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Abstract

This thesis concerns the simultaneous scheduling of preventive maintenance
for a fleet of aircraft and their common components along with the maintenance
workshop, to which the components are sent for repair. The problem arises
from an industrial project with the Swedish aerospace and defence company
Saab.

While an aircraft operates, its components deteriorate and in order for it to re-
main operational, maintenance of its components is required. Components that
are to be maintained are sent to the maintenance workshop, which schedules
and performs all maintenance activities. Our modelling is based on a mixed-
binary linear optimization model of a preventive maintenance scheduling
problem with so-called interval costs over a finite and discretized time horizon.
We extend this scheduling model with the flow of components through the
repair workshop, including stocks of spare components as well as of dam-
aged components to be repaired. Along with the scheduling problem, we
address and analyze two different contracting forms between the two stake-
holders: aircraft operator and maintenance workshop. Namely, an availability
of repaired components contract and a repair turn–around–time contract of
components sent to the maintenance workshop. We present both an individual
and a type-based component flow modeling. Our model is able to capture
important properties of the results from the contracting forms and it can be
utilized for obtaining a lower limit on the optimal performance of a contracted
collaboration between the stakeholders.

Keywords: Maintenance Optimization, Workshop Scheduling, Mixed-Binary
Linear Optimization Model, Contracting Forms, Simultaneous Scheduling,
Multi-Objective Optimization, Mathematical modelling
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1 Introduction

When planning the maintenance for any system (Wang and Pham, 2006, Ch. 3),
the decisions to be made concern when each of its components should be
maintained (i.e., replaced, repaired, or serviced) and what kind of maintenance
should then be performed, with respect to the operational schedule of the
system. Preventive maintenance (PM) (Tzvetkova and Klaassens, 2001) can often
be planned well in advance, while corrective maintenance (CM) is done after a
failure has occurred, which may come on very short notice. Typically, CM is
costly, partly due to the short notice, partly because it may also cause damages
to the system. On the other hand, an unexpected but necessary CM action
may provide an opportunity for the PM at which the maintenance actions can
be rescheduled, starting from the system’s current state. While both PM and
CM are aimed at restoring the components in order to put the system back in
an operational state, CM is often much more costly than PM, due to a longer
system down-time and also due to possible damages to other components
caused by the failure.

Maintenance optimization means deciding which maintenance activities to
perform, and when, such that one or several objectives are optimized. Main-
tenance optimization models are extensively studied in the literature (see the
surveys Dekker et al. (1997), Nicolai and Dekker (2008)) and have impact on
both costs and efficiency of the maintenance actions.

1.1 Problem definition

We present an application from the aerospace industry, in collaboration with
a Swedish aerospace and defence company Saab. On one side, we consider
a system of aircraft that has an operational demand to fulfill, and on the
other, the maintenance workshop (Saab) that repairs the components coming

1



2 1. Introduction

from the aircraft and makes them available for usage again, as well as its
supply chain. Hence, there are two stakeholders, an aircraft operator and
a maintenance workshop (i.e. maintenance supplier), whose collaboration
is normally predefined by a contract. We define and discuss a number of
optimization objectives corresponding to two different contract types, so-called
availability and turn–around–time contracts.

In Figure 1.1 we illustrate the system–of–systems governing repair and replace-
ment of components from an aircraft. The Swedish Air Force is assigned a flight
hour requirement to be distributed among the fleet of aircraft, which defines a
flight assignment/scheduling problem (e.g. Gavranis and Kozanidis (2015)).
After an operational/flying schedule is made, each aircraft is assigned to a
timetable. Since maintenance can be done only when the aircraft is grounded,
time windows of opportunities for doing maintenance are generated based on
the operational timetables. Maintenance scheduling is done on the operational
level (Level O in Fig. 1.1) where each component to be repaired is replaced with
a (as good as) new component of the same component type. The component to
be repaired goes to the maintenance workshop (MRO — Maintenance, Repair
and Overhaul in Fig. 1.1), where it is to be scheduled for repair. The mainte-
nance workshop is governed by Saab but there are also Original Equipment
Manufacturers (OEMi in Fig. 1.1), to which components can be sent for repair,
as well as external subcontractors. Components can be repaired in the MRO
but they can also be sent further, to one of the OEMs or external subcontractors
outside of Saab’s supply chain and maintenance operations. Joint activities
between any two stakeholders are governed by a contract.

1.2 Motivation

The motivation behind this research lies in real-world applications. Any sys-
tem that performs some sort of operations and undergoes maintenance can
be considered in our modelling; some of numerous examples are railway and
air traffic, commercial heavy vehicles, and manufacturing machines in indus-
try (see, e.g., Robert et al. (2018), Verhoeff et al. (2015), Boliang et al. (2019),
Papakostas et al. (2010) and Cassady and Kutanoglu (2005)). Performing main-
tenance operations in a good fashion has a high importance. Maintenance
budgets represent, on average, a significant portion of the total plant operating
budget, varying from a few percent in lighter manufacturing to a high percent-
age in equipment-intensive industries. Moreover, hidden costs are usually not
accounted for. Ineffective maintenance management policies often lead to big
increases in costs and most importantly, decreases in efficiency.
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Figure 1.1: Illustration of the problem studied.

Advanced optimization models have been developed for each part of the
supply chain of aircraft maintenance—from tactical scheduling of aircraft to
missions or maintenance, to depot level maintenance planning and scheduling
(see, e.g. Gavranis and Kozanidis (2015), Erkoc and Ertogral (2016), Brucker
and Knust (2012), and Kurz (2016)). Even though there exists an interdependent
relationship between production scheduling and maintenance planning, the
two are mostly planned and executed separately in literature and industry.
Most of the time, there is a lack in communication between the maintenance
planning and the production scheduling side (Weinstein and Chung, 1999),
which usually results in unmet demand and/or supply on either side, implying
lower efficiency and higher costs.

The motivation for considering a tight integration of the maintenance planning
for the systems and the production scheduling of the maintenance workshop,
meaning that the organizations and the information they work with are fully
transparent and that decisions are taken simultaneously for both stakeholders,
is threefold. First, a tight integration provides a planning tool for systems in
which the maintenance workshop is in reality integrated with the operating
system. That would mean that the stakeholder operating the aircraft is also
responsible and performs maintenance of its components. Secondly, when
there is more than one stakeholder, a tightly integrated model will provide an
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optimistic estimate of the results—in terms of costs for maintenance, of costs
for lateness (under a turn-around contract), or of the lower limit of items on
the stock and/or the average availability (under an availability contract)—that
could be obtained in reality and which can be used as a benchmark. Lastly,
the integration enables an investigation and comparison of different types of
contracts that can be set-up between the stakeholders.

1.3 Research objectives

The main goal of the project leading to this thesis is to model the integrated
scheduling of the preventive maintenance of the systems and of the mainte-
nance workshop. We approach this by formulating two models, one that takes
into account individual component flows and one that doesn’t but instead uses
component types only. As a result, we arrive at a formal modeling of a lower
bound on optimal performance for evaluating different contract types between
stakeholders and a planning tool that can be further utilized as a decision
support. For our modeling to be utilized further as a decision making tool, we
address its complexity and aim at reducing the computing times.

We consider two stakeholders and two types of contracts between them, which
are formulated as two bi-objective optimization problems. One question to
answer is whether different types of contracts will—through the optimization of
the corresponding objectives—advocate different planning patterns. A related
and important aspect is the resulting implication on the collaboration between
different stakeholders, which is highly applicable to general maintenance and
supply chain problems and well suited for our modelling framework.

We analyze how changes in different parts of the system affect the solution.
Examples are variations of the maintenance workshop capacity, of the require-
ments on the stock of components and of maintenance costs etc.

1.4 Limitations

Focusing on preventive maintenance modelling enables us to minimize risks
of unexpected failures but it does not eliminate them. It may still happen
that a component breaks or stops functioning unexpectedly, when there is
no scheduled preventive maintenance event. Our modeling can address this
situation in two ways. First, once an unexpected failure occurs, one can re-plan
from that point in time while leaving the part of the schedule in the near future
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unchanged (to avoid big disturbances on the system operator’s side). Since
short-term changes in the operational schedules for the systems, as well as
in the schedules for the maintenance workshop, are often inconvenient and
sometimes not even feasible, the rescheduling should (if possible) be such that
the solution remains fixed for a certain number of time steps. Secondly, by
keeping up the level of available components, we ensure that once a component
needs to be replaced, there will be no long waiting time. Furthermore, by
ensuring that aircraft are available for replacing an aircraft that needs to be
maintained when/if required, we would minimize the disturbance even more.
However, this is not sufficient to account for the possible unexpected events
and to replace the corrective maintenance planning.

Since we address an industrial problem, there are lots of parameters to be in-
cluded and parts of the systems to be modelled. This makes both modeling and
implementation more complicated. Therefore, we make certain simplifications.
For example, instead of modeling all component types, we focus on the most
important, the safety critical ones1 (A similar situation is present e.g. in nuclear
power plants; see Day and George (1981)).

Another obstacle for obtaining more interesting results is the lack of real data.
We tried to get access to real data form Saab but due to data classification and
confidentiality, we did not succeed yet. Instead, we create and randomize all
the data used, which makes it harder to make conclusions about (some of) the
results. In addition, we do not model the parameters that are judged not to be
in the scope of our research (e.g., the cost of maintaining a component is fixed
and its effect on the solution in the tight integration can thus be neglected). If
needed, these parameters could easily be included.

As we introduce more features to our model, its complexity grows. In order
for it to be utilised as a decision support tool, computing times should be
reasonably small. If, on the other hand, our model would be used as a planning
tool (which means it would be used for example few times per year), longer
running times would not be a big disadvantage.

1.5 Outline

The outline of this thesis is as follows. In Chapter 1 the problem stated by
Saab, which provided the starting point for determining the framework, is
described. The mathematical optimization background needed to understand

1A component is called safety critical if its failure could lead to an engine breakdown, possibly
with catastrophic consequences.
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the work presented in the thesis is given in Chapter 2. Then, we present
the mathematical modeling of the problem in Chapter 3, including decision
variables, optimization constraints and objective functions. The appended
papers are summarized in Chapter 4 while the main conclusions and future
research questions are presented in Chapter 5.



2 Mathematical modeling

A general optimization problem can be formulated ass

minimize f(x), (2.1a)
such that x ∈ X , (2.1b)

where f : Rn 7→ R is an objective function and the decision variables are denoted
by x = (x1, x2, . . . , xn)T . The set X ⊂ Rn defines the feasible solutions to the
problem. Usually it has the form X := x ∈ Rn : {gi(x) ≤ bi, i = 1, . . . ,m},
where g1, . . . , gm are functions and b1, . . . , bm are given parameters. Depending
on how the functions mentioned are specified and which assumptions are made
regarding feasible values on the variables, we obtain different problem classes
as, e.g., linear optimization (LP), non-linear optimization (NLP), integer linear
optimization (ILP).

This section presents a background for the mathematical modeling and opti-
mization methods used within the thesis.

2.1 Mixed integer linear programming (MILP)

A mixed-integer linear program is an optimization problem with affine/linear
objective and constraint functions and integral requirements on some of the
variables. Every MILP problem can be expressed as

z∗ := minimum cTx, (2.2a)
such that Ax ≥ b, (2.2b)

x ∈ Zn1 × Rn2 , (2.2c)

7



8 2. Mathematical modeling

where n = n1 + n2 is the dimension of the variable space, m is the number of
inequality constraints, A is an m × n matrix and b and c are vectors. MILP
problems are NP-hard (e.g. Ch. 1.3 Conforti et al. (2014), Section 1.3.3), which
means that the time to solve the model (in the worst case) is exponential as a
function of the instance size (i.e., number of variables and/or constraints).

A classical example of a problem that can be formulated as a MILP is the
travelling salesperson problem (TSP). Let G = (V,A) be a directed graph,
where the nodes v ∈ V represent the cities and arcs a ∈ A represent the roads.
There is a traveling time cost ca associated with every arc a. If the traveling
cost from city i to city j is equal to the cost from j to i, the problem is called
symmetric TSP. Otherwise, it is asymmetric. TSP can be modelled as MILP and
one of the formulations given by (Miller et al., 1960), is expressed as to

minimize
∑
a∈A

caxa, (2.3a)

such that
∑

a∈δ+(i)

xa = 1, i ∈ V, (2.3b)

∑
a∈δ−(i)

xa = 1, i ∈ V, (2.3c)

ui − uj + (n− 1)x(ij) ≤ n− 2, (ij) ∈ A|i, j 6= s, (2.3d)
ui ∈ [1, n− 1], i ∈ V \ {s}, (2.3e)
x ∈ {0, 1}m. (2.3f)

The decision variables ui denote the order in which the nodes (cities) are being
visited. The constraints (2.3b) and (2.3c) ensure that each node has one entering
and one leaving arc, where δ−(i) and δ+(i) denote the set of arcs entering
and leaving node i, respectively. To prevent subtours, i.e., to ensure that the
solution admits only one connected tour and not multiple disjoint tours, the
constraints (2.3d).

2.2 Multi-objective optimization

In multi-objective mathematical programming there are more than one objec-
tive functions and most of the time, there is no single optimal solution that
optimizes all objective functions at the same time. Then, it is the decision maker
who chooses the most preferred solution. Consider the optimization problem
to
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minimize {f1(x), . . . , fK(x)} (2.4a)
such that x ∈ X (2.4b)

where K ≥ 2 is the number of possibly conflicting objective functions fk :
Rm → R, k = 1, . . . ,K, that are to be optimized simultaneously. The op-
timization problem (2.4) is a so-called multi-objective optimization problem
(Ehrgott, 2005). If there exists a solution that is optimal with respect to all K
objectives, that is a trivial case, since there is no conflict between objectives. We
assume that such solutions do not exist in the model (2.4).

Naturally, the question of defining optimality for multi-objective problem
arises. For that, we define Pareto optimality (see, e.g., Luc (2008)).

A point x∗ ∈ X is Pareto optimal in the multi-objective optimization problem
(2.4) if and only if there does not exist any point x ∈ X such that fk(x) ≤
fk(x∗), k ∈ {1, . . . ,K}, and f`(x) < f`(x∗) for at least one ` ∈ {1, . . . ,K}. All
Pareto optimal points (possibly an infinite number) constitute Pareto optimal
set or Pareto front, which is usually at least one dimension less than the variable
space. There are many ways of exploring a Pareto front (see Marler and
Arora (2004)). The most common one is to solve single objective problems
created from the multi-objective problem through (some sort of) scalarization
procedure (e.g. the weighted sum method, or the ε - constrained method; see
Ehrgott (2006)). Since all solutions on the Pareto front are equally good, it is a
decision maker who is required to choose one out of the set of all Pareto optimal
solutions. In practice, sometimes not all solutions on the Pareto front may be
computed, so the decision maker will choose one of the solutions computed.

The most commonly used scalarization method for obtaining points on Pareto
fronts is the ε - constraint method where one of the objectives is optimized
while the other objectives are turned into constraints and expressed as to

minimize fj(x), (2.5a)
such that fk(x) ≤ εk, k ∈ {1, . . . ,K}, k 6= j (2.5b)

x ∈ X . (2.5c)

By parametrical variation in the RHS of the constrained objective functions
(εk) the efficient solutions of the problem are obtained. Results about the
method can be found at Chankong and Haimes (1983). Since upper bound
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constraints on objective values, as expressed in (2.5b), are knapsack constraints1,
the problem (2.5) is usually an NP-hard problems (Conforti et al., 2014, Ch. 1.3),
which means that we face computationally expensive problems.

2.3 Complexity

Complexity theory is used to determine how long time it takes to solve certain
classes of problems. The algorithmic complexity tells us about the dependence of
the computational time for an algorithm on the problem size. We are interested
in estimating how the computational time changes (usually, increases) as the
problem size increases. The problem complexity, on the other hand, helps us to
classify how easy or difficult various problem classes are to solve.

When we analyze and classify optimization problems with respect to their
problem complexity, we study a transformation of the problem called a decision
problem. A decision problem is formulated such that the answer is always either
yes or no. In general, an optimization problem is not harder to solve than its
corresponding decision problem.

An algorithm is said to be of polynomial time if its running time is upper
bounded by a polynomial expression in the size of the input for the algorithm.
P is a complexity class that includes the set of all optimization problems whose
corresponding decision problems can be solved in polynomial time. That is,
given an instance of the problem, the answer yes or no can be decided in
polynomial time. These problems are usually refereed to as "easy" problems.

A larger class of problems, including the class P, is non-deterministic polynomial,
denoted by NP. It is a complexity class that represents the set of all decision
problems with the property that for each given solution and corresponding yes
answer, there exists a polynomial algorithm that can be used to verify that the
yes answer is correct. A decision problem is NP-hard if any NP problem can be
reduced to it in polynomial time. A decision problem is NP-complete if it is in
NP and it is NP-hard (Conforti et al., 2014, Ch. 1.3).

1Given a set of items, each with a weight and a value, determine the number of each item to
include in a collection so that the total weight is less than or equal to a given limit and the total
value is as large as possible.



3 Problem description

We present the large scale system-of-systems (see Fig. 1.1, Ch. 1) and a subset
of it is subject to the work presented in this thesis. From now on, we denote by
MRO as the Maintenance Workshop and Level O as the Operational level. In
this chapter, we take a closer look at each part of the problem we are dealing
with, namely aircraft maintenance scheduling, maintenance workshop, stocks
of components, and operational demand. We present a mathematical modeling
of each part of the system, as well as their interconnections, and formulate
optimization objectives for the respective stakeholders.

Figure 3.1: Aircraft (preventive) maintenance scheduling and the maintenance work-
shop scheduling, with the operational demand as input and the scheduling of compo-
nent replacement and repair as output.

11



12 3. Problem description

3.1 Aircraft maintenance scheduling

The model of the maintenance scheduling problem presented is partly based
on the preventive maintenance scheduling problem with interval costs (PMSPIC)
model presented in (Gustavsson et al., 2014). The PMSPIC considers a sys-
tem with multiple component types and for which the costs for replacement
of components take into account the interval between any two consecutive
replacements/maintenance occasions; we generalize this model such that we
allow for more systems and individual component modeling. The PMSPIC is
partly an extension of the opportunistic replacement problem (ORP) studied
in (Almgren et al., 2012), described as follows: "The system consists of a set
of components. The time between two consecutive replacements of a com-
ponent may not exceed its assigned maximum replacement interval. To each
time point in the planning period corresponds a fixed maintenance set-up cost
and replacement costs for each component. The problem is to schedule the
component replacements over a finite set of time points in order to minimize
the total maintenance cost." Unlike the ORP model, the PMSPIC takes into ac-
count the intervals between two replacements/maintenance occasions for each
component and assigns a cost depending on the length of this maintenance
interval.

We consider a fleet of |K| aircraft with |I| component types and |Ji| individual
components of each type i ∈ I. Maintenance can be scheduled at any time
step t within the finite and discretized planning horizon T . A maintenance
occasion of an aircraft k at time step t generates a maintenance cost. The
maintenance interval (i.e., the interval between two maintenance occasions)
of a component generates an interval cost, which is non-decreasing with the
length of the interval. For each component type, by defining substantially
higher costs for scheduling maintenance after —and also close before—the
end of its life, unexpected failures are avoided; thereby our approach may
stay within the scope of PM scheduling. We model this problem, denoted as
GPMSPIC, as a 0-1 mixed-integer linear optimization problem (see Conforti
et al. (2014)); the decision variables are described below.

Decision variables. To determine the maintenance intervals of the components,
we let the decision variable xijkst take the value 1 if the individual component j
of type i from aircraft k receives PM at time steps s and t, but not in-between.
Otherwise, xijkst = 0. We further let the decision variable zkt take the value 1 if
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aircraft k is scheduled for maintenance at time t, and 0 otherwise:

xijkst =


1, if individual component j of type i

in aircraft k receives PM at times s
and t, but not in-between,

0, otherwise,

j ∈ Ji, i ∈ I, k ∈ K,
0 ≤ s < t ≤ T + 1,

zkt =

1, if maintenance of aircraft k occurs
at time t,

0, otherwise,
k ∈ K, t ∈ T .

Constraints. The feasible set of the maintenance planning is modelled by the
following equality and inequality constraints:

∑
j∈Ji

t−1∑
s=0

xijkst =
∑
j∈Ji

T+1∑
r=t+1

xijktr , i ∈ I, t ∈ T , k ∈ K, (3.1a)

∑
j∈Ji

T+1∑
r=1

xijk0r = 1, i ∈ I, k ∈ K, (3.1b)

∑
j∈Ji

t−1∑
s=0

xijkst ≤ zkt , i ∈ I, t ∈ T , k ∈ K, (3.1c)

∑
k∈K

t−1∑
s=0

xijkst ≤ 1, j ∈ Ji, i ∈ I, t ∈ T , (3.1d)

xijkst = 0, j ∈ Ji, k ∈ K,
t̄i ≤ s+ t̄i < t ≤ T + 1, i ∈ I. (3.1e)

For each system k and component type i, a maintenance interval starts at time
0, which is modeled by (3.1b), while the constraints (3.1a) ensure that the same
number (i.e., 0 or 1) of maintenance intervals ends and starts at time t. The
constraints (3.1c) model that if a maintenance interval of component type i in
system k ends at time t, then maintenance of system k must occur at time t. The
constraints (3.1d) ensure that each component (i, j) is in at most one system
k at each time t. The constraints (3.1e) prevent any maintenance interval for
component type i ∈ I from being longer than t̄i ≤ T , which prevents from
having to perform corrective maintenance.

According to (Gustavsson et al., 2014)—see also (Arkin et al., 1989; Boctor et al.,
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2004)—the PMSPIC is NP-hard, which then implies that our aircraft mainte-
nance scheduling problem is NP-hard. This means that the optimal scheduling
of the PM occasions for the components of the aircraft is a computationally
demanding problem.

3.2 Maintenance workshop scheduling

Components that should be maintained are sent to the maintenance workshop,
which contains a number (L) of (identical) parallel repair lines for component
repair, each of which has a repair capacity of one unit while each component
repair requires one unit of this capacity per time step during a prespecified
(component type-specific) and consecutive (i.e., preemption is not allowed)
number of time steps. When a component arrives at the workshop, it is avail-
able for repair and (in the case of a turn-around time contract) assigned a due
date, at which the repair should be finished, and the component be returned
back to the aircraft operator. This problem is identified as an identical parallel
machines scheduling problem (IPMSP; Brucker and Knust (2012)). For a survey
of parallel machine scheduling problems, see Mokotoff (2001). In the classical
deterministic IPMSP, there is a number of independent jobs to be processed
on a range of identical machines. Each job has to be carried out on one of the
machines during a fixed processing time, without preemption 1. A component
that finishes repair prior to (after) its due date generates a non-positive (non-
negative) penalty cost, which applies only in the case of a turn-around time
contract (see Section 3.5). A solution to the maintenance workshop scheduling
problem specifies at which time each component arriving at the workshop
should start maintenance.

Decision variables. For each individual component j of each type i and for
each time step t, we define uijt ∈ {0, 1}which takes value 1 if component (i, j)
starts repair at time t, 0 otherwise. The number of active parallel repair lines at
each time step t is defined by the non-negative integer variable lt:

uijt =

{
1, if component (i, j) starts repair at time t,
0, otherwise,

i ∈ I, j ∈ Ji, t ∈ T .

1If preemption (i.e. job splitting) is allowed, the processing of any operation may be interrupted
and resumed at a later time.
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The number `t of active parallel machines at time t should fulfill the constraints

0 ≤ `t = `t−1 +
∑
i∈I

∑
j∈Ji

(
uijt − u

ij
t−pi

)
≤ L, t ∈ T , (3.2)

where pi is the processing time in the maintenance workshop for a component
of type i and `0 and uijt , t ≤ 0, are initial (fixed) values that constitute input to
the model. The number of active parallel machines at time t equals the number
of active machines at the previous time step t− 1 plus the difference between
the ones becoming unavailable at time t (i.e.,

∑
i∈I
∑
j∈Ji

uijt ) minus the ones
becoming available at time t (i.e.,

∑
i∈I
∑
j∈Ji

uijt−pi ). At every time step t, `t is
limited by the workshop capacity L.

The IPMSP with a (weighted) sum objective is polynomially solvable (Law-
ler et al., 1993, Ch. 8.0), whereas its version with a minimax, i.e., makespan2,
objective is NP-hard (Brucker and Knust, 2012, Ch. 2.1).

To model the interface between the variables defined for the two respective
problems, we next introduce the stock dynamics.

3.3 Stock dynamics modeling

When an individual component is taken out of an aircraft it is sent—with
no time delay—to the stock of damaged components, where it stays until it
is scheduled for repair. The transport time between the stock of damaged
components and the maintenance workshop δia is prespecified. Upon being
repaired, the component goes to the stock of repaired, so called as good as new
components, again with a prespecified transport time between the workshop
and stock of repaired components δib, where it is kept until its scheduled time
for placement into an(other) aircraft. We assume that all transport times are
represented by non-negative integers.

Decision variables. To model the flow of components, we define the following
binary variables: aijt (bijt ) takes the value 1 if component (i, j) is on the stock
of damaged (as good as new) components at time step t; otherwise, it takes
the value 0. Furthermore, αijt takes the value 1 if component (i, j) is taken out
of some aircraft and placed on the stock of damaged components at time step
t, and βijt takes the value 1 if component (i, j) leaves the stock of repaired

2In manufacturing, makespan is the time difference between the start and finish of a sequence
of jobs or tasks.
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components and is placed in some aircraft at time step t:

aijt (bijt ) =

1, if individual component j of type i is on the stock of
damaged (repaired) components at time t ∈ T ∪ {0},

0, otherwise,

αijt (βijt ) =

1, if individual component j of type i is taken out of
(placed in) one of the aircraft k ∈ K at time t ∈ T ,

0, otherwise.

The stock of damaged components is then modelled by the constraints

αijt =
∑
k∈K

t−1∑
s=0

xijkst , j ∈ Ji, i ∈ I, t ∈ T , (3.3a)

aijt = aijt−1 + αijt − u
ij
t+δia

∈ {0, 1}, t ∈ {1− δia, . . . , T + 1}, j ∈ Ji, i ∈ I.
(3.3b)

The constraints (3.3a) connect the variables from the maintenance scheduling
with the stock of damaged components: if a component (i, j) is taken out of
any of the aircraft k ∈ K at time t, αijt will take the value 1; otherwise αijt takes
the value 0. The constraints (3.3b) provide the state of component (i, j) at time
t: whether it is on the stock of damaged components (i.e., aijt = 1) or not (i.e.,
aijt = 0). The state of a component at time t depends on its state in the previous
time step t− 1, whether it is taken out of any system k and placed on the stock
at time step t, and whether it is starting maintenance at time step t+ δia.

The stock of repaired components is modelled analogously as

βijt =
∑
k∈K

T+1∑
r=t+1

xijktr , j ∈ Ji, i ∈ I, t ∈ T (3.4a)

bijt = bijt−1 − β
ij
t + uij

t−δib−pi
∈ {0, 1}, j ∈ Ji, i ∈ I, t ∈ T (3.4b)∑

j∈Ji

bijt ≥ b
i, i ∈ I, t ∈ T . (3.4c)

The constraints (3.4a) represent the connection between the stock of repaired
components and the maintenance scheduling. If component (i, j) is placed
into any aircraft k at time t, βijt will take the value 1; otherwise βijt takes the
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value 0. In (3.4b) the individual states of the components at time t are updated:
a component is either on the stock (i.e., bijt = 1) or it is not (i.e., bijt = 0). A
component’s state on the stock of repaired components is affected by its state
in the previous time step t− 1, whether it is placed in some system k at time
t, and whether it will arrive to the stock at time t after being repaired (i.e.,
if uij

t−δib−pi
= 1, which means that component (i, j) started maintenance at

time t − δib − pi and will arrive to the stock of repaired components at time
t). The variables bij0 , βij0 , and uijt , t ∈ {1 − δib − pi, . . . , 0}, comprise (fixed)
input data. Then, in (3.4c) it is expressed that the sum of the variables bijt over
the individual components, i.e., the stock level of repaired components per
component type i at time t, may not be below the lower stock limit bi.

Looking at the stock dynamics equations as an isolated system, it can be
formulated as a network flow model, where each equality constraint is a node
balancing constraint. For example, in (3.3b), the flow from node t to node t+ 1

is defined as aijt . Also, in an isolated stock model, αijt and uijt are parameters.
The problem is an LP and thus can be solved in polynomial time.

3.4 Operational demand

The system of aircraft considered possesses an operational demand, repre-
sented by a flying/operational schedule that should be fulfilled. The schedules
define time intervals during which the aircraft is either operating or grounded,
i.e., accessible for maintenance. Therefore, the starting point for our modeling
is precisely the operational demand.

For our maintenance planning problem, the schedules (i.e., operational de-
mand) are represented in terms of time intervals when the system is either
operating—at which times maintenance cannot be performed—or accessible
for maintenance. In other words, PM may not be scheduled while a system is
operating. In the case of railway systems (Lidén, 2020), each train is assigned
time slots when it should operate (i.e., perform transports of goods or passen-
gers); hence, PM may be scheduled only in-between those time slots. In the
case of offshore wind turbine maintenance (Shafiee et al., 2013), the operational
demand is fulfilled by wind energy production, while maintenance work can
be done only during time periods of not too harsh weather conditions. When
planning any PM occasion the (predicted or planned) operational schedules
for the systems provide time windows during which maintenance may be
performed. As input to the integrated GPMSPIC and IPMSP model, for all
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t ∈ T and all k ∈ K we thus use the parameters

zkt =

{
1, if PM is allowed to be scheduled for system k at time t,
0, otherwise,

and include the following constraints—such that the time windows for PM are
respected—in our model:

zkt ≤ zkt , t ∈ T , k ∈ K. (3.5)

An efficient way of generating the operational schedules (e.g., timetables) for
the systems considered is presented in (Gavranis and Kozanidis, 2015), in
which the availability of a fleet of aircraft is maximized subject to requirements
on the transport missions and maintenance of the aircraft and their components.
An alternative way is presented in (Cho, 2011), where the maximal number
of aircraft in maintenance at any given time during the planning period is
minimized.

We explore another way of modeling (3.5) and that is to use slightly softer
constraints to model the opportunities for performing maintenance, as follows:∑

k∈K

zkt ≤M, t ∈ T , (3.6)

where (3.6) limits the number of maintenance occasions for each time step t to
at most M aircraft at a time. The main benefit of using this approach is that it
gives more freedom to the model to choose the optimal maintenance schedules.

3.5 Optimization objectives

We consider two stakeholders, the aircraft operator and the maintenance work-
shop. In Paper I, we study two contract types governing their activities (avail-
ability and turn-around time) by defining two bi-objective optimization prob-
lems (see Ehrgott (2005)). The first problem is composed by the minimization of
the maintenance cost (i.e., set-up cost and interval cost) and the maximization
of the availability of components on the stock of repaired components. The
second problem is composed by the minimization of the maintenance costs
and the minimization (maximization) of the penalties for lateness (earliness).
The minimization of the maintenance cost is of interest for the aircraft opera-
tor while the other two objectives are relevant for the maintenance workshop



3.5. Optimization objectives 19

and represent the risk for lack of spare components. In Paper II, we focus on
an availability contract, defined such that the lower limit on the number of
available components of type i is maximized. We again have a bi-objective
formulation, with one objective being minimization of the maintenance costs
and the other one maximization of availability.

The modeling of the different objectives is described below.

Minimizing costs for maintenance set-up and intervals. Each maintenance
occasion yields a set-up/maintenance cost for the aircraft operator. It can be
either the cost of having an aircraft grounded/unavailable for flight operations,
or the cost of performing any maintenance activity. Besides this, there is an
interval cost for every component which is determined based on the length of
the interval between two consecutive maintenance occasions. We assume that
the interval cost is non-decreasing with an increasing length of the interval.
Furthermore, the longer the length of the maintenance interval is the more
expensive it gets to do maintenance. Using this cost structure enable us to
prevent (too) long maintenance intervals which could lead to over usage of a
component and thereby, to component failure.

From the aircraft operators’ point of view, the objective is to minimize the total
costs for maintenance, which includes both set-up and interval costs, and it is
modelled as to

minimize
∑
k∈K

∑
t∈T

dtz
k
t +

∑
k∈K

∑
i∈I

∑
j∈Ji

T+1∑
t=1

t−1∑
s=0

cistx
ijk
st . (3.7)

Minimizing the risk for lack of spare parts. To ensure that the operational
schedule is undisturbed, or that the disturbance is minimal, it is crucial to
have enough spare components available. Then, whenever an unexpected
failure occurs, the damaged component can be replaced by an as "good as new"
component without the planned operations having to be stopped.

One way of defining this objective is to maximize a weighted average of the
number of repaired (or new) components available, which is modelled as to

maximize
1

T

∑
t∈T

∑
i∈I

wi
∑
j∈Ji

bijt , (3.8)

where wi > 0 is an objective weight assigned to component type i ∈ I.
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An alternative way of minimizing the risk for lack of spare components would
be to maximize a weighted average of the lower limits on the numbers of
available components of each type, subject to a lower bound on the availability
of each component type, i.e., to

maximize
∑
i∈I

wiei, (3.9a)∑
j∈Ji

bijt ≥ ei ≥ b
i, i ∈ I, t ∈ T , (3.9b)

where, for each component type i ∈ I, wi > 0 denotes the weight assigned
while the lower limit on the number of available components is denoted by ei.

Minimizing the risk for exceeding the contracted turn-around times for com-
ponent repair. The ’turn-around time’ vijtat of an individual component (i, j)
is defined as the time from when it is taken out of one of the aircraft in K until
it has become repaired and is available for usage again in one of the aircraft.
Letting cijdelay > 0 and cijearly ∈ (0, cijdelay] denote the penalty for late and early,
respectively, delivery of a repaired component, this objective is then expressed
as to

minimize
∑
i∈I

∑
j∈Ji

(
cijdelayv

ij
delay − c

ij
earlyv

ij
early

)
, (3.10a)

where vijdelay (vijearly) denotes the total delay (earliness) for component (i, j) over
the planning period. These variables are due to the constraints

vijearly ≤ v
ij
tat − q

ij
due

(
aij0 +

T+1∑
t=1

αijt

)
≤ vijdelay, (3.10b)

vijearly ≤ 0 ≤ vijdelay, (3.10c)

where qijdue > 0 denotes the contracted due date for component (i, j), j ∈ Ji,
i ∈ I . Due to the construction of (3.10) either vijearly or vijdelay (or both) will attain
the value 0 when the objective (3.10a) is optimized (a component will be either
early, or late, or on time; in the latter case vijearly = vijdelay = 0 hold). Therefore,
for each component (i, j) the objective (3.10a) minimizes the penalty for total
lateness or earliness.

There are more objectives that could be discussed and included in the multi-
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objective setting, if relevant. Two such examples are given below.

Minimizing investment costs for repair lines in the workshop. We assume
that each repair line in the maintenance workshop comes with an investment
cost cinv > 0. One of the objectives on the maintenance workshop side would
be to minimize the investment costs for repair lines in the workshop. The
workshop capacity costs are then addressed as to

minimize cinvL, (3.11)

where the parameter L would then be regarded as a decision variable, which
takes the role of an upper limit, as expressed in the constraints (3.2). This
objective is relevant when investigating the optimal workshop capacity.

Minimizing the costs of performing repairs. Each maintenance activity as-
sociated with a component (i, j) normally has a repair cost cijrepair, which could
depend on the component’s processing time pij , be non-decreasing with an
increasing value of pij and assigned to the uijt variables. The objective is to

minimize
∑
i∈I

∑
j∈Ji

cijrepair(p
ij)uijt , (3.12)

and it is relevant if we want to optimize the number of maintenance activities.
Since in our application, components have to be repaired regardless of the
price of repair, and it is not possible to merge two or more repairs together to
minimize the costs (opportunistic replacement planning, see e.g. Almgren et al.
(2012)), we neglect this objective at the current stage. Moreover, (3.12) would
lead to a so-called zero-sum game 3, which would not have an impact on the
bi-objective analysis presented in our current work.

3In game theory and economic theory, a zero-sum game is a mathematical representation of a
situation in which an advantage that is won by one of two sides is lost by the other. See e.g. von
Neumann and Morgenstern (2007).
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4 Summary of appended papers

4.1 Paper I: Simultaneous scheduling of replace-
ment and repair of individual components in
systems subject to operations

In this paper we put an emphasis on formulating and analyzing two different
contracting forms between the two stakeholders, the system operator and the
maintenance workshop. Components in the systems that are to be maintained
are sent to the maintenance workshop, which needs to schedule and perform
all maintenance activities while satisfying the contract. The workshop’s ability
to fulfill the contract is dependent on its capacity, which may be distributed on
different facilities. Our modelling includes the stocks of damaged and repaired
components.

The model we formulated is based on a mixed-binary linear optimization model
of a preventive maintenance scheduling problem with so-called interval costs
over a finite and discretized time horizon. We extend this scheduling model
with the flow of components through the repair workshop, including stocks of
spare components, both those components that need repair and the repaired
ones. The resulting scheduling model is then utilized in the optimization of
two main contracts, namely maximizing the availability of repaired (or new)
components, and minimizing the deviation from the contracted turn-around
times for the components in the maintenance loop. Each of these objectives are
combined—in a bi-objective setting—with the objective to minimize the costs
for maintenance of the operating system.

We analyze the two contracting forms between the system operator and the
repair workshop by studying and comparing the Pareto fronts resulting from
different parameter settings, regarding minimum allowed stock levels and
investments in repair capacity of the workshop. Our specific results concern

23
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the effect on the levels of the stocks of components. We conclude that our bi-
objective mixed-binary linear optimization model is able to capture important
properties of the results from the contracting forms. The solutions resulting
from our modelling can be used to find a lower limit or an optimal performance
of a collaboration between stakeholders who govern a common system-of-
system.

This paper is submitted to the Annals of Operations Research and is under
review for publication. Initial ideas were presented on The First EUROYoung
Workshop, Seville (2019) and some later ideas on the Swedish Operations
Research Conference, Nyköping (2019) and PLANs forsknings- och tillämpn-
ingskonferens, KTH Södertälje (2020).

4.2 Paper II: Replacement and repair of common
components in systems subject to operations

In this paper, we focus on an availability contract governing joint activities
between the system operator and the maintenance workshop. Unlike in Paper-
I, we do not model individual component flow but instead we only consider
component types. Another novelty is the definition of the availability contract.
In Paper I, availability was defined as the average number of components on
the stock of repaired components over the planning horizon, whereas in this
paper, we maximize the lower limit on the number of available components
for a component type.

The model we formulated is based on a mixed-binary linear optimization
model of a preventive maintenance scheduling problem with so-called interval
costs over a finite and discretized time horizon. We generalize and connect
this scheduling model with the repair workshop, including stocks of spare
components, both those components that need repair and the repaired ones.
The resulting scheduling model is then utilized in the optimization of the
availability contract, namely maximizing the lower limit on the availability of
repaired (or new) components, and minimizing the maintenance (interval and
set-up) costs. The two objectives formulate a bi-objective optimization problem.
The solutions resulting from our modelling can be used to find a lower limit for
an optimal performance of a collaboration between stakeholders who govern a
common system-of-systems regulated with an availability contract. We show
that our model can be used for analyzing the change in the solution when some
parameters (e.g., the maintenance workshop capacity) are varied.

This paper is in the form of a manuscript that is to be submitted to a journal.



5 Conclusions and future re-
search

We start from an NP-hard preventive maintenance scheduling problem, gen-
eralize it to aircraft and individual components modeling, incorporate the
maintenance workshop, model the stock dynamics to connect these two sys-
tems, as well as define several optimization objectives. In Paper I, we define
and analyze two different contracting forms governing joint activities between
the stakeholders. For larger instances, the model and solution approach be-
come computationally intractable and are subject to further investigation and
development, especially in the case of turn-around time contract which intro-
duces non-binary coefficients in the constraint matrix. In Paper II, we remove
the individual component modeling and focus on an availability contract type.

There are a few directions in which our research can be extended. An extension,
which is important for the intended application of this work, is to introduce
corrective maintenance modelling. At the current stage, the means to handle
unexpected failures are to reduce the risk for such failures by not allowing too
large maintenance intervals and to reschedule the maintenance plan whenever
an unexpected event occurs. Since short-term changes in the operational
schedules, as well as in the schedules for the maintenance workshop, are often
inconvenient and sometimes not even feasible, (if possible) the rescheduling
should be such that the solution remains fixed for a certain number of time
steps.

The total number of components to be considered can be quite large and it is
challenging to model all of them. Moreover, since only a subset of the total
number of components is safety critical, they are the ones that are interesting
to model and constitute the driving force of the whole system-of-systems.
Another extension could be to cluster the non-safety critical components in
some way so that they can be incorporated into the modeling.

25
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To model the whole system-of-systems presented in Figure 1.1, we would
expand our modeling to more than one maintenance workshop, include exter-
nal subcontractors and a contract regulating Saab’s collaboration with them.
Maintenance workshop modeling is simplified in the current work, constituted
with repair lines and processing times for components that are repaired, and
that could be further expanded. Moreover, instead of having operational sched-
ule as an input to the model, we could incorporate the problem of aircraft
operations scheduling.
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