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A B S T R A C T   

This paper presents a method for joint retrieval of the ocean surface wind and current vectors using the back-
scatter and the Doppler frequency shift measured by spaceborne single-beam single-polarization synthetic 
aperture radar (SAR). The retrieval method is based on the Bayesian approach with the a priori information 
provided by atmospheric and oceanic models for surface wind and currents, respectively. The backscatter and 
Doppler frequency shift are estimated from the along-track interferometric SAR system TanDEM-X data. The 
retrieval results are compared against in-situ measurements along the Swedish west coast. It is found that the 
wind retrieval reduces the atmospheric model bias compared to in-situ measurements by about 1 m/s for wind 
speed, while the bias reduction in the wind direction is minor as the wind direction provided by the model was 
accurate in the studied cases. The ocean model bias compared to in-situ measurements is reduced by about 0.04 
m/s and 12∘ for current speed and direction, respectively. It is shown that blending SAR data with model data is 
particularly useful in complex situations such as atmospheric and oceanic fronts. This is demonstrated through 
two case studies in the Skagerrak Sea along the Swedish west coast. It is shown that the retrieval successfully 
introduces small scale circulation features detected by SAR that are unresolved by the models and preserves the 
large scale circulation imposed by the models.   

1. Introduction 

Ocean surface winds and currents play an important role in 
atmosphere-ocean dynamics. Wind stress is the primary force for ocean 
surface circulation, thus an important input to ocean numerical models. 
Ocean models are usually forced by atmospheric reanalyses, which 
contain errors (Belmonte Rivas and Stoffelen, 2019) and thus induce 
uncertainties in ocean models. In addition, coupled atmosphere-ocean 
modelling can be improved by better exploitation of satellite radar 
stress measurements (Trindade et al., 2020). Ocean currents transport 
heat, salinity and nutrients and thus affect the weather and the marine 
life. There is, for instance, an increased interest in the effect of surface 
currents on the estimation of the air-sea fluxes (Dawe and Thompson, 
2006). Surface currents are also highly relevant for applications 
involving prediction of the drift of floating objects, e.g. plastic, (van 
Sebille et al., 2020). Given the largeness of the ocean, the observations 
obtained from moored buoys and ships are sparse and drogued drifters 
measure currents at 15 m depth. Remote sensing technologies and 

particularly spaceborne sensors represent complementary means for 
obtaining global measurements of surface winds and currents. While 
ocean surface wind estimation from spaceborne sensors, particularly 
scatterometers, can be considered a mature technology, ocean current 
estimation from space is still in its early phase. Simultaneous estimation 
of winds and currents are highly desirable for understanding the air-sea 
coupling (Bourassa et al., 2019). 

There are several methods for estimating surface winds and currents 
from spaceborne sensors data. Here, we focus only on the active mi-
crowave sensors (radar). The widely used satellite ocean wind products 
are derived from the so-called virtual constellation of scatterometers 
(Stoffelen et al., 2019), which consists of an international collaboration 
to build a global constellation of scatterometers and standard wind 
products. The second source of ocean wind products from satellites is 
altimetry (Witter and Chelton, 1991). Scatterometers have the advan-
tage of large spatial coverage and azimuth angle diversity hence the 
ability to retrieve the wind direction. However, the scatterometer- 
derived wind direction usually requires ambiguity removal (Hoffman 
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et al., 2003; Vogelzang et al., 2009). Altimeters are furthermore 
commonly used to estimate geostrophic currents from sea level mea-
surements (Isern-Fontanet et al., 2017). Recently, (Rodriguez et al., 
2018) proposed a concept design based on a pencil-beam rotating 
Doppler scatterometer for estimating both ocean vector winds and 
currents. Another mission called Surface Water and Ocean Topography 
(SWOT) is proposed to address the shortcomings of conventional 
altimetry by providing a wide swath and high-resolution mapping of the 
water elevation (Rodriguez, 2015). The disadvantage of both scatter-
ometers and altimeters is the coarse spatial resolution (10–50 km), this 
might be suitable for synoptic and mesoscale studies but barely resolve 
eddies and baroclinic coastal currents. These are particularly relevant in 
the shelf seas and coastal areas, where the topography, river runoffs, etc. 
contribute to the complexity of the circulation. In these areas, scatter-
ometers and altimeters are limited by land contamination. 

Synthetic aperture radar (SAR) is a high resolution imaging radar. 
SAR and scatterometers measure the power backscattered from the 
surface of the Earth. Over ocean, the backscattered power is a measure of 
the roughness of the sea surface. The backscattered power is sensitive to 
both wind speed and direction (Horstmann and Koch, 2008). In fact, the 
backscattered power relates to the wind stress, which in turn relates to 
the wind vector (Stoffelen et al., 2019). Thus, the wind stress is usually 
expressed as the stress-equivalent wind (de Kloe et al., 2017). The 
received power is converted to the normalized radar cross section 
(NRCS), also called the backscatter, backscattering coefficient or sigma 
naught (σ0). This conversion, ideally, eliminates the instrument depen-
dent parameters (e.g. antenna gain) to obtain a quantity which depends 
on the dielectric and geometric properties of the surface, frequency, 
polarization and incidence angle. SAR also measures coherently the 
phase of the return signal from which the Doppler shift can be estimated. 
The Doppler shift can be estimated using a single SAR Doppler centroid 
analysis (DCA) technique (Hansen et al., 2011) or along-track interfer-
ometric SAR (ATI-SAR) (Romeiser et al., 2010a). The latter requires two 
SAR images of the same area acquired within a short time delay. This 
Doppler shift is directly related to the relative motion between the sat-
ellite and the ocean surface (Ardhuin et al., 2019). After removal of the 
non-geophysical contribution due to the relative velocity of the satellite 
and the solid Earth, the residual (geophysical) Doppler shift is directly 
related to the ocean surface velocity. The main contribution to this ve-
locity is due to the orbital velocities of the sea surface waves, hence the 
relation of the Doppler shift to the surface wind (Chapron et al., 2005) 
and due to surface currents (Rouault et al., 2010). 

Due to the complexity of the relation between the sea surface pa-
rameters and the backscatter, to date, the common approach for wind 
inversion from spaceborne radar measurement (scatterometer, altimeter 
and SAR) is based on the so-called empirical geophysical model func-
tions (GMF). These GMFs are usually built by matching the measured 
backscatter with surface winds provided by reanalysis or in-situ mea-
surements. They are frequency, polarization and incidence angle 
dependent. The advantage of using GMFs is efficient computation and 
limited parameterization (incidence and azimuth angles, wind speed 
and direction). These GMFs are applicable to open slick-and-ice-free 
water, which assumes that presence of sea ice, oil spill, etc. is well 
detected and filtered out. However, other effects such as atmospheric 
stability and air mass density (de Kloe et al., 2017), rain (Xu et al., 2020) 
and temperature (Wang et al., 2017) influence the relationship between 
the measured backscatter and the wind. More relevant for SAR, effects 
such as bathymetry, swell, wave-current interaction, ship wakes and 
wind mills also influence the relationship between the backscatter and 
wind. 

The wind retrieval from SAR is an inverse problem. The available 
GMF is a forward model, i.e. it simulates the backscatter from the state 
variable (wind vector). The inversion can be formulated in terms of 
retrieving the wind speed and direction or the zonal u and meridional v 
components of the wind vector. For each pixel in the image, a single- 
beam single-polarization SAR provides one backscatter value. Thus, 

the wind vector retrieval problem from SAR, based on backscatter 
measurement only, is underdetermined (Portabella et al., 2002). The 
problem does not become determined even by using the Doppler shift in 
addition to backscatter (Mouche et al., 2012) as shown later. Even multi- 
beam sensors such as scatterometers produce ambiguous wind solutions 
(Hoffman et al., 2003; Vogelzang et al., 2009). Wind retrieval methods 
can be classified into non-Bayesian and Bayesian. 

In non-Bayesian wind retrieval algorithms (called here direct 
method) the objective is to find an estimate of the wind vector closest to 
the radar measurements. In this method, the wind direction obtained 
from an external source is directly inserted into the forward model to 
extract SAR wind speed. This makes the problem determined, and can be 
solved for example by least squares method. The wind direction is 
usually provided by a numerical weather prediction (NWP) model or 
reanalysis. This method has two disadvantages. It implicitly assumes an 
error-free direction information. The second disadvantage is the coarse 
resolution of the NWP wind direction (≈5 − 10 km). It was shown 
(Fetterer et al., 1998; Horstmann and Koch, 2005) that the wind direc-
tion can be estimated from linear streaks in the SAR image and used in 
the retrieval of wind speed instead of obtaining the wind direction from 
an external source. This provides a relatively higher resolution wind 
direction (~1 − 2 km) but suffers from 180o ambiguity that needs to be 
resolved. This ambiguity is usually removed using an atmospheric 
model. However, in many cases the absence of wind features in the SAR 
image hinders the wind direction extraction. 

The Bayesian method has been first proposed and applied to 
scatterometer-derived winds (Hoffman et al., 2003; Cornford et al., 
2004; Stoffelen and Portabella, 2006; Vogelzang et al., 2009). SAR wind 
retrieval using variational methods has been first proposed by (Porta-
bella et al., 2002) and then investigated by a few other authors (Dan-
ielson et al., 2008; Choisnard and Laroche, 2008; Jiang et al., 2017). In 
this approach (Portabella et al., 2002), the backscatter measurements 
are used with a priori information about the wind speed and direction, 
typically obtained from NWP or reanalysis. In the following, the a priori 
information is referred to as background. It was found that the retrieval 
relies heavily on the background wind and particularly the wind di-
rection (Portabella et al., 2002). A similar conclusion was drawn by 
(Choisnard and Laroche, 2008). The Bayesian inversion, applied to 
Envisat/ASAR data, was assessed in (Adamo et al., 2014). The author 
also concluded that the performance strongly depends on the quality of 
the NWP wind direction. In (Mouche et al., 2012), it was suggested that 
the use of Doppler shift in addition to the backscatter and the back-
ground wind improves the retrieval results compared to both the direct 
and the Bayesian approach with backscatter only. The main improve-
ment was found in the wind direction when the background was 
inconsistent with in-situ winds. 

For the current retrieval, there is to our knowledge no reported study 
based on Bayesian approach for estimating ocean surface currents from a 
single-beam SAR. A few authors, e.g. (Rouault et al., 2010) investigated 
the direct method, i.e., retrieval of the radial component of the ocean 
surface current. For instance, a study of the Agulhas current using 
Envisat/ASAR was reported in (Rouault et al., 2010). It is worth noting 
that other authors suggested advanced technologies to estimate the total 
current vector from SAR. For instance, (Frasier and Camps, 2001) pro-
posed a dual-beam interferometric SAR. Similar design was investigated 
and demonstrated through an airborne campaign in (Martin and Gom-
menginger, 2017). The authors studied, through numerical simulations, 
the performance of wind and currents retrieval (Martin et al., 2018) 
based on a hypothetical concept of a dual-beam dual-polarization ATI 
system. 

In this paper, the joint retrieval of the wind and current vectors over 
the sea surface is demonstrated using the backscatter, Doppler shift and 
background wind and current fields. The Doppler shift used in this work 
is derived from the X-band ATI-SAR system (TanDEM-X) data. To our 
knowledge, this is the first attempt to simultaneously retrieve the total 
wind and current vectors from a single-beam single-polarization 
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spaceborne ATI-SAR data. 

2. Methods 

2.1. Observables and forward models 

The observation vector y and the state vector x are related by the 
forward model F as follows 

y = F(x, p) + εo (1)  

where εo = εmod + εrep + εinst is the observation error which is composed 
of the forward model error, representation error and instrument error 
respectively and p groups all the model parameters. 

In the context of wind and current retrieval from SAR, x is the wind 
and current vector and y is the NRCS (σ0) and Doppler shift (fD). 
Empirical GMFs are commonly used as forward models. These GMFs are 
frequency dependent and parameterized by incidence angle, azimuth 
angle, radar polarization. A detailed description of the surface scattering 
and Doppler using theoretical and empirical GMFs can be found in, e.g. 
(Fois et al., 2015). The used GMFs are described in more details in the 
following. 

2.1.1. Backscatter 
In the Bragg scattering theory, the backscatter (NRCS or σ0) is pro-

portional to the spectral density of the Bragg waves (Wright, 1966). 
Longer waves also affect the NRCS through modulation of the Bragg 
waves spectrum (Wright, 1968). At, e.g. C- and X-band, the Bragg waves 
correspond to the gravity-capillary waves with wavelengths in the order 
of few centimeters. These waves are directly related to the instantaneous 
local surface wind stress. The backscatter is also sensitive to the relative 
angle between the radar antenna beam and the Bragg waves direction 
(wind direction). In addition, the backscatter depends on the polariza-
tion of the electromagnetic wave and the incidence angle. It was found 
that sea surface temperature (SST) effects on the backscatter are more 
important at higher frequencies (e.g. Ku-band) and almost negligible at 
low frequencies (e.g. C-band) (Wang et al., 2017). There is to our 
knowledge no study of this effect at X-band, but based on the above- 
mentioned study, a moderate effect should be expected at X-band. 

The surface currents play a minor, but non-negligible, role in the 
backscatter through several effects. The first effect is due to the relative 
motion between the air and sea surface. Imprints of surface currents in 
satellite-derived winds have been shown in (Kelly et al., 2001; Plagge 
et al., 2012). The authors suggested that satellite radars measure wind 
relative to the moving ocean surface. This effect depends on the relative 
direction of the wind and currents. The wind stress will decrease (in-
crease) when the surface current is in the same (opposite) direction as 
the wind. In general, ocean surface wind speed is an order of magnitude 
larger than surface current speed, so this effect is usually small. It might 
however be important for low wind over a strong ocean current. 

The second effect is due to wave-current interaction (Kudryavtsev 
et al., 2005; Johannessen et al., 2005). This interaction will increase or 
decrease the surface roughness, thus the backscatter. That is, for the 
same wind, a higher or lower backscatter will be measured due the 
presence of current gradient. This effect also depends on the relative 
direction of the wind and currents and on their directions relative to the 
radar beam. It is usually manifested in SAR images as bright or dark 
linear features (Johannessen et al., 1991, 1996). Thus a direct inversion 
of the backscatter to wind speed, ignoring currents, might produce 
spurious (high or low) wind speed values. 

The third effect is due to a change in the marine atmospheric 
boundary layer (MABL) stability by the surface temperature gradients 
which are usually associated with surface current systems (Chelton 
et al., 2004). This alteration of stability will cause a change in surface 
wind stress which, in turn, alters the surface roughness and conse-
quently the radar backscatter. For instance, on the warmer water side of 

an oceanic front, the radar backscatter will be larger than on the colder 
side (Beal et al., 1997; Krug et al., 2018). 

The fourth effect is due damping of the Bragg waves by surfactants 
accumulated in the current convergence zones (Beal et al., 1997). Usu-
ally, SAR observes a combination of these four effects and is often 
difficult to separate them. Depending on wind and current conditions, 
one might be more dominant than the other. 

2.1.2. Backscatter forward model 
The model maps the observation space (σ0) into the state space 

(wind) as follows 

σ0 = Fσo (u10,φw, θ, pol) (2)  

where u10 is the wind speed at 10 m height and φw is the angle between 
the radar look direction and the wind direction, θ is the incidence angle 
and pol is the polarization. 

The forward model used here is an empirical GMF called XMOD2 (Li 
and Lehner, 2014). This GMF was built using the X-band (9.65 GHz) data 
from TerraSAR-X, which is identical to TanDEM-X. The variation of the 
XMOD2 GMF with wind speed and direction is depicted in Fig. 1. The 
forward model is, for a given polarization and incidence angle, a 
nonlinear function of wind speed and wind direction. Note that the 
sensitivity to wind speed is higher at up/downwind than at crosswind. 
Note also that the sensitivity to wind direction increases with wind 
speed. 

As mentioned above, it is known that spaceborne radars such as SAR 
actually measure the relative motion between the air and the sea surface 
(Kelly et al., 2001; Plagge et al., 2012). Thus we, usually, assume that 
the current vector contributes to a difference between the SAR-retrieved 
wind vector and a wind vector measured by an anemometer. To take this 
effect into account, u10 and φw should be replaced by an ocean-relative 
wind. 

2.1.3. Doppler frequency shift 
The radar measures the Doppler shift due to the relative motion 

between the satellite and the Earth surface. The two common techniques 
used to estimate the Doppler shift from SAR data are Doppler centroid 
analysis (DCA) (Chapron et al., 2005; Johannessen et al., 2008; Hansen 
et al., 2011) and along-track interferometry (ATI) (Romeiser et al., 
2010b; Elyouncha et al., 2019). The geophysical Doppler shift (also 
called Doppler anomaly) is calculated as the difference between the total 
measured Doppler shift and the calculated geometric Doppler shift. The 
DCA technique requires a single SAR image, while the ATI requires two 
SAR images of the same area. 

The velocity derived from the measured Doppler shift represents the 
total relative (between the satellite and the ocean surface) velocity 
projected on the line of sight (LOS). This total velocity UD can be 
decomposed into three components 

UD = Ugeo +Unwd +Uwd (3) 

The first term is the non-geophysical component (Ugeo) which is due 
to the motion of the radar platform relative to the solid rotating Earth. 
The second component (Unwd), which includes geostrophic currents 
(barotropic and baroclinic) and tidal currents, is not driven by the 
instantaneous local wind. For high resolution radars such as SAR, in-
ternal waves and swell also contribute with their orbital motions as local 
surface currents. All these currents are induced by forces independent of 
the local instantaneous wind. 

The wind-driven component (Uwd) can be decomposed into three 
components 

Uwd = UE +US +Uwv (4)  

where UE is the Ekman current induced by the local wind stress at the 
surface, US is the Stokes drift and Uwv is the integrated motion induced 
by wind-waves along the radar line-of-sight. The Uwv term does not 
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represent an actual water mass transport (current), but it induces a 
Doppler shift in the radar measurements. This means that even in the 
absence of currents, the radar would measure a Doppler shift. It includes 
the Bragg wave phase speed and a contribution induced by the corre-
lation between the variation of the backscatter and the long waves 
orbital velocities (Thompson and Jensen, 1993). 

It was found by (Chapron et al., 2005) that the term Uwd contributes a 
significant amount (~30% of the wind speed) to the total geophysical 
Doppler shift (UD − Ugeo) measured by SAR. Moreover, the Uwv contri-
bution is often larger than the surface current contribution (Elyouncha 
et al., 2019). Thus the observed Doppler shift is dominated by the wind 
induced motion. Finally, the reported values of the magnitude of the 
Stokes drift vary between 0.4% and 1.3% of the wind speed and di-
rections between 0 and 45∘ (Ardhuin et al., 2009). 

2.1.4. Doppler forward model 
The Doppler model, here, refers to a model that predicts the contri-

bution of the local wind and wind-waves to the SAR Doppler shift in 
absence of currents. This model has the following form 

f mod
D = FfD (u10,φw, θ, pol) (5) 

Here, the model developed in (Collard et al., 2008; Mouche et al., 
2012), called CDOP, is used. The variation of the CDOP GMF with wind 
speed and direction is depicted in Fig. 2. The model is also nonlinear in 
wind speed and wind direction. Note that the sensitivity to wind speed is 
higher at up/downwind than at crosswind. The sensitivity to wind di-
rection increases with wind speed. CDOP is an empirical model built 
from C-band (5.33 GHz) ENVISAT/ASAR data. Thus the predicted 
Doppler shift (fDmod) must be scaled to be applicable to X-band. The CDOP 
model output is converted to X-band using a scaling factor as 

f mod
DXband

= α⋅f mod
DCband

(6)  

where α = frX/frC is the scaling factor, and frX and frC are the radar carrier 
frequencies of TanDEM-X and Envisat/ASAR, respectively. 

2.2. Retrieval algorithm: non-Bayesian 

In the non-Bayesian approach (direct method), the wind and currents 
are retrieved separately. In this approach, only the wind speed and the 
radial component of the current can be retrieved using the backscatter 
and Doppler shift, respectively. The wind direction is required in the 
wind speed retrieval. Thus the wind speed retrieval is affected by the 
wind direction and the backscatter GMF errors. In the retrieval of radial 
current, both wind speed and direction are required to remove the wind 
induced contribution from the total measured Doppler shift. Similarly, 
the radial current retrieval is affected by errors in the wind speed, wind 
direction and the Doppler GMF. 

2.2.1. Wind speed retrieval 
For wind speed retrieval, the direct method is based on the maximum 

likelihood estimation (MLE). This is equivalent to minimizing the 
weighted least squares (WLS), assuming Gaussian error distribution. The 
cost function to minimize is expressed as in (Stoffelen and Anderson, 
1997) 

J(u10) =

(
σ0

SAR − Fσo (u10,φwa, θ, pol)
Δσ0

)2

(7)  

where in this case φwa is the a priori (known) wind direction and Δσ0 is 
the standard deviation of the observed backscatter. The main 

Fig. 1. Backscatter GMF XMOD2 (Li and Lehner, 2014). σ0 as a function of wind speed for up, down and crosswind (left panel) and as a function of wind direction for 
5, 10 and 15 m/s (right panel), 0∘ upwind, ±180∘ downwind and ±90∘ crosswind, VV polarization, θ=35∘. 

Fig. 2. Doppler GMF CDOP (Mouche et al., 2012). fDmod as a function of wind speed for up, down and crosswind (left panel) and as a function of wind direction for 5, 
10 and 15 m/s (right panel), 0∘ upwind, ±180∘ downwind and ±90∘ crosswind, VV polarization, θ=35∘. 
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assumption in the direct method is that the GMFs and the external wind 
input to the GMFs are error free. If a constant standard deviation is 
assumed, this reduces to least squares (LS). Using this approach only one 
component (either wind speed or direction) can be retrieved if the other 
component is known (Portabella et al., 2002). Typically, the wind di-
rection is provided by NWP model, reanalysis or in-situ measurements 
and the cost function is minimized for wind speed. Moreover, often for 
faster computation, a look-up table is constructed and the wind speed 
corresponding to the closest measured σ0 is searched and interpolated. 
Note that the direct method neglects the wave-current interaction, i.e. 
current effects are assumed to be small. Taking into account this effect 
would require a model that computes the spatial modulation of the wave 
spectrum by the current gradients, by solving the wave energy conser-
vation equation (Kudryavtsev et al., 2005; Johannessen et al., 2005). 
This is very time consuming. One can however take into account the 
relative motion of the surface if the current information is available. 

2.2.2. Radial current retrieval 
For the radial current retrieval, the assumption is that the measured 

Doppler shift can be decomposed into two independent contributions, 
the wind-correlated and wind-uncorrelated, e.g. tidal current, contri-
butions to fD. 

Similar to wind speed retrieval, the wave-current interaction is 
neglected. Taking into account this effect would require a model that 
computes the modulation of the wave spectrum by the current gradients 
(Hansen et al., 2012) and then calculate the US +Uwv term which depend 
on the wave spectrum. The wind-correlated Doppler shift is simulated 
using the CDOP GMF (Mouche et al., 2012). This GMF was built by 
matching global ECMWF 10 m height winds and Envisat/ASAR derived 
Doppler shift. Thus, the Doppler GMF most likely accounts for US + Uwv 
which, as mentioned earlier, are correlated to the local wind. It is, 
however, not clear how much of the surface Ekman current the GMF 
accounts for. Finally, the simulated fDmod is subtracted from the estimated 
geophysical Doppler shift (after removing the geometric term from the 
measured fD). The difference is converted to horizontal radial velocity as 

Ur =
π

kesinθ
(
fD − FfD (u10,φwa, θ, pol)

)
(8)  

where ke is the electromagnetic wavenumber. Ur is assumed to be the 
projection of the surface current on the ground range direction. 

2.3. Retrieval algorithm: Bayesian 

The inversion method is based on the maximum a posteriori esti-
mation (MAP). It is also called variational method (VAR) in the data 
assimilation (DA) framework. In short, the principle of the Bayesian 
approach is combining a priori information with the measurements, 
referred to as background and observations in the DA framework, 
assuming that all sources of information contain errors and these errors 
are well characterized. The objective is to find the state vector x, given 
the observations y, that maximizes the posterior probability p(x/y) 
given that the a priori P(x) and the likelihood P(y/x) are known. 

2.3.1. Cost function 
Obtaining the MAP is equivalent to minimizing a cost function 

(Lorenc, 1988; Rodgers, 2000). In the context of wind and current 
retrieval, the state vector is composed of the wind vector uw(uw,vw) and 
the current vector uc(uc,vc). The observation vector is composed of 
σ0 and fD. Note that for SAR the wind and currents are spatial 2D fields, 
thus uw, uc, σ0 and fD refer to the flattened 2D matrix. Thus the MAP is 
defined as P(uw,uc|σ0, fD). The cost function to be minimized is defined, 
assuming Gaussian distributions, as 

J(uw, uc) = Jo + Jb (9)  

where Jo and Jb are the observation and the background terms defined as 

Jo =
(
σ0 − Fσ0 (ue)

)T S− 1
σ0

(
σ0 − Fσ0 (ue)

)

+(fD − H(ue) )
T S− 1

fD (fD − H(ue) )
(10)  

Jb = (uw − I(uwb) )
T S− 1

wb (uw − I(uwb) )

+(uc − I(ucb) )
T S− 1

cb (uc − I(ucb) )
(11)  

where the operator H is defined as 

H(uw,uc,α) = α⋅FfD (ue)+ 2⋅ur⋅sinθ
/

λ (12)  

where α = 9.65/5.33, ue is the ocean-relative wind vector which has 
components (uw − uc,vw − vc) and ur = uc ⋅ el is the projection of the 
current vector on the radar look direction (LOS). Fσ0 and FfD are the 
forward models described above, I is the interpolation operator from the 
background grid to the retrieval grid, uw and vw are the zonal and 
meridional components of the wind vectors, respectively, uwb and vwb are 
their a priori values. uc and vc are the zonal and meridional components 
of the current vectors, respectively, ucb and vcb are their a priori values. 
Sσ0 is the sum of the covariance matrices of the backscatter observation 
and backscatter GMF errors. SfD is the sum of the covariance matrices of 
the Doppler observation and Doppler GMF errors. Swb and Scb are the 
covariance matrices of the background wind and current fields, 
respectively. 

Additional weak constraints can be added to the total cost function 
(Lorenc, 1988; Laroche and Zawadzki, 1994), which becomes 

J = Jo + Jb +w1Js +w2Jc (13) 

Js is a smoothness term defined by the Laplacian of the wind and 
current components 

Js(u, v) = L(uw)
2
+L(vw)

2
+L(uc)

2
+ L(vc)

2  

and is implemented using the finite differences approximation (Laroche 
and Zawadzki, 1994) 

L(u) = ui+1,j + ui− 1,j + ui,j+1 + ui,j− 1 − 4ui,j  

where L is the Laplacian operator without the denominator because it is 
not relevant for the minimization. It was found that this term filters the 
spurious solutions and also helps the solver to converge more rapidly to 
the minimum. Jc is a constraint that is only applied to the current 
components uc over land. It penalizes the deviation of uc from zero over 
land 

Jc = Σ(uc[land] )2
+ vc[land]

)2 

In practice, the two observable vectors and covariance matrices are 
grouped in the same vector and matrix, respectively. The same applies 
for background vectors and matrices. The weights w1 and w2 are 
determined heuristically. 

In some studies, e.g. (Mouche et al., 2012) and (Martin et al., 2018), 
the spatial correlation in the covariance matrices is neglected and the 
error is assumed to be constant. The advantage of this simplification is 
that, the grid points can be processed in parallel which reduces the 
processing time. In this study, we assume independent observations (σ0 

and fD) but with spatially varying error. We also assume that the errors 
in u and v components are independent. However, we take into account 
the spatial correlation in the background wind and current fields (see 
section 2.3.3). The disadvantage of this approach is a higher computa-
tional cost but on the other hand it is more likely to retrieve physically 
consistent fields. 

For a SAR scene of size Nx × Ny, the size of observation and back-
ground covariance matrices (So and Sb) are 2N × 2N and 4N × 4N, 
respectively, where N = Nx × Ny. Finally, the minimization is done using 
the Python limited-memory quasi Newton routine (L-BFGS-B). The 
initial state for both wind and current is set to the background values. 
The Jacobian is computed numerically by finite differences. 
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2.3.2. Cost function analysis 
In this section we illustrate the contribution of each term in the cost 

function, decomposed into three terms, namely backscatter, Doppler 
and background components 

J = Jσ0 + JfD + Jb (14) 

Fig. 3 (upper row, panels a-e) depicts the cost function for different 
combinations of the three terms. The dark blue colour indicates the area 
where the cost function has its minima and the red areas indicate the 
maxima. It can be observed that using the NRCS alone Jσ0 (a) or the 
Doppler shift alone JfD (b), it is impossible to retrieve the full wind 
vector. By adding the NRCS and the Doppler terms (d), the space of the 
solutions is reduced to two ambiguous and symmetric minima. It can be 
readily noticed that without an additional information, on the wind 
direction, it is impossible to resolve the two ambiguities. The two cost 
function minima have similar values hence the two solutions have equal 
likelihood. By adding the background term to the NRCS (c) and to the 
NRCS+Doppler (e), the ambiguity is resolved. The background error 
makes the solution slightly deviate from the true value. Note that in the 
NRCS+fD+background (e) case the solution is closer to the true value 
than in the NRCS+background (c). Thus even in the presence of the 
background, there is an improvement by using the Doppler shift. The 
improvement is minor in this first case (upper row) because the back-
ground wind direction is very close to the true value. 

Fig. 3 (lower row, panels f-j) illustrates a second case where the 
background wind direction is biased, i.e. it deviates by 90∘ from the true 
wind direction. In this case, the role of the Doppler term is important in 
finding the correct solution for the wind vector. The retrieved wind di-
rection using NRCS+background only (h) will be the wind direction of 
the background, thus biased. The NRCS+fD+background (j) yields the 
wind vector solution closer to the true wind vector. This shows that the 
combination of the NRCS+fD+background may yield the optimum so-
lution, given a well calibrated NRCS and Doppler shift. 

2.3.3. Covariance matrices 
Appropriate characterization of the error statistics for both obser-

vational and background data is essential for an optimal retrieval. The 
covariance matrix can be decomposed as (Daley, 1991; Bannister, 
2008), S = Σ ∧ Σ, where ∧ is the non-diagonal correlation matrix and Σ is 
a diagonal matrix with the standard deviation as the diagonal elements. 
We neglect the correlation between variables, because these correlations 
are poorly known. 

Background covariance matrix Sb: Estimation of the background 
covariance matrix has been a topic of interest for several authors in the 
field of atmospheric remote sensing for many years and different 

estimation methods have been proposed, e.g. (Bannister, 2008). It can 
be estimated empirically from differences between observations and 
background (O–B) assuming the observation errors are uncorrelated 
(Vogelzang and Stoffelen, 2012). This requires a large number of densely 
distributed observations. Alternatively, it is modeled using a structure 
function. The most common parameterization of the structure functions 
is Gaussian and exponential (Daley, 1991). Gaussian structure function 
was used for instance in (Danielson et al., 2008). Both functions assume 
homogeneous and isotropic error distribution. 

We assume that errors in the wind components uw and vw are inde-
pendent and normally distributed (Stoffelen, 1998). We also assume that 
errors in the current components uc and vc are independent and normally 
distributed. Furthermore, the wind vector uw and the current vector uc 
are assumed to be independent. Thus, the covariance matrix Sb is a block 
diagonal sparse matrix. We take into account the spatial correlation of 
each variable. The spatial correlation is modeled here by the exponential 
structure function (Rodgers, 2000) 

Sij = e
−

⃒
⃒
⃒
⃒i− j

⃒
⃒
⃒
⃒

δr
Ls

(15)  

where i and j are the grid point indices, δr is the distance between the 
grid points and Ls is the horizontal correlation length (length scale). The 
correlation matrix has the so-called Toeplitz-block-Toeplitz pattern as 
shown in Fig. 4. The advantage of using this type of analytical structure 
function is that it generates a symmetric positive definite matrix. This 
matrix is factorized using Cholesky decomposition which makes the 
inversion efficient and numerically stable. The disadvantage, however, 
is that the value at a given grid point is affected by all the other points. 
This yields an ill-conditioned covariance matrix. The consequence is an 
increased computational cost and slow convergence. 

The key factors in the covariance matrix are the standard deviation 
(elements of Σ) and the correlation length scale Ls. The horizontal length 
scales of the correlation functions are based on the internal Rossby 
radius of deformation LR, Ls = βLR, where β is between 0.5 and 2. The 
horizontal length scales in the atmosphere and the ocean are very 
different being O(100–1000 km) and O(1–100 km) in the atmosphere 
and ocean, respectively. In the ocean, the Rossby radius depends on 
latitude, stratification and thickness of the upper buoyant layer (Chelton 
et al., 1998). It decreases with increasing latitude and deceases with 
decreasing thickness (Chelton et al., 1998). In the Baltic Sea (our study 
area) the Rossby radius varies between 1.3 km and 7 km (Fennel et al., 
1991). The correlation length for uc and vc is heuristically set to 5 km. In 
the atmosphere, the length scale also depends on latitude and height. 
Thus it is smaller in the high latitudes and near the surface. The length 

Fig. 3. Cost function in the wind components space u and v; (a,f): NRCS term Jσ0, (b,g): Doppler term JfD, (c,h): NRCS+background, (d,i): NRCS+Doppler, (e,j): 
NRCS+Doppler+background. White (+) symbol: true wind (u10=7 m/s;φw=60∘;), white (x) symbol: background wind, white circle: minimum of J; Δσ0=0.078σ0, 
Δu=Δv=

̅̅̅
3

√
m/s, ΔfD=7 Hz. Upper row: background (u10=8 m/s;φw=30∘), lower row: background (u10=8 m/s;φw=150∘). Dark blue: minima of J, red: maxima of J. 

(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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scale for the meridional and zonal wind components has been estimated 
using ASCAT scatterometer and an ECMWF model (Vogelzang and 
Stoffelen, 2012). However, the estimated length scale ~300 km in the 
above-mentioned study represent the open ocean, while our study area 
is coastal hence smaller length scale is expected due to topography, e.g. 
land shadow. Therefore, Ls is set to 100 km for uw and vw. 

For the wind components standard deviation, we use the values re-
ported in literature (Portabella et al., 2002), i.e. Δuw = Δvw =

̅̅̅
3

√
m/s. 

For the current components, there is insufficient knowledge about the 
true uncertainty of the ocean model used here. Thus, the standard de-
viation is set heuristically to 

̅̅̅̅̅̅̅̅̅̅
0.03

√
m/s for both uc and vc. 

Observation covariance matrix So:For the observation covariance ma-
trix So, the correlation between the backscatter σ0 and the Doppler shift 
fD is neglected. The correlation between the two variables is expected 
due the fact that both depend on the surface wind, which can be noticed 
in Fig. 6 (third and fourth columns). However, the correlation between 
their errors is more complicated to determine. 

The observation error include instrument error, forward model error, 
and representation error. Instrument error, which is mainly due to 
thermal noise, is usually uncorrelated but the forward model and rep-
resentation errors might lead to correlation. This correlation is however 
neglected since it is poorly known. Moreover, no evidence reported in 
literature showing the benefit of accounting for spatial correlation in 
SAR data. Thus, the covariance matrix So used here is diagonal. 

The standard deviation of backscatter measurements has been 
studied in literature (Portabella et al., 2002; Stoffelen and Portabella, 
2006; Danielson et al., 2008; Choisnard and Laroche, 2008) and it is 
usually described as a fraction of the backscatter Δσ0 = Kpσ0, where Kp is 
a dimensionless quantity (normalized standard deviation of σ0) with 
typical value 0.05 < Kp < 0.3 (Choisnard and Laroche, 2008). Here we 
follow (Portabella et al., 2002) and we set Kp to 0.078. 

For the Doppler shift, values of standard deviation estimated from 
Envisat/ASAR data are also reported in literature (~5–7 Hz (Hansen 
et al., 2011; Mouche et al., 2012)). In this study, the standard deviation 
is estimated from the TanDEM-X data over land pixels with high 
coherence (>0.8). The estimated standard deviations are 3.65, 3.77, 
4.70 and 4.80 Hz for four satellite acquisitions. These are comparable 
(slightly smaller) than the Envisat/ASAR reported values. Finally, in 
order to account for probable forward model errors, the standard devi-
ation is slightly inflated, thus ΔfD is set to 7 Hz. 

3. Data sets 

3.1. Study area 

The study area is shown in Fig. 5. It is located along the Swedish west 
coast in the transition area between the Kattegat and the Skagerrak Seas. 
The large scale circulation in this area is dominated by the Baltic cur-
rent, a surface outflow (of the Baltic Sea) of low salinity water along the 
Swedish coast, the Jutland current (along the Danish west and north 
coast), the Atlantic current which is an inflow of deep saline water and 
the Norwegian coastal current which is an outflow along the Norwegian 
coast (Gustafsson, 1997; Christensen et al., 2018). The small scale cir-
culation is more complex due to local wind forcing variation, interaction 
with topography, rivers run-off, tides, etc. 

3.2. Background winds and currents 

The wind vectors provided by a reanalysis project called Un-
certainties in Ensembles of Regional Reanalyses (UERRA) are used as 
background. The horizontal grid spacing of UERRA is 11 km and the 
temporal resolution is one hour. Note that the effective resolution of 
atmospheric models is usually several times larger than the grid spacing 
(Skamarock, 2004), which prevents the accurate representation of 
coastal features. 

The background wind fields and the observations have different grids 
and spatial resolutions. Unlike in data assimilation, the observation grid 
is used here as the retrieval (analysis) grid. Since the retrieval grid is 
finer than the background grid, the background winds are interpolated 
to the retrieval grid using bi-linear interpolation. Moreover, the back-
ground data are linearly interpolated to the satellite acquisition time. All 
satellite acquisitions fall between 5 AM and 6 AM (see Table 1). 

The near surface currents (at − 0.5 m depth) are provided by the 
Nucleus for European Modelling of the Ocean (NEMO) (Gurvan et al., 

Fig. 4. A subset of the correlation matrix ∧ generated using the exponential 
structure function. 

  8  E  10  E  12  E  14  E

56  N  

 58  N  

 60  N  

Fig. 5. Study area: transition area between the Kattegat and the Skagerrak sea 
(north-west coast of Sweden); black frames represent the satellite acquisitions; 
solid frames: acquisitions 2014-08-25, 2014-09-05 and 2014-09-16; dashed 
frames: acquisition 2014-08-30; green squares represent the wind stations; from 
North to South: Nordkoster A and Väderöarna A; the red circles represent the 
buoys measuring the current speed and direction; from North to South: 
Nordkoster and Väderöarna. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.) 
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2017) through a dedicated run of the model by SMHI. It is based on the 
NEMO-Nordic setup described in (Pemberton et al., 2017; Hordoir et al., 
2019) with a horizontal grid spacing of 1852 m and 1 m vertical grid 
spacing near the surface (100 vertical levels). The NEMO-Nordic model 
was forced by UERRA winds. 

3.3. SAR data 

In this study, the backscatter and the Doppler frequency shift are 
derived from the ATI-SAR TanDEM-X mission data. This mission consists 
of two identical satellites (TerraSAR-X and TanDEM-X) flying in close 
formation and carrying identical SAR instruments operating at X-band. 
The data used in this study, called Co-registered Single-look Slant-range 
Complex Products (CoSSC), are provided by the German aerospace 
center (DLR). These images are all acquired in descending pass, VV 
polarization, stripmap and single receive antenna (SRA) mode with the 
antenna looking to the right of the flight direction. The raw spatial 
resolution is approximately 3 m and 3.3 m in ground range (across- 
track) and azimuth (along-track), respectively. In order to reduce the 
backscatter and Doppler shift noise and to reduce the computational cost 
during the inversion, the resolution is degraded to 200 m in both range 
and azimuth. The relevant parameters of the used satellite dataset are 
given in Table 1. 

The processed and calibrated σ0 and fD derived from the 16 TanDEM- 
X acquisitions (Table 1) are depicted in Fig. 6. Every satellite scene in the 
figure is a mosaic of four SAR images (see Table 1) and every scene 
extends over an area of ~202 km in azimuth and ~34.6 km in range. The 
figure shows also the model (used as background) wind vectors (first 
column), current vectors (second column) and the SAR-estimated 
Doppler shift and NRCS in the third and fourth columns, respectively. 
The model current field (second column) shows a complex small scale 
circulation. The magnitude of the surface current is small (below 0.5 m/ 
s), except few local flows which reach 0.7 m/s. It can be observed that 
the backscatter spatial variation is mainly wind speed induced, i.e. high/ 
low backscatter correspond to strong/weak wind. A few other signatures 
probably due to rain cells, ships and ships wakes can be observed. The 
Doppler shift contains mixed signatures of wind and currents. The low 
order signature is wind driven. Note that the Doppler shift is generally 
positive (yellow) / negative (blue) when the wind is blowing toward 
(first acquisition) and away (other acquisitions) from the radar, 
respectively. In addition to the wind signature, the current adds higher 
order signatures which might be positive or negative. The current 
signature is hidden by the wind because the Doppler shift induced by the 
latter is much stronger (dominant) than the current induced Doppler 
shift. 

3.4. In-situ data 

Wind measurements were available from two weather stations, along 
the Swedish west coast, called Nordkoster A and Väderöarna A. The data 
are provided by the Swedish Meteorological and Hydrological Institute 
(SMHI). Current measurements were available from two SMHI’s buoys 
called Nordkoster and Väderöarna. The current buoys provide the cur-
rent speed and direction at five different depth levels (4, 16, 28, 40 and 
60 m). The locations of the in-situ stations are shown in Fig. 5. Both 
weather and ocean in-situ stations provide measurements every hour. 
The measurements are linearly interpolated to the satellite acquisition 
time. The interpolated values are reported in Table 2 for every satellite 
acquisition. Note for instance on 2014-08-25, the wind speed increases 
southwards and the direction changes from north-east to north-west 
going from Nordkoster A down to Väderöarna A. This corresponds to 
the negative-to-positive Doppler shift and low-to-high backscatter, in 
the upper part of (c) and (d) in Fig. 6. On the other acquisitions, the wind 
direction is almost constant along the coast. The current direction is very 
different from the wind direction, indicating a low correlation, and 
sometimes varies between acquisitions by more than 90o. This can not be 
seen directly in the Doppler shift since it is dominated by the wind 
signature. 

Figs. 7 and 8 show the time series of wind and current, speed and 
direction, from August 20 to September 202014, recorded by 
Väderöarna A (wind) and Väderöarna (current). The wind is measured at 
roughly 10 m height. The plotted current is measured at -4 m depth. 
Both wind and current signals are highly variable in time. The correla-
tion between the instantaneous wind and current is low. The correlation 
coefficient is 0.27 and 0.087 for speed and direction, respectively. The 
correlation coefficient increases to ~0.6, for both speed and direction, 
when a moving average filter of 6 days is applied. This is in agreement 
with (Christensen et al., 2018), who estimated the correlation time be-
tween the local wind forcing and current to be 4 and 7 days for the 
Jutland and Norwegain coastal currents, respectively. This also agrees 
with the global study in (Trindade et al., 2020) which reports NWP wind 
biases compared to ASCAT scatteromter with a temporal scale of ~5 
days, which are attributed to ocean circulation. 

3.5. Auxiliary data 

These data are only used for analysis and discussion but not for the 
retrieval. The in-situ measured air temperature (Ta), sea surface tem-
perature (SST) and salinity (SSS) are reported in Table 3. The air tem-
perature is measured, at 2 m height, by the wind station (Väderöarna A). 
The SST and SSS are measured, at 1 m depth, by the current buoy 
(Väderöarna). The air-sea temperature differences indicate unstable 
MABL for the four acquisitions. Wave parameters significant wave 
height (SWH), peak period and direction are also reported in Table 3. 
These parameters are measured by the wave buoy (Väderöarna WR), 
which is located ~13 km offshore from the wind station (Väderöarna A). 
It can be noted that the SWH increases with wind speed but the wave 
direction deviates from the wind direction which might be due to 
refraction and diffraction by topography. 

It has been shown by (Clarke and Van Gorder, 2018) that the surface 
Stokes drift is highly correlated with the local wind stress, hence 
essentially driven by the local wind and is in the local wind direction. 
(Clarke and Van Gorder, 2018) also showed that swell does not sub-
stantially contribute to the Stokes drift. Thus, Stokes drift can be esti-
mated using the wind stress (Clarke and Van Gorder, 2018) or measured 
spectral moments (Webb and Fox-Kemper, 2011) (SWH and peak wave 
period Tp). (Webb and Fox-Kemper, 2011) showed that the induced 
error using the monochromatic approximation is smaller than the un-
certainty between different Stokes drift products. In (Webb and Fox- 
Kemper, 2015), wave spreading loss factor (0.8) was introduced to 
compensate for not using a full 2D wave spectrum. Thus, the Stokes drift 
can be estimated as 

Table 1 
TanDEM-X ATI-SAR acquisitions parameters.  

Acq. # Date-time Incidence angle Baseline Heading angle   

[deg] [m] [deg] 

1 20140825-054115 35.28 − 30.61 191.47 
2 20140825-054122 35.28 − 30.61 191.47 
3 20140825-054129 35.28 − 30.61 191.47 
4 20140825-054136 35.28 − 30.61 191.47 
5 20140830-054945 26.48 − 24.92 196.28 
6 20140830-054952 26.48 − 24.92 196.28 
7 20140830-054959 26.48 − 24.92 196.28 
8 20140830-055006 26.48 − 24.92 196.28 
9 20140905-054115 35.38 − 29.51 195.84 
10 20140905-054122 35.38 − 29.51 195.84 
11 20140905-054129 35.38 − 29.51 195.84 
12 20140905-054136 35.38 − 29.51 195.84 
13 20140916-054116 35.29 − 24.22 191.48 
14 20140916-054123 35.29 − 24.22 191.48 
15 20140916-054130 35.29 − 24.22 191.48 
16 20140916-054137 35.29 − 24.22 191.48  
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Fig. 6. (a,e,i,m): background wind vectors (colour is wind speed in m/s), (b,f,j,n): background current vectors (colour is current speed in m/s), (c,g,k,o): SAR Doppler 
shift in Hz, (d,h,l,p): SAR NRCS in dB, descending pass, right looking antenna, VV polarization. (a,b,c,d): 2014-08-25, (e,f,g,h): 2014-08-30, (i,j,k,l): 2014-09-05, (m, 
n,o,p): 2014-09-16. SAR data from TanDEM-X. 
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us(z) = 0.8 a2ω3g− 1e2kz (16)  

where a, ω and k are the peak wave amplitude, angular frequency and 
wavenumber, respectively, and g is the acceleration due to gravity. z is 
the water depth (z=0 at the surface and positive upward). Using the 

wave parameters in Table 3, the calculated surface Stokes drift is re-
ported in the last row of the table. 

4. Results and discussion 

The retrieval of uw and uc is performed for the eight satellite acqui-
sitions, covering the in-situ stations, using the Bayesian retrieval algo-
rithm described above. For comparison, the wind speed and the radial 

Table 2 
In situ measurements: Wind speed and direction at 10 m height and current 
speed and direction at 4 m depth. The locations of the weather stations are 
displayed in Fig. 5. The convention for the direction is coming from and moving 
toward wrt north for wind and current, respectively.   

Nordkoster A Väderöarna A Nordkoster Väderöarna  

(wind) (wind) (current) (current) 

2014-08-25 05:41 
Speed [m/s] 1.36 3.86 0.13 0.272 
Direction [deg] 34.33 70.0 204.23 343.48  

2014-08-30 05:49 
Speed [m/s] 4.36 8.96 0.12 0.281 
Direction [deg] 103.66 103.33 189.13 20.96  

2014-09-05 05:41 
Speed [m/s] 3.30 5.13 0.048 0.065 
Direction [deg] 143.33 149.66 62.10 98.92  

2014-09-16 05:41 
Speed [m/s] 4.40 5.73 0.078 0.057 
Direction [deg] 84.33 73.66 296.43 237.81  

Fig. 7. Wind speed (left panel) and wind direction (right panel), 10 min average, measured at 10 m height by the Väderöarna A buoy. The vertical dashed bars 
indicate the satellite acquisition time. The convention for wind direction is coming from w.r.t. north, i.e. wind coming from East is 90∘. 

Fig. 8. Current speed (left panel) and current direction (right panel) at 4 m depth below sea surface measured by the Väderöarna buoy. The vertical dashed bars 
indicate the satellite acquisition time. The convention for current direction is moving toward w.r.t. north, i.e. current moving toward East is 90∘. 

Table 3 
Auxiliary in-situ measurements: air temperature at 2 m, SST and salinity (SSS) at 
− 1 m. Significant wave height (SWH), wave period and wave direction (direc-
tion convention is coming from) are measured by the wave buoy (Väderöarna 
WR).  

Parameter 2014-08-25 
05:41 

2014-08-30 
05:49 

2014-09-05 
05:41 

2014-09-16 
05:41 

Air temp. [deg 
C] 

13.2 14.4 15.3 11.9 

SST [deg C] 16.6 16.6 16.9 16.4 
SSS [psu] 30.45 31.77 32.29 23.47 
SWH [m] 0.9 1.25 0.46 0.55 
Period [s] 6.7 5.75 3.15 3.20 
Direction 

[deg] 
232.0 169.0 167.0 130.5 

Stokes drift 
[m/s] 

0.017 0.052 0.042 0.058  
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current are also retrieved using the direct method. The results are 
assessed quantitatively by comparing the background and the retrieval 
to the in-situ measurements. 

4.1. Comparison against in-situ measurements 

4.1.1. Wind retrieval comparison 
As mentioned earlier, SAR-measured NRCS responds to the surface 

roughness that is driven by the stress (τ). For practical reasons, the NRCS 
is related to the atmospheric real wind (u10), while in fact the measured 
NRCS is affected by other geophysical effects than u10, e.g. atmospheric 
stability and air density. Thus, the SAR-retrieved wind using present 
GMFs is more related to τ, that includes all these effects, than to u10 and 
is called stress-equivalent wind (u10s) (de Kloe et al., 2017). If the used 
GMF is trained on neutral wind (un), the retrieved wind is also neutral. 
Note that, the used GMF is tuned to u10 (Li and Lehner, 2014) and the 
background data and the validation data both provide u10. To convert 
from u10 to u10s, air-sea parameters such as SST, air temperature, specific 
humidity and air density are required, which are not available. In this 
paper, the retrieved wind is assumed to be u10 and the u10-to-u10s con-
version is left for future work. 

For the wind validation, the SMHI stations measure the wind at 10 m 
height averaged over 10 min, so the comparison does not require height 
adjustment. However, the spatial representativeness is different be-
tween the different datasets, i.e. point against spatial average. Fig. 9 
shows the retrieval, the background and the in-situ wind speed and di-
rection for the eight satellite acquisitions for two weather stations 
(Nordkoster and Väderöarna). The first four acquisitions (1, 5, 9, 13) are 
compared to Nordkoster and the last four acquisitions (2, 6, 10, 14) are 
compared to Väderöarna. The results of the comparison for the two 
stations are given in Table 4. It can be noticed that the wind speed 
retrieved using the Bayesian method (blue) is systematically closer to 
the in-situ measurement than both the background (green) and direct 
method (black), i.e. the Bayesian retrieval gives the smallest wind speed 
bias. An exception is the first acquisition, where the background is closer 
to the in-situ. During this acquisition the backscatter which is the main 
parameter for wind speed retrieval is very low (~ -30 dB) around the 
wind station. The wind speed at this acquisition is 1.36 m/s (see 
Table 2), which is below the validity limit of the GMFs (2 m/s). 

For wind direction, the first acquisition corresponds to a crosswind 
situation and low wind speed in the area close to the Väderöarna station 
(see Figs. 5 and 6). The other acquisitions correspond to a downwind 
situation around the same station. As shown later in section 4.3, the 
Doppler effect on the wind direction bias correction is smaller in 
downwind situations and the wind direction error is higher at low wind 

speed. It can be observed from Fig. 9 (right) that the retrieved wind 
direction is very close to the background. This suggests that the retrieved 
wind direction using the Bayesian method is biased toward the back-
ground in agreement with (Portabella et al., 2002). Since the back-
ground wind direction is accurate around the wind stations in most 
cases, the retrieval improvement is minor. This is in agreement with the 
cost function analysis in section 2.3.2. Note that the background winds 
(UERRA) are obtained from a data assimilation system, which may 
explain the accurate wind direction. The retrieval method should be 
tested in cases where the background wind direction is inaccurate. 
Finally, the bias values averaged over the eight acquisitions are reported 
in Table 4. These values indicate an error reduction in wind speed of 
~1.14 m/s averaged over all cases. The error reduction in wind direc-
tion is insignificant. 

4.1.2. Current retrieval comparison 
Comparison of satellite data, model data and in-situ measurements, 

for oceanic parameters, is a delicate task. First, because these data 
represent different physical components of the sea current. For instance, 
the SAR-derived current includes, in principle, all surface current com-
ponents (see section 2.1) while the ocean model does not include the 
wave-induced Stokes drift. Second, because they represent the current at 
different depths. The SAR senses only the surface, i.e. the upper few 
millimeters. The ocean model, provides the depth averaged current in 
the upper meter. The buoy measures the instantaneous current at a 
specific depth (at − 4 m). Third, the different data represent different 
horizontal resolutions. SAR and the ocean model report the average over 
the pixel which are, here, ~200 m×200 m and ~1850 m×1850 m, 
respectively. The in-situ data report a point measurement. 

Theoretically, the vertical profile of the magnitude of the Ekman 
current and the Stokes drift follow an exponential law, and can be 
approximated as (Clarke and Van Gorder, 2018) 

Ui(z) = Ui(0)exp(z/Li) (17)  

where z is the water depth, i stands for Ekman or Stokes, LS and LE are the 
Stokes and Ekman e-folding depth. The Stokes”e-folding“depth is about 
1 to 2 m, e.g. (Axell, 2002). Thus, the Stokes drift should be negligible at 
− 4 m depth, even if the buoy was affected by the waves orbital motion. 
The ocean model (NEMO-Nordic), that generated the background cur-
rents, does not account for the Stokes drift. Thus, in principle only SAR 
reports the Stokes drift but the Doppler GMF removes it, since this GMF 
is fitted using the local wind (Mouche et al., 2012). The e-folding scale of 
the Ekman is much larger, LE is between 10 and 100 m. It increases with 
wind speed and decreases with latitude. For instance, at a latitude 55 N 
and U10=10 m/s, the Ekman depth is about 10 m. Thus, in theory, the 

Fig. 9. Comparison of wind speed (left panel) and wind direction (right panel) against in-situ measurements for the eight satellite acquisitions. Insitu (red), direct 
method (black), background (green) and the Bayesian method (blue). The wind direction convention is trigonometric, i.e. 0: toward east, 90: toward north, − 90: 
toward south. For the correspondence between acquisition number and acquisition date, see Table 1. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 
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magnitude of the Ekman current recorded by the buoy at -4 m depth is 
about 0.67 times its value at the surface, SAR reports the full surface 
Ekman current and the model reports the integrated Ekman transport in 
the upper meter. 

The tidal current decreases with depth, but with a lower rate 
following a power law (Lewis et al., 2017) 

u(z) = U
( z

βh

)1/γ
(18)  

where β and γ are parameters of the model, z is the height above sea bed, 
h is the total water depth and U is the depth averaged velocity. For 
typical values of γ and β (0.32 and 7), the difference between the surface 
and 4 m depth is about 1%, hence negligible. Thus, SAR, the ocean 
model and the buoy will be affected by the tidal current with slightly 
decreasing magnitude. 

The current shear in the last meter below the surface was investi-
gated in (Laxague et al., 2018). The author shows that currents in the 
upper few centimeters of the ocean may have drastically different 
magnitudes and directions than the average over the upper meter. Thus, 
usually in-situ observations are extrapolated to the surface. However, 
with our in-situ data, we don’t have access to the last centimeters to 
investigate the shear. 

Fig. 10 shows the vertical profile of the current speed and direction, 
respectively, before (at 05 AM) and after (at 06 AM) the satellite 
acquisition. A high temporal variability of the profile can be noticed. 
The slope of the current speed near the surface varies within the hour. 
Note for instance, the change in 2014-08-30, at -4 m, by about 0.12 m/s 
between 05 AM and 06 AM. The current direction profile also varies 
within an hour around the acquisition time. Note, for instance, the 
current direction measured by the buoy on 2014-09-05 at -4 m depth has 
changed from 135 deg. at 05 AM to 80 deg. at 06 AM, i.e. 55 deg. dif-
ference. Furthermore, the current profiles do sometimes not follow the 
Ekman spiral, e.g. lower speed at -4 m than at -16 m or direction turning 
to the left. Given this variability of the current profiles, it is difficult to 
extrapolate the in-situ current speed and direction to the surface. 
Therefore, the current retrieval is validated against the in-situ mea-
surement at -4 m as it is, keeping in mind all these differences discussed 
above. That is, according to the discussion above, it is expected that the 
surface currents provided by SAR and the model should be in general 

larger than the in-situ measured current. 
Fig. 11 shows the retrieval, the background and the in-situ current 

speed (CS) and direction (CD) for the eight satellite acquisitions. First, 
note the generally low in-situ current speed (≲0.2 m/s) during most 
acquisitions. This is just above the limit of the retrieval uncertainty (see 
section 4.3). For this comparison, the retrieval is averaged within 1 km 
radius, which is about half the model grid spacing. It can be observed 
from Fig. 11 that the retrieval gives lower bias than the model in both 
current speed and direction at most acquisitions to different extents, i.e. 
the bias difference is sometimes significant and sometimes negligible. 
Similar to the wind direction retrieval, the CD is clearly imposed by the 
model. Encouragingly however, the retrieval has a non negligible impact 
on the current direction, i.e. it is never worse than the model. The bias 
values are given in Table 5. The values provided in the table indicate 
that, on average, the model bias is reduced by ~0.04 m/s and ~12o in CS 
and CD, respectively. Moreover, the comparison between the direct 
method and the Bayesian method is illustrated in Fig. 12, by comparing 
the radial current (Ur) to the Bayesian retrieved current projected on the 
SAR look direction. It can be observed that the Bayesian retrieval gives 
the lower bias than both the background and the direct method. 

4.2. Case studies 

The comparison against in-situ data is local which does not illustrate 
the spatial variability of the wind and current fields. In this section, we 
analyze the retrieval of atmospheric and oceanic features through two 
case studies to show the benefit of blending models with SAR data on the 
spatial representation. In order to make the direct method, background 
and Bayesian retrieval comparable, only the wind speed and the radial 
current are compared. Thus, the background and the retrieval current 
vectors are projected on the SAR look direction. Note that the satellite is 
flying from north to south and looking to the right. Thus in the following 
figures, negative (blue) values of Ur indicate a flow from east to west and 
vice-versa. Finally, the figures are depicted in the satellite geometry 
range (across-track) and azimuth (along-track). 

4.2.1. Case study 1 
Fig. 13 (upper row, panels a-c) shows the wind speed retrieved from 

SAR using the direct method (panel a), provided by the background 
(panel b) and retrieved using the Bayesian method (panel c). The direct 

Table 4 
Comparison of wind speed and direction against in-situ measurements. The values represent the bias (background, direct and Bayesian retrieval minus in-situ) for the 
eight satellite acquisitions.  

Acqu. number 1 5 9 13 2 6 10 14 Mean STD 

Wind speed 
Background 0.06 1.69 − 1.14 − 1.06 − 2.87 − 2.74 − 2.17 − 1.12 − 1.17 1.42 
Direct 1.74 − 3.28 0.04 − 0.63 1.52 − 2.05 − 1.48 − 1.21 − 0.66 1.61 
Bayesian 1.72 − 0.07 0.48 0.05 1.47 − 1.81 − 1.27 − 0.81 − 0.03 1.17  

Wind direction 
Background − 24.19 13.08 25.07 15.02 47.66 4.06 19.21 − 5.07 11.85 19.90 
Bayesian − 6.94 13.01 22.32 20.75 29.89 2.21 17.07 − 6.77 11.44 12.91  

Fig. 10. Vertical profile of the current speed and direction for five (4 m,16 m,28 m,40 m,60 m) depths below sea surface, before (at 5 AM) and after (at 6 AM) the 
satellite acquisition time. 
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method shows a strong and sharp front with wind speed difference of ~6 
m/s between the two sides of the front. This is due to the very high 
sensitivity of the backscatter to wind speed. On the other hand, the front 
is not well resolved by the background. It shows, however, a shallow 
wind speed gradient in the north-east south-west direction. The 
Bayesian retrieval (panel c) slightly smoothes the wind speed variation 
but preserves well the location and magnitude of the front. This is an 
example where the Bayesian method has successfully combined both 

SAR and background wind speed information. 
For the current (lower row, panels d-f), the direct method and the 

background radial current show to some extent similar features with 
different magnitudes. The front is still visible in the direct method radial 
current for two reasons. The first reason is that the background wind 
speed and direction are used to remove the wind-induced Doppler shift 
(see section 2.2). These winds do not carry a strong front signature as 
shown in the first row. The second reason is that an atmospheric front 
might induce an oceanic surface current which has a component in the 
radial direction. The Bayesian retrieval of radial current (panel f) lies 
between the direct method and the background radial current. In this 
case the background slightly mitigates the front signature in the current. 
The SST and SSS obtained from the Nemo-Nordic model are depicted in 
Fig. 14. This figure does not show a clear oceanic front, which suggests 
that the wind speed gradient is likely to be due to an atmospheric front. 

For comparison, wind speed is extracted from the Metop-B ASCAT 
Level 2 coastal product. The spatial grid spacing of this product is 12.5 
km. The wind speed is interpolated into the SAR grid and extrapolated 
toward the coastline for the acquisition 2014-08-30. The interpolated 
wind speed is plotted for the whole SAR frame in Fig. 15. The time of 
ASCAT acquisition is 08:27 that is approximately 3 h after the TanDEM- 
X acquisition. The time difference is too large for a quantitative (pixel- 
by-pixel) comparison. Qualitatively, despite the coarse resolution of 
ASCAT compared to SAR, it can be observed from Fig. 15 that the front is 
persistent. Note that the front is tilted and displaced toward the north 
and the wind speed has increased on both sides of the front compared to 
SAR acquisition. This is due to the temporal variation of the wind during 
the 3 h time lag in agreement with Fig. 7, which shows an increase of 
wind speed from ~8 m/s (at SAR acquisition time) to ~12 m/s at ASCAT 
acquisition time. 

Finally, the effect of the retrieval on the wind speed gradient across 
the front is illustrated in Fig. 16. For simplicity, the azimuth profile is 
averaged over the range direction. It can be observed that the direct 

Fig. 11. Comparison of the current speed (left panel) and current direction (right panel) against in-situ measurements for the eight satellite acquisitions. Insitu (red), 
background (green) and the Bayesian method (blue). The current direction convention is trigonometric, i.e. 0: toward east, 90: toward north, − 90: toward south. For 
the correspondence between acquisition number and acquisition date, see Table 1. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 

Table 5 
Comparison of current speed and direction against in-situ measurements. The values represent the bias (background, direct and Bayesian retrieval minus in-situ) for the 
eight satellite acquisitions.  

Acqu. number 1 5 9 13 2 6 10 14 Mean STD 

Current speed 
Background 0.46 − 0.01 0.12 0.10 0.05 0.12 0.59 0.20 0.20 0.19 
Bayesian 0.44 0.05 0.09 0.10 − 0.01 0.06 0.35 0.22 0.16 0.15 
Current direction 
Background 152.18 143.66 52.94 111.78 29.71 33.49 137.37 164.98 103.26 52.30 
Bayesian 153.81 127.21 11.21 124.25 19.88 4.22 119.39 166.63 90.83 63.08  

Fig. 12. Comparison of the radial current speed (Ur) derived form the direct 
method (black), the Background (green) and the Bayesian method (blue) 
against in-situ measurements (red) for the eight satellite acquisitions. (For 
interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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method shows the sharpest gradient with change in wind speed of ~6 
m/s across the front. The background shows a smaller change (~3 m/s) 
and the retrieval lies between the SAR and the background. For com-
parison, the wind speed profile extracted from ASCAT data is also 
plotted. The latter shows a displaced front with a wind speed change of 
~ 5 m/s, which is between the direct method and background values. 

4.2.2. Case study 2 
In this section, we show an example illustrating a fragment of the 

Baltic Sea fresh water outflow along the Swedish west coast. This 
outflow from the Kattegat into the Skagerrak Sea which joins the Nor-
wegian current is an important feature in the Baltic Sea surface circu-
lation (Gustafsson, 1997). 

Fig. 17 depicts the retrieval results, for this case study, of the wind 
speed (upper row, panels a-c) and radial current (lower row, panels d-f). 
The wind speed of both direct method (panel a) and the background 
(panel b) are similar on average, varying within the same range 

(between 0 and 7 m/s). The spatial variation is however very different. 
The background wind speed (panel b) is smooth with a shallow 
southwest-northeast gradient and wind speed decreasing toward the 
coastline. The wind speed derived using the direct method shows a 
frontal signature, which is probably due to the oceanic front associated 
with the coastal current (see also Fig. 18). Note for instance the sharp 
decrease of the wind speed at the current boundary. This is likely due to 
the current-induced SST front effect on the SAR backscatter and conse-
quently on the retrieved wind speed, discussed earlier (see section 2.1 
and compare Fig. 17 with Fig. 18). The retrieval preserves the large scale 
gradient and mitigates the current signature introduced by SAR. Re-
sidual current signatures can still be observed in the retrieval. This 
suggests that the wind speed is strongly imposed by the SAR observables. 

The retrieval result for the radial current is depicted in the lower row 
of Fig. 17. The figure shows the radial current derived from SAR using 
the direct method (panel d), from the background ocean model (panel e) 
and retrieved using the Bayesian method (panel f). There are some 

Fig. 13. Upper row (a-c): wind speed, lower row (d-f): radial current. a,d: direct method, b,e: background (model), c,f: Bayesian retrieval. Acquisition 2014-08-30 
05:49. In the satellite geometry azimuth and range. The satellite is flying from north to south and looking to the right. The scene area is ~81 km in azimuth and ~ 
34.7 km in range. 

Fig. 14. Nemo-Nordic model SSS (left panel) and SST (right panel) for 2014-08-30.  
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similarities and differences between the direct method and the back-
ground radial current. The main similarity is the strong coastal outflow 
(negative Ur, dark blue) with a magnitude about ~0.6 m/s in the core of 
the flow. It can be observed that the current derived with the direct 
method shows small scale circulation features such as the meandering 
along the front (also visible in wind speed), which is typical of baroclinic 
surface currents. The retrieved radial current is a combination of the 
features present in both the background and observation. It preserves 
the large scale circulation (outflow core) provided by the model and 
introduces small scale features provided by SAR and not resolved by the 
model. The acquisition 2014-09-05 coincides with a favorable wind 
direction for the Baltic outflow as discussed in (Gustafsson, 1997), i.e. 
the wind has been blowing from the south (150o-200o) for few days 
preceding the satellite acquisition. 

Note from Fig. 17 (lower row) that the current buoy Väderöarna (red 
circle) is, according to the direct method (panel d), located just outside 
the outflow (in white-red area). This agrees with the in-situ recorded low 
current speed (0.065 m/s) roughly in the opposite direction (northwest- 
to-southeast) of the outflow (see Table 2), depicted by the red arrow. On 
the other hand, according to the background, the buoy is inside the 
outflow, hence the high current speed and southeast-to-northwest di-
rection (see also Fig. 11). This is an example of how the high resolution 

information introduced by SAR is determinant for the current retrieval 
in complex coastal circulation. 

For comparison, the SST is extracted from the Metop-A/AVHRR 
product. The SST is interpolated into the SAR grid and extrapolated 
toward the coastline for the acquisition covering the outflow (2014-09- 
05). The interpolated SST is plotted in Fig. 18 (panel c). Note that the 
time of AVHRR acquisition is 00:00, that is approximately 5.40 h before 
the TanDEM-X acquisition, thus some mismatch is expected. The SST 
values provided by AVHRR are very close (slightly higher) to the model 
SST and to the values recorded by the in-situ buoy on 2014-09-05 (see 
Table 3). Despite the coarse resolution and lag time, it can be observed, 
from Fig. 18, that SST spatial pattern is roughly similar to the current 
pattern present in the retrieved (compare Fig. 18 with lower row of 
Fig. 17). Note that the cold side of the front corresponds to lower SAR 
wind speed and vice versa (compare Fig. 18 with panel a of Fig. 17). The 
contours do not match exactly due to the time lag and due to the fact that 
correlation between SST and wind is not immediate, e.g. (O’Neill et al., 
2003). 

Finally, Fig. 19 depicts the wind speed variation and the SST gradient 
across the front. For simplicity, the azimuth profile is averaged over the 
range direction. Note that there is an SST change of about ~0.6o Celsius 
between the core of the outflow and the surrounding area. The SAR wind 
speed (solid line) shows a change of about 3 m/s across the front. The 
gradient of the SST and the SAR wind speed are shifted, probably due to 
the time lag. The model (dashed line) shows a shallower decrease of 
wind speed toward the coastline. The SST gradient effect is removed in 
the Bayesian retrieved wind speed (dash-dotted). Thus, in this case the 
SAR observes the SST effect on ocean stress, where effects of SST vari-
ation on this scale are not taken into account in the background model 
winds at 10 m. 

4.3. Estimation and analysis of retrieval uncertainty 

In the linear problem, i.e. using a linear forward model, the retrieval 
error can be calculated analytically using the MAP covariance expres-
sion (Rodgers, 2000). In a non linear problem, the practical approach is 
to characterize the retrieval uncertainties numerically, by Monte Carlo 
simulation. Moreover, the errors in the retrieved wind and current 
usually depend on the algorithm used for the retrieval, e.g. constraints, 
and thus can only be partially characterized by simulation. 

The simulation is conducted as follows, a large number of “true” 
wind vectors and current vectors ut are generated. The background 
fields are formed by adding a random noise εb according to Sb to the true 
vectors ub = ut + εb. The measurements are simulated using the forward 
models y = F(ut), and a random noise, according to So, is added to the 
measurements simulated from the non-perturbed “true” winds yn = F 
(ut) + εo. The noisy measurements together with the background fields 
are inverted using the same retrieval algorithm applied to the data, û =

map
(
yn, ua

)
, where map refers to the inversion operator. The difference 

and the standard deviation of the difference (û − ut) represent the bias 
and the rms error, respectively. The bias in both the background and 
measurement is assumed to be zero. 

The nonlinearity of the forward models, yields a dependence of the 
sensitivity of the observables σ0 and fD on the wind speed (WS) and wind 
direction (WD). This consequently yields a modulation of the error (bias 
and rms) as a function of WS and WD (Stoffelen and Portabella, 2006). 
The sensitivity of the GMFs as a function of WD is depicted in Fig. 20. 
Thus, the error and its variation as a function of WS and WD are analysed 
separately in the following sections. 

4.3.1. Effect of the Doppler term on the wind bias 
It is known (Portabella et al., 2002; Choisnard and Laroche, 2008) 

that the Bayesian retrieval of wind speed from SAR has WD-dependent 
error. This is due to the variation of sensitivity of the GMF (Fσ0) with 
wind direction (see Fig. 20). The sensitivity of the GMF is lowest at up/ 

Fig. 15. Metop-B/ASCAT wind speed. Acquisition 2014-08-30 08:27:00. Line-
arly interpolated to SAR coordinates and extrapolated toward the coastline. 

Fig. 16. Wind speed azimuth profile (from south to north) across the atmo-
spheric front averaged over the range direction. SAR, background and retrieval 
correspond to acquisition 2014-08-30 05:50. ASCAT acquisition 2014-08- 
30 08:27. 
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down and cross wind. Moreover, the sensitivity to the wind speed is 
lowest in the crosswind direction (see Fig. 1). This yields the worst wind 
speed retrieval performance in the crosswind. 

Fig. 21 (left panel) shows the simulated wind speed bias as a function 
of the true wind direction, with and without the Doppler term. The 
systematic mean bias about − 0.1 m/s is due to nonlinear relation be-
tween the wind components and the wind speed, i.e. zero-mean random 
errors in (u,v) domain induce a bias in the (WS,WD) domain (Stoffelen, 
1998). Note that the bias is higher, in absolute value, in the crosswind 
direction which is due to the GMF nonlinearity effect mentioned above. 
It can be observed that inclusion of the Doppler term (with σfD=5 Hz) in 
the cost function, flattens the bias curve. This is due to the fact that the 
Doppler GMF (FfD) compensates for the lack of sensitivity around the 
crosswind direction as shown in Fig. 20. When we increase/decrease the 
background and Doppler uncertainties, to 3 m/s and 3 Hz, respectively, 
the bias around the crosswind continues to decrease but the bias at up/ 
down wind slightly deteriorates. 

It is also known (Portabella et al., 2002; Choisnard and Laroche, 
2008), that the Bayesian retrieval of wind direction is compromised by 
the background, i.e. the wind direction is imposed by the background. 
Fig. 21 (right panel) shows the simulated wind direction bias as a 
function of the true wind direction, with and without Doppler term. In 
this simulation the background wind direction is biased by 20o. It can be 
observed that, without the Doppler term the retrieved wind direction 
follows the background. When the Doppler term is introduced in the cost 
function, the retrieved wind direction is corrected toward the true wind 
around the crosswind where the sensitivity of Doppler GMF is highest 
(see Fig. 20). Closer to the up/downwind directions, where both GMFs 
have low sensitivity, the retrieved wind direction is still biased toward 
the background. If we increase/decrease the background and Doppler 
uncertainties, to 3 m/s and 3 Hz, respectively, the area around the 
crosswind broadens and draws the retrieval toward the true wind. To 
conclude, Doppler GMF (FfD) compensates for the lack of sensitivity 
around the crosswind direction but it does not help much at up/down 

Fig. 17. Upper row: wind speed, lower row: radial current. a,d: direct method, b,e: background (model), c,f: Bayesian retrieval. Acquisition 2014-09-05 05:41:22. In 
the satellite geometry azimuth and range. The red circle indicates the location of the current buoy Väderöarna and the red arrow represents the in-situ current vector. 
The satellite is flying from north to south and looking to the right. The scene area is ~81 km in azimuth and ~ 34.5 km in range. (For interpretation of the references 
to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 18. Nemo-Nordic model SSS (a) and SST (b); and Metop-A/AVHHR SST (c). Acquisition 2014-09-05 00:00. Linearly interpolated to SAR coordinates and 
extrapolated toward the coastline. 
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wind. 

4.3.2. Error wind speed dependence 
In this section, we estimate the error of the wind and current speed 

and direction as a function of the true wind speed. Fig. 22 shows the 
estimated error (rmse) as a function of the true wind speed. The wind 
speed error (left panel) increases slightly with wind speed but remains 
below 1.25 m/s up to 20 m/s, which reflects the direct dependence of 
the WS error on the backscatter error. The wind direction error (right 
panel) is higher at low wind speed but it drops rapidly at WS~ 3 m/s and 
remains below 20 deg. up to 20 m/s. This is because the GMFs direction 
sensitivity increases with wind speed (see Figs. 1 and 2). 

The current speed (CS) and current direction (CD) errors are only 
weekly dependent on wind speed, being below ~0.15 m/s and ~20o, 
respectively. They are slightly worse at the lowest and highest wind 
speeds. Note that the current speed error is mainly sensitive to the 
Doppler error, it is only weekly dependent on the backscatter through 
the effective wind (see Eq. 9). We have found that the current retrieval 
improves with increasing incidence angle (not shown). This is due to 
larger projection on the radial direction which increases sensitivity and 
also due to lower contribution of the wind-induced Doppler shift. 

4.3.3. Error wind direction dependence 
Fig. 23 shows the error (rmse) of the wind and current speed and 

direction retrievals as a function of the true wind direction. The wind 
speed error (left panel) varies around 0.5 m/s with a small modulation as 
a function of wind direction. This reflects the GMF modulation discussed 
above. The current speed error is almost constant, with no strong 
modulation as a function of wind direction. It varies between 0.08 and 
0.14 m/s with slight bumps around crosswind. The WS and CS errors are 
mainly imposed by the backscatter/background and Doppler/back-
ground uncertainties, respectively. The backscatter plays a major and a 
minor role in the WS and current retrieval, respectively. 

The wind direction error (right panel) varies around 10o with 
minima at crosswind and maxima at up/down wind directions, reflect-
ing the GMF nonlinearity effect discussed above. Finally, for the current 
direction, the error varies around 15o with no apparent modulation. 

5. Conclusion 

We have proposed and demonstrated a joint retrieval of ocean sur-
face wind and current vector fields using single-beam single-polarization 
SAR data and background wind and current vector fields. The SAR ob-
servables used in the retrieval are the backscatter and the Doppler fre-
quency shift. The backscatter is calibrated (including noise subtraction) 

Fig. 19. Wind speed and SST azimuth profile (from south to north) across the 
oceanic front averaged over the range direction. SAR, background and retrieval 
correspond to acquisition 2014-09-05 05:41. AVHRR acquisition 2014-09- 
05 00:00. 

Fig. 20. GMF sensitivity (∂F/∂φw) as a function of WD. 0∘ upwind, ±180∘ 

downwind, ±90∘ crosswind. 

Fig. 21. Effect of the Doppler term on the wind retrieval error (bias) of WS (left panel) and WD (right panel) as a function of true WD. Background WS is unbiased. 
Background WD is unbiased (left) and biased by +20∘ (right). 0o upwind, ±180o downwind and ±90o crosswind. 
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using the TanDEM-X in-product provided calibration factors. The 
Doppler shift is estimated from the TanDEM-X ATI-SAR interferogram 
and calibrated using land as a reference, after removing the topographic 
phase from the interferogram. The retrieval algorithm is based on the 
Bayesian approach (MAP estimation). The background wind and current 
fields are provided by a reanalysis product (UERRA) and an ocean cir-
culation model (NEMO-Nordic), respectively. 

The retrieved wind and current speed and direction were compared 
to in-situ measurements. It was found that the Bayesian retrieval method 
gives the lowest bias compared to both the direct method (SAR only) and 
the background (model only). On average, over eight satellite acquisi-
tions, the bias was reduced by 0.04 m/s and 12∘ in current speed and 
direction, respectively. The wind bias reduction varies slightly between 
buoys, i.e. it depends on wind, but on average over the eight acquisitions 
it is about 1.14 m/s for wind speed. The average bias reduction in wind 
direction is minor in most cases since the wind direction provided by 
UERRA is quite accurate. Moreover, it was shown that the retrieval 
improves the representation of the spatial variation of the wind and 
current fields by introducing small scale features unresolved by the at-
mospheric and oceanic models. This was illustrated by examining two 
case studies. 

The first case study is a cyclonic front over the transition area be-
tween the Kattegat and the Skagerrak Sea. This front was characterized 

by a sharp change in wind speed and direction. In this case, the atmo-
spheric model alone was unable to locate the front precisely, it only 
shows a shallow gradient of wind speed decreasing toward the coastline. 
On the other hand SAR shows a very clear and sharp front in the back-
scatter, the Doppler shift and the retrieved wind speed using the direct 
method. This case study illustrates the benefit of blending SAR with 
atmospheric models. For comparison, the wind speed from Metop-B/ 
ASCAT acquired about 3 h later is analysed. Though the absolute 
values of the wind speed and the location of the front have changed 
between the two acquisitions, a sharp spatial variation of the same order 
(~5 m/s) as recorded by SAR is observed. 

The second case study represents an oceanic front induced by a 
fragment of the Baltic Sea surface outflow along the Swedish west coast. 
The estimated wind speed using the direct method shows a clear current 
signature. This signature is absent in the background, which is due to the 
fact that the atmospheric model is not affected by the SST changes. The 
backscatter modulation by the current gradient via wave-current inter-
action is usually manifested as bright/dark linear features along the 
front (Johannessen et al., 1991, 1996). This is not strongly visible in our 
case suggesting a minor effect of the current gradient. This is probably 
due to the fact that the current and the wind have roughly the same 
direction. The relative motion effect is ideally taken into account by 
introducing the ocean-relative wind in the cost function. Thus the 

Fig. 22. Retrieval error (RMSE) as a function of true wind speed.Left panel: WS and CS error, right panel: WD and CD error. True WD = 45∘, true CS = 0.5 m/s. The 
background is unbiased. The standard deviations are Δua=Δva=

̅̅̅
3

√
m/s, Δσ0=0.078σ0 and ΔfD=5 Hz. 

Fig. 23. Retrieval error (RMSE) as a function of true wind direction. Left panel: WS and CS error, right panel: WD and CD error. True WS = 7 m/s, true CS = 0.5 m/s. 
Th background is unbiased. The standard deviations are Δua=Δva=

̅̅̅
3

√
m/s, Δσ0=0.078σ0 and ΔfD=5 Hz. 
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remaining explanation is the effect of the SST gradient on the MABL. 
This was investigated by examining the SST acquired by Metop-A/ 
AVHRR over the same area. Investigation of the SST suggests indeed a 
correlation between the SST and wind speed gradient. It is shown that 
the Bayesian retrieval reduces the modulation of the wind speed induced 
by the SST variation. For the current, the background and the direct 
method agree roughly on the large scale circulation. Both indicate a 
strong, compared to the surrounding, surface outflow of ~0.6 m/s but 
differ on the small scale variation. SAR, for instance, shows a 
meandering current with variable width which is a typical feature of 
baroclinic currents. While in the background, the current width and 
magnitude are almost constant over larger distance. The Bayesian 
retrieval preserves the large scale circulation imposed by the model and 
introduces a smoothed version of the small scale variation, e.g. 
meandering. 

An analysis of the retrieval uncertainty was conducted. First, the 
effect of the Doppler term on the wind bias as function of wind direction 
was analysed. It was found that this term is particularly important at 
crosswind direction, where the backscatter GMF sensitivity is low, and 
in cases where the background wind direction is biased. Error analysis 
shows that an uncertainty below 1.5 m/s and 0.15 m/s can be achieved 
for the wind and current speed, respectively. The current speed is 
slightly worse at low wind speed, mainly due the degraded wind di-
rection performance. The achievable wind and current direction errors 
are below 20∘. The wind direction performance improves with 
increasing wind speed. The current direction performance is slightly 
worse at the lowest and highest wind speeds. 

In this paper, the used GMF was tuned to real winds (u10), the used 
background and the validation data both provide u10, hence the 
retrieved wind is assumed to be u10. This can be improved by converting 
the buoys and background winds to stress-equivalent wind (u10s) 
following (de Kloe et al., 2017) and using a GMF that is trained on u10n or 
u10s (if available). This corrects for the atmospheric stability and air 
density effects before the retrieval. The wind retrieved in this way 
should be the stress-equivalent wind, which can be converted to real 
wind or stress for meteorological and oceanographic applications, 
respectively. 

The validation study has been restricted to eight satellite acquisi-
tions, due to the limited number of acquisitions collocated with in-situ 
measurements. Therefore, further validation of the wind and current 
fields retrieval using extended data is necessary. It is necessary to 
explore, in more details, the impact of oceanic and atmospheric pa-
rameters other than wind, e.g. SST, SSS, atmospheric stability and air 
density, on the retrievals. It is also necessary to investigate the depen-
dence of the method on the background accuracy by e.g. comparing 
retrievals based on different backgrounds. The proposed retrieval 
method is directly applicable to other SAR data, e.g. Sentinel-1, and also 
applicable to future missions such as a Doppler scatterometer. Finally, 
the accuracy and high spatial resolution of SAR data suggest a potential 
benefit of assimilating these data in air-sea coupled models. Note how-
ever, that the poor temporal resolution of SAR limits its capability for 
tracking fast evolving atmospheric features. On the other hand, SAR is 
efficient in tracking ocean features which require less temporal 
coverage. The temporal coverage can be improved by launching more 
SAR missions. 
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Cornford, D., Csató, L., Evans, D.J., Opper, M., 2004. Bayesian analysis of the 
scatterometer wind retrieval inverse problem: some new approaches. J. R Stat. Soc. B 
(Stat. Methodol.) 66, 609–626. 

Daley, R., 1991. Atmospheric Data Analysis. Cambridge University Press. 
Danielson, R.E., Dowd, M., Ritchie, H., 2008. Objective analysis of marine winds with the 

benefit of the Radarsat-1 synthetic aperture radar: a nonlinear regression framework. 
J. Geophys. Res. Oceans 113. https://doi.org/10.1029/2007JC004413. 

Dawe, J.T., Thompson, L., 2006. Effect of ocean surface currents on wind stress, heat 
flux, and wind power input to the ocean. Geophys. Res. Lett. 33 https://doi.org/ 
10.1029/2006GL025784. 

de Kloe, J., Stoffelen, A., Verhoef, A., 2017. Improved use of scatterometer measurements 
by using stress-equivalent reference winds. IEEE J. Select. Top. Appl. Earth Observ. 
Remote Sens. 10, 2340–2347. https://doi.org/10.1109/JSTARS.2017.2685242. 

Elyouncha, A., Eriksson, L.E.B., Romeiser, R., Ulander, L.M.H., 2019. Measurements of 
sea surface currents in the Baltic Sea region using spaceborne along-track InSAR. 
IEEE Trans. Geosci. Remote Sens. 57, 8584–8599. https://doi.org/10.1109/ 
TGRS.2019.2921705. 

Fennel, W., Seifert, T., Kayser, B., 1991. Rossby radii and phase speeds in the Baltic Sea. 
Cont. Shelf Res. 11, 23–36. https://doi.org/10.1016/0278-4343(91)90032-2. 

A. Elyouncha et al.                                                                                                                                                                                                                             

https://doi.org/10.1117/1.JRS.8.083531
https://doi.org/10.1117/1.JRS.8.083531
https://doi.org/10.1175/2009JPO4169.1
https://doi.org/10.1175/2009JPO4169.1
https://doi.org/10.1175/BAMS-D-19-0039.1
https://doi.org/10.1175/BAMS-D-19-0039.1
https://doi.org/10.1029/2001JC000922
https://doi.org/10.1029/2001JC000922
https://doi.org/10.1002/qj.339
https://doi.org/10.1002/qj.339
https://doi.org/10.1029/96JC03109
https://os.copernicus.org/articles/15/831/2019/
https://os.copernicus.org/articles/15/831/2019/
https://doi.org/10.5194/os-15-831-2019
https://doi.org/10.5194/os-15-831-2019
https://doi.org/10.3389/fmars.2019.00443
https://doi.org/10.3389/fmars.2019.00443
https://doi.org/10.1029/2004JC002809
https://doi.org/10.1175/1520-0485(1998)028
https://doi.org/10.1126/science.1091901
https://doi.org/10.1126/science.1091901
https://doi.org/10.1029/2007JC004534
https://doi.org/10.1029/2007JC004534
https://doi.org/10.1175/JPO-D-17-0117.1
https://doi.org/10.1175/JPO-D-17-0117.1
https://doi.org/10.1029/2018JC014102
https://doi.org/10.1029/2018JC014102
http://refhub.elsevier.com/S0034-4257(21)00173-5/rf0075
http://refhub.elsevier.com/S0034-4257(21)00173-5/rf0075
http://refhub.elsevier.com/S0034-4257(21)00173-5/rf0075
http://refhub.elsevier.com/S0034-4257(21)00173-5/rf0075
http://refhub.elsevier.com/S0034-4257(21)00173-5/rf0080
http://refhub.elsevier.com/S0034-4257(21)00173-5/rf0080
http://refhub.elsevier.com/S0034-4257(21)00173-5/rf0080
http://refhub.elsevier.com/S0034-4257(21)00173-5/rf0085
https://doi.org/10.1029/2007JC004413
https://doi.org/10.1029/2006GL025784
https://doi.org/10.1029/2006GL025784
https://doi.org/10.1109/JSTARS.2017.2685242
https://doi.org/10.1109/TGRS.2019.2921705
https://doi.org/10.1109/TGRS.2019.2921705
https://doi.org/10.1016/0278-4343(91)90032-2


Remote Sensing of Environment 260 (2021) 112455

20

Fetterer, F., Gineris, D., Wackerman, C.C., 1998. Validating a scatterometer wind 
algorithm for ERS-1 SAR. IEEE Trans. Geosci. Remote Sens. 36, 479–492. https:// 
doi.org/10.1109/36.662731. 

Fois, F., Hoogeboom, P., Chevalier, F.L., Stoffelen, A., 2015. An analytical model for the 
description of the full polarimetric sea surface Doppler signature. J. Geophys. Res. 
Oceans 120, 988–1015. https://doi.org/10.1002/2014JC010589. 

Frasier, S.J., Camps, A., 2001. Dual-beam interferometry for ocean surface current vector 
mapping. IEEE Trans. Geosci. Remote Sens. 39, 401–414. 
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