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Cut Finite Element Methods on Overlapping
Meshes: Analysis and Applications

Carl Lundholm

Department of Mathematical Sciences
Chalmers University of Technology and University of Gothenburg

Abstract

This thesis deals with both analysis and applications of cut finite ele-
ment methods (CutFEMs) on overlapping meshes. By overlapping meshes
we mean a mesh hierarchy with a background mesh at the bottom and one
or more overlapping meshes that are stacked on top of it. Overlapping
meshes can be used as an alternative to costly remeshing for problems
with changing geometry. The main content of the thesis is the five ap-
pended papers. The thesis consists of an analysis part and an applications
part.

In the analysis part (Paper I and Paper II), we consider cut finite
element methods on overlapping meshes for a time-dependent parabolic
model problem: the heat equation on two overlapping meshes, where
one mesh is allowed to move around on top of the other. In Paper I,
the overlapping mesh is prescribed a ¢G(1) movement, meaning that its
location as a function of time is continuous and piecewise linear. The
c¢G(1) mesh movement results in a space-time discretization for which
existing analysis methodologies either fail or are unsuitable. We therefore
propose, to the best of our knowledge, a new energy analysis framework
that is general enough to be applicable to the current setting. In Paper
II, the overlapping mesh is prescribed a dG(0) movement, meaning that
its location as a function of time is discontinuous and piecewise constant.
The dG(0) mesh movement results in a space-time discretization for which
existing analysis methodologies work with some modifications to handle
the shift in the overlapping mesh’s location at discrete times.

The applications part (Paper III, IV, and V) concerns cut finite ele-
ment methods on overlapping meshes for stationary PDE-problems. We
consider two potential applications for CutFEM on overlapping meshes.
The first application, presented in Paper III, presents methodology for
evaluating configurations of buildings based on wind and view. The wind
model is based on a CutFEM on overlapping meshes for Stokes equations.
The second application, presented in Paper IV and Paper V, concerns a
software application (app). The app lets a user define and solve physical
problems governed by PDEs in an immersive and interactive augmented
reality environment.

Keywords: CutFEM, overlapping meshes, multi-mesh, moving meshes, parabolic
problem, energy analysis, multi-objective optimization, augmented reality
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1 Introduction

The finite element method (FEM) is a well-known tool for computing approxi-
mate solutions of partial differential equations (PDEs). It is particularly suitable
for PDE-problems with complicated geometry since it allows for unstructured
domain-fitted meshes. Unstructured meshes are more computationally expen-
sive to generate and memory demanding to store than structured meshes since
there is no underlying structure that may be used. Cut finite element methods
(CutFEMs) enable the use of structured meshes in problems with complicated
geometry. This may be done by using an underlying structured mesh together
with an interface that represents the boundary of the solution domain. There is
no relation between the locations of the interface and the mesh cells, thus some
of the mesh cells will be “cut” by the interface, hence the name CutFEM. The
cost of using CutFEM is the extra treatment that is needed to handle functions
on these cut mesh cells.

CwtFEM may also make costly remeshing redundant for problems with
changing or evolving geometries or for other situations involving meshing such
as adaptive mesh refinement. Using standard FEM for such problems usually
means that a new mesh has to be generated when the geometry has changed too
much. With CutFEM the geometry may be represented by an interface whose
location in relation to the mesh may be arbitrary, thus allowing the same mesh
to be used for different or changing interfaces.

A common type of problem with changing geometry is one where there is an
object in the solution domain that moves relatively to the domain boundary. An
advantageous CutFEM approach to such problems is to use overlapping meshes,
meaning two or more meshes ordered in a mesh hierarchy. This is also called
composite grids/meshes and multimesh in the literature but the meaning is the
same. The idea is to first remove the object from the domain and to generate
a stationary background mesh in the empty solution domain. The background
mesh may thus be a nicely structured mesh. A second mesh is then generated
around the object. The mesh containing the object is then placed “on top” of
the background mesh, creating a mesh hierarchy. The movement of the object
will thus also cause its encapsulating mesh to move.

A number of other methodologies have been proposed to circumvent the
limitations of domain-fitted discretizations. Notable examples are the fictitious
domain method by [1] and the extended finite element method (XFEM) by Be-
lytschko et al. [2]. Both methods have been successful in extending the range
of problems that can be simulated, but both suffer from limitations in that
the conditioning of the discretization cannot be guaranteed, and a theoretical
framework for convergence analysis and error estimation is lacking. In particu-
lar, time-dependent multiphysics problems on evolving geometries are typically



discretized using ad hoc low order discretization methods, which cannot easily
be analyzed, nor extended to higher order.

Over the past two decades, a theoretical foundation for the formulation of
stabilized CutFEM has been developed by extending the ideas of Nitsche, pre-
sented in [3], to a general weak formulation of the interface conditions, thereby
removing the need for domain-fitted meshes. The foundations of CutFEM were
presented in [4] and then extended to overlapping meshes in [5]. The CutFEM
methodology has since been developed and applied to a number of important
multiphysics problems. See for example [6H11]. For CutFEM on overlapping
meshes in particular, see for example [12H15]. So far, only CutFEM for station-
ary PDE-problems on overlapping meshes have been developed and analysed
to a satisfactory degree, thus leaving analogous work for time-dependent PDE-
problems to be desired.

This thesis deals with both analysis and applications of CutFEM on over-
lapping meshes. The premise for both parts is the aforementioned state of
such methods. Thus, in the analysis part we consider CutFEM on overlap-
ping meshes for a time-dependent parabolic model problem: The heat equation
on two overlapping meshes. The applications part only concern CutFEM on
overlapping meshes for stationary PDE-problems.

The outline of the thesis is:

e In Section[2] we present the concept CutFEM on overlapping meshes. We
start with the standard finite element method and successively present
ideas and theory that make us arrive at the aimed concept.

e In Section[3] we summarize the quite long and explicit analysis manuscripts
presented as Paper I and Paper II. We start by presenting general analysis
methodology for finite element methods. First for elliptic, then parabolic
problems. We do this to elucidate the analysis framework at our disposal
as a means to create a context for the two analysis manuscripts. In both
Section [2] and Section [3] we try to be relatively brief, meaning that we
sometimes cut back on explicit detail and rigour, and that we try to not
dive too deep into existing theory. The reason for this of course being
that we want to focus on the novelties presented in this thesis. For details
and rigour we instead refer to the appended papers and the literature.

e In Section 4} we discuss both potential and existing applications of Cut-
FEM on overlapping meshes. Some implementation aspects are also dis-
cussed involving software and computational gain in using CutFEM on
overlapping meshes.

e In Section b, we summarize the five appended papers.

e The last part of the thesis is the five appended papers.



2 Cut finite element methods

In this section, we present background, underlying ideas and basic theory for
the concept cut finite element methods on overlapping meshes. To put it into
context, we will consider elliptic model problems. First we present the standard
finite element method for such a problem. Then, using Nitsche’s method, we
present a cut finite element method on a fictitious domain. Lastly we introduce
the concept overlapping meshes and present a cut finite element method for an
elliptic model problem on overlapping meshes.

2.1 Standard finite element method

The finite element method is a well-known concept in applied mathematics and
a valuable tool for science and engineering. There is plenty of literature about
it; see for example [16H18] for introductory books. The finite element method
is a recipe for obtaining approximate solutions of problems governed by partial
differential equations. This is done by discretizing the solution domain and
turning the differential equation into several algebraic equations. The general
procedure of FEM may be summarized in the pipeline:

. Continuous ) Discrete System of
PDE-problem —  variational —» variational BN algebraic
problem problem equations

where the numbered steps are:

1. Multiply the differential equation with a suitable test function, integrate
over the solution domain, use integration by parts to decrease the highest
order derivative, and define trial and test spaces.

2. Discretize the solution domain to obtain a finite element mesh, and use it
to define a discrete function space.

3. Test with the basis functions of the discrete subspace to obtain one alge-
braic equation for every basis function.

We apply the above steps to the following elliptic model problem.

PDE-problem
For d = 1,2, or 3, let Q C R? be a bounded domain, i.e., connected open set,
with polygonal boundary 02. We consider Poisson’s equation on 2 with given
source function f € L2(Q2) and homogeneous Dirichlet boundary conditions.
The problem is: Find v € H2(f2) such that

{—Au =f inq,

2.1
u=0 on 0. (2.1)



The PDE-problem (2.1)) is thus the starting point.

Step 1
We take as a suitable test function v € H} (), multiply Poisson’s equation by
it, and integrate over the solution domain, and thus get

/Q—Auvdx:/gfvdx. (2.2)

By integration by parts in this context we mean using Green’s first identity.
Applying it to the left-hand side of (2.2]), we get

/—Auvdmz/Vu-Vvdx—/ n~Vuvds:/Vu-Vvda:, (2.3)
Q Q X9) Q

since v]gpg = 0. We now have the equation

/QVu-Vvdx:/vadx. (2.4)

For this equation to mean anything, we see that u and v must indeed belong
to H'(Q)). Taking the boundary conditions into account, we choose as both
trial space (the space where we will look for u) and test space (the space of the
functions which we will “test” against) the Sobolev space Hg ().

Continuous variational problem
From the conclusion of Step 1, we formulate the continuous variational problem:
Find u € H}(Q) such that

/ Vu-Vodr = / fodz, Yve HYHRQ). (2.5)
Q Q

Note that in the continuous variational problem (2.5)), the highest order deriva-
tive of the solution u is of the first order, whereas in the original PDE-problem
(2.1) it is of the second order. The regularity assumptions on u have thus been
relaxed, which allows us to search for a solution in a much larger class of func-
tions. The variational formulation is therefore also referred to as the weak
formulation of . We define the bilinear form a on H'(Q) and linear form [
on L3(Q) by

afw,v) = (Vu, Vo), 1) = (f.0), (2.6)

where (-, ) is the L?(Q)-inner product. By using a and [, we give (2.5)) the more
abstract and consice form: Find u € H{(£2) such that

a(u,v) =1(v), Vv H}H ). (2.7)



Step 2
We discretize the domain 2 by tessellating it into d-simplices. This is done in
such a way that every two adjacent simplices share the exact same sub-simplices
(simplices of dimension < d) belonging to the intersection of their boundaries.
The tessellation is the finite element mesh 7. We denote by h the mesh size
parameter, taken to be the largest diameter of a simplex K € 7. We define the
finite dimensional discrete function space V}, by

Vi = {v € C(Q) : v|x € PP(K),VK € T,v|oq = 0}, (2.8)

i.e., all continuous functions on €2, that are polynomials of at most degree p on
every simplex K € T, and that are zero on the boundary of 2.

Discrete variational problem
Using the above, we formulate the discrete variational problem: Find uy € V},
such that
a(up,v) =1(v), Yv €& V. (2.9)

This is also the standard finite element formulation of problem . A discrete
variational problem of the form is also referred to as a finite element
method. Noting that Vj, C HE(Q), we have that also holds for all v € V.
We thus obtain the Galerkin orthogonality

a(u —up,v) =0, Vv eV, (2.10)

which means that the finite element solution uy is the a-projection of the ana-
lytic solution u onto Vj.

Step 8
With M = dim(V},), we let {¢; ;Vil denote a basis for V. Every function
v € V3, may thus be represented as

M
v(@) =) Vipi(a), (2.11)
j=1

where the V;’s are the degrees of freedom. Using this representation for u; and
testing with v = ¢; in (2.9) gives

M M
ad Ujpj ) =) = ZUJ'/QVSDJ"VSDjdl’:/wad% (2.12)

j=1 j=1

We thus get one equation for every ¢; in the basis.



System of algebraic equations
We define the matrix A and the vector b by

Aij ZZ/V%"V%‘ dz, bi :=/f<pidx, (2.13)
Q Q

where ¢ and j denote the row and column index, respectively. Using A, b, and
7 we formulate a linear system of equations on matrix-vector form: Find
U= (Uy,...,Un)T such that

AU =b. (2.14)

Final remark
The resulting linear system of equations is typically solved by a com-
puter. As already mentioned, the discrete variational problem is the finite
element formulation corresponding to the original PDE-problem with the given
discretization and choice of discrete subspace. From such a finite element for-
mulation it is straightforward, albeit not always trivial, to derive the system
of algebraic equations. In the remainder of this text we will therefore not go
further along the finite element pipeline than the discrete variational problem.

2.2 Nitsche’s method

The basis for CutFEMs is Nitsche’s method for weakly imposing boundary
conditions; see [3]. We will therefore start by applying Nitsche’s method to an
elliptic model problem. In the next section, we will use that result to derive
and formulate a basic cut finite element method on a fictitious domain.

Consider the elliptic model problem and its corresponding standard
weak formulation (2.7)). Note that the boundary condition in 7 u = 0 on 0f),
is represented in by the choice of trial space, u € H}(Q). Incorporating
boundary conditions like this, in the trial space of the weak formulation, is
known as strongly imposed boundary conditions. An alternative is to incorpo-
rate the boundary conditions in the equation of the weak formulation by the
addition of suitable terms. This is then called weakly imposed boundary condi-
tions. To illustrate this, we consider the problem but with inhomogeneous
Dirichlet boundary conditions given by g € L2?(9€). The problem is: Find
u € H?(Q) such that

(2.15)

—Au=f in,
u=g¢g on Jf).



With the tools from the previous section, a corresponding continuous varia-
tional problem with strongly imposed boundary condition is: Find u € Hy ()
such that

a(u,v) =1(v), Yve H}(Q). (2.16)
Note that we still test with functions v that are zero on the boundary, just as in
the case with homogeneous boundary conditions. This is because in both cases
we do not need to test for v on the boundary since its value there is known.

Now if we instead would like to impose the boundary conditions weakly, we
could add the term y(u — g,v)sq to the left-hand side of (2.16)), where v is a
penalty parameter and (-, -)sq denotes the L?(9€2)-inner product. Typically all
the u-v-product terms are gathered on the left-hand side, and all the data-v
terms on the right-hand side. Thus the additional term would be split to give

a(u,v) +y(u,v)s0 = L(v) + v(g,v)aq- (2.17)

Note that the requirement that v|sq = 0 must be removed for two reasons: so
that the additional term is not always zero; and because the requirement that
u|pn = g would no longer be imposed on the trial space, thus resulting in a need
to test for u on the boundary. Removing the requirement v|spn = 0 also has
other consequences. In the derivation of the variational equation in Step 1 in
the preceding section, the fact that v|spq = 0 led to that the term —(n-Vu,v)gq
vanished. Thus, if we plug in the strong solution of the original PDE-problem in
and use integration by parts in the other direction, we would get that the
strong solution does not solve the weak problem. This means that the method
is inconsistent and a remedy is needed. Adding —(n - Vu,v)sq to the left-hand
side of makes the method consistent, hence this term is usually called the
consistency term. Using the notation d,u = n - Vu, we get

a(u,v) = (Onu, v)ga + v(u,v)aq = 1(v) + v(g,v)aq- (2.18)

But we are still not done. Note that the left-hand sides of all the variational
equations presented so far have been symmetric, i.e., switching places of v and
v still gives the same left-hand side. This is a desirable property to have and
to preserve this symmetry, we add the so called symmetry term —(9,v,u)sq to
the left-hand side of . This in turn means that to preserve consistency we
also need to add —(9,v, g)sq to the right-hand side of . Thus

a(u,v) — (Onu, v)aq — (Onv, u)aq + 7(u, v)sn

2.19
=1(v) = (Onv, 9)aa + (9, v) o (2.19)
We define the bilinear form A and linear form L by
A(w7v) = a(w7v) - (3nwav)8f2 - (811”711))89 + 7(7"077))89; (220)
L(v) == U(v) = (9nv, 9)aa + (g, v)a0- (2.21)



The continuous variational problem with weakly imposed boundary condition
is: Find v € H*(Q) such that

A(u,v) = L(v), Yo e HY(Q). (2.22)

This is Nitsche’s method of imposing boundary conditions weakly and the
boundary terms in (2.20) are referred to as the Nitsche terms.

2.3 A cut finite element method on a fictitious domain

The first cut finite element method was presented in the influential paper [4]
which lay the foundation for CutFEM. In that paper a CutFEM for an elliptic
model problem with an interface was considered. Here, as our basic CutFEM,
we will instead consider an elliptic model problem on a fictitious domain, which
is more in line with the previous section about Nitsche’s method.

The key here is to realize the unlocked potential in freedom of discretization
that comes from the relaxation of the imposition of the boundary conditions,
i.e., imposing them weakly instead of strongly.

If the boundary conditions are im-
posed strongly, this has to be taken
into account when discretizing the
domain to create the finite element
mesh. This is so since in the dis- /1
crete subspace, there typically have
to be degrees of freedom on the
boundary that directly can represent
the strongly imposed boundary con- Q
ditions. The location of the degrees of
freedom usually depends on the mesh,
meaning that the domain boundary
needs to influence the discretization. v

With weakly imposed boundary
conditions, there is no need for de-
grees of freedom on the boundary,

since the functions in the discrete Figure 1: 2D-example of an unfitted

subspace do not need to satisfy the mesh with a domain Q. (Image from
boundary conditions. This means [19].)

that the domain boundary does not
need to be considered for the dis-
cretization. An unfitted mesh may therefore be used; see Figure [l A benefit of
using an unfitted mesh is that it can be structured as opposed to a boundary-
fitted mesh that in general is unstructured. Generating and storing unstructured




meshes is more computationally costly and memory demanding since there is
no underlying structure that may be used.

For the CutFEM, we need a mesh-dependent discrete function space. Letting
T denote an unfitted mesh, we define its active part by

To={KecT:KnQ+#0} (2.23)

The active mesh 7Tq, thus consists of all simplices in 7 that either lie completely
inside € or are cut by its boundary. We use 7, to define the eponymous fictitious
domain 2; D Q by
o= | K. (2.24)
KeTa

It is simply the domain defined by the extent of the active mesh. Using these
objects and based on the spaces used in the continuous variational formulation
(2.22)), we define the discrete subspace by

Vi i={v e C(Qy,) : vlg € PP(K),VK € Tq}. (2.25)
For the discrete variational problem, we modify the bilinear form A and the
linear form L by including the mesh size parameter hx = hi(z) = diam(K)

for x € K in the penalty parameter as

Ap(w,v) = a(w,v) — (Onw,v)sq — (Onv, w)aq + 'y(hf}lw,v)ag, (2.26)
Li(v) :==1(v) — (900, 9)aq + v (hi'g,v)o0. (2.27)

The mesh parameter hg is included to make the bilinear form Ay coercive on
Vi The Nitsche term in A, with the hg-penalty parameter is therefore also
referred to as the coercivity term. The fictitious domain cut finite element
formulation is: Find ujp € V3 such that

Ah(uhm) = Lh(v), Yv € Vj,. (228)

Functions in V}, live on the larger fictitious domain €2, but the solution do-
main of interest is still the smaller domain 2. This is reflected in the discrete
variational formulation by the integrals in the forms Ay and L. Thus when de-
riving a linear system of equations from , only the Q-part of the boundary
cut simplices in 7 will contribute. It is of course these cut simplices and their
impact on the resulting finite element method that gives CutFEM its name.
The CutFEM solution is sometimes considered to be the restriction to €2 of the
actual discrete solution uj, € Vj,. This is often the case when visualizing the
solution.



2.4 Overlapping meshes

An essential step in the finite element method is to discretize the solution domain
to form a computational mesh. Let us here refer to a mesh of the underlying
solution domain as a background mesh. Now, consider another mesh that is
allowed to move around “on top” of the background mesh. Let us refer to such
a mesh as an overlapping mesh. By introducing one or more overlapping meshes
over a background mesh, we arrive at the concept overlapping meshes.

We motivate this concept by an application example. Consider an object in
the solution domain that has a movement relative to the outer domain bound-
ary. For example, imagine that we would like to resolve the fluid flow around a
rotating propeller, i.e., solving the Navier-Stokes equations. Taking our moving
object to be the rotating propeller, the usual way of creating a computational
mesh would be to discretize the space between the domain walls and the pro-
peller. An example of this can be seen in the left illustration of Figure If
the propeller starts to rotate, the triangles that have nodes in both the solution
domain and on the propeller boundary will start to get deformed. This can be
seen in the middle illustration of Figure 2] Eventually, these triangles will get
too deformed and ruin the mesh so that it cannot be used for FEM. This is
shown in the right illustration of Figure

Figure 2: 2D example of how a moving object can ruin the computational mesh.
The moving object in this example is a rotating propeller. One of its rotor blades
is colored differently for reference. Left: Initial setting with a propeller in the
solution domain and a triangular mesh. Middle: The propeller is rotated by a
small angle. Triangles in front of a rotor blade are compressed and triangles
behind a rotor blade are streched out. Right: The propeller is rotated by a
large angle and ruins the mesh.

One way of dealing with this inconvenience is to generate a new mesh when
the old mesh starts to get messed up. Mesh generation can however be a time
consuming procedure, especially in industrial applications, where there are often

10



several dimensions and complicated geometries. A mesh might then also consist
of several million simplices.

By instead using overlapping meshes, costly remeshing may be avoided al-
together. To apply this concept, the object is first removed from the solution
domain. A background mesh is then generated in the empty solution domain,
and an overlapping mesh is generated around the object. The mesh encapsu-
lated object is reintroduced into the solution domain, where it can then move
around freely on top of the background mesh. This procedure for the rotating
propeller example is shown in Figure Using overlapping meshes transfers
the issue of dealing with the object’s movement from the object boundary to
the joint boundary between the meshes. This is where CutFEM and Nitsche’s
method come in which is demonstrated in the next section.

Figure 3: 2D example of how overlapping meshes can be used to avoid remesh-
ing for problems with moving objects in the solution domain. The moving
object is again the rotating propeller. Left: The propeller is removed from the
solution domain and encapsulated in an overlapping mesh with red triangles.
The remaining solution domain is triangulated to form a background mesh with
blue triangles. Middle: The mesh encapsulated propeller is reintroduced on top
of the background mesh. Right: The overlapping mesh with the propeller is
rotated on top of the background mesh.

2.5 A cut finite element method on overlapping meshes

Here we derive and present a cut finite element method on overlapping meshes.
This was first done by for an elliptic model problem, which we will also
consider. For simplicity and focus on the concept itself, we will not consider a
problem with an object. Thus, the overlapping mesh will be empty as opposed
to the introductory example. For the same reasons, we will also let the overlap-
ping mesh be fully immersed in the background mesh, i.e., it does not protrude
outside the solution domain.

11



Problem formulation
For d = 1,2, or 3, let Qy C R? and G C Qy C R? be bounded domains with
polygonal boundaries 09y and 0G, respectively. From Qy and G, we define the
following two domains:

Ql = Qo \ (G U 8G), QQ = QO N G, (229)

with boundaries 921 and 905, respectively. Let the common boundary between
Q4 and €5 be
= 691 N 892, (230)

Note that we have the partition
Qo= UTUQs. (2.31)
We will use the jump and average of a function v on the interface I', defined by

[v] :=v1 — va, (2.32)
(V) := wyv1 + wavg, (2.33)

where v; denotes the ;-limit of v on I'; and where the w;’s are convex weights.
We also denote the outward pointing unit normal vector to 9€2; by n;. We
consider Poisson’s equation on )y with given source function f € L?() and
for simplicity homogeneous Dirichlet boundary conditions. We also assume that
the derivative of the solution in the normal direction to I' is continuous. The
problem is: Find u € H?(Qp) such that

—Au = f in Q(),
u=0 on 09y, (2.34)
[Opu] =0 onT.

where [Opu] =n - (Vu); —n - (Vu)z, where n can be either n; or ns.

Nitsche’s method for interfaces
To perform Step 1 in the FEM-pipeline with the coming overlapping meshes in
mind, we define the broken Sobolev space

Hi(Q1,92) = {v € L*(Q) : v|q, € H'(Q), for i =1,2,v|pq, =0}. (2.35)

Another equivalent notation for this space is H3 (U;Q;). Taking v € Hg(Q1,Q2),
and following the instructions of Step 1 gives

—Auwvdz = fvdaz. (2.36)
Qo QO

12



When partially integrating the left-hand side, we need to consider the partition
(2.31)) since we do not have H!-regularity of v on the whole of Q. Thus

2
—Auvdz = / —Auvdz
x/Qo ; Q,,

) (2.37)

= Z (/ Vu-Vodr — / (Onu);v; ds).
| Q o
We consider the boundary terms separately. They are
2 2 2
(Onu)iv;ds = / (Onu);v;ds + /(anu)ivi ds
=0, since v|3QO =0

= / ny - (Vu)1v1 + ng - (Vu)avg ds

r

(2.38)

o / n- (Vu)ivn —n- (Vu)avads = /[anuv] ds
r r

3th / (0] (v) + @uu) o] + (w2 — w1) [Dnu][v] ds
N~~~ hnred

- [@aplas,

where we have taken m = ny, and thus get no = —n, in the third step. In
the fifth step we have used a jump identity, which is easily shown to hold by

evaluating both sides. Combining (2.37)) and (2.38)), turns (2.36)) into

2

> (Vu, Voo, — ((0nw), [W])r = (f,v)a,- (2.39)

i=1

The second term on the left-hand side is the corresponding Nitsche consistency
term. For the same reasons as before, we add corresponding symmetry and
coercivity terms, and then formulate the continuous variational problem: Find
u € H(Q1,9Q2) such that

2

> (Vu, Voo, = ((Bnu), [W])r = ((9p0), [u])r + 7 ([ul, [v])r

i=1

= (f,v)a,, Vo€ Hi(Q,Q0).

(2.40)
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Discrete spaces for overlapping meshes
We continue by letting 7g and 7o be meshes of Qg and G, respectively. We
define the corresponding standard finite element spaces by

Vio = {veC(Q) :v|x € PP(K),VK € To,v|s0, = 0}, (2.41)
Vhg:={veC(G):v|kg € PP(K),VK € Tg}. (2.42)
Using these spaces we define the broken discrete space Vj, C Hg(Q1,2) by

Vi, :={v 1 v]q, = vola,, for some vy € V}, o and (2.43)

U|Qz = ’UG‘Q27 for some vg € Vhyg}. '
Functions in V}, are allowed to be discontinuous on the interface I' between the
two meshes; see Figure On the overlapping mesh, there are two function
parts: one from the overlapping mesh space V}, ¢, and one from the background

mesh space Vj, 0.

Figure 4: Example of a v € V}, for p = 1. The background mesh 7g is shown in
blue and the overlapping mesh 7T in red.

Overlap stability term
Just as in the previously presented CutFEM on a fictitious domain, we include
the mesh size parameter in the penalty parameter of the coercivity term. Here
we take it to be hg,, where Ky € 7p. But this is not enough for the corre-
sponding discrete bilinear form to be coercive on V},. There are various ways to
ensure discrete coercivity. Here, we will add a stability term for the so called
overlap domain. To define it, we will use the set of simplices

Tor ={K e€To: KNI # 0}, (2.44)
which is all simplices in 7 that are cut by I'. We define the overlap domain Qo
by

Q= (J KN (2.45)
KeTo,r
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We want the overlap stability term to connect the function parts from the two
meshes and penalize the difference. It is thus natural to consider the jump on
the overlap [v] := v; — vy, where vy is the function part from the background
mesh and v, the function part from the overlapping mesh. It is also natural to
let a new stability term be symmetric, so that its inclusion does not ruin the
symmetry of the bilinear form. Another aspect to consider is discrete dimen-
sional analysis, i.e., to examine the power of the mesh size parameter h (length)
in each term. With integrals over subsets of codimension k having discrete unit
[R9=*], and derivatives of order | having discrete unit [h~!], performing a dis-
crete dimensional analysis on one of the bulk terms on the left-hand side of
(2.40) gives

(Vu, Vv)g, = /Q_vu-wclev (hd] - [R71] - [hY = [h472). (2.46)

Performing this analysis on every term on the left-hand side of gives the
same answer: [h?72]. Typically we want all the terms in the bilinear form to
have the same unit. Since fQo dx ~ [h?] and by taking the other points into
consideration as well, two natural choices for the overlap stability term are:

([Vw], [vv])Qo and (h;{z [w}v [v])ﬂo . (2‘47)

The latter term has the advantage of not vanishing if both function parts are
constant. Therefore it is often preferred in implementations. The former might
be more natural from an analysis viewpoint. But that does not really matter
since one may easily obtain the latter from the former via an inverse estimate
on discrete spaces.

Finite element formulation
We define the mesh-dependent bilinear form Aj, on H'(Qy,Qs) by

2

Ap(w,v) =Y (Vw, Vo)a, = ({Buw), [o))r = ((9nv), [w])r

i=1
+ (yhi [wl, [W)r + ([Vul, [Vo])a, -

(2.48)

The right-hand side linear form is just the same as in the standard finite element
formulation. Thus

L(v) == (f, V)0, (2.49)

where (-, +)q, is the L?(Qg)-inner product. We may now formulate the overlap-
ping mesh cut finite element method as: Find wy, € V}, such that

Ap(up,v) =1(v), Yve V. (2.50)
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3 Analysis

Analysis of finite element methods is needed to verify that they produce “good”
approximate solutions. For books on the analysis of finite element methods,
see for example [20] for an introductory book and [21] for a more advanced
book. Existence and uniqueness of a finite element solution is usually established
via the application of the Lax-Milgram theorem to the continuous variational
problem. The main components of an analysis of a finite element method are
usually stability analysis and error analysis, and that is what we will focus on
in this section. For theory about existence and uniqueness, we refer to the
aforementioned books for details

In the stability analysis, the finite element solution is estimated in terms
of problem data. For elliptic problems this means the right-hand side source
function, and for time-dependent problems this includes the initial value as well.
This is to make sure that the finite element solution depends continuously on
the problem data. A small change in the problem data should result in a small
change of the solution. This is in accordance with Hadamard’s definition of a
well-posed problem: a solution should exist, it should be unique, and it should
depend continuously on the problem data.

In the error analysis, the approximation error is estimated. The approx-
imation error is the difference between the analytic solution to the original
PDE-problem and the discrete finite element solution. It is reasonable to as-
sume that if a finer discretization is used, then a good discrete solution should
be a better approximation to the analytic solution. The approximation error
may be estimated in various norms. Two of the most common norms to use are
an energy norm, which is a norm related to the bilinear form, and the standard
L%-norm. Depending on what norm is used, we will refer to the analysis as
either an energy analysis or an L?-analysis. The approximation error is esti-
mated either in terms of the analytic solution or the finite element solution. An
estimate of the former type is called an a priori error estimate and one of the
latter type an a posteriori error estimate. Here we will only consider a priori
error estimates.

The intended purpose of this section is to build up to, motivate, and sum-
marize the analyses performed on the time-dependent CutFEMs on overlapping
meshes in Paper I and Paper II. In both papers we consider a time-dependent
parabolic model problem on two overlapping meshes, where the overlapping
mesh is allowed to move around. The difference between the two papers is how
we choose to represent the mesh movement discretely. In Paper I, we let its
spatial location be a continuous and piecewise linear function with respect to
time. We thus call this a ¢G(1) mesh movement, where ¢G(1) naturally stands
for continuous Galerkin of order 1. In Paper II, we let its spatial location be
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a discontinuous and piecewise constant function with respect to time. We thus
call this a dG(0) mesh movement, where dG(0) naturally stands for discontin-
uous Galerkin of order 0. These two different mesh movements result in two
different space-time discretizations; see Figure

UL

o 0.1 02 03 0.4 05 0.6 0.7 0.8 0.9 1 o 0.1 02 03 0.4 05 0.6 0.7 0.8 0.9 1

x

0

Figure 5:  Space-time discretization for two overlapping meshes for
d = 1 where the overlapping mesh moves around. Left: ¢G(1) mesh move-
ment, studied in Paper I. Right: dG(0) mesh movement, studied in Paper II

In Paper I, we perform an energy analysis, and in Paper II, an L?-analysis.
We therefore go through the basic ideas for such analyses of parabolic problems
for standard FEM in order to motivate and understand the analyses in Paper I
and II. But we start even lighter by considering the analysis of an elliptic model
problem. We do this because many core ideas are similar or even the same. To
elucidate the similarities, each of the upcoming analysis sections contains the
following parts:

1. Problem formulation: the finite element method is presented.

2. Energy norm(s): energy norms are derived from the bilinear form together
with corresponding coercivity results.

3. Stability analysis: stability estimates are presented.

4. Energy error analysis: energy error estimates are derived from Céa’s
lemma type arguments.

5. L?-error analysis: L?-error estimates are derived using a dual problem.
For elliptic cases the corresponding energy error estimate is also used. For
parabolic cases the stability estimates are used instead.
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3.1 Elliptic problem: standard case

Problem formulation
Recall the elliptic model problem ([2.1)). The corresponding finite element for-
mulation was: Find u; € V}, such that

a(up,v) =1(v), Yv € VW, (3.1)

where Vj, was defined by (2.8), a(w,v) = (Vw, Vv)q, and I(v) = (f,v)o. We
will perform the standard energy analysis and L?-analysis on . For both
elliptic and parabolic problems, the L2-analysis is based on estimates from the
energy analysis. We will therefore start by deriving energy estimates.

Energy norm
For an energy analysis, we need an energy norm, i.e., a norm that comes from
the bilinear form. A good starting point to obtain an energy norm is to take
the same function as both arguments of the bilinear form. Doing this with our
a gives
a(v,v) = (Vo, Voo = [[Volg, (3.2)

where || - || is the standard L?(Q2)-norm. In general |V{-}||q is only a semi-
norm, i.e., ||[Vo|q = 0,% v = 0, but on H}(Q) it is a norm that is equivalent to
the full Sobolev 1-norm via the Poincaré inequality. Since Vi, C H}(2), ||[V{-}||la
is the natural energy norm for the case at hand. We henceforth denote it by
Il lla. From we have the trivial coercivity:

a(v,v) = |[v||?, Vv e H} Q). (3.3)

Stability analysis
As already mentioned, the objective of a stability analysis is to obtain estimates
of the solution in terms of the data. This is done by testing with various
functions in the finite element formulation. The basic stability estimate for
both elliptic and parabolic problems is obtained by taking v = wj in the finite
element formulation. Doing this in gives

a(up,up) = Uup). (3.4)

For the left-hand side we generally need coercivity, i.e., 3o > 0 : a(v,v) > a|jv||?
for all v in some space V. In our case we have this trivially for the whole of
HY(Q), since a(v,v) = ||v]|2. Thus a(up,up) = ||un|?. The right-hand side is
estimated by the Cauchy—Schwarz inequality and the Poincaré inequality as

Wun) = (fun)a < fllallunlle < ClifllallVurllo = Clflallunlla- (3.5)
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Using the coercivity and (3.5)) in (3.4), we get

lunllZ = a(un, un) = l(un) < C|lfllallunlla,

(3.6)
= lunlla < Cllflle;

which is the basic energy stability estimate. Using the Poincaré inequality and

(3.6) we get

[unlle < Cllunlla < Clflla,

(3.7)
= |lunlla < Cflla;

which is the basic L2-stability estimate. We point out that the constant C' > 0
changes in the above estimates, but since we do not really care about it more
than that it is in fact some positive constant, we just keep it as C' in accordance
with standard practice. This concludes our stability analysis of .

Energy error analysis
We move on to the energy error analysis of in which we will estimate the
approximation error in the energy norm. We let u denote the analytic solution
of . For the derivation of the energy error estimate, we follow the proof of
Céa’s lemma and use an interpolation error estimate. The steps are:

1. Coercivity of a: Ja > 0: a(v,v) > a[v||?, Vv in some space V.

2. Galerkin orthogonality: a(u — up,v) = 0,Vv € Vj,.

3. Continuity of a: 3C > 0 : a(w,v) < Cllw|v||v|lv, Vw, v in some space V.
4. Optimal interpolation error estimate in the energy norm.

For our case, we have coercivity on the whole of HZ () from |[v]|2 = a(v,v).
Galerkin orhogonality comes from consistency, i.e., the analytic solution also
solves the finite element equation. To see this, we plug u into the left-hand side
of and integrate by parts. We get

a(u,v) = (Vu, Vo)g = (;A/_’Lﬁ,’l})g + (Onu,v)oq = (f,v)a = 1(v), (3.8)
=f =0,v|90=0

which of course holds for all v € V},. We thus have

a(up,v) =1v), Yv eV, (3.9
a(u,v) =1(v), Yv €V, (3.10)
= a(u—up,v) =0, Y€V, (3.11
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which is the Galerkin orthogonality. Continuity on H{(£2) also follows easily
from the Cauchy—Schwarz inequality:

a(w,v) = (Vw, Vo)o < [[Vwlal|Vella = [[wlal|v]la- (3.12)

Combining the coercivity, Galerkin orthogonality, and the continuity gives Céa’s
lemma. Letting e = u — up, we have

L. 2. 3
lellc = a(e,e) = ale,u —un) = ale,u—v) < leflallu = vl (543
= Jlu—uplle < |lu—20le, Y€V,

where we have written out the steps taken in reference to the steps defined
above. This means that wj, is the best approximation in V}, to u in the a-sense.
Now consider an interpolation operator Ij that maps to V} and that also gives
optimal interpolation error estimates for sufficiently smooth functions, e.g., the
Scott-Zhang interpolation operator. This means that

lu— Lulla < CHP| D2 ulg, (3.14)

for some constant C' > 0, where h is the largest diameter of a simplex in the
underlying mesh to V},, and p is the maximal polynomial degree in V},. Since
Ihu € Vi, we may use it in according to the fourth and final step. We
thus obtain the optimal order a priori energy error estimate

lu = unlla < CHP|DZ uo. (3.15)

L?-error analysis
For the derivation of the L?-error estimate, we use the Aubin-Nitsche duality
trick. The steps are:

1. Continuous dual problem: the error is the right-hand side data.

2. Integration by parts: go from L2-inner product to bilinear form a.
3. Galerkin orthogonality: subtract an interpolant of ¢.

4. Continuity of a: a(w,v) < Cllwla||v] a-

5. Optimal interpolation error estimate for ¢-factor.

6. Elliptic regularity: get back e in L?-norm for cancellation.

7. Optimal energy error estimate for e-factor.
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We start by defining the continuous dual problem with the approximation error
e as data: Find ¢ € H%() such that

{Aqﬁ e in Q,

¢=0 on 0. (3.16)

Following the above steps, where we write out each step taken, we get
lell?, = (e.e)a = (~Ad,e)a = (Vé, Ve)a — (9ués€)on
= 0(6,€) £ a0~ lp=16,0) < 6~ Dnpmrllalela (317
< ChID26allella < CHlIAdlallell = Chllellalle]a

where we have used that e|spg = 0. Cancelling a factor |le|lq on both sides,
performing the seventh and final step, i.e., using the energy error estimate
(3.15), gives us the optimal order a priori L?-error estimate

lu—unllo < CAPHHDE ullo. (3.18)

3.2 Elliptic problem: overlapping meshes

The analysis of CutFEM for elliptic problems on overlapping meshes is quite
similar to the standard elliptic analysis. The greatest difference is that the bilin-
ear form Aj; does not induce an energy norm in the same way as a. This means
that coercivity does not follow as easily as in the standard case presented in
the previous section. Coercivity is used to obtain the energy estimates for both
stability and error, which are subsequently used to obtain the corresponding
L2-estimates. Coercivity is thus the key to the whole analysis, but its impor-
tance may pass by rather unnoticed in the standard case since it appears so
naturally. In this analysis however, coercivity will have a more prominent role.

Problem formulation
Recall the elliptic model problem ([2.34)). The corresponding finite element for-
mulation was: Find uy € V}, such that

Ap(up,v) =1(v), YveVp, (3.19)

where Vj, was defined by (2.43). The bilinear form Aj, on H'(y,s), defined
by (2.48), is

2
Ap(w,0) =) (Vw, Vo)a, = ((9nw), [v])r — (9av), [w])r

i=1
(vh [wl, Whr + ([Vw], [Vo])a, -

(3.20)

+
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The linear form [ is just as in the standard case, i.e., I(v) = (f,v)q,

Energy norm
Following the general analysis outline, we start with the energy analysis, for
which we need an energy norm. Since we obtained such a norm in the standard
case by taking the same function as both arguments of the bilinear form, we
start by doing the same here. We get

0) = 3" IVollh, = 2(@n0), b +lag Rl + (90l (:2)

where all terms, except the second, are good since they are non-negative whereas
the second term may be negative. This is a problem since Ay (v,v) may be
negative for some functions v and thus cannot be a norm. To fix this, we note
that the second factor in the problematic term is the same as we have in the
third term except the h[}l—factor. The idea is thus to split the second term,
using the Cauchy—Schwarz inequality and Young’s inequality, and combine its
second factor with the third term. To do this, we define the mesh-dependent
norms

[l e =D hgpllwlf, (3.22)
KeTo,r

w21 jonr = > ProllwllE,s (3.23)
KeTo,r

where 'k = K NT'. The second term may now be split as
2((Onv), [W)r < 2[(0nv)—1/2,n,rll[V]]l1/2,n.0
1 (3.24)
< g‘|<anv>||2—1/2,h,1‘ +ell[ollIF /2 n,r-

We refer to the analytic preliminaries of either Paper I or Paper II for details
on this and upcoming estimates. Using (3.24) in (3.21)), we get

ZHVUHQ |<6 U>H—1/2hr

+( = IR j2nr + NV,

where the third term is good as long as v > ¢, but where something needs to
be done about the non-positive second term. To treat it, we use the inverse
inequality

(3.25)

1@ty < ( +||[W1||QO) weVh  (3.26)

i=1
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It is important to note that this inequality only holds for discrete functions.
This is because an inverse estimate for polynomials is needed to show it. We
refer to the appendix of either Paper I or Paper II for details. Using (3.26) in

(13.25), we get for v € V}, that

An(v,0) > (1— ) va I, + 1B 1

Ll + (1— QC)HWHQO

, (3.27)

ZQ(ZIW%ﬁlK 0,0} 1

T [wmo)

where o > 0 is obtained by taking e sufficiently large, v > ¢, and the minimum
over the constants. From this, we define the energy norm [||-[|| 5, on H (21, Q)
by

llwlly, = ZIIVwIIQ O[22 r + 1Wl1T 2 r + [[VllG, - (328)

1=1

From (3.27) we directly obtain the discrete coercivity: 3a > 0 such that
Ap(v,v) > a|lvll%, , Vv € Vi (3.29)

In the standard case we had coercivity on the whole space of the energy norm,
i.e., H}(Q2). Here we only get coercivity on the discrete space Vi, C Hg (Q1,Q2),
since we have to use an inverse inequality that only holds on V} to handle the
consistency and symmetry terms in Ap.

Stability analysis
The stability analysis is analogous to the standard case with only two natural
modifications to account for the CutFEM setting: the discrete coercivity ,
and the energy Poincaré inequality on Hg (21, 2)

[vllay < Clvlllg, - (3.30)

We refer to the appendix of Paper I for details. Following the standard case,
we take v = wuy, in the finite element equation, and thus get

Ap(un,un) = (up). (3.31)
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The left-hand side is A(up,up) > « |||uh|||124h from the discrete coercivity. The
right-hand side is estimated by the Cauchy—Schwarz inequality and the energy
Poincaré inequality as

Wun) = (f,un)a, < [Ifllaollunlley < Cllfllao lualla, - (3.32)

Combining this with the left-hand side, just as in the standard case, we get the
basic energy stability estimate

llunlla, < Cllflley- (3.33)

Using the energy Poincaré inequality and (3.33)), just as in the standard case,
we get the basic L2-stability estimate

lunlla, < Cllfllao- (3.34)

This concludes our stability analysis of (3.19).

Energy error analysis
The effect of only having discrete coercivity is mostly prominent in the energy
error analysis. We let u denote the analytic solution of . We start by
checking the points needed for the energy analysis of the standard case. Co-
ercivity is already established, although only discrete. Galerkin orthogonality
follows from consistency just as in the standard case. Plugging u into the bilin-
ear form Ay gives

An(u,0) = (=Au,v)g, = (f,v)q, = L(v), Vo€ Vi, (3.35)

which is consistency. We refer to the appendix of Paper II for details on the
integration by parts. We thus obtain the Galerkin orthogonality

Ap(u —up,v) =0, Yo €V, (3.36)

Continuity of A, on (Hg (€4, Q2), Nl 4, ) is straighforward so we omit the proof.
Writing the approximation error e = u — up, we would like to follow the proof
of Céa’s lemma by considering |||e|||?4h and using coercivity to go to Ap. But
since e ¢ V},, from u ¢ V},, we cannot use our discrete coercivity. The remedy
is an error split. We again consider an interpolation operator I; that maps
to Vp, and that also gives optimal interpolation error estimates for sufficiently
smooth functions, e.g., a composite Scott-Zhang interpolation operator; see the
appendix of Paper II for details. This means that

llu— Tull,, < Ch? D2 ullg (3.37)
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We use the interpolant I,u to split the approximation error e into an interpo-
lation error p and a discrete error 6 by

e=u—up=(u—Ihu)+ (Ipu—u) = p+0. (3.38)
The energy norm of the error is thus

lellla, < llella, + 1014, (3.39)

where we focus on the f-part since the p-part is handled by the interpolation
estimate (3.37)). Since 6 € V},, we may use the discrete coercivity, but first we
note that from the Galerkin orthogonality, we have

0=An(e,0) = An(p+6,0),
— An(6,0) = Ap(—p.0).

Following the proof of Céa’s lemma using our tools, i.e., the discrete coercivity,
the Galerkin orthogonality result (3.40]), and the continuity of Aj, we get

2 - _
011, < a™"A4n(0,6) = o™ An(=p,0) < Cllplll 4, 161l 4, -
= I0llla, < Clliellla, -
Using this estimate in (3.39)) gives

llellla, < llella, + 1014, < Clilolla, - (3.42)

From this, by using the interpolation estimate (3.37)), we obtain the optimal
order a priori energy error estimate

llw = unll4, < ChP|[DEF ullg,. (3.43)

(3.40)

(3.41)

L2%-error analysis
The L2-error estimate is derived as in the standard case by using the Aubin-
Nitsche duality trick with some natural modifications to account for the Cut-
FEM setting. We consider the continuous dual problem with the approximation
error e as data: Find ¢ € H?()) such that

—A¢p=-e in Qp,
¢ =0 on 08, (3.44)
[On®] =0 onT.

Following the same steps as in (3.17)) with natural modifications for our case (see
the proof of the estimates of the Ritz projection error in Paper II), and using
the energy error estimate (3.43) gives us the optimal order a priori L2-error
estimate

u—up|lq, < ChPTY|DPTu||q, . 3.45
0 x 0

This concludes our error analysis of (3.19)).
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3.3 Parabolic problem: standard case

Parabolic model problem
As our parabolic model problem, we extend the Poisson problem (2.1 to time.
Let T > 0 be a given final time. We consider the heat equation in the space-
time prism § x (0, T] with given source function f € L?((0,T], ), homogeneous
Dirichlet boundary conditions and initial data ug € H?(Q2). The problem is:
Find u € H((0,T], L*(2)) N L2((0,T], H?(Q2)) such that

t—Au=jf inQx(0,7T],
u=0 on 0N x (0,7, (3.46)
u=1up inQx{0}.

To obtain a corresponding finite element formulation, there are a number of
different ways to include time. The most common is probably to consider a spa-
tially semidiscrete problem with FEM in space, and then use a finite difference
(FD) scheme to discretize time, e.g., the backward Euler method. Another way
is to create a d+ 1-dimensional finite element mesh of the whole prism Qx (0,77,
and use a space-time finite element formulation. We will consider neither but
use ideas from both. In a typical application of overlapping meshes, the meshes
are purely spatial discretizations, meaning that the second option is out. The
time interval would be discretized separately into subintervals, just as in the first
option. But depending on how the meshes move around, the standard discrete
space-time product structure might be ruined. This structure is needed for a
finite difference scheme, meaning that the first option is also out. The most
natural choice for overlapping meshes is instead a mix between the two: using
prismatic space-time cells as in the first option, but a space-time formulation as
in the second. Also due to the mesh movement, the natural choice for time is to
use a discontinuous Galerkin (dG) method. Space is handled as in the elliptic
case which is with a continuous Galerkin (cG) method. The resulting method
is therefore sometimes referred to as dG(q)cG(p), where ¢ and p are the degrees
of the piecewise polynomials used in time and space, respectively. We point
out that the dG(¢q)cG(p)-method and the first option can coincide, e.g., dG(0)
is the same scheme as backward Euler, but that the space-time formulation of
dG(q)cG(p) makes it the preferred method for overlapping meshes.

Problem formulation
To formulate a corresponding dG(q)cG(p)-method for our parabolic model prob-
lem , we need a discrete space, and for that discretizations of time and
space. We partition the time interval (0,7] into N subintervals I, = (tn—1,tn]
of length k,, =t, —t,_1, where 0 =t) <t1 < ... <ty =Tandn=1,...,N.
Let T be a finite element mesh of Q. We denote by V;(t) the corresponding

27



finite element space defined by (2.8)), i.e., the discrete space for the standard
elliptic case. We define the dG(q)cG(p) space V}, by

Vi :={v:v(,t) € Vu(t),Vt € [0,T], and v(z,-)|1, € PI(I,),Vz € Q}. (3.47)

The dG(q)cG(p) space-time finite element formulation corresponding to (3.46))
is: Find up, € V}, such that

-

T
=/ (fyv)adt, Yve V.
0

[ Ginvda+ ofun, vyt + <[uh]n1,v:_1>g)
In (3.48)

Here a(w,v) = (Vw, Vv)q and the time-jump [v],, = vt —v 7, i.e., the difference
between the limits from above and below at time ¢,. We take u, , = Prug,

where P, is the standard L?(Q)-projection operator and ug is the initial data
in (3.46). We define the non-symmetric bilinear form By, by

Z(/ W, v)q + a(w, v)dt>

e (3.49)
Z TL? n Q+(+U(—)i_)9'

With B;, we may write (3.48]) more concisely as: Find uj, € V}, such that

B(un,v) = / (Fr)adt + (uo,vd)a, Vo € Vi, (3.50)

Energy norms
Because of the non-symmetric temporal contribution in Bj,, we will need more
than one energy norm. We start with the usual trick of taking the same function
as both arguments.

N-—
(v,v) Z (/ (0,v)q + |Jv]|? dt) Z Vn, 0 )0 + lod |13, (3.51)

where the time-derivative terms and the time-jump terms need treatment since
they can be negative. By integrating the time-derivative term, we get

/I (6, v)q dt = / SOdolBdr = Slon 3 - SheidlR (3.52)

n
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From (a — b)? = a? — 2ab + b2, the time-jump terms are

(e, )0 = 5 llh — 5l I3 + 5 o I3 (353)

Using (3.52)) and (3.53) in (3.51) gives a telescoping sum, which leaves us with

1,
(v,0) Z/ Joll2 dt + Z Io)nlie + Sllonlé + 5 g3 (354)

We thus define the space-time energy norm [||-[|| 5, on L*([0,T], H5(Q)) by

N N-1
2 _
lloll, = Z/} lollz dt+ > Ilalld + llonlld + llvg 13- (3.55)
n=1 n n=1

From the preceding treatment of By (v,v), we immediately obtain the coercivity:
3B > 0 such that

Bi(v,v) > Blvllg, . Vv € H' (Unln, L2(Q) N LA([0,T), H3 (). (3.56)

Note that this coercivity does not hold on the whole space of the energy norm
Il 5, » but that it definitely holds on the discrete space V},. This is so since
we need extra temporal regularity for the left-hand side to be well-defined.
However, this coercivity is not enough for an energy analysis.

With the proof of Céa’s lemma in mind, we need something more than the
[Ill 5, -coercivity, since [||-|[| 5, does not include the time derivative. We therefore
need to consider other space-time energy norms. A common way to include the
time derivative in an energy norm is to use the H ~'-norm; see, e.g., [22] for
a good summary of energy methods for parabolic problems. The H !-norm is
the norm of the dual space to H}. For situations such as the current, this norm
is often defined with the help of the solution operator T (not to be confused
with final time T") to the corresponding elliptic problem; see, e.g., [23]. We thus
define T : L?(Q2) — H?(Q) N H () by

w="TF. (3.57)
This means that T = (—A)~!. For w € L*(Q) and v € H}(Q), we have

(w,v)q = (AT w,v)q = (VTw,Vv)g — (0p,Tw,v)sq = a(Tw,v).  (3.58)
1 y
= =0,v|90=0

We define the H~1(Q)-norm for a function v € L%(Q2) by

0] = (v, Tv)q. (3.59)
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This norm figures in the following useful isometry and inequality:

Jwl| -1 = |Twl]la, Yw e L*(€), (3.60)
(w,v)q < [[w]|_1][v]la, Yw € L*(Q) and Yo € Hy (). (3.61)

The isometry (3.60) is shown by using the norm definition and . The
inequality hown by using and the isometry.

To put the spotlight on the approach of using the H~!'-norm of the time
derivative, we will use a reconstruction. We let -° denote the interior of a
set, thus I = (t,—1,t,). For simplicity, we define the reconstruction w €
C([0,T)) N PITY(U,I2) of a function w by w(0) = 0 and

N N N-1
Z/ wodt = Z/ wudt + Z [w],vt +wdvd, Yo e PUULIL). (3.62)
n=1"71In n=1"1In n=1

Meaning that w is a continuous piecewise polynomial of degree g + 1, defined
by testing against discontinuous piecewise polynomials of degree q. The extra
degree of freedom in polynomial degree (¢ + 1) is payed for by giving up the
degree of freedom in discontinuity at ¢,,_1.

With the reconstruction and the H ~!-norm, we define two space-time energy
norms by

N
2
ol =3 / ol2 dt, (3.63)
n=1""'n

N
ol == Z/I 9112 1 dt + []lI5 - (3.64)
n=1 n

Note that [[v[ly < [[v]llx and [[v[ly> < [lvllg,- The X-norm is the main
space-time energy norm and the Y-norm is an auxiliary norm.

These energy norms may be used to obtain an inf-sup condition that can be
used in place of a coercivity in a Céa’s lemma type energy argument. To derive
this inf-sup condition, two estimates are needed. The first one is a perturbed
coercivity on V}, and the second is a boundedness result. Letting P, be the
L?(Q)-projection to V3 (t), we note that P,Tv € Vj, for v € V3. The discrete
perturbed coercivity is: 39, > 0 such that

Bu(v,v 4+ 6P, T0) > € ||o]| %, Vv € V. (3.65)
The second estimate is: IC > 0 such that

]HPhTﬁ\HY <Cllvlly, Yo € V. (3.66)
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We omit the proofs of these estimates since they are a bit too technical for the
purpose of this section. For details, we instead refer to literature and the proof
of the discrete perturbed coercivity in Paper I. One thing we point out though is
that H'-stability of P, is essential to obtain these estimates, i.e., boundedness

of P, in the spatial energy norm | - ||,. Using (3.65) and (3.66), we have for
v € V3, \ {0} that

Bp(v,v+ 6PhT5

€0l < Ba(v,v+ 6P, T) = ) IJo+ spuri|

[+ om7]|
By ( 5P, T%) i (3:67)
(v, v+ 01V
<C i vlllx -
[+ omr]|
Y
From this we may obtain the discrete inf-sup condition
B
lollx <€ sup 200 gy ey, (3.68)

veVp\{0} |||v|||Y

Stability analysis
For elliptic problems, the stability and error analyses were not really connected.
One could do the one without the other. This is also the case for the energy anal-
ysis of parabolic problems. However, for the L2-analysis of parabolic problems,
the stability analysis is crucial. This is because stability estimates of a dual
problem are needed; see, e.g., [24,25] or the stability analysis in Paper II. The
right-hand side in this dual problem is zero. Therefore, we will only consider
stability estimates with f = 0 here. We present three stability estimates.

Just as in the previous cases, we obtain the basic stability estimate by taking
v = uy, in the finite element formulation. Doing this in with f =0, using
the [[-[|| 5, -coercivity, and the definition of [[|-||| 5, , we get

Blllunllls, < Bu(un,un) = (uo,ufg)e < luolle lunllg, - (3.69)

From this we obtain the corresponding basic stability estimate

N N—-1
Z/I lunlls dt+ >~ Nunlalldy + llug w13 + lui ol < Clluollg- — (3.70)
n=1%""n n=1

One may also use the perturbed coercivity in the same way to obtain a
stability estimate for uj in the X-norm; see the stability analysis of Paper I for
details.

We move on to the remaining two stability estimates. We omit the proofs
of these estimates since they are a bit too technical for the purpose of this
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section. For details, we instead refer to [24[25] or the stability analysis in
Paper II. Recall that we denote the spatial discrete space by Vj,(¢), i.e., for
v € Vi, v(-,t) € Vip(t) for all t € [0,7]. We consider the discrete Laplacian
Ay HH(Q) — Vi (t), defined by

(—Apw,v)q = a(w,v), Yv € V(). (3.71)

By testing with —Apup, then (¢ —t,_1)tp, and finally [up],—1, we obtain three
intermediate estimates. Using these three estimates and the basic stability
estimate (3.70)), we may obtain the strong stability estimate

N N

. tn
Ztn/ Huhué+||Ahuh||?2dt+Zkfn[uh]nflnéscuuoua. (3.72)
n=1 n=2 "

n

The strong stability estimate is used to obtain the main stability estimate

N N
||u;7NHQ+Z/I linlle + [Anunllodt + > lfunln-1lle < Cilluolla, (3.73)
n=1 n

n=1

where C; = C(log(tx/k1) + 1)Y/? and C > 0. Tt is the corresponding main
stability estimate for the discrete dual problem that is crucial to the L2-error
analysis.

Energy error analysis
Here we derive an energy error estimate in our main space-time energy norm
Il - Again recall the three ingredients for the proof of Céa’s lemma: coerciv-
ity, Galerkin orthogonality, and continuity.

Due to the non-symmetric temporal terms in the bilinear form, we have
instead of coercivity, the discrete inf-sup condition . In the elliptic Cut-
FEM case, we saw that when the coercivity was only discrete, an error split
was needed. This is needed here as well, since the inf-sup condition is discrete.
Letting - denote something related to space-time, we introduce a space-time
interpolation operator I, that maps to V}, and that has optimal interpolation
properties. For a function v with sufficient regularity we thus assume that we
have the interpolation error estimate

v = Tnv||| x < CKITV2F(v) + ChP By (v), (3.74)

where k and h are the largest time step and simplex diameter, respectively.
Fy(v) and Fp(v) are expressions involving derivatives of the function v with
respect to space and time; see, e.g., the appendix of Paper I for details on space-
time interpolation. We use the interpolant Iju to split the approximation error
e into an interpolation error p and a discrete error 6 by

e=u—up = (u—Ipu) + (Ihu—up) = p+0. (3.75)
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For the Galerkin orthogonality, we plug the analytic solution u into Bj,.
Using that [u], = 0 from its regularity, and integrating by parts in space we
obtain consistency just as in the previous cases. This gives us the Galerkin
orthogonality

B (u — up,v) =0, Yv eV (3.76)

Recall from the elliptic CutFEM case that a twist on the Galerkin orthogonality
was needed when working with the discrete error. Since we do that here as well,
from using the discrete inf-sup condition, we do the following: For v € V},, we
have

0 = Bp(e,v) = Br(p + 0,v),

= Bh(evv) = Bh(*ﬂ, ’U). (377)

Continuity follows naturally with the X- and Y-norms. By using the recon-
struction, the H!-norm, and standard estimates, we get: 3C > 0 such that
for any functions w and v with sufficient regularity we have that

Bi(w,v) < Clwllx lv]ly - (3.78)

We thus have the three required ingredients for a Céa’s lemma type energy
argument. The energy norm of the error is

llelllx < Mllelllx + 161l » (3.79)

where we focus on the -part since the p-part is handled by the interpolation
estimate . Since 0 € V}, we follow the proof of Céa’s lemma using our
tools, i.e., the discrete inf-sup condition , the Galerkin orthogonality result
(3.77), and the continuity of Bj,. We thus get

By (0,v Bp(—p,v
oy <c swp 280 _ o gy, BeCrv)
vevinfor llvllly vevinfor  lIvllly
il el (380)
<C sup XY = Cliplll -
vevi{oy  llvllly
Using this estimate in (3.79) gives
llelllx < lllellx + Molllx < Cllelly - (3.81)

From which, by using the interpolation estimate (3.74)), we obtain the optimal
order a priori energy error estimate

1w —unlll x < CEITY2Fy(u) + ChPFy(u). (3.82)
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L2-error analysis

The L2-error analysis for parabolic problems is heavily dependent on the sta-
bility analysis. Just as for the elliptic case, one uses a dual problem, albeit a
discrete one instead of a continuous. The greatest differences are probably that
in the parabolic case, stability of the dual problem is used, and corresponding
energy error estimates are not used. The required stability of the dual problem
is stronger than what the basic stability estimate provides. This makes the
L?-analysis more demanding than the energy analysis. The derivation of the
error estimate below follows [24,25] and we refer to those works for details. The
general steps are:

1. Error split: use an interpolant and focus on the discrete error 6.

2. Discrete dual problem: discrete error is initial data, may thus go to By.
3. Galerkin orthogonality: use twist to switch to the interpolation error p
4. Holder inequalities in space and time: |Jwv||p1 < Cllwl|pe||v||La-

5. Stability estimate: get back data in L?-norm for cancellation.

6. Optimal interpolation error estimates for p-factors.

By comparing these steps to the steps of the L2-error analysis for the elliptic
case, we note the following similarites:

e Both use a dual problem to go from the L2-inner product to the bilinear
form. Step 2 in parabolic case. Steps 1 and 2 in elliptic case.

e Both use Galerkin orthogonality to get an interpolation error. Step 3 in
parabolic case. Step 3 in elliptic case.

e Both use inequalities to go from product terms to norms. Step 4 in
parabolic case. Step 4 in elliptic case.

e Both use optimal order estimates for the interpolation error. Step 6 in
parabolic case. Step 5 in elliptic case.

We also point out the following difference. In the elliptic case, the interpolation
error estimate is used to get back the dual data (right-hand side data) for
cancellation, and together with the energy error estimate give the optimal order.
In the parabolic case, a stability estimate is used to get back the dual data
(initial data) for cancellation.
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We start by integrating by parts in By, with respect to time, which gives the
alternative form

(w, v) Z/ —vgdt—i—Z/ a(w,v)

Z Yo+ (wy,vy)a-

(3.83)

See the section about Bj, in either Paper I or Paper II for details. Using this
alternative form of Bj,, we consider a discrete dual problem to that goes
backwards in time, has f = 0, and initial data z}f n- The problem is: Find
zp € V3, such that 7

By (v, 2p) = (UX,,ZZN)Q, Yo € Vj,. (3.84)

Since the dual problem is discrete, it will only work with a discrete error, we
therefore need to perform an error split. For that we need an interpolant. Recall
that we denote the spatial discrete space by Vj,(t), i.e., for v € Vi, v(-, t) € Vi, (t)
for all t € [0,T]. We consider the Ritz projection operator Ry, : Hi(Q2) — Vi, (¢),
defined by

a(Rpw,v) = a(w,v), Yv € Vi(t). (3.85)
Forge Nand n=1,..., N, we also define the temporal interpolation operator
. C(I,) — Pl )by ~
(I"v), =v,, (3.86a)
and with the additional condition for ¢ > 1,
/ IMywdt = / vwdt, Yw e PT(I,). (3.86b)
I I

For a sufficiently smooth function v, we have the following error estimates for
Ry, and I™:

lv = Ryvlle < CRPTH| D2 o]l (3.87)

lv=T"0ll0,1, < CRE 60 V|o 1 (3.88)

sdn?

where [[v[lq,7, = . We use the interpolant @ = I"Ryu € Vj, to

split the approximation error e into an interpolation error p and a discrete error
0 by

e=u—up=(u—1u)+ (0—up) =p+0. (3.89)

The Galerkin orthogonality is used here as well, and since we will work with

a discrete error, the twist is needed. We now have all the tools needed
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to start deriving the L?-error estimate. We consider the L?(£2)-norm of the
approximation error at the final time and perform the first step. The error is

lu(tn) —up vl = llexlla < lloxlle + 10yl (3.90)

The p-part is estimated by using the definition of I" (3.86a)) and the estimate
for the Ritz projection error (3.87)). We thus have

lonlle = lu(ty) = (I"Rru)yllo < CAPH | DR u(ty) o (3.91)

As in the previous error analyses with error splits, the #-part needs the most
treatment. We take the initial data of the discrete dual problem to be sz N =

0y - Performing the second and third steps, i.e., using the discrete dual problem
and the Galerkin orthogonality twist, we obtain a representation of the discrete
error by

10813 = (05,032 = (05, 2 n)e Z Bu(0, 21) Z By(—p, 21)

N N
dt — dt
g pazh Q T;/n pazh) (392)

N-—
Z pnv Zh (p&:Z}ZN)Q

The terms are treated separately, but we omit a rigorous treatment here since
it is a bit too technical for the purpose of this section. We refer to the literature
and the error analysis in Paper II for details. One thing we point out though
is that giving the second term a special treatment for ¢ = 1 is the key to
obtain superconvergence. Recall the fourth step. For a generic product term in
([3-92), the general approach is to use the Hélder inequality (p, z) < |pl|||za|l
for space, i.e., the Cauchy-Schwarz inequality, and then the Holder inequality
Ji llelllzalldt < lpllz, [, [lznll dt for time. Recall the fifth step. The z,-factors
are estimated by the corresponding main stability estimate for z,. The main
stability estimate for uy is a temporal L'-estimate of various terms in
terms of the initial data. The 1n1t1a1 data for z, is z;[ y = 0. Thus, collecting
the p-factors in F'(u), we get from ) that

105115 < CnFy()l0xlle, = l0xlla < OnFy(u), (3.93)
where Cy = C(log(tn/kn)+1)*/2. Combining the estimates for the p-part and

the #-part, and doing the sixth and final step, i.e., using standard estimates
for the p-terms in F,(u), we may obtain the optimal order a priori L?-error
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estimate for ¢ =0, 1,

[u(tn) =y yllo

3.94
= On o {kiq+1la<2q+”||m + P DE g g } .
max i o

We note the so called superconvergence with respect to the time step, which is
of the third order for dG(1).

3.4 Parabolic problem: overlapping meshes

Here we summarize the analyses presented in Paper I and Paper II. To motivate
the analysis approaches taken in these papers, we conclude some main points
of consideration for finite element analysis of parabolic problems based on the
contents of the previous sections:

e L2-analysis: Requires more stability, thus more demanding than energy
analysis.

e Energy analysis: As in the elliptic cases, a Céa’s lemma type argument
together with interpolation is used.

e Energy analysis: The time derivative needs to be handled. Standard way
is to use the H~!-norm.

e Energy analysis: The non-symmetric temporal contribution to the bilinear
form leads to the need for an inf-sup condition derived from a perturbed
coercivity. The inf-sup condition is used in the Céa’s lemma type argu-
ment instead of a standard coercivity as in the elliptic case.

In both papers we consider the same parabolic model problem on two meshes:
one background mesh 7y and one overlapping mesh 75 that is allowed to move
around in the background mesh. The main difference is the discrete repre-
sentation of the mesh movement which leads to quite different space-time dis-
cretizations. This in turn leads to different finite element formulations, both
concerning the discrete spaces and the variational equations, which allow for
different analysis approaches. In general the mesh movement may either be
continuous or discontinuous. We have considered the simplest case of both of
these two types, which we refer to as ¢G(1) and dG(0) mesh movement, where
c¢G(r) and dG(r) stand for continuous and discontinuous Galerkin of order r,
respectively. The mesh movements are named after what type of function the
location of the overlapping mesh is when considered as a function of time.

In a very first study, we considered ¢G(1) mesh movement and attempted to
follow the L2-analysis methodology presented by Eriksson and Johnson in |24,
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25]. However, due to the space-time discretization resulting from the c¢G(1)
mesh movement, the L?-analysis failed. The study, containing partial results of
the incomplete L?-analysis, was presented in the MSc-thesis [26]. With that very
first study as a starting point, we retreated in two directions by considering a
less demanding energy analysis and the simpler dG(0) mesh movement, meaning
less complicated space-time discretization. This has resulted in two new studies
with complete analyses that are presented in Paper I and Paper II. Paper I
presents an energy analysis for ¢G(1) mesh movement and Paper II presents an
L2-analysis for dG(0) mesh movement. Table[1]gives an overview of the various
studies of CutFEM for the heat equation on two overlapping meshes performed
so far.

dG(0) mesh movement | ¢G(1) mesh movement
Energy analysis - Paper I v/
L?-analysis Paper II v MSc-thesis [26] X

Table 1: Overview of studies of CutFEM for the heat equation on two over-
lapping meshes based on analysis and mesh movement type. The checkmark
indicates a complete analysis and the x-mark one that is currently incomplete.

To go through the studies in Paper I and Paper II, we start by presenting
the parabolic model problem that both have in common.

Parabolic model problem

For d = 1,2, or 3, let Qy € R? be a bounded convex domain with polygonal
boundary 9. Let T > 0 be a given final time. Let G C Q¢ C R? be another
bounded domain with polygonal boundary 0G. We let the location of G be
time-dependent by prescribing for G' a velocity u : [0,7] — R%. This means
that G and OG are functions of time, i.e., G = G(t) and 0G = 9G(t) for
t € [0,7]. We point out that the shape of G remains the same for all times.
From Qg and G(t), we define the following two domains:

O1(1) = Qo \ (G(H) UIG(H)), Qa(t) := QN G(2), (3.95)

with boundaries 904 (t) and 9Qs(t), respectively. Let the common boundary
between Q4 (t) and Qs(t) be

['(t) := 0 (t) N O (1). (3.96)
Note that for any ¢ € [0, 7], we have the partition

Qo = (1) UT(1) U Qa(2). (3.97)
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We consider the heat equation in g x (0,7] with given source function
f € L2((0,T],90), homogeneous Dirichlet boundary conditions, and initial
data ug € H?(Q) N HE (). The problem is: Find v € H((0,T], L?()) N
L2((0,T), H2(Q0) N H(Q0)) such that
t—Au=jf in Qg x (0,7T],
u=0 on dQ x (0,77, (3.98)
u=1up in Qy x {0}.

3.4.1 cG(1) mesh movement (Paper I)

Problem formulation
As a discrete counterpart to the movement of the domain G, we prescribe a
¢G(1) movement for the overlapping mesh 7. By this we mean that the loca-
tion of the overlapping mesh 7¢ is a ¢G(1) function with respect to time, i.e.,
continuous on [0,T] and linear on each I,; see Figure@

L

Figure 6: Overlapping meshes and solution with ¢G(1) mesh movement. Left:
Space-time discretization for d = 1. Right: A corresponding dG(1)cG(1) cut
finite element solution of the heat equation.

Just as in the elliptic CutFEM case, we use two spatial standard finite ele-
ment spaces corresponding to the meshes 7y and 7¢, to define a broken spatial
finite element space. Since the location of Tg varies in time, we get a different
broken spatial finite element space Vj,(t) for every ¢t € [0,7]. Following the
discretization steps of the parabolic standard case, we define two dG(q)cG(p)
spaces, one for each mesh. Then, as in the elliptic CttFEM case, we use re-
strictions of functions from these spaces to define our main broken space-time
discrete space Vj,. We refer to Paper I for details on the construction of these
spaces.
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Since the location of I'(¢) may be different for every ¢ € [0, T], we use a time-
dependent spatial bilinear form Ay, ; corresponding to the bilinear form Ay, in the
elliptic CitFEM case. The dG(q)cG(p) space-time finite element formulation
corresponding to with ¢G(1) mesh movement is: Find wup, € V3, such that

ZQ:ZN:/(% dt+Z/ Ap .t (up,v)

i=1 n=1"71n

2 N
+ZZ([Uh]n LU ). 1+Z/ —7i' [up)ve ds (3.99)

i=1n=1

2 N
- ZZ/ (f,v)a,dt, Vv € V.
i=1 n=1 I

Note the special last term on the left-hand side. It is present due to the contin-
uous mesh movement. This term mimics the standard time-jump terms in the
dG-method but over the space-time interface I',,. The term contains the tempo-
ral component At of the space-time normal vector to T',,, which makes the term
proportional to |u]. Thus this term is typically quite small but it is essential
for obtaining the basic stability estimate. We refer to Paper I for details on the
finite element formulation.
We define the non-symmetric bilinear form Bj, by

2 N N
By (w,v) = Z / (W, v)q, @) dt + Z/ Ap(w,v)dt
i=1n=1""n n=1"Y1n
2 N-1 2
+ Z ([wlns v e, + Z(wé,v{)giyo (3.100)
i=1 n=1 i=1
N
+ Z - —n'[wlv, ds
n=1 In

We may then write (3.99) in compact form as: Find u;, € V3, such that

n(Un, v Z/ (f,v Q(t)dt+z (ug,vg) Qo> VU E V. (3.101)

A comment on standard analysis approaches
We start by considering a potential L2-analysis of . The L?-analysis of a
parabolic problem requires the main stability estimate which in turn requires the
strong stability estimate Recall these estimates for the parabolic standard case
given by (8.73) and (3.72)), respectively. To start deriving the strong stability
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estimate we recall that one tests with the discrete Laplacian of the finite element
solution. The discrete Laplacian is defined using the spatial finite element space
and the spatial bilinear form, which in our case are V4 (¢) and Ap, ¢, respectively.
Since both of them are time-dependent due to the ¢cG(1) mesh movement, the
discrete Laplacian for our case is also time-dependent. For our case, the discrete
Laplacian Ay, ; : HY(Q1(t), Qa(t)) — Vi(t) is defined by

(—Apw,v)a, = Ap(w,v), Yo e V(). (3.102)

This definition gives our discrete Laplacian an intrinsic time-dependence. The
time-dependence of Ay, tuy, is therefore a combination of the one from Ay, ; and
the one from wj, € Vj,, which means that —Ay, ;up, ¢ V. Thus we cannot test
with —Ap, ;up which means that we cannot obtain the strong stability estimate.
This means that we cannot perform an L?-analysis of using the standard
tools.

We add that in [26], an attempt at the L2-analysis for ¢G(1) mesh movement
was made, but did not succeed because of the mentioned issues. However, partial
results of this incomplete analysis together with numerical results, suggested
that the L2?-error’s dependence on the time step k& and the mesh size h for
q=0,1 was

k! + hptt for ¢ =0,

3.103
(k' + |u))k% + hPtL for g = 1. ( )

error ~ k21T Pty k0T — {

The convergence orders for ¢ = 0 thus seem to be the same as in the standard
case. For ¢ = 1 however, the superconvergence with respect to the time step
seems to be lost with ¢G(1) mesh movement. Since when the overlapping mesh
T moves with speed |u| > 0, the k-convergence order seems to be of the second
order instead of the third as in the standard case. Note that in the region
k > |p| the k-convergence seems to be of the expected third order though.
In numerical simulations, the problem dimensions typically do not allow |u|
to become arbitrarily large, meaning that k < |u| could be needed to verify
the drop in convergence order. This can make a numerical convergence study
quite demanding, not only because the k’s might need to be small but also
because h might be required to be small too so as not to interfere with the
numerical k-convergence order. It is therefore not surprising if one appears
to have numerical superconvergence for |u| > 0 since the k’s needed to verify
second order convergence might be required to be very small.

We go back to considering potential analysis approaches for ¢G(1) mesh
movement. Since we are not able to establish the strong stability estimate for
the case with ¢G(1) mesh movement, we retreat to a less demanding energy
analysis. For a general energy analysis the first main concern is how to treat
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the time derivative. The standard way is to use the H ~'-norm defined by ,
where the operator T is defined by (3.57). For the derivation of the discrete
inf-sup condition , the L?(Qo)-projection to Vj(¢) is used. For our case,
the L2(Q)-projection P, : L%(Qo) — Vi (t) is defined by

(Phiw,v)q, = (w,v)q,, Yv €& Vu(t). (3.104)

For the derivation of the inf-sup condition to work, we need the L?(q)-projection
of T% to lie in Vj, for v € V. However, since V},(¢) is time-dependent in our
setting, P} ¢ is also time-dependent. So just as the discrete Laplacian, P, ; will
have an intrinsic time-dependence which results in PMT% ¢ Vy, for v € Vj,.

An alternative is to consider a space-time L?-projection P, to the main
discrete space Vj. Then P, Tv € Vj, holds trivially. However, for the derivation
of the inf-sup condition, the two estimates and are needed. To
show those estimates, H '-stability of the L?-projection is needed, which in this
case translates to showing that P, is stable in either Nl 4, , or fln |HH|124}15 dt.

In the first case, one runs into problems since Py is a space-time operator and
|||'|||A;L,t is a spatial norm, and we want the stability to hold for every t € [0, T7.
The second case also has its issues since obtaining that stability requires the
assumption k < Ch?, which is a severe restriction when using implicit dG-
methods in time.

A third alternative could be to consider the corresponding discrete operator
to T see [23]. For our case, the discrete operator Ty ; : L*(Qo) — Vi(t) is
defined by

(w,v)q0, = Ant(Thiw,v), Yo € Vi(t). (3.105)

But once again, using V;,(t) and Ay to define T}, gives it an intrinsic time-
dependence, thus Th,ﬁ ¢V, for v € V.

We conclude from the above discussion that standard spatial operators that
map to V() get an intrinsic time-dependence due to the continuous movement
of the overlapping mesh 7. The intrinsic time-dependence of these operators
ruins the ideas of standard analysis methodology that rely on a product struc-
ture between space and time. So far we have not encountered any existing
analysis approach that is suitable for the method . We therefore propose
a new energy analysis methodology that, to the best of our knowledge, has not
been presented before.

New energy analysis approach
The natural first step is to decide on how to handle the time derivative in By,.
We saw that the standard way of using the H '-norm did not work well in
our case. We do the following instead. Recall the discrete dimensional analysis
performed in (2.46). Let h and k denote spatial and temporal discretization
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units, respectively. Performing a discrete dimensional analysis on the bulk terms
in the standard space-time bilinear form B}, gives

/1 (Vw, Vu)qdt ~ [k - [h9] - [n71] - [R7Y] = [h92E), (3.106)
/I (w,v)q dt ~ k'] - [h9] - [k71] - [n0] = [nY]. (3.107)

Since the terms should have the same unit, we deduce the unit correspondence
[k] ~ [h?]. This is a discrete equivalent of 9; ~ A for the heat equation.
The symmetric first term naturally gives a useful energy norm term with the
same unit, i.e., [h?72k]. It is thus reasonable to consider an energy norm term
corresponding to the time-derivative term that has the same unit, i.e., [h9].
Mimicking the symmetric spatial derivative term, we get

/1 o)l dt ~ [£'] - [1] - [k7%] = [nK1]. (3.108)

This term does not have the desired unit due to the factor [k~1]. We remedy
this by simply including the time step in the integral. We thus propose the
following treatment of the time-derivative term:

/ knll||§ dt ~ [£1] - [K'] - [a7] - [72] = [29]. (3.109)
We compare this to the standard treatment that uses the H!-norm. With the
H~'-norm, one has ||w||?; = (1, T)q. The operator T' = (—A)~! corresponds
to the unit [(h=2)71] = [h?] ~ [k]. Using the H l-norm via the operator T
is thus in some sense equivalent to multiplying the L?-norm by the temporal
discretization unit. This is what we do explicitly in our approach to avoid any
involvement of spatial operators with an intrinsic time-dependence.

Using to include the time derivative in an energy norm sets the
course for the rest of the energy analysis. The general is the same as in the
standard case, i.e., using an inf-sup condition in place of a coercivity in a Céa’s
lemma type argument followed by interpolation estimates. However there are
some key differences that we point out:

e Again, the time derivative is not handled with the H~!-norm. Instead it
is included in an energy norm by

/ kep || 0|3, dt. (3.110)

e The corresponding X- and Y-norms are different due to the new time-
derivative approach. This naturally results in different estimates, e.g., a
different perturbed coercivity.
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e The discrete inf-sup condition is different due to the new norms and es-
timates. Instead of having an auxiliary Y-norm in the denominator as in
the standard case, the main X-norm figures there as well, i.e.,

By, (w,v)
[lwl|x <C sup ——m—

. Vw e Vi (3.111)
vevirfor lvlllx

e A slightly different continuity result is used in the Céa’s lemma type ar-
gument due to having the X-norm in the denominator of the inf-sup con-
dition. This continuity result is derived from using the alternative form of
By, that comes from a temporal partial integration. The time derivative
is thus moved from the first to the second argument in Bj which allows
for cancellation of X-norm factors.

In the following, we give a concise presentation of the energy analysis, where
we refer to Paper I for details.

Energy norms
Taking the same function as both arguments of By, and integrating the time-
derivative term, etc., motivates us to define the following space-time energy

norm:
2
Tn

lloll, = i(

—

2 _
llolls,, dt -+ 12|

(3.112)
2 N-1 2
+2  Mlall, + 3 (10l + I B )
i=1 n=1 i=1
We may obtain the discrete coercivity: 38 > 0 such that
Bu(v,v) > BlIvll5, . Vv € Vi (3.113)

As in the standard case, the Bj-norm is not enough for a complete energy
analysis since it does not include the time derivative. For our case, instead of the
partial time-derivative operator 9;, we consider a material-derivative operator
D; along the space-time trajectories of the underlying spatial domain. We define
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three other space-time energy norms by

2 N
llollk = ZZ/I Fal | Devlffy, o dt + NIl (3.114)

i=1n=1""n
N

2 1 2
i, o= 3 ([ tolydee [ R, et g, ). @)

n=1
al 1
2 2 —
ot = 3 (ol aes [, @t borl,). G
n=1 I, "n Iy

The X-norm is the main norm in this energy analysis, and the Y-norms are
auxiliary norms. By using the standard form of Bj and the alternative form
that is obtained from an integration by parts with respect to time, we may
obtain the two continuity results: 3C;,C_ > 0 such that for any functions w
and v with sufficient regularity we have that

Bh(w,v) < Cy[[wllx o]y, » (3.117)
Bi(w,v) < C_ [wlly_ vl (3.118)
We may obtain the discrete perturbed coercivity: For ¢ = 0,1, 34,£ > 0 such

that
Bhu(v,0 + 0k, Dyv) > € ||v]l%, Vv € Vi (3.119)

We may also obtain the inverse estimate: For ¢ = 0,1, 3C' > 0 such that
lkn Dol < Cll[vllly, Vv € V. (3.120)

The perturbed coercivity and the inverse estimate correspond to and
, respectively. The main tools used in obtaining (3.119)) and (3.120) are
two estimates that generalize corresponding standard estimates to the space-
time CwtFEM setting under consideration. The two estimates are: 3Cy,Cs > 0
such that for any v € V}, we have that

2 2
[ kDl ae < e [ o, (3.121)

and, for ¢ = 0,1, that

2
Zk2||(DtU):—1H%¢.n4
i1

2
<02<Z/ Fon| Det
i=1"1In

(3.122)

2
aode s, [ I, at).
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By using (3.119) and (3.120]), we may obtain the discrete inf-sup condition: For
g =20,1, 3C > 0 such that

By, (w,v)
[lwl|x <C sup ——m—

, Yw € V. (3.123)
veVir\{0} lolll x

Note that we have the X-norm in the denominator here as well. This is in
contrast to the inf-sup condition for the standard case (3.68)) where we had the
auxiliary Y-norm in the denominator.

Stability analysis
We use the discrete perturbed coercivity (3.119) to obtain the stability estimate
for ¢ = 0,1,

ully = 33 [ halDunlf

n=1 =1

" Z ( [ My, e+ ||n“/2[uh]||%n)
2 N-1
33 ||Q,,L+Z(uw|

=1 n=1

(3.124)

3+ ol )

2
<c(||uo||ao " |f||m<<o,mmo») .

We note that this stability estimate is stronger than the corresponding basic
one which is given in the Bj-norm.

Energy error analysis
We follow the standard energy analysis steps, i.e., Céa’s lemma type argument
and interpolation estimates. From having a discrete inf-sup condition we need
an error split. We define a space-time interpolation operator I, that maps to V},
and that has optimal interpolation properties. For a function v with sufficient
regularity we have the interpolation error estimates

[[o = ol < CE*F F2(v) + CRP FE(v), (3.125)

[0 = Lol < CR2HLER(v) + Ch*P FE(v), (3.126)

where k and h are the largest time step and simplex diameter, respectively.
Fi(v) and Fj(v) are expressions involving derivatives of the function v with
respect to space and time. Let e = u — uy denote the approximation error.
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By using the interpolant Iu € Vj, we split the approximation error e into an
interpolation error p and a discrete error 6 by

e=u—up = (u—Ihu)+ (Ihyu—up)=p+0. (3.127)
We then consider

llelllx = llle+ 6l x < llelllx + 1l » (3.128)

where we focus on the f-part. The method (3.101)) is consistent from which
Galerkin orthogonality follows trivially. Thus for any v € V},

0= Bn(e,v) = Br(p+ 0,v) = Bu(p,v) + Bw(0,0),

- Bh(e,v) = —Bh(p, U). (3129)

The Céa’s lemma type argument consists of the following ingredients: the dis-
crete inf-sup condition (3.123), the Galerkin orthogonality twist (3.129)), and
the continuity result here the alternative form of Bj obtained from
integration by parts with respect to time has been used. We thus estimate the
f-part by

Bh 9,11 —Bh , U
lolly < sup ZOD o gy, ZPev)
vevinioy vl vevin{oy vl x
lelly_ llellx (3130)
<C sup —p———=Cllplly -
veVL\{0} |||U|||X
Using this estimate in (3.128)) gives
llellx < lllellx +ellx < lliollx +Cllelly._ (3.131)

from which, by using the interpolation estimates (3.125)) and ([3.126f), we obtain
the optimal order a priori energy error estimate for ¢ =0, 1,

llw — unll% < CR2IHE2(w) + Ch2PF2(u). (3.132)

3.4.2 dG(0) mesh movement (Paper II)

Problem formulation
As a discrete counterpart to the movement of the domain G, we prescribe a
dG(0) movement for the overlapping mesh 7. By this we mean that the loca-
tion of the overlapping mesh 7¢ is a dG(0) function with respect to time, i.e.,
discontinuous on [0,T] and constant on each I,,; see Figure
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Figure 7: Overlapping meshes and solution with dG(0) mesh movement. Left:
Space-time discretization for d = 1. Right: A corresponding dG(1)cG(1) cut
finite element solution of the heat equation.

Just as in the elliptic CutFEM case, we use two spatial standard finite ele-
ment spaces corresponding to the meshes Ty and Tg, to define a broken spatial
finite element space. Since the location of 7g is fixed for each I,,, we get the
same broken spatial finite element space V}, ,, for every t € I,,. Following the
discretization steps of the parabolic standard case, we define two dG(q)cG(p)
spaces, one for each mesh. Then, as in the elliptic CutFEM case, we use re-
strictions of functions from these spaces to define our main broken space-time
discrete space Vj,. We refer to Paper II for details on the construction of these
spaces.

Since the location of T'(¢) is the same for all t € I,,, i.e., [';,, we use a slabwise
spatial bilinear form A,, = A, corresponding to the bilinear form A, in the
elliptic CtFEM case. The dG(q)cG(p) space-time finite element formulation
corresponding to with dG(0) mesh movement is: Find u;, € V}, such that

]

T
:/ (f,0)0, dt, Vv € Vi,
0

[ nvda, + Autun ) e+ <[uh]n_1,vx_1>ao)
I (3.133)

Note the similarity to the standard formulation (3.48]). We refer to Paper II for
details on the finite element formulation. We define the non-symmetric bilinear
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form By, by

N N
By, (w,v) ::Z/I (W, v)q, dt+Z/} Ay (w,v)dt

n= n

—_

(3.134)

Z

+ ([’LU}n,’U,,J{)QO +(w8"1}3—)90.

1

n

We may then write (3.133)) in compact form as: Find uj € V}, such that

T
By (up,v) = / (f,v)q, dt + (uo, v )ay, Vv € Vi. (3.135)
0

A comment on standard analysis approaches

We start by considering a potential L?-analysis of . The L?-analysis of a
parabolic problem requires the main stability estimate which in turn requires the
strong stability estimate. Recall these estimates for the parabolic standard case
given by and , respectively. To start deriving the strong stability
estimate we recall that one tests with the discrete Laplacian of the finite element
solution. The discrete Laplacian is defined using the spatial finite element space
and the spatial bilinear form, which in our case are V}, ,, and A,,, respectively.
Since both of them are slabwise constant due to the dG(0) mesh movement,
the discrete Laplacian will also be slabwise constant. For our case, the discrete
Laplacian A, : H*(Q1 5, Q2.5) — Vi, is defined by

(—Apw,v)q, = Ap(w,v), Yv € Vi, (3.136)

This definition does not give the discrete Laplacian an intrinsic time-dependence
on each I,,. The time-dependence of A, uy, is therefore the same as for uy, € Vj,
which means that —A,u € Vj. Thus we may test with —A,u; which means
that we can start deriving the strong stability estimate. This motivates us to
attempt the more demanding L?-analysis of .

The L2-analysis cloesly follows [24}25]. Most modifications are natural ex-
tensions from the standard case to spatial CutFEM, since we have a nice sep-
arating product structure between space and time in every slab. The main
difference is the introduction of a shift operator that generalizes the Ritz pro-
jection operator. The shift operator is used in the derivation of the strong
stability estimate to handle the discontinuous shift of the discontinuity on I" be-
tween slabs. In the following, we give a concise presentation of the L?-analysis,
where we refer to Paper II for details.
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Stability analysis
Just as in the standard case, we need a stability estimate for a discrete dual
problem with zero right-hand side. We therefore focus the stability analysis on
deriving estimates with f = 0. We present three stability estimates.

By testing with v = uy, in the finite element formulation and inte-
grating the time-derivative term, etc., just as in the standard case, we obtain
the basic stability estimate

N N
_ 2
gy w1 + Z/I llunllCa, ¢+ llunln-1ld, < Clluolld,-  (3.137)
n=1 n n=1

We move on to the remaining two stability estimates. We start by testing
with —Ajup. In the resulting treatment we use the shift operator to handle
the shifting discontinuity between slabs. Secondly we test with (¢ — t,—1)upn
which works just as in the standard case. Finally, we test with P,[up]n—1,
where P, = P, is the L?*(Qo)-projection to Vj,,,. We have to use P, since
the shifting discontinuity makes [up],—1 ¢ V3. This is also done in [25]. Using
the resulting estimates from testing with the aforementioned three functions,
and also the basic stability estimate , we may obtain the strong stability
estimate

N N

. 123
Ztn/I & + | Anunll, dt + Y kfll[w]n—lll?zo < Clluolld,-  (3.138)
n=1 e n=2 "

The strong stability estimate is used to obtain the main stability estimate

N N
g, nllao + Z/I lin i + | Anunllay dt + Y lunla-1llo
n=1 n n=1

< Cilluollay,

(3.139)

where C; = C(log(tx/k1) + 1)*/? and C > 0. Tt is the corresponding main
stability estimate for the discrete dual problem that is crucial to and used in
the L2-error analysis.

L2%-error analysis
The dG(0) mesh movement results in a nice product structure between space
and time in every slab. The L?-error analysis of therefore follows the
standard case with only natural modifications to account for the CutFEM set-
ting. We thus refer to the L2-analysis of the parabolic standard case for a brief
overview and to Paper II for a detailed presentation of the error analysis. From
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the L2-error analysis of (3.133]), we obtain the optimal order a priori L2-error
estimate for ¢ =0, 1,

lu(tn) = wy nllo

(3.140)
< Cy max {kiq+1||1l(2q+1)|§zo,1n + WP D g, i, }’
1<n<N

where Cy = C(log(tn /kn)+1)*/2, and C > 0. Note that the superconvergence
with respect to the time step, which is of the third order for dG(1), is preserved
for the case with dG(0) mesh movement.

Extension to an L*-analysis for ¢G(1) mesh movement?

We conclude this section about the L2-analysis for dG(0) mesh movement by
mentioning how it could be used to come closer to an understanding of the
L?-analysis for ¢G(1) mesh movement.

Recall that we could not perform a complete L2-analysis for ¢G(1) mesh
movement since we could not obtain the strong stability needed. This is how-
ever not all that is missing. Another tool in the LZ-analysis is the temporal
interpolation operator that is used to construct an interpolant for the error
split. The operator is defined partly via an orthogonality condition with lower
degree polynomials. This orthogonality is an essential component in obtain-
ing the superconvergence with respect to the time step. However, due to the
¢G(1) mesh movement, using the orthogonality condition to define the tem-
poral interpolation operator gives it an intrinsic space-dependence, just as the
discrete Laplacian receives an intrinsic time-dependence. This means that the
temporal interpolation operator does not give the interpolant the required time-
dependence for it to belong to the discrete subspace of the method. Hence, the
discrete error in an error split is in fact not discrete. Instead using a temporal
operator with the intended interpolation property, but without the orthogonal-
ity, results in an error estimate without the superconvergence.

To derive an a priori error estimate that does not include the superconver-
gence for ¢ = 1 is a bit less demanding, and is definitely an option for the
analysis of ¢G(1) mesh movement. Recall that in [26], partial results from
an incomplete L?-analysis together with numerical results suggested that the
L2-error for cG(1) mesh movement had the following k-dependence for q = 1:

error ~ k3 4+ |ulk?. (3.141)

For |u| > 0, the superconvergence seems to be lost. It might thus suffice with
an L2-error estimate of the following type:

error ~ k?, (3.142)
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since the k-convergence seems to be of the second order anyways. However, this
estimate is not completely satisfactory since it does not reflect the L2-error’s
suggested dependence on |u|. Recall that in a numerical convergence study
it would not be surprising to get third order k-convergence for |u| > 0 since
very small k’s (k < |p|) might be needed for the second order. The apparent
|£|-dependent switch in k-convergence order is thus something that could be
of interest to understand from an analytic standpoint. This is where the L2-
analysis of dG(0) mesh movement could be of use.

Let u be the analytic solution of a parabolic model problem. Let u) and
uj denote the corresponding finite element solutions of the problem with dG(0)
and c¢G(1) mesh movements, respectively. From the L?-analysis of dG(0) mesh
movement we have the following k-dependence of the L?-error for ¢ = 1:

lu—uf)| ~ &> (3.143)

We note that if || — 0, then the method with ¢G(1) mesh movement ap-
proaches the one with dG(0) mesh movement, leading to the two finite element
solutions converging to the same function. We thus have the following crude
pu-dependence of the difference between the two discrete solutions:

), — u}l| ~ (). (3.144)

We may use (3.143) and (3.144)), to obtain the following k-dependence of the
L2-error for G(1) mesh movement for g = 1:

lu =gl < flu—upll + [lup —up || ~ &> + C (). (3.145)
Assume now that we could also prove a slightly easier a priori error estimate,
not including the superconvergence, for ¢cG(1) mesh movement. We would then

have the following k-dependence of the L2-error for ¢ = 1:

lu —up|| ~ k2. (3.146)

Combining (3.145)) and (3.146), gives us the following k-|u|-dependence of the
L2-error for G(1) mesh movement for ¢ = 1:

k3, if ju| < k<1,

3.147
K2 if k<< |pl. ( )

lu — || ~ min{k® + C(u), K} = {

This estimate reflects the apparent |u|-dependent switch in k-convergence order
for ¢ = 1 as suggested by the incomplete analysis and numerical results in [26].
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4 Applications

The finite element method has been applied in many areas of engineering and
science ever since development started around the 1950s with the classical civil
engineering application in structural analysis. It has during the decades since
then become a valuable tool for engineers and researchers; see, e.g., [27,[28].

An essential component of the finite element method is the computational
mesh: the result of discretizing the solution domain of a PDE-problem. In
standard finite element methods the mesh is usually created based on the do-
main geometry. Domain-fitted meshes are typically unstructured in real-world
applications since such applications often concern problems with complicated
geometry. Unstructured meshes are more memory demanding and lead to an
increased computational cost compared to structured meshes, where the under-
lying structure may be used to implicitly store and use the mesh in computa-
tions. Another matter for consideration is when the problem geometry changes.
Using a domain-fitted mesh means that the mesh changes and deforms when the
geometry changes. This leads to a need for remeshing it the geometry changes
too much. The remeshing might concern the whole mesh or just be local. Either
way it comes with a computational cost.

Cut finite element methods do not rely on having a domain-fitted mesh.
The mesh and the problem geometry may be completely unrelated. CutFEM
thus allows for the usage of simple and structured meshes for problems with
demanding geometry where standard methods would require unstructured dis-
cretizations and/or remeshing. This means that there is a computational benefit
in using CutFEM instead of standard methods in applications concerning such
situations. In the following, we consider the following application aspects of
CutFEM on overlapping meshes:

e Application example: time-dependent geometry.

e Application example: evaluation of different geometries.

Other application examples.

Software.

Computational cost and gain.

We discuss these cases separately in the following subsections.

4.1 Time-dependent geometry

With time-depended geometry we mean that the solution domain evolves during
the solution process of the PDE. For example, consider a situation with a moving
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Figure 8: Problem with a moving object that deforms the mesh.

object in the solution domain. With a standard finite element method the
movement of the object would deform the mesh. If this deformation is too
severe it leads to degenerate mesh cells, meaning that the mesh is no longer
suitable for computation and a new mesh needs to be generated; see Figure
By using CutFEM on overlapping meshes for such a situation, the moving object
is instead encapsulated in an overlapping mesh. A background mesh is generated
in the empty solution domain which means that it may be nice and structured.
The body-fitted overlapping mesh is then placed on top of the background mesh
where it is free to move around; see Figure[0]and Figure[I0}] This approach thus
avoids remeshing altogether. The issue is instead to make sure that the finite
element solution is well-behaved on the joint boundary between the meshes.
For a problem with a moving object in the solution domain, interface CutFEM
could also be used. The interface would then represent the boundary of the
object. However, if the object is complicated, this could lead to more difficult cut
situations between the interface and the mesh cells. An advantage of overlapping
meshes is that a complicated object may be embedded in a body-fitted mesh
that has a much simpler boundary, thus leading to simpler cut situations; see
Figure [10] for an example.

In Paper I and Paper 11, we consider two alternatives for representing the
movement of the overlapping mesh: continuous and discontinuous mesh move-
ment, respectively; see Figure [5| For problems with evolving geometry, such as
a moving object or a bubble containing one liquid floating around in another,
both continuous and discontinuous mesh movement could be used.
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Figure 9: Application of CutFEM on overlapping meshes to a problem concern-
ing the flow around several objects in a channel.
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Figure 10: Application of CutFEM on overlapping meshes to a problem con-
cerning the flow around a propeller.
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The continuous mesh movement might be the preferred one when considering
physical accuracy. This is so since the space-time cells of the overlapping mesh
in one slab are connected exactly to their older versions in the previous slab.
This means that the solution inside the prismatic space-time domain of the
overlapping mesh in one slab naturally may have a strong influence on the
one in the next. Compare this to the discontinuous mesh movement where
the overlapping mesh may teleport to another region of the solution domain
from one time to the next. The previous solution may of course be carried
over directly to the next slab but this then reduces the degrees of freedom in
the space-time domain of the overlapping mesh. The solution on the part of
the background mesh where the overlapping mesh was located also needs to be
treated so as not to cause leakage of information from the overlapping mesh.

A benefit with discontinuous mesh movement is that the space-time prisms
of the background mesh may be cut in less complicated ways. This means that
less demanding geometry computations are needed in an implementation. A
way to also make discontinuous mesh movement more physically accurate is
to consider something we refer to as “snapping”. Consider a moving object
encapsulated in an overlapping mesh. Instead of moving the entire object-
mesh package during a discrete time-interval, the boundary of the overlapping
mesh is held at a fixed position while the object moves inside the overlapping
mesh. This naturally leads to deformed mesh cells, but instead of remeshing to
avoid degenerate cells, one could move (or snap) the overlapping mesh around
the object back into its initial position when the overlapping mesh cells have
become too deformed. Snapping thus reduces potential physical inaccuracy for
discontinuous mesh movement.

4.2 Evaluation of different geometries

There are also problems that concern the evaluation of different geometries,
but where the geometry is stationary during the solution process of the PDE.
This is the case when one is interested in studying the influence of the geome-
try on the solution of a PDE-problem. Typical applications concern problems
involving both PDE-modeling and optimization. The objective in such situa-
tions is then often to optimize the geometry based on the solution of the PDE.
One starts with an initial geometry, solves the corresponding PDE-problem,
obtains a solution, and uses it to evaluate the geometry. The geometry is then
changed and the procedure repeated. Such an optimization process can consist
of several thousand evaluations, meaning that the same number of different ge-
ometries is needed. With standard finite element methods, each new geometry
then requires some degree of remeshing. With CutFEM, a single initial mesh
generation suffices since the same mesh can be used for an arbitrary number of
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different geometries. Some examples of using CutFEM on overlapping meshes
to avoid remeshing in an optimization processes are presented in and Paper
I11.

In Paper III, we consider multi-objective optimization of configurations of
buildings based on minimizing the surroundning wind and maximizing the view
from the buildings. For the wind model, we use a CutFEM on overlapping
meshes for the Stokes equations. The buildings are encapsulated in overlapping
meshes, and are freely placed in a background mesh of the surroundings, thus
enabling any number of configurations to be evaluated without remeshing; see

Figure [T}
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Figure 11: Application of CutFEM on overlapping meshes to optimize the
configuration of buildings based on minimizing the surrounding wind. Left:
Building-fitted overlapping mesh on top of a background mesh. Right: The
computed flow around several buildings embedded in overlapping meshes.

In Paper IV and V, we present a potential application for CutFEM on over-
lapping meshes related to the evaluation of different geometries. The papers
concern a system for immersive and interactive physics simulations, imple-
mented as an app on MicroSoft’s augmented reality glasses HoloLens. The
app is called HoloFEM and allows a user to define and solve physical problems
governed by PDEs in augmented reality; see Figure The PDEs are solved
with FEM by using a volume mesh computed from the real-world surroundings.
The mesh is however a quite crude representation of the real-world geometry
due to the hardware limitations of the HoloLens. Smaller interior geometries
such as furniture are completely ignored, meaning that the mesh does not in-
clude any objects. CutFEM on overlapping meshes could be used to introduce
virtual objects into the augmented reality environment of HoloFEM, thereby
enabling more interesting simulations and the evaluation of different geometry
configurations.
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Figure 12: Augmented reality environment representing PDE-problems and
their solutions in the author’s office.

4.3 Other application examples

CwtFEM on overlapping meshes may be used as an alternative to adaptive
mesh refinement. Instead of local mesh refinements, one may simply patch
over the area with a pre-generated sufficiently fine overlapping mesh. Consider
for example a problem with a moving heat source, e.g., a welding application.
The solution typically exhibits a peak around the location of the heat source,
which might lead to the need for local mesh refinement in order to approximate
the solution properly. By using overlapping meshes, one might instead make
a fine overlapping mesh that follows the heat source around, thus enabling the
computation of a nice approximate solution without any mesh refinement.

Again consider the continuous and discontinuous mesh movements stud-
ied in Paper I and Paper II, respectively. As an alternative to adaptive mesh
refinement, the overlapping mesh is considered to be a fully computational fea-
ture. This means that we do not want the overlapping mesh to obstruct or
influence the flow of information in the space-time discretization. It should be
physically invisible. The dG(0) mesh movement studied in Paper I naturally
allows information to flow through the overlapping mesh. With a continuous
mesh movement however, the solution in the space-time domain of the overlap-
ping mesh is smeared out in each slab; see Figure [f] We thus conclude that
discontinuous piecewise constant mesh movement might be to prefer when the
overlapping mesh is used as a fully computational feature.

Another example is domain construction. Several simply shaped overlapping
meshes may be patched together to define a more complicated solution domain.
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4.4 Software

Application and implementation of multi-mesh finite element methods rely on
efficient and robust computation of mesh-mesh intersections. This puts high de-
mands on the implementation and requires much more sophisticated algorithms
from computational geometry than what is normally the case for finite element
problems.

Support for the formulation of cut finite element methods on overlapping
meshes for 2D problems exists in older versions of the popular open-source
finite element package FEniCS [29]. In FEniCS, as well as in other works, Cut-
FEM on overlapping meshes is referred to as multi-mesh finite element methods.
This highlights the concept of having multiple arbitrarily overlapping meshes.
Using the multi-mesh functionality of FEniCS, one may formulate and auto-
matically discretize basic multi-mesh finite element formulations of systems of
PDEs such as the Stokes problem. The implementation in FEniCS relies on
an implementation of mesh-mesh intersections, based on generation and traver-
sal of axis-aligned bounding box trees (AABB trees), low-level operations for
computing and representing the intersections of simplices, and generation of
quadrature points on cut cells. The implementation is integrated with the au-
tomatic code generation of FEniCS which allows multi-mesh discretizations to
be formulated in (close to) natural mathematical language. In some of the
referenced CutFEM literature, the numerical results have been obtained with
FEniCS; see, e.g., [15] for a recent example.

In Paper II1, the multi-mesh functionality of FEniCS is used for the imple-
mentation of a flow problem modeled by the Stokes equations. The multi-mesh
finite element formulation of the Stokes equations that is used is analyzed by [13]
as an extension to higher-order function spaces of the discretization previously
analyzed by [12].

4.5 Computational cost and gain

With CutFEM on overlapping meshes, the computational issues with a changing
problem geometry is shifted from mending deformed meshes to making sure
that the approximate solution is well-behaved on the interface between meshes.
The way to obtain a well-behaved and stable CutFEM solution is to add the
appropriate Nitsche terms to the variational forms. This of course leads to a
more complicated variational equation and thus a more involved and expensive
assembly process for the corresponding system of algebraic equations. So by
using CutFEM, there is a computational gain from avoiding remeshing, but
also an increased computational cost in the assembly process.

In a numerical study performed with the multi-mesh functionality of FEn-
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iCS, the computational gains and costs of using CutFEM on overlapping meshes
have been measured. The study considers a multi-mesh finite element formu-
lation for a stationary heat equation problem related to an application where
the evaluation of different geometries is of interest; see Section 5.2 in . The
problem geometry is thus stationary during each solution process, but changes
between solution processes. Three mesh compositions are used: coarse (20,216
cells), middle (175,196 cells), and fine (481,232 cells). For each mesh compo-
sition, three alternatives are considered: remeshing, deformation, and multi-
mesh. For each of the resulting nine cases, the time for assembling the linear
system, solving the linear system, and updating the meshes is measured. For
multi-mesh, updating the meshes means computing the cut cells of the new mesh
hierarchy. The results of the study are presented in Figure These results
demonstrate an overall computational gain when using CutFEM on overlapping
meshes as opposed to the two standard methods for problems with changing ge-
ometry. For all three mesh compositions, the assembly time for multi-mesh is
greater than for the two alternatives. This difference becomes less prominent
when the number of mesh cells increases though. For all three mesh composi-
tions, the greatest computational cost is however the mesh update. This cost
is smaller for multi-mesh than for both of the two alternatives, resulting in the
overall computational gain when using multi-mesh.

Time Consumption for a heat-equation

I Assembly
B Solve

3.0 B Mesh update

2.5

2.0

Time (s)

1.0

0.5

0.0 Re-meshing (20216 Cells) Deformation (20216 Cells) MultiMesh (19485 Cells)

Figure 13: Times for assembly, solve, and mesh update for a stationary heat
equation problem with three mesh changing alternatives using the coarse mesh
composition. (Image courtesy of J.Dokken.)
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Time Consumption for a heat-equation
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Figure 14: Times for assembly, solve, and mesh update for a stationary heat
equation problem with three mesh changing alternatives using the middle mesh
composition. (Image courtesy of J.Dokken.)

Time Consumption for a heat-equation

I Assembly
B Solve
I Mesh update

Re-meshing (481232 Cells) Deformation (481232 Cells) MultiMesh (481839 Cells)

U

0

Figure 15: Times for assembly, solve, and mesh update for a stationary heat
equation problem with three mesh changing alternatives using the fine mesh
composition. (Image courtesy of J.Dokken.)
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5 Summary of appended papers

This thesis deals with both analysis and applications of CutFEM on overlapping
meshes. The thesis may therefore be partitioned into an analysis part and an
applications part.

5.1 Analysis part

The analysis part concerns time-dependent CutFEM on overlapping meshes.
We consider two alternatives of a space-time CutFEM for the heat equation on
two overlapping meshes. This should be viewed as an initial step for developing
time-dependent CutFEMs on overlapping meshes, since the heat equation is one
of the simplest time-dependent PDEs and two meshes is the minimum number
of meshes. The analysis part consists of two papers.

Paper 1

In Paper I: A cut finite element method for the heat equation on overlapping
meshes: Energy analysis for ¢G(1) mesh movement, the overlapping mesh is
prescribed a ¢G(1) movement. This means that its location as a function of
time is continuous and piecewise linear. Characteristics of the c¢G(1) mesh
movement are skewed space-time nodal trajectories and cut prismatic space-
time cells. This results in a discretization that lacks a nice product structure
between space and time in every slab. Standard analysis methodology that
heavily relies on such a product structure therefore fails in the current setting.
We therefore propose a new analysis methodology that is general enough to
be applicable to our situation. The analysis is of an energy type, where we
use space-time energy norms to derive and obtain stability and error estimates.
The error analysis produces an optimal order a priori estimate. We also include
numerical results for a model problem in one spatial dimension that support
the analytic convergence orders of the approximation error.

Paper 11
In Paper II: A cut finite element method for the heat equation on overlapping
meshes: L?-analysis for dG(0) mesh movement, the overlapping mesh is pre-
scribed a dG(0) movement. This means that its location as a function of time
is discontinuous and piecewise constant. This results in a discretization that
has a product structure between space and time in each slab. Standard analysis
methodology therefore work with some modifications to handle the shift in the
overlapping mesh’s location at discrete times. The general analysis consists of
stability and error estimates. The error analysis produces an optimal order a
priori estimate of the L?-norm of the approximation error at the final time.
This estimate shows that the method preserves the so called superconvergence
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of the error with respect to the time step. We also include numerical results for
a model problem in one spatial dimension that support the analytic convergence
orders of the approximation error.

5.2 Applications part

In the applications part, we consider two potential applications for CutFEM on
overlapping meshes. Both applications present examples of when the evalua-
tion of different geometry configurations are of interest. More specifically, how
different configurations of a stationary solution domain influence the solution
of a PDE-problem.

Paper III

The first application, presented in Paper III: Multi-mesh multi-objective opti-
mization with application to a model problem in urban design, presents method-
ology for evaluating configurations of buildings. Two factors are taken into
consideration when evaluating a configuration: the wind around the buildings,
and the view from the buildings. The wind model is based on a CutFEM on
overlapping meshes for Stokes equations. It is applied by encapsulating each
building in its own mesh and also having a background mesh of the domain
without any buildings. This set-up only requires initial mesh generations and
allows the same meshes to be used for evaluation of a very large number of
building configurations, thus avoiding costly remeshing for new configurations.
The view models, a simple one for 2D settings, and a more elaborate one for
3D settings, relate to established concepts such as isovists and using different
view weights depending on what type of object is seen. The models are used to
define measures for wind and view that can be used to evaluate a configuration
of buildings. These measures are then used to formulate a multi-objective op-
timization problem that is implemented and solved for 2D settings.

Paper IV and V
The second application, presented in Paper IV and Paper V, concerns a software
application (app) for Microsoft’s augmented reality glasses HoloLens. This app
has yet to incorporate CutFEM, and thus only provides a potential application
example. The app lets a user define and solve physical problems governed by
PDEs in an immersive and interactive augmented reality environment. FEM
is used to solve the PDE-problems and the real-world geometry is used as in-
put to compute a computational mesh. All computations are performed on the
HoloLens which due to hardware limitations put restrictions on the computa-
tional accuracy. This also affects the meshing. In the current state, smaller
geometries such as furniture are ignored when generating a mesh. The gener-
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ated mesh is therefore a discretization of the empty solution domain, which is
exactly what the background mesh in a CutFEM multi-mesh hierarchy is. The
idea would then be the same as in the previous application. Namely to generate
meshes around the ignored smaller geometries so that CutFEM on overlapping
meshes may be used to investigate how different configurations of the geometry
affect the physical system. For example, how the location of furniture affect the
airflow from a ventilation system.

Paper IV: Solving Poisson’s equation on the Microsoft HoloLens, published
in Proceedings of VRST’17, gives a brief presentation of the first version of the
app. This version of the app can only handle stationary problems.

Paper V: Finite element simulation of physical systems in augmented reality,
published in Advances in Engineering Software, contains a far more elaborate
presentation and description of the app. Here, the app has also been improved
and extended to handle time-dependent advection—diffusion problems.
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