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a b s t r a c t

This paper proposes a method to synthesise controllers for systems with possibly infinite number
of states that satisfy a specification given as an LTL\◦ formula. A common approach to handle this
problem is to first compute a finite-state abstraction of the original state space and then synthesise
a controller for the abstraction. This paper proposes to use an abstraction method called divergent
stutter bisimulation to abstract the state space of the system. As divergent stutter bisimulation factors
out stuttering steps, it typically results in a coarser and therefore smaller abstraction, at the expense
of not preserving the temporal ‘‘next’’ operator. The paper leverages results about divergent stutter
bisimulation from model checking and shows that divergent stutter bisimulation is a sound and
complete abstraction method when synthesising controllers subject to specifications in LTL\◦.

© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Dynamic system models are often used for safety-critical ap-
lications, where formal verification and synthesis are of great
mportance (Belta et al., 2017). This paper is concerned with
ontroller synthesis, where the control logic is automatically com-
uted from a model of the system with possibly infinite number
f states and a specification of the desired behaviour in temporal
ogic. In this context, the state space is typically abstracted and
artitioned to produce a finite transition system, and then finite-
tate machine synthesis methods are applied (Kloetzer & Belta,
008; Ramadge, 1989).
The most commonly used abstraction method for this purpose

s bisimulation (Milner, 1989). Bisimulation is a strong behavioural
quivalence of transition systems, which preserves all temporal
ogic properties (Baier & Katoen, 2008). There exist polynomial-
ime algorithms to calculate a bisimilar abstraction of a finite-
tate system (Fernandez, 1990). Bisimulation can also be applied
o continuous state spaces (Belta et al., 2017; Megawati & van der
chaft, 2016; Pappas, 2003), but the bisimulation algorithms are

✩ The material in this paper was not presented at any conference. This paper
was recommended for publication in revised form by Associate Editor Dimos V.
Dimarogonas under the direction of Editor Christos G. Cassandras.
∗ Corresponding author.
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only guaranteed to terminate for specific classes of continuous
systems (Alur et al., 2000).

To overcome these difficulties, the literature proposes vari-
ous alternatives to bisimulation. Approximate bisimulation relaxes
bisimulation by allowing a bounded mismatch between the be-
haviours of the abstract and concrete system (Girard & Pappas,
2007). A further relaxation is obtained by considering (approx-
imate) simulation and feedback refinement relations. These are
sound but not necessarily complete abstraction methods, in the
sense that the nonexistence of a controller for the abstract system
does not imply the nonexistence of a controller for the concrete
system (Belta et al., 2017; Reissig et al., 2016; Tabuada, 2009;
Zamani et al., 2011). Dual-simulation (Wagenmaker & Ozay, 2016)
roduces a coarser abstraction than bisimulation; it uses over-
apping subsets rather than quotient sets. Moreover, the dual-
imulation algorithm avoids the set difference operation, so that
t preserves the convexity of the regions in the abstracted state
pace. Unlike bisimulation, it does not preserve all temporal logic
roperties, but it preserves the results of controller synthesis
hen applied to linear temporal logic (LTL).
Bisimulation and its variants consider all transitions as sig-

ificant. The potential for abstraction can be increased by fac-
oring out so-called stuttering steps where the system remains
n the same region of the state space without changing any
f the propositions relevant for the specification. By combining
equences of stuttering steps with the next non-stuttering step
n a single transition, a coarser abstraction is produced. However,
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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he temporal ‘‘next’’ operator is no longer preserved because
he number of steps between two states may change. Accord-
ngly, over-approximations (Liu et al., 2013; Nilsson et al., 2017)
ave been proposed to synthesise controllers for continuous-time
ystems. The approach is sound for specifications in LTL\◦, the
TL fragment without the ‘‘next’’ operator, but not complete in
eneral.
This paper considers another approach to factor out stutter-

ng steps, called divergent stutter bisimulation (Baier & Katoen,
008). Divergent stutter bisimulation preserves CTL∗

\◦
, the frag-

ent of the Computation Tree Logic CTL∗ without the ‘‘next’’
perator (Baier & Katoen, 2008). An efficient algorithm to com-
ute abstractions based on divergent stutter bisimulation exists
nd has been used to simplify state spaces (Groote et al., 2017;
roote & Vaandrager, 1990). Once an abstraction and a quotient
ystem are constructed using divergent stutter bisimulation, ver-
fication can be done using existing tools (Baier & Katoen, 2008;
larke et al., 1999) and gives the same result as for the original
ystem. Yet, synthesis is more difficult, because it is not immedi-
tely clear how a controller synthesised for the abstracted system
an be used to control the original system. A single transition
f the abstract controller has to be implemented by a sequence
f several transitions (including stuttering steps) in the original
ystem.
This paper shows that divergent stutter bisimulation is a sound

nd complete abstraction method when synthesising for speci-
ications in LTL\◦. It is shown that a controller for the abstracted
ystem exists if and only if such a controller exists for the original
ystem with possibly infinite number of states, and it is shown
ow the controller for the original system can be constructed
rom the abstract controller.

The divergent stutter bisimulation algorithm and the algo-
ithm to construct a controller for the original system from
he abstract controller have been implemented in TuLiP (Filip-
idis et al., 2016) and applied to discrete-time linear systems
rom Hussien and Tabuada (2018) and Wagenmaker and Ozay
2016). It is shown that the abstracted system from divergent
tutter bisimulation is smaller compared to bisimulation. As ex-
ected, lifting the control from the discrete abstraction to the
riginal system is more laborious than it would be using only
isimulation.
This paper is organised as follows. Section 2 gives a brief back-

round on modelling and linear temporal logic and abstraction.
ext, Section 3 explains divergent stutter bisimulation and re-
iews the algorithm to partition a state space while preserving di-
ergent stutter bisimulation. Section 4 shows how the abstracted
ontroller is used to construct a controller for the original system
nd proves that the abstraction method is sound and complete.
ection 5 applies the algorithm to examples, and Section 6 gives
oncluding remarks.

. Preliminaries

This section gives a brief overview of notations used through-
ut the paper. Most of the following definitions are adopted
rom Baier and Katoen (2008).

.1. Finite and infinite strings

Let X be a set. The sets of finite and infinite strings of symbols
rom X are denoted by X∗ and Xω , respectively. The combined
et of finite and infinite strings over X is X∞ = X∗ ∪ Xω . The
empty string is ε ∈ X∗, and the set of nonempty finite strings is
X+ = X∗ \ {ε}. The concatenation of strings s ∈ X∗ and t ∈ X∞
is written as st . The notation sk refers to the string obtained by
concatenating k ≥ 0 copies of string s ∈ X∗. A string s ∈ X∗ is
2

called a prefix of t ∈ X∞, written s ⊑ t , if there exists u ∈ X∞
such that su = t .

An infinite ascending sequence s0 ⊑ s1 ⊑ s2 ⊑ · · · of finite
strings si ∈ X∗ has a unique least upper bound s ∈ X∞ with si ⊑ s
for all i ≥ 0, called its closure and denoted by clo{ si | i ≥ 0 }. For
s ∈ X∞, the duplicate-free string uniq(s) ∈ X∞ is obtained from s
by removing all elements that are equal to their predecessor.
For example, uniq(001322233 · · ·) = 01323. Removing duplicates
from an infinite string may result in a finite or infinite string.

2.2. Transition systems and problem formulation

Definition 1. A transition system is a tuple G = ⟨Q ,Q ◦,→, Π,
|=⟩ where Q is a set of states, Q ◦ ⊆ Q is the set of initial states,
→ ⊆ Q × Q is the state transition relation, Π is a set of atomic
propositions, and |= ⊆ Q × Π is the satisfaction relation. G is
called finite if Q is finite.

Definition 2. A finite path fragment s in a transition system
G = ⟨Q ,Q ◦,→, Π, |=⟩ is a finite state sequence x0 · · · xn such
that there are transitions xi−1 → xi for all 0 < i ≤ n. An infinite
path fragment s is an infinite state sequence x0x1 · · · such that
xi−1 → xi for all 0 < i. If x0 ∈ Q ◦ then the path fragment is called
a path in G.

A path in a transition system describes a possible behaviour of
the system.

Definition 3. Let G = ⟨Q ,Q ◦,→, Π, |=⟩ be a transition system.
The labelling function L:Q → 2Π is defined by L(x) = {π ∈ Π |
x |= π }.

The labelling function L relates to each state x ∈ Q a set
of atomic proposition that are satisfied by state x. The labelling
function L is extended to finite or infinite path fragments s =
x0x1 · · · ∈ Q∞ by applying it to each state of the path fragment,
L(s) = L(x0)L(x1) · · ·.

This paper is concerned with the construction of controllers
that restrict a transition system so that it only enters certain
states.

Definition 4 (Controller). Let G = ⟨Q ,Q ◦,→, Π, |=⟩ be a transi-
tion system. A controller for G is a function C:Q ∗ → 2Q .

The controller takes as argument a path, representing the
history of all states visited in the path. If x0, . . . , xn ∈ Q are
states (n ≥ 0), then the path composed of these states is written
x0 · · · xn ∈ Q ∗. The idea is that, after visiting states x0, . . . , xn ∈ Q ,
the controlled system is allowed to enter a state xn+1 ∈ Q if and
only if xn+1 ∈ C(x0 · · · xn).

Definition 5. Let G = ⟨Q ,Q ◦,→, Π, |=⟩ be a transition system,
and let C:Q ∗ → 2Q be a controller for G. The controlled system,
G under the control of C , is C/G = ⟨Q+,Q ◦ ∩ C(ε),→|C , Π, |=|C ⟩,
where

(i) x0 · · · xn →|C x0 · · · xnxn+1 if and only if xn → xn+1 in G and
xn+1 ∈ C(x1 · · · xn),

(ii) x0 · · · xn |=|C π if and only if xn |= π .

In Definition 5, the states of the closed-loop system, C/G, are
paths of G that are accepted by C . The transitions of the closed-
loop system have the from of x1 · · · xn →|C x1 · · · xn+1, where
x1 · · · xn is path of G and a state of the controlled system C/G.
From a state x1 · · · xn of C/G, the next state x1 · · · xn+1 can be
reached if xn → xn+1 is a transition in G and xn+1 ∈ C(x1 · · · xn).

Accordingly, the paths in C/G are strings of the states of C/G,
i.e., strings of strings. The following definition adds a more con-
venient notation to also consider strings over states of G as paths
in C/G.
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efinition 6. Let G = ⟨Q ,Q ◦,→, Π, |=⟩, and let C be a
ontroller for G. A string s ∈ Q∞ is said to be a path in C/G if
is a path in G, and for every prefix rx ⊑ s with r ∈ Q ∗ and
∈ Q it holds that x ∈ C(r).

Another important concern in the following is divergence,
here a transition system stays in the same state indefinitely.

efinition 7. Let G = ⟨Q ,Q ◦,→, Π, |=⟩, and let C be a
controller for G. A state x ∈ Q is divergent in G if x→ x. A finite
path s = rx with r ∈ Q ∗ and x ∈ Q is divergent in C/G if its last
state x is divergent in G and x ∈ C(sxk) for all k ≥ 0.

2.3. Linear temporal logic

This paper considers requirement specifications written in
Linear Temporal Logic (Baier & Katoen, 2008). Specifically, the
fragment considered is LTL\◦, which does not include the next
operator ◦. LTL\◦ formulas ϕ over the set of atomic propositions
Π are formed according to the syntax ϕ ::= π | ϕ1 ∧ ϕ2 | ¬ϕ1 |

ϕ1 U ϕ2, where π ∈ Π , and ϕ1 and ϕ2 are LTL\◦ formulas. U is
the until operator, which is also used to define the more common
operators finally, ♢ϕ = true U ϕ and always, □ϕ = ¬♢¬ϕ.

Definition 8. Let G = ⟨Q ,Q ◦,→, Π, |=⟩ be a transition system
and let ϕ be an LTL\◦ formula over Π . An infinite path fragment
s ∈ Q∞ is defined to satisfy ϕ, written s |= ϕ, recursively as
follows:

• s |= π if s = x0x1 · · · and x0 |= π ;
• s |= ϕ1 ∧ ϕ2 if both s |= ϕ1 and s |= ϕ2;
• s |= ¬ϕ1 if s |= ϕ1 does not hold;
• s |= ϕ1 U ϕ2 if s = x0x1 · · · and there exists k ≥ 0 such that

xixi+1 · · · |= ϕ1 for i = 0, . . . , k− 1 and xkxk+1 · · · |= ϕ2.

The transition system G is said to satisfy ϕ, written G |= ϕ, if
s |= ϕ holds for every infinite path s in G.

According to this semantics, a transition system satisfies an
LTL\◦ formula if the formula holds on every infinite path. The
definition does not cover paths that visit a deadlock state, i.e., a
state without outgoing transitions. It is common to rule out this
case so that all paths can be extended to an infinite path.

Definition 9. Let G = ⟨Q ,Q ◦,→, Π, |=⟩ be a transition system.
Then G is called deadlock free if, Q ◦ ̸= ∅ and for every reachable
state x ∈ Q there exists a state y ∈ Q such that x→ y.

This paper is concerned with the synthesis problem, which is
to compute a controller enforcing a specification given as an LTL\◦
formula for a given transition system. This problem can now be
defined formally as follows.

Problem 1. Given a transition system G and an LTL\◦ formula ϕ,
find a controller C such that C/G is deadlock-free and C/G |= ϕ.

There are several methods to construct a controller that en-
forces an LTL\◦ formula on a finite transition system. This can be
done by transforming the LTL\◦ formula to a Rabin or a Büchi
automaton, taking a product of the automaton with the transi-
tion system, and then solving the control problem using existing
methods (Kloetzer & Belta, 2008; Ramadge, 1989).

2.4. Abstraction

For systems with very large or infinite state spaces, finding a
solution to Problem 1 becomes intractable. One approach to han-
dle the synthesis problem in such cases is the use of abstraction
 w

3

techniques, where the state space is partitioned to produce an
equivalent synthesis problem that can be solved more easily.

A common way to partition a transition system is to identify
and group equivalent states. Given a set X , a relation ≈ ⊆ X × X
is an equivalence relation on X if it is reflexive, symmetric, and
transitive. The equivalence class of x ∈ X is [x] = { x′ ∈ X | x ≈ x′ },
and X/≈ = { [x] | x ∈ X } is the set of all equivalence classes
modulo ≈.

Given an equivalence relation ≈ on the state set Q of a
transition system, a quotient transition system can be constructed
by grouping all equivalent states into a single abstract state,
i.e., using Q/≈ as a reduced state set. For the quotient transition
system to preserve liveness properties, it is important to distin-
guish whether or not it is possible for the system behaviour to
remain within an equivalence class indefinitely.

Definition 10. Let G = ⟨Q ,Q ◦,→, Π, |=⟩ be a transition system,
and let ≈ ⊆ Q × Q be an equivalence relation. A state x ∈ Q is
≈-divergent in G if there exists an infinite path fragment xx1x2 · · ·
n G such that x ≈ xi for all i > 0. An equivalence class1 x̃ ∈ Q/≈

is ≈-divergent in G if it contains a ≈-divergent state.

Definition 11. Let G = ⟨Q ,Q ◦,→, Π, |=⟩ be a transition system,
nd let ≈ ⊆ Q × Q be an equivalence relation. The divergence-

respecting quotient transition system is G//≈ = ⟨Q̃ , Q̃ ◦, →̃, Π, |=̃⟩

here,

• Q̃ = Q/≈;
• Q̃ ◦ = { x̃◦ ∈ Q̃ | x̃◦ ∩ Q ◦ ̸= ∅ };
• x̃ →̃ x̃ if x̃ is divergent;
• x̃ →̃ ỹ for x̃ ̸= ỹ, if there exist x ∈ x̃ and y ∈ ỹ such that

x→ y;
• x̃ |=̃ π if there exists x ∈ x̃ such that x |= π .

Like a standard quotient transition system, the divergence-
especting quotient includes a transition x̃ →̃ ỹ between two
quivalence classes if the original transition system has a tran-
ition x → y between some states of these classes, and an
quivalence class satisfies a proposition if one of its states sat-
sfies that proposition. The difference to a standard quotient lies
n the treatment of selfloop transitions: a selfloop x̃ →̃ x̃ is only
ncluded in the divergence-respecting quotient if x̃ is a divergent
quivalence class.
For simplicity of notation, in the following, the tilde super-

cripts of the transition and satisfaction relations of quotient
ransition systems will be omitted, thus identifying →̃ with →
nd |=̃ with |=. Further, the following definition is used to relate
ath fragments of a transition system to those of its quotient.

efinition 12. Let G = ⟨Q ,Q ◦,→, Π, |=⟩ be a transition
ystem, and let ≈ ⊆ Q × Q be an equivalence relation. For a
finite or infinite) path fragment s = x0x1x2 · · · ∈ Q∞, the term
s] = [x0][x1][x2] · · · ∈ (Q/≈)∞ denotes the path fragment of
quivalence classes that appear in s.

. Stutter equivalence

This paper addresses the problem of abstracting a transition
ystem before calculating a controller to enforce an LTL\◦ spec-
ification. Without the temporal ‘‘next’’ operator, the logic LTL\◦
cannot distinguish how often states with the same labels are
repeated. This leads to the idea of stutter equivalence (Baier &
Katoen, 2008). Transitions between states with equal labels are

1 Here and in the following, x̃ ∈ Q/≈ is an unspecified equivalence class,
hich may or may not be equal to the equivalence class [x] containing x.
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alled stuttering steps, and stutter bisimulation considers transition
ystems as equivalent if they have the same infinite paths while
actoring out the stuttering steps. To preserve liveness properties,
his relation is refined to divergent stutter bisimulation (Baier &
atoen, 2008).

.1. Stutter equivalent paths

efinition 13. Let Gi = ⟨Qi ,Q ◦i ,→i, Π, |=i⟩ be transition
ystems, and let si be path fragments in Gi, for i = 1, 2. Then
1 and s2 are stutter equivalent if uniq(L(s1)) = uniq(L(s2)) and s1
nd s2 are either both finite or both infinite.

According to Definition 3, L(s) is the sequence of labellings
isited on the path fragment s, and uniq(L(s)) is the same se-
uence after removing duplicates. Therefore, stutter equivalent
aths have the same sequences of atomic propositions, while
he number of states repeated by stuttering steps, i.e., transi-
ions whose source and target states satisfy exactly the same
ropositions, does not need to be equal. It is known that stutter
quivalent paths satisfy the same LTL\◦ formulas.

roposition 1 (Baier & Katoen, 2008). Let Gi = ⟨Qi ,Q ◦i ,→i, Π,

=i⟩ be transition systems, and let si ∈ Qω
i be path fragments in Gi,

or i = 1, 2. If s1 and s2 are stutter equivalent, then s1 |= ϕ if and
nly if s2 |= ϕ for any LTL\◦ formula ϕ.

.2. Divergent stutter bisimulation

efinition 14. Let G = ⟨Q ,Q ◦,→, Π, |=⟩ be a transition
ystem. A relation ≈ ⊆ Q × Q is a divergent stutter bisimulation
quivalence on G if for all x1, x2 ∈ Q such that x1 ≈ x2 the

following conditions hold:

(i) L(x1) = L(x2),
(ii) if there exists x′1 ∈ Q such that x1 → x′1 and x′1 ̸≈ x2 then

there exists a finite path fragment x2y1 . . . ynx′2 such that
n ≥ 0 and x1 ≈ yi for i = 1, . . . , n and x′1 ≈ x′2;

(iii) if there exists x′2 ∈ Q such that x2 → x′2 and x′2 ̸≈ x1 then
there exists a finite path fragment x1z1 . . . znx′1 such that
n ≥ 0 and x2 ≈ zi for i = 1, . . . , n and x′2 ≈ x′1;

(iv) x1 is ≈-divergent if and only if x2 is ≈-divergent.

Condition (i) requires that equivalent states are labelled
with the same propositions, i.e., the equivalence relation is
proposition-preserving. According to conditions (ii) and (iii), for
two states to be considered as equivalent, if one of them reaches
a state in a different equivalence class then the other must reach
an equivalent state either directly or after some stuttering steps.
The last condition (iv) means that two states are only equivalent
if either both exhibit divergent paths or none of them does.

Theorem 2 (Baier & Katoen, 2008). Let G = ⟨Q ,Q ◦,→, Π, |=⟩

be a transition system, and let ≈ be a divergent stutter bisimulation
on G. If s ∈ Qω is a path in G then there exists a stutter equivalent
infinite path s̃ in G//≈.

Theorem 2 shows that, if a transition system G is abstracted to
a divergence-respecting quotient G//≈with respect to a divergent
stutter bisimulation, then for any infinite path in the original
system G there exists a stutter equivalent infinite path in the
abstraction G//≈. By Proposition 1, these paths satisfy the same
LTL properties.
\◦

4

3.3. Divergent stutter bisimulation algorithm

There exists a polynomial-time algorithm to calculate the
coarsest divergent stutter bisimulation relation of a transition
system (Groote et al., 2017; Groote & Vaandrager, 1990), which
is summarised in this section. The algorithm performs partition
refinement starting from an initial partition consisting of regions
determined by the propositions. Regions are split repeatedly
when they contain states that cannot reach the same successors.
The splits are performed by calculating the sets of predecessors of
a region and then intersecting all regions with this predecessor
set.

Definition 15. Let G = ⟨Q ,Q ◦,→, Π, |=⟩ be a transition system.
The set of predecessors of state x ∈ Q is Pre(x) = { y ∈ Q |
y → x }. The set of predecessors of a set of states X ⊆ Q is
Pre(X) =

⋃
x∈X Pre(x). The set of stutter predecessors of a state

set T ⊆ Q within P is

PPre(T , P) = { y ∈ P | there exists a finite path fragment
yy1 · · · ynx in G with n ≥ 0 and y1, . . . , yn ∈ P
and x ∈ T } .

(1)

The set of divergent states within P is

Div(P) = { y ∈ P | there exists an infinite path fragment
yy1y2 · · · in G such that yk ∈ P for all k ≥ 1 } .

(2)

The stutter predecessors of T within P are states in the re-
gion P that can reach a state in T directly or after a finite number
of steps within P . The divergent states within P are states from
where an infinite number of transitions is possible while staying
within P . The sets of stutter predecessors and divergent states can
be characterised as fixed points. Given the recursive definition

PPre0(T , P) = Pre(T ) ∩ P ; (3)

PPrei+1(T , P) = Pre(PPrei(T , P)) ∩ P ; (4)

it is clear that

PPre(T , P) =
⋃
i≥0

PPrei(T , P) ; (5)

Div(P) =
⋂
i≥0

PPrei(P, P) . (6)

For finite-state systems, these state sets can be computed in a
finite number of steps, but for infinite systems the calculation of
PPre(T , P) or Div(P) may fail to terminate.

Algorithm 1 uses these operations to calculate a partition
that respects divergent stutter bisimulation. Line 1 computes the
initial partition based on the propositions. It can be constructed
as Q̃ = Q/∼ where the relation ∼ ⊆ Q × Q is such that x ∼ y, if
x |= p if and only if y |= p for all p ∈ Π . Then the algorithm enters
the loop, which repeatedly refines each region until all conditions
in Definition 14 are satisfied. Line 4 checks for regions to be
refined based on divergence. If a region P contains both divergent
and non-divergent regions, i.e., if the set Div(P) is nonempty and
a proper subset of P , then it is refined by putting the divergent
and non-divergent states into their own regions. Additionally, line
8 checks for splits based on stutter predecessors. Here it needs to
be checked for each pair of regions P and T whether some of the
states in P are stutter predecessors of T while others are not, in
which case P is split. The algorithm terminates when no more
splits are necessary. Then the result Q̃ represents the coarsest
partition that respects divergent stutter bisimulation.
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Algorithm 1: Divergent stutter bisimulation
Input: Transition system G = ⟨Q ,Q ◦,→, Π, |=⟩

Output: Coarsest partition Q̃
1 Q̃ ← Initial proposition-preserving partition ;
2 done← false;
3 while ¬done do
4 if ∃P ∈ Q̃ : ∅ ⊂ Div(P) ⊂ P then
5 P1 ← Div(P);
6 P2 ← P \ P1;
7 Q̃ ← (Q̃ \ {P}) ∪ {P1, P2};
8 else if ∃P, T ∈ Q̃ : ∅ ⊂ PPre(T , P) ⊂ P then
9 P1 ← PPre(T , P);

10 P2 ← P \ P1;
11 Q̃ ← (Q̃ \ {P}) ∪ {P1, P2};
12 else
13 done← true;

14 return Q̃ ;

Example 1 (Wagenmaker & Ozay, 2016). Assume the transition
relation

x(t + 1) = 2x(t)+ u(t) , (7)

where x(t) ∈ Q = [−1.5, 1.5] is the state, and u(t) ∈ U =
[−2, 2] is the control input. The initial partition consists of three
regions, s1 = [−1.5,−1), s2 = [−1, 1), and s3 = [1, 1.5]. For
demonstration, consider the computation of PPre(s3, s2) during
the execution of Algorithm 1. First, PPre0(s3, s2) = Pre(s3) ∩
s2 = [−0.5, 1.75] ∩ [−1, 1) = [0.5, 1), and then PPre1(s3, s2) =
re(PPre0(s3, s2)) ∩ s2 = [−1.25, 1.875) ∩ [−1, 1) = [−1, 1) =
2. Further iterations produce no change, so s2 does not need
o be split because of s3. In fact, no regions are split at all,
nd the initial partition is already a divergent stutter bisimu-
ation. Differently, partitioning based on bisimulation splits s2
nto Pre(s3) ∩ s2 = [0.5, 1) and [−1, 0.5), which require further
plitting. Wagenmaker and Ozay (2016) show that there exists no
inite bisimulation partition for this example. □

Like bisimulation, Algorithm 1 may fail to terminate when
iven an infinite state space. Yet there are cases such as the above
xample, where bisimulation fails to terminate while divergent
tutter bisimulation yields a finite abstraction. It is clear and well-
nown that every bisimulation relation also is a divergent stutter
isimulation. It follows that Algorithm 1 terminates more often
han bisimulation and always produces the same or a coarser
bstraction.

. Control strategy

This section presents the main contributions of the paper
nd shows how divergent stutter bisimulation can be used for
ynthesis. After partitioning the state space using Algorithm 1,
he synthesis problem can be solved for the abstract system. It
emains to construct a controller that solves Problem 1 for the
riginal system. Next, Section 4.1 describes the construction of
his controller, and afterwards Sections 4.2 and 4.3 show that the
ethod is sound and complete.

.1. Controller construction

Given a transition system G and LTL\◦ specification ϕ, the
bjective of this paper is to find a solution for Problem 1, i.e., a
eadlock free controller that enforces ϕ on G. Using Algorithm 1,
5

he transition system is replaced by a divergent stutter bisimilar
bstraction G̃. Then a traditional synthesis procedure (Kloetzer &
elta, 2008; Ramadge, 1989) can be used to solve Problem 1 for
he abstraction G̃, which results in a controller C̃ that enforces the
pecification ϕ on the abstraction G̃.
It follows from the results cited in Section 3.2 that the sys-

em G and its abstraction G̃ satisfy the same LTL\◦ properties,
ut this is only useful to verify that ϕ holds on the uncontrolled
ystem. After synthesis, it remains to be shown that the existence
f the controller for the abstract system implies the existence of
controller for the original system. Therefore, it is now shown
ow the abstract controller C̃ that enforces the specification on
he abstract system G̃ can be used to design a controller C that
nforces the same specification on the original system G. Its con-
truction, which is given in Definition 16, works by considering
he states in the original system G that correspond to the classes
hat form the abstraction G̃.

The controller C to be constructed for the original system
observes a path s = x1 · · · xk and makes a control decision C(s)
of states allowed next. To base this decision on the abstract
controller C̃ , the path s is mapped to a path s̃ of the abstract
system, and then the control decision C̃(s̃) is used to inform the
choice of C(s).

Consider a path s̃ = x̃1 · · · x̃k ∈ (Q/≈)+ of the abstraction,
which also is a state of the abstract controlled system C̃/G̃ by
Definition 5. To use C̃(s̃) when making the control decision C(s),
it will be considered what classes can be reached from s̃ under
control of C̃ after possible stuttering steps within x̃k:

S̃ i(s̃) = { ỹ ∈ (Q/≈) | s̃x̃ikỹ is a path in C̃/G̃ and ỹ ̸= x̃k } ; (8)

S̃(s̃) =
⋃
i≥0

S̃ i(s̃) . (9)

S̃ i(s̃) is the set of equivalence classes that can be reached in the
abstract controlled system after executing s̃ and then staying
i times in the last class x̃k of s̃, and S̃(s̃) is the set of equivalence
classes reached after an arbitrary number of repetitions of the last
class. This allows for abstract controllers that transition from x̃k
to the next class immediately, or that keep the system in x̃k for
some number of steps before transitioning.

Now consider a finite path s ∈ Q+ in G, for which a control de-
cision is to be made. This path is converted to a path s̃ ∈ (Q/≈)+
so that C̃(s̃) can be used to inform the control decision C(s). The
path s̃ must be constructed in such a way that s̃ is a path in C̃/G̃
and is stutter equivalent to s. This is achieved by repeating each
of the equivalence classes in [s] for the smallest number of times
needed to form a path in C̃/G̃. Specifically, s̃ = ⌊s⌋C̃ according to
the following recursive definition, where r ∈ Q ∗ and x, y ∈ Q :

⌊y⌋C̃ = [y] ; (10)

⌊rxy⌋C̃ = ⌊rx⌋C̃ , if x ≈ y ; (11)

⌊rxy⌋C̃ = ⌊rx⌋C̃ [x]
i
[y] , if [y] ∈ S̃ i(⌊rx⌋C̃ ) ; (12)

where i = min{ i ≥ 0 | [y] ∈ S̃ i(⌊rx⌋C̃ ) } in the last case.
Also, ⌊s⌋C̃ is undefined if none of the above conditions applies.
By construction, ⌊s⌋C̃ is stutter equivalent to s if it is defined, and
it is prefix-preserving, i.e., s ⊑ t implies ⌊s⌋C̃ ⊑ ⌊t⌋C̃ if defined.

Now the set of successors outside of the current class that C
allows after s is the union of the classes that can be reached under
control of C̃ after ⌊s⌋C̃ ,

S(s) =
⋃

S̃(⌊s⌋C̃ ) . (13)

After observing s ∈ Q+, the controller C guides the system to
a state in S(s), possibly after stuttering steps within the class of
the final state of s. If C̃ permits divergence, then C allows it also,
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therwise it follows a shortest path to a state in S(s). These ideas
are formalised in the following definition.

Definition 16. Let G = ⟨Q ,Q ◦,→, Π, |=⟩ be a transition system,
et≈ be an equivalence relation on Q, let G̃ = G//≈, and let C̃ be a
ontroller for G̃. The controller C:Q ∗ → 2Q for G is constructed as
follows. First, for the empty path s = ε, we have C(ε) =

⋃
C̃(ε).

Second, for a nonempty path s = x0 · · · xn ∈ Q+, the value of C(s)
depends on divergence:

(i) If [xn] is not≈-divergent in G or ⌊s⌋C̃ is divergent in G̃, then

C(s) = [xn] ∪ S(s) . (14)

(ii) If [xn] is ≈-divergent in G and ⌊s⌋C̃ is not divergent in G̃,
then

C(s) =
{
S(s) if i = 0;
PPrei−1(S(s), [xn]) otherwise;

(15)

where i = min{ j ≥ 0 | xn ∈ PPrej(S(s), [xn]) }.

In Definition 16, C allows as initial states all states in classes
allowed as initial by C̃ . Otherwise the decision depends on the
equivalence class [xn] that corresponds to the last state of s.

In case (i), this class [xn] is not divergent or it is divergent
in the abstract controlled system, i.e, ⌊s⌋C̃ [xn][xn] · · · is a path in
C̃/G̃, and then C allows the system to stay in [xn] or to transit to
the classes S(s) allowed as successors by C̃ . Fig. 1 shows the case
of a non-divergent class to the left, and in the middle class that
is divergent in the abstract controlled system.

In case (ii), [xn] is a divergent class in the uncontrolled system
but the abstract controller C̃ does not allow this divergence.
The controller C prevents the divergent behaviour within [xn]
and forces the system to transition to a different equivalence
class eventually. The construction (15) ensures that the system
transitions to another equivalence class permitted by the abstract
controller when possible, and otherwise only allows transitions
within [xn] that take the system closer to a state from where it is
possible to leave [xn]. This case is shown in Fig. 1 to the right.

4.2. Soundness

Soundness means that any controller synthesised by the
abstraction-based method correctly solves Problem 1. Here it is
shown that if there exists a solution C̃ to the synthesis prob-
lem for an abstracted system G̃, then the controller constructed
according to Definition 16 solves the synthesis problem for the
original system G.

For the controller to be correct, it must enforce its
LTL\◦ specification and be deadlock free, which is shown in
Propositions 4 and 5. Both results depend on the following lemma,
which shows that the path ⌊s⌋C̃ used in the construction of the
controller C is a path in the abstract controlled system C̃/G̃ if s is
a path in the original controlled system G.

Lemma 3. Let G be a transition system, let ≈ be a divergent stutter
bisimulation on G, let C̃ be a controller for G̃ = G//≈, and let C be the
controller constructed from C̃ according to Definition 16. If a finite
string s ∈ Q+ is a path in C/G, then ⌊s⌋C̃ is defined and is a path
in C̃/G̃.

Proof. Let s = x0 · · · xn, and let sk = x0 · · · xk be the kth prefix
of s. It is shown by induction on k = 0, . . . , n that ⌊sk⌋C̃ is defined
and a path in C̃/G̃.
Base case: k = 0. As s0 = x0 is a path in C/G, it is clear that x0 ∈ Q ◦

◦ ◦
is an initial state of G and x0 ∈ C(ε). Then [x0] ∈ { [x ] | x ∈

6

Q ◦ } = Q̃ ◦ is an initial state of G̃, and from x0 ∈ C(ε) =
⋃

C̃(ε) it
follows that [x0] ∈ C̃(ε). This means that [x0] is an initial state of
C̃/G̃, which implies that ⌊s0⌋C̃ = [x0] is defined and a path in C̃/G̃.
Inductive step: Assume the claim holds for some 0 ≤ k < n, i.e,
⌊sk⌋C̃ is defined and a path in C̃/G̃. It must be shown that ⌊sk+1⌋C̃
is defined and a path in C̃/G̃. As k ≥ 0, the path sk+1 can be
written as sk+1 = skxk+1 = sk−1xkxk+1. As s and thus its prefix
sk+1 is a path in C/G, it is clear that xk+1 ∈ C(sk) by Definition 6.
Consider two cases.

If xk ≈ xk+1, then it follows by (11) that ⌊sk+1⌋C̃ =

⌊sk−1xkxk+1⌋C̃ = ⌊sk−1xk⌋C̃ = ⌊sk⌋C̃ is defined and a path in C̃/G̃
by the inductive assumption.

Otherwise xk+1 /∈ [xk], and as xk+1 ∈ C(sk) it follows in
both cases (i) and (ii) of Definition 16 that xk+1 ∈ S(sk). (For
case (ii), note that PPrei−1(S(sk), [xk]) ⊆ [xk].) By (13), there exists
x̃ ∈ S̃(⌊sk⌋C̃ ) such that xk+1 ∈ x̃, i.e., [xk+1] = x̃. Then by (8)–(9),
there exists i ≥ 0 such that ⌊sk⌋C̃ [xk]

ix̃ = ⌊sk⌋C̃ [xk]
i
[xk+1] is a

path in C̃/G̃. Choose i to be the smallest with this property. Then
⌊sk+1⌋C̃ = ⌊sk−1xkxk+1⌋C̃ = ⌊sk−1xk⌋C̃ [xk]

i
[xk+1] = ⌊sk⌋C̃ [xk]

i
[xk+1]

by (12), so ⌊sk+1⌋C̃ is defined and a path in C̃/G̃. □

Now it can be shown that the controller constructed according
to Definition 16 enforces the same LTL\◦ properties on the original
system as the abstract controller does.

Proposition 4. Let G be a transition system, let ≈ be a divergent
stutter bisimulation on G, let ϕ be an LTL\◦ specification, let C̃ be
a controller for G̃ = G//≈ that enforces ϕ on G̃, and let C be the
controller constructed from C̃ according to Definition 16. Then C
enforces ϕ on G.

Proof. Assume s = x0x1 . . . is an arbitrary infinite path in C/G.
It is to be shown that s |= ϕ. By Lemma 3, for every prefix
sn = x0 · · · xn of s, it holds that ⌊sn⌋C̃ is defined and is a path
in C̃/G̃. Therefore, as ⌊s⌋C̃ is prefix-preserving, there is an ascend-
ing sequence ⌊s0⌋C̃ ⊑ ⌊s1⌋C̃ ⊑ · · · of paths in C̃/G̃. The closure of
this sequence may be finite or infinite.

If it is infinite, then let s̃ = clo{ ⌊si⌋C̃ | i ≥ 0 }, which is an
infinite path in C̃/G̃ and stutter equivalent to s.

Otherwise there exists k ≥ 0 such that ⌊sn⌋C̃ = ⌊sk⌋C̃ for
all n ≥ k. As ⌊sn⌋C̃ is defined for all n ≥ 0, it must have been
constructed from (11) and xn ≈ xk for all n ≥ k. As s is a path
in G, it follows that sk is divergent in C/G and xk is divergent
in G. The fact that sk is divergent in C/G means that C(sk) cannot
be constructed according to case (ii) of Definition 16, as this case
only allows a finite number i of steps within [xk]. Then case (i)
of Definition 16 must be used, i.e., ⌊sk⌋C̃ is divergent in C̃/G̃. This
means by Definition 7 that s̃ = ⌊sk⌋C̃ [xk][xk] · · · is an infinite path
in C̃/G̃. Also, as [xn] = [xk] for all n ≥ k, it is clear that s̃ is stutter
equivalent to s.

In both cases, there exists an infinite path s̃ in C̃/G̃ that is
stutter equivalent to s. Since C̃ enforces ϕ on G̃, it follows that
s̃ |= ϕ. Since s̃ is stutter equivalent to s, based on Proposition 1 it
holds that s |= ϕ. □

The second property required of a correct controller is that
it is deadlock free. Therefore, the following proposition estab-
lishes that if the abstracted closed-loop system is deadlock free,
then the controller constructed using Definition 16 produces a
deadlock free closed-loop behaviour for the original system.

Proposition 5. Let G be a transition system, let ≈ be a divergent
stutter bisimulation on G, let C̃ be a controller for G̃ = G//≈ such
that C̃/G̃ is deadlock free, and let C be the controller constructed
from C̃ according to Definition 16. Then C/G is deadlock free.
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Fig. 1. Construction of a controller for the original system from the abstraction according to Definition 16, depending on whether [xn] is not divergent in G (left),
⌊s⌋C̃ is divergent in G̃ (middle), or [xn] is divergent in G and ⌊s⌋C̃ is not divergent in G̃ (right). Transitions disabled by the controller are shown as dashed arrows.
Proof. Consider a reachable state s of C/G, which can be writ-
ten as s = x0 · · · xn, which must be a path in C/G. It fol-
lows by Lemma 3 that ⌊s⌋C̃ is defined and is a path in C̃/G̃.
By construction, ⌊s⌋C̃ can be written as ⌊s⌋C̃ = x̃0 · · · x̃k with
xn ∈ x̃k.

First consider the case that ⌊s⌋C̃ is divergent in C̃/G̃, which
by Definition 7 means that x̃0x̃1 · · · x̃kx̃kx̃k · · · is a path in C̃/G̃.
This implies that x̃k is divergent in G̃, and as ≈ is a divergent
stutter bisimulation on G, it follows that [xn] = x̃k is ≈-divergent
in G. Then there exists xn+1 ∈ [xn] such that xn → xn+1 in G.
Also C(s) is constructed according to case (i) of Definition 16 for
divergent ⌊s⌋C̃ , and thus xn+1 ∈ [xn] ⊆ [xn] ∪ S(s) = C(s).

Now consider the case that ⌊s⌋C̃ is not divergent in C̃/G̃. Then,
since C̃/G̃ is deadlock free, there must exist i ≥ 0 and a class
ỹ ̸= x̃k such that ⌊s⌋C̃ x̃

i
kỹ is a path in C̃/G̃. It follows from (8)–(9)

that ỹ ∈ S̃(⌊s⌋C̃ ). Also, as ⌊s⌋C̃ x̃
i
kỹ is a path in C̃/G̃, it holds that

x̃k → ỹ in G̃, which means that there exist states x ∈ x̃k and y ∈ ỹ
such that x→ y in G. Then xn ≈ x, and as ≈ is a divergent stutter
bisimulation on G, there exists a path fragment

xn → xn+1 → · · · → xn+m ≈ y (16)

in G where xn, . . . , xn+m−1 ∈ x̃k and xn+m ∈ ỹ. Assume without
loss of generality that (16) is a shortest path fragment with these
properties. Note that, as xn+m ∈ ỹ and ỹ ∈ S̃(⌊s⌋C̃ ), it follows
from (13) that xn+m ∈ S(s). Now consider the two cases from
Definition 16.

(i) [xn] is not divergent and C(s) = [xn] ∪ S(s). Either it holds
that m > 1 and xn+1 ∈ [xn] or m = 1 and xn+1 = xn+m ∈
S(s), so it follows that xn+1 ∈ [xn] ∪ S(s) = C(s).

(ii) [xn] is divergent and C(s) is defined by (15). It is first
shown by induction on j = 0, . . . ,m − 1 that xn+m−j−1 ∈
PPrej(S(s), [xn]).
Base case: j = 0. As xn+m−1 ∈ [xn] and xn+m−1 →
xn+m ∈ S(s), it holds that xn+m−1 ∈ Pre(S(s)) ∩ [xn] =
PPre0(S(s), [xn]).
Inductive step: Assume the claim xn+m−j−1 ∈ PPrej(S(s), [xn])
holds for some j < m − 1. Then since xn+m−(j+1)−1 =
xn+m−j−2 → xn+m−j−1 in G and xn+m−(j+1)−1 ∈ x̃k = [xn],
it is clear that xn+m−(j+1)−1 ∈ Pre({xn+m−j−1}) ∩ [xn] ⊆
Pre(PPrej(S(s), [xn])) ∩ [xn] = PPrej+1(S(s), [xn]).
This completes the induction. If m = 1 then it follows
with j = 0 that xn ∈ PPre0(S(s), [xn]), and thus xn+1 =
xn+m ∈ S(s) = C(s) from (15). If m > 1 then it follows with
j = m − 2 that xn+1 = PPrem−2(S(s), [xn]). Also, since (16)
is a shortest path fragment, there does not exist j < m− 2
such that xn+1 ∈ PPrej(S(s), [xn]). Then it follows from (15)
that xn+1 ∈ PPrem−2(S(s), [xn]) = C(s).

In all the cases there exists xn+1 ∈ C(s) with xn → xn+1. It follows
that s→ sxn+1 in C/G, which shows that C/G is deadlock free. □

The following theorem combines the results from
Propositions 4 and 5 to show that synthesis after divergent stutter
bisimulation is sound.
7

Theorem 6 (Soundness). Let G be a transition system and ϕ be an
LTL\◦ formula. Let C̃ be a controller for G̃ = G//≈ such that C̃/G̃
is deadlock free and C̃/G̃ |= ϕ. Let C be the controller constructed
from C̃ according to Definition 16. Then C/G is deadlock free and
C/G |= ϕ

Proof. Follows directly from Propositions 4 and 5. □

Theorem 6 establishes that divergent stutter bisimulation can
be used as an abstraction method before solving Problem 1.
Moreover, Definition 16 can be used to construct a controller
for the original system from the abstracted controller, which is
a solution for Problem 1.

4.3. Completeness

Completeness of a synthesis method means that if there exists
a solution to the synthesis problem, then the method finds a
solution. The following theorem shows that, if there exists a
controller C for a system G, then there also exists a controller C̃
that enforces the same LTL\◦ specification on the divergent stutter
bisimilar abstraction G̃.

Theorem 7 (Completeness). Let G be a transition system, let ≈ be a
divergent stutter bisimulation on G, let ϕ be an LTL\◦ specification,
and let C be a controller for G that enforces ϕ on G such that C/G
is deadlock free. Then there exists a controller C̃ for G̃ = G//≈ that
enforces ϕ on G̃ such that C̃/G̃ is deadlock free.

Proof. Since C/G is deadlock free, from every initial state of C/G
there exists an infinite path in C/G. Let Q̃ ◦C = { [x

◦
] | x◦ ∈

Q ◦ ∩ C(ε) } be the set of classes of initial states allowed by C .
Then choose an initial class x̃0 ∈ Q̃ ◦C , and an initial state x0 ∈
x̃0 ∩ Q ◦ ∩ C(ε), and an infinite path s = x0x1 · · · in C/G. As s is an
infinite path in G, by Theorem 2, there exists a stutter equivalent
infinite path s̃ = x̃0x̃1 · · · in G̃. Now construct the controller C̃
such that C̃(ε) = {x̃0} and C̃(x̃0 · · · x̃k−1) = x̃k for all k ≥ 0.
By construction, C̃ constrains the abstracted system G̃ such that
it can only follow the infinite path s̃, which implies that C̃/G̃ is
deadlock free. As s is a path in C/G, and C enforces ϕ on G, it
holds that s |= ϕ. As s̃ is stutter equivalent to s, it follows by
Proposition 1 that s̃ |= ϕ. Then, since the s̃ is the only infinite
path in C̃/G̃, it follows that C̃ enforces ϕ on G̃. □

Theorem 7 confirms that, whenever there exists a solution
to Problem 1, the method of synthesis after divergent stut-
ter bisimulation also finds a solution. Assume that there exists
a controller C that enforces a given LTL\◦ specification on a
given system G. Then by Theorem 7, there exists controller C̃
that enforces the same specification on the abstraction G̃. Given
a complete procedure to solve the synthesis problem for G̃,
it is possible to compute such a solution. This solution can
then be converted to a controller for the original system using
Definition 16, which by the results of Section 4.2 solves Problem 1

for the original system.
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Fig. 2. Abstraction sizes and computation times (top) and synthesis and
simulation times (bottom) from Example 2.

5. Examples

This section applies the synthesis and controller construc-
ion method using divergent stutter bisimulation to a variety of
ystems and compares the results to regular bisimulation.
As shown in Example 1, there are cases where the coars-

st partition for bisimulation is infinite while a finite divergent
tutter bisimulation partition exists. Even when bisimulation is
pplicable, stutter bisimulation can offer simpler partitions and
aster computation. This is demonstrated with the next two ex-
mples featuring finite and continuous state spaces. In both cases
he systems are abstracted, controllers are synthesised, and the
losed-loop systems are simulated using TuLiP (Filippidis et al.,
016). All computations were performed on an Intel i7-4770K
PU with 32GiB of RAM.

xample 2. Consider a system where K robots, numbered
, . . . , K , navigate in a two-dimensional grid G = {0, . . . , w} ×
0, . . . , h}. The system state x consists of the robot locations
x1, . . . , xK ∈ G and evolves according to

(xi)+ = xi + ui for ui
∈ {−1, 0, 1}2 . (17)

he corners of the grid are special locations where the robots
harge at home or perform tasks: Home = (0, 0), Task0 = (w, 0),
Task = (0, h), Task = (w, h). A robot is charged when it enters
1 2
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Fig. 3. The abstractions in Example 3 using bisimulation (left) and divergent
stutter bisimulation (right). A path using the synthesised controller is shown
for the divergent stutter bisimulation.

the home location, and a task is completed when a robot enters
the task region. Each robot should be charged infinitely often and
each task should be completed infinitely often by some robot,
while no two robots should occupy the same location at the same
time. This is modelled by the LTL\◦ formula

¬C ∧
K⋀

i=1

□♢Hi ∧

2⋀
j=0

□♢Tj , (18)

where

x |= C ⇔ ∃i, j : i ̸= j ∧ xi = xj , (19)

x |= Hi ⇔ xi = Home , (20)

x |= Tj ⇔ ∃i : xi = Taskj . (21)

Experiments are carried out for K = 2 robots and grid sizes
(w, h) ∈ {(2, 2), (2, 3), (3, 3), (3, 4), (4, 4), (5, 5)}. For larger grids,
the bisimulation algorithm does not converge within one hour.
The states in this example are only bisimilar to themselves, so
the coarsest bisimulation is the original partition defined by the
propositions (19)–(21). For grid sizes 3 × 3 and above, it has
20 regions. Fig. 2 (top) shows the computation times, which are
significantly faster for divergent stutter bisimulation.

Next, controllers are synthesised for the abstracted systems
and evaluated by simulating a path. At each step, the time to
map the control decision from the abstract system to a control
decision for the original system is measured and shown in Fig. 2
(bottom). The synthesis time for the divergent stutter bisimu-
lation abstraction is significantly lower as expected from the
smaller abstraction size. On the other hand, mapping control
decisions from the abstract system to the original system is signif-
icantly faster for bisimulation as the construction of the divergent
stutter bisimulation controller is nontrivial. □

Example 3. Consider a continuous analogue of Example 2 with
one robot modelled by the linear system

x+ = x+ u, u ∈
[
−

1
3 ,

1
3

]2
. (22)

The state space Q is a subset of [0, 6] × [0, 4] with polygonal
obstacles as shown in Fig. 3 removed. The atomic propositions are
as in Example 2, and the satisfaction relation is defined similarly
where the home and task locations are squares at the corners
of Q .

The abstraction algorithms are implemented for regions given
by unions of polytopes whose predecessors can be computed with
linear programming. The bisimulation algorithm is prematurely
terminated by splitting only regions exceeding a minimum area,
resulting in an abstraction with 158 regions that takes 349 s
to compute. The divergent stutter bisimulation algorithm takes
2003 s and converges to the original partition. These abstractions
are depicted in Fig. 3.
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Fig. 4. The abstractions computed in Example 4 using bisimulation (left) and
divergent stutter bisimulation (right).

Fig. 5. The partition produced by divergent stutter bisimulation in Example 5.

Next, when synthesising controllers, the computer runs out
f memory during synthesis for bisimulation, while a controller
s synthesised in 38 ms for the much smaller divergent stutter
isimulation abstraction. When simulating a path of the closed-
oop system for the divergent stutter bisimulation abstraction,
he average time to map control inputs for the abstraction to the
riginal system is 0.81 ms. □

Even when divergent stutter bisimulation does not result in
he original partition, the resulting abstraction can still be sig-
ificantly less complex than abstractions using bisimulation, as
hown in the next two examples.

xample 4. Consider the following continuous-state double-
ntegrator system:

x+
v+

]
=

[
1 1
0 1

][
x
v

]
+

[
0
1

]
u , (23)

here x ∈ [−1, 1], v ∈ R, and u ∈ [−0.5, 0.5]. This models the
osition x and velocity v of a ball rolling on a one-dimensional
able that can be tilted. The objective is for the ball to visit two
egions L = [−1,−0.5] and R = [0.5, 1] repeatedly, which is
xpressed in LTL\◦ as □♢l ∧ □♢r , where (x, v) |= l if x ≤ −0.5
nd (x, v) |= r if x ≥ 0.5. The bisimulation algorithm terminates
n 48 s resulting in an abstraction with 82 regions, while the
ivergent stutter bisimulation algorithm converges in 200 s to
n abstraction with 30 regions, as shown in Fig. 4. Although
ivergent stutter bisimulation takes longer to compute, it results
n a smaller abstraction. □

xample 5 (Wagenmaker & Ozay, 2016). Consider the following
wo-dimensional linear system:

+
=

[
0.5 1
0.75 −1

]
x+ u , (24)

here x ∈ [−1, 1] × [−1, 1] is the state and u ∈ [−1, 1] ×
−1, 1] is the control input. The initial partition consists of five
9

egions, s1 = [−0.5, 0.5) × [−0.5, 0.5), s2 = [−1, 0.5) ×
[−1, 1], s3 = [−0.5, 1] × [0.5, 1], s4 = [0.5, 1] × [−1, 0.5), and
s5 = [−0.5, 0.5) × [−1,−0.5). Divergent stutter bisimulation
converges to a partition of 15 regions as shown in Fig. 5, after
37 s computation time. The dual-simulation algorithm converges
to a partition of 66 regions after 137 s, while the bisimulation
algorithm does not terminate after 1 h—it produces an approx-
imate partition of 700 regions in 35 min. Wagenmaker and Ozay
(2016). □

6. Conclusions

The abstraction method of divergent stutter bisimulation has
been applied to reduce a state space before controller synthesis.
Divergent stutter bisimulation is a well-known abstraction in the
field of model checking, which preserves CTL∗

\◦
properties. This

paper leverages these results to simplify the task of controller
synthesis. It is shown that a controller synthesised to satisfy any
LTL\◦ specification on a reduced state space based on divergent
stutter bisimulation can be converted back to a controller for the
original system. This synthesis method is sound and complete
relative to a sound and complete synthesis procedure for the
abstract state space.

These results improve on bisimulation-based abstraction, be-
cause divergent stutter bisimulation results in coarser partitions
and is more likely to terminate even for infinite state spaces.
This abstraction can also be considered as more insightful for
continuous systems as it ignores the number of steps needed to
transition from one region to another.

In future work, the authors would like to combine divergent
stutter bisimulation with dual-simulation (Wagenmaker & Ozay,
2016). Dual-simulation is related to simulation equivalence (Hen-
zinger et al., 2005) and improves on bisimulation using covers
instead of partitions, and could benefit from the abstraction of
stuttering steps in the same way as bisimulation does. It would
also be interesting to generalise the results about LTL\◦ specifica-
tions to CTL\◦ or CTL∗\◦, and to consider control under uncertainty
or disturbance.
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