USA

 Keras

Train

IoT Device Inference

Evaluation
Code

CMSIS-NN
Quantization

Tensorflow Lite
Quantization

Framework Library

uTensor
Quantization

Deep Neural Network

"Network.h"

Quantize

Compile

CMSIS-NN TF-MicrouTensor

Inference

Network Definition

Framework
Built-in

Defined
by user

Inference
Code

Figure 2. Benchmark’s development process. The blue boxes
are steps defined by the user. The green boxes are automated
by the framework. We define and train all networks using
Keras. We apply the quantization method provided by each
framework. Finally, we compile the code for the target hard-
ware and evaluate the inference for each framework.

Convolution MNIST CIFAR-10
- Kernels Param. Accuracy Param. Accuracy

Conv-16 6,490 0.97 8,538 0.67
Conv-32 17,578 0.98 21,674 0.68
Conv-64 53,578 0.98 61,771 0.70
Conv-96 108,010 0.99 120,298 0.71
Conv-128 180,874 0.99 197,258 0.72

Table 2. Convolutional Neural Networks trained on MNIST
& CIFAR-10. The first column is the number of convolu-
tion kernels. For example, Conv-16 means the second layer
(see Figure 1) and fourth layer have 16 kernels respectively.
Param. is the number of trainable parameters.

3.2 Benchmark Process
We present the process of our benchmark in Figure 2. We
color the automated steps in green and user-defined steps
in blue. There are four steps to generate a neural network
and execute it on an IoT device. First, we define and train
the neural networks and report the accuracy in Keras2 (see

2https://keras.io/

Table 2). Keras is an intuitive API wrapper on top of Tensor-
Flow to help define and train machine learning models. All
the networks are based on the same architecture (see Fig-
ure 1), data-set, and hyper-parameters. Second, we quantize
the same network for each tool-chain based on each frame-
work’s method. Third, we link the network, the evaluation
code, and the framework library to produce the executable
file. Fourth, we run inference on the same low-power IoT
device for each framework to evaluate its performance.

4 Performance Evaluation
This section presents our evaluation results on low-power
IoT devices. The evaluation answers the following questions:
(a) To what extent is inference technically feasible on IoT
devices? (b) What is the overhead of neural networks on
IoT devices in terms of computation, memory, and energy
consumption? (c) What is the trade-off between automation
in the development process and performance of inference
on IoT devices?

4.1 Experimental Setup
Software implementation.We define and train the neural
networks listed in Table 2 using Python 3.8.6 and Keras 2.4.0.
For generating the object code, we have three cases:

• CMSIS-NN. We use the ARM GCC toolchain to build
and link the C code.

• uTensor. We use utensor-cgen to generate the C++
code and mbed-cli to build and link C++ code, includ-
ing Mbed OS.

• TFmicro.We use the TF-Lite-Converter to export the
network. We use West toolkit from Zephyr OS to build
and link the TF-Micro C++ code.

Hardware Setup.We use the nRF-52840-DK board that
features a 32-bit ARM Cortex-M4 at 64 MHz supporting DSP
instruction set (CMSIS-DSP), 256 KB of RAM, and 1 MB of
flash memory, We use the Nordic-Semiconductors Power
Profiler Kit v1.1.03 to measure power consumption.
Data & Code Availability.We provide the data and code

of the benchmark in a public repository.4

4.2 Data-sets
We train the neural networks with two standard data-sets.

MNIST. The Modified National Institute of Standards and
Technology (MNIST) data-set for hand-written numbers. The
data-set consists of 70,000 black and white 28x28 pixel hand-
written numbers, where 60,000 are for training and 10,000
for testing. There are ten classes, one for each digit.

CIFAR-10.TheCanadian Institute For Advanced Research
(CIFAR) data-set for image classification. The data-set con-
sists of 60,000 32 x 32 color images, where 50,000 are for
3https://www.nordicsemi.com/Software-and-tools/Development-
Tools/Power-Profiler-Kit
4https://github.com/chrpro/TinyML-Evaluation/

CPS-IoTBench2021, May 18, 2021, Nashville, TN, USA C. Profentzas, M. Almgren and O. Landsiedel

16 32 64 96 128
Convolution Kernels

0

50

100

150

200

250

RA
M

 (
KB

)

Device Capacity
CMSIS-NN
uTensor
TF-Micro

(a) Maximum RAM usage of each
CNN on MNIST, per framework.

16 32 64 96 128
Convolution Kernels

0

50

100

150

200

250

RA
M

 (
KB

)

Device Capacity
CMSIS-NN
uTensor
TF-Micro

(b) Maximum RAM usage of each
CNN on CIFAR-10, per framework.

Figure 3. RAM footprints for CMSIS-NN, uTensor, and TF-
Micro. Each CNN differs by the number of the convolution
kernels (see Table 2). The RAM capacity is 256 KB.

training and 10,000 for testing. There are ten classes: air-
plane, automobile, bird, cat, deer, dog, frog, horse, ship, and
truck.

4.3 Convolutional Neural Networks
For our experiment, we use the networks listed in Table 2.
Each network consists of seven layers (see Figure 1), in-
cluding the input and output layers. The second layer is a
convolution filter with kernel size from 16 to 128, and ReLU
activation function. The third layer is a max-pooling opera-
tion. The fourth layer is a convolution filter with kernel sizes
from 16 to 128, and ReLU activation function. The fourth
layer is a max-pooling operation. The names in Table 2 reflect
the number of kernels. For example, Conv-16 means that the
second and fourth layers have 16 kernels, respectively. The
motivation is to scale the convolution kernels, which have
most of the trainable parameters [3].

4.4 Benchmark Evaluation
We repeat each experiment 20 times. We report the maxi-
mum values of memory allocation for RAM and flash; we
refer to them as footprints. We report the average inference
execution time based on the cycle clock register. We report
the energy consumption based on the average electric cur-
rent drawn in mA, by applying 3.3 V, and report the standard
deviation as ±, when it is significant.
Memory Footprints. In Figures 3, we present the RAM

consumption by reporting the maximum memory alloca-
tion (footprints), for each network. In Figures 3a, we notice
that for a small network with 16 kernels trained on MNIST,
CMSIS-NN has a small memory footprint (22 KB) similar to
uTensor and TF-Micro (28 KB & 60 KB). As we increase the
kernels to 128, we notice CMSIS-NN has the largest foot-
print (253 KB) compared to uTensor and TF-Micro (123 KB
& 243 KB). The reason is that CMSIS-NN statically allocates
all the necessary data in the RAM. TF-Micro statically allo-
cates memory for the network and dynamically allocates the
buffers to store intermittent-results. uTensor dynamically

16 32 64 96 128
Convolution Kernels

0

100

200

300

Fl
as

h
(K

B)

CMSIS-NN
uTensor
TF-Micro

(a) Maximum flash usage of each
CNN per framework on MNIST.

16 32 64 96 128
Convolution Kernels

0

100

200

300

Fl
as

h
(K

B)

CMSIS-NN
uTensor
TF-Micro

(b) Maximum flash usage of each
CNN per framework on CIFAR-10.

Figure 4. Flash footprints for CMSIS-NN, uTensor, and TF-
Micro. Each CNN differs by the number of the convolution
kernels (see Table 2). The flash capacity is 1MB.

allocates memory both for the network and local buffers
(by utilizing Mbed OS). We notice a similar behavior when
using the CIFAR-10 data-set (see Figure 3b). However, a net-
work with 128 kernels consumes almost all the available
RAM, and with CMSIS-NN (265 KB), it exceeds the device
capacity (256KB). However, we consider these networks only
for demonstration purposes. A real-world application using
these networkwill not leave anymemory for the applications
themselves.

In Figure 4, we present the flash footprints for each frame-
work. For CMSIS-NN and TF-Micro, the flash footprint in-
creases proportionally with the number of static variables.
The reason is that the linker allocates static variables into
the flash to be copied to RAM during the start-up phase. For
uTensor, the flash footprint is the same for all experiments
as it counts only for program code and input vectors. Finally,
we notice that the larger neural network (with 128 kernels)
consumes less than 37% (367 KB) of available flash (1MB).

Inference Execution Time. We continue with the aver-
age inference execution time for each network. In Table 3,
we report the results for the MNIST data-set. We notice that
CMSIS-NN outperforms all other frameworks, as it is special-
ized for the on-board DSP accelerator available on Cortex-M
devices. For example, the smallest network with 16 kernels
and CMSIS-NN runs on average in 0.2 s (see Tables 2), with
TF-Micro in 1.0 s, and with uTensor in 3.0 s. The largest
network with 128 kernels and CMSIS-NN runs on average
in 8.45 s, with TF-Micro in 43.4 s, and with uTensor in 139 s.
In Table 4 we report the results for CIFAR-10 data-set. We
notice a similar behavior with CMSISS-NN outperforming
the others, following by TF-Micro, and uTensor. We have
not noticed any significant time deviation among the experi-
ments.

Energy Consumption. In this part, we present the en-
ergy consumption based on the average electric current
drawn in mA reported by the Power Profiler Kit. Figure 5
presents a representative comparison of the electric current
drawn during inference of a network with 16 kernels trained

Performance of Deep Neural Networks on Low-Power IoT Devices CPS-IoTBench2021, May 18, 2021, Nashville, TN, USA

0 1000 2000 3000 4000 5000 6000 7000
Time (ms)

0

2

4

6

8
Cu

rre
nt

 (m
A)

CMSIS-NN
uTensor
TF-Micro

Figure 5. A representative sample of electric current drawn
during inference on nRF-52840-DK, operating at 3.3 V. The
neural network in this example experiment has 16 convolu-
tion kernels (see Table 2) and is trained on CIFAR-10.

on CIFAR-10 data-set.We notice a similar trend among all our
experiments. CMSIS-NN has the highest current by drawing
an average of 8 mA, following by uTensor with an average of
7 mA, and finally TF-Micro with an average of 6 mA. In the
same figure, we see that the execution time differs strongly
between the frameworks, with CMSIS-NN being the fastest
due to DSP acceleration usage.

In Tables 3, we report the overall energy consumption for
networks trained on MNIST data-set. The energy consump-
tion is strongly related to the inference time and the electric
current drawn during that time. We notice that CMSIS-NN
has a lower energy consumption among all frameworks. For
example, the smaller network with 16 kernels on CMSIS-
NN consumes 5±0.1 mJ on average, followed by TF-Micro
with 39±0.1 mJ on average, and uTensor with 70±0.1 mJ on
average. For a large network with 128 kernels, CMSIS-NN
consumes 230±0.2 mJ on average, followed by TF-Micro with
860±0.2 mJ on average, and uTensor with 3,203±0.2 on av-
erage. We notice a deviation because of the dis/charging of
the PPK capacitors between the experiments. In Table 4 we
report the results for CIFAR-10 data-set. We notice a similar
trend with CMSISS-NN having the lowest energy consump-
tion, following by TF-Micro and uTensor with the highest
energy consumption.

4.5 Discussion and Limitations
We now discuss our results and remaining challenges.

Framework automation. We observe that defining and
training a deep neural network follows a similar process
among all frameworks. However, they differ significantly
in development process automation and especially in the
quantization method. uTensor offers an easy-to-use tool-
chain where built-in functions are handling the quantization
and code generation. TF-Micro offers more sophisticated
quantization methods, but the user needs to configure them
manually. CMSIS-NN gives programmers full-control over
every aspect, leading to very efficient code, but the networks

need to be converted and defined manually in C code. The re-
sult is a trade-off between the complexity of the development
process and the efficiency of the resulting code-base: Code in
CMSIS-NN has a higher efficiency but is more complex to im-
plement when compared to simpler and versatile approaches
(TensorFlow ecosystem) with less focus on performance.

Memory Management.We observe that memory man-
agement plays a crucial role in the performance of low-power
IoT devices. CMSIS-NN benefits from static allocation of
memory regions and definition of specialized 8-bit and 16-
bit DSP data-types. In addition, CMSIS-NN boosts perfor-
mance on the Cortex-M series by employing the on-board
DSP accelerator (CMSIS-DSP). On the other hand, uTensor
and TF-Micro use generic 32-bit data types and dynamic
memory allocation. The generic data type allows multiple
platform support, but it comes with a cost on low-power IoT
devices.

Concluding Remarks.We conclude the discussion with
two remarks. First, there is no framework to fit both the
rigorous development process of deep neural networks and
the low-power devices’ performance. Second, wide networks
consume significant memory and energy of devices across
all frameworks. Low-power IoT devices can not utilize well-
established pre-trained networks available on cloud services.
There is a need for ultra-lightweight neural network archi-
tectures for low-power devices.

5 Related Work
Compression. The frameworks of our evaluation supports
only quantization to reduce the size of the networks. Other
unsupported methods include weight pruning [4], and net-
work compression [4].

ML Frameworks. In this paper, we use three popular
frameworks for low-power devices. Next to these, other
framework exist: STM32 Cube.AI [11] is a proprietary
machine learning framework by STMicroelectronics. This
framework has a limited scope and is tied to STM MCUs.
Glow [9] is an open-source machine learning graph op-
timizer created by Facebook. Glow does not support low-
power devices yet, but it is an on-going work.

ML Benchmarks. Our benchmark is not the first one
to evaluate the performance of machine learning platforms.
MLPERF [8] is a large-scale benchmark suite for Machine
Learning inference across different platforms and hardware.
DAWNBench [1] is a deep learning benchmark focusing
mostly on GPU performance. In contrast, our paper focuses
on the applicability of DNN inference on low-power IoT
devices.

6 Conclusion
This paper shows the trade-offs between the development
process automation of Deep Neural Networks (DNNs) and

CPS-IoTBench2021, May 18, 2021, Nashville, TN, USA C. Profentzas, M. Almgren and O. Landsiedel

CMSIS-NN uTensor TF-Micro
Conv. RAM Flash Time Energy RAM Flash Time Energy RAM Flash Time Energy
-Ker. (byte) (byte) (ms) (mJ) (byte) (byte) (ms) (mJ) (byte) (byte) (ms) (mJ)

16 22,788 29,724 188 5±0.1 28,544 70,712 3,034 70±0.1 60,432 159,372 973 19±0.1
32 47,396 40,828 597 16±0.1 42,064 70,776 10,001 231±0.2 72,640 171,580 3,218 64±0.1
64 110,436 76,828 2,091 57±0.1 69,104 70,840 34,960 808±0.2 110,880 209,820 11,526 228±0.2
96 191,908 105,336 4,495 122±0.1 100,072 70,904 76,338 1,763±0.2 167,552 266,492 24,939 494±0.2
128 253,042 166,470 8,445 230±0.2 123,184 70,968 138,668 3,203±0.2 242,656 341,596 43,415 860±0.2

Table 3. The complete evaluation using MNIST. The RAM and flash footprints are the maximum memory allocation. Time
refers to the average inference execution time. The energy consumption is based on the average electric current draw.

CMSIS-NN uTensor TF-Micro
Conv. RAM Flash Time Energy RAM Flash Time Energy RAM Flash Time Energy
-Ker. (byte) (byte) (ms) (mJ) (byte) (byte) (ms) (mJ) (byte) (byte) (ms) (mJ)

16 77,720 34,076 357 10±0.1 47,704 78,248 5,986 138±0.1 62,048 170,544 1,961 39±0.1
32 80,856 78,360 1,004 27±0.1 76,504 78,264 17,148 396±0.2 82,400 184,800 5,720 113±0.1
64 120,952 87,336 2,100 58±0.1 134,104 78,280 56,824 1,313±0.2 124,736 227,136 18,641 369±0.2
96 182,288 148,660 6,021 164±0.1 191,704 78,344 119,265 2,755±0.2 185,536 287,936 38,775 768±0.2
128 265,684 193,068 - - 249,304 78,472 209,073 4,830±0.2 251,736 367,136 66,113 1,309±0.2

Table 4. The complete evaluation using CIFAR-10. The RAM and flash footprints are the maximum memory allocation. Time
refers to the average inference execution time. The energy consumption is based on the average electric current draw.

the low-power devices’ performance. We present a bench-
mark to evaluate three representative frameworks for DNNs
inference on low-power IoT devices. Our benchmark reveals
significant differences and trade-offs for each framework
and its tool-chain: (1) We find that uTensor is the easiest
framework to use, followed by TF-Micro, and then CMSIS-
NN. (2) Our evaluation shows large differences in energy,
RAM, Flash footprints. In terms of energy, CMSIS-NN is the
most efficient, followed by TF-Micro and then uTensor, each
with a significant gap.

7 Acknowledgments
This work was supported by the Swedish Research Coun-
cil (VR) through the project “AgreeOnIT”, the Swedish Civil
Contingencies Agency (MSB) through the projects “RICS2”
and “RIOT”, and the Vinnova-funded project “KIDSAM”.

References
[1] C. Coleman, D. Narayanan, D. Kang, et al. 2017. Dawnbench: An

end-to-end deep learning benchmark and competition. Conference on
Neural Information Processing Systems (NIPS).

[2] R. David, J. Duke, A. Jain, V. J. Reddi, et al. 2020. TensorFlow Lite Micro:
Embedded Machine Learning on TinyML Systems. arXiv:2010.08678

[3] I. Goodfellow, Y. Bengio, and A. Courville. 2016. Deep Learning. MIT
Press.

[4] S. Han, H. Mao, and W. J. Dally. 2016. Deep Compression: Compress-
ing Deep Neural Networks with Pruning, Trained Quantization and
Huffman Coding. arXiv:1510.00149

[5] N. Kitaev, Ł. Kaiser, and A. Levskaya. 2020. Reformer: The efficient
transformer. International Conference on Learning Representations
(ICLR) (2020).

[6] L. Lai, N. Suda, and V. Chandra. 2018. CMSIS-NN: Efficient Neural
Network Kernels for Arm Cortex-M CPUs. (2018). arXiv:1801.06601

[7] I. Mehmood, A. Ullah, K. Muhammad, et al. 2019. Efficient Image Recog-
nition and Retrieval on IoT-Assisted Energy-Constrained Platforms
From Big Data Repositories. IEEE Internet of Things Journal.

[8] V. J. Reddi, C. Cheng, D. Kanter, et al. 2020. MLPerf Inference Bench-
mark. In ACM/IEEE 47th Annual International Symposium on Computer
Architecture (ISCA).

[9] N. Rotem, J. Fix, S. Abdulrasool, et al. 2018. Glow: Graph Lowering
Compiler Techniques for Neural Networks. (2018). arXiv:1805.00907

[10] A. S. Razavian, H. Azizpour, J. Sullivan, et al. 2014. CNN features off-
the-shelf: an astounding baseline for recognition. In Proceedings of the
IEEE conference on computer vision and pattern recognition workshops.

[11] STM32Cube.AI 2020. STM32Cube AI. https://www.st.com/en/ em-
bedded -software/x-cube-ai.html.

[12] uTensor 2019. uTensor TinyML AI inference library. https://utensor.
github.io/.

[13] C. Wu, D. Brooks, K. Chen, et al. 2019. Machine Learning at Facebook:
Understanding Inference at the Edge. In IEEE International Symposium
on High Performance Computer Architecture (HPCA).

[14] J. Yang, X. Shen, J. Xing, et al. 2019. Quantization Networks. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR).

[15] J. B. Yang, M. N. Nguyen, P. P. San, et al. 2015. Deep Convolutional
Neural Networks on Multichannel Time Series for Human Activity
Recognition. AAAI Press.

[16] Z. Zhao, K. M. Barijough, and A. Gerstlauer. 2018. DeepThings: Dis-
tributed Adaptive Deep Learning Inference on Resource-Constrained
IoT Edge Clusters. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems.

https://arxiv.org/abs/2010.08678
https://arxiv.org/abs/1510.00149
https://arxiv.org/abs/1801.06601
https://arxiv.org/abs/1805.00907

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Convolutional Neural Networks
	2.2 Quantization
	2.3 IoT Deep Learning Frameworks

	3 Benchmark Design
	3.1 Overview and Evaluation Goals
	3.2 Benchmark Process

	4 Performance Evaluation
	4.1 Experimental Setup
	4.2 Data-sets
	4.3 Convolutional Neural Networks
	4.4 Benchmark Evaluation
	4.5 Discussion and Limitations

	5 Related Work
	6 Conclusion
	7 Acknowledgments
	References

