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Abstract:
Cyber-physical systems are typically safety-critical, thus it is crucial to guarantee that they conform to
given specifications, that are the properties that the system must fulfill. Optimization-based falsification
is a model-based testing method to find counterexamples of the specifications. The main idea is to
measure how far away a specification is from being broken, and to use an optimization procedure to guide
the testing towards falsification. The efficiency of the falsification is affected by the objective function
used to evaluate the test results; different objective functions are differently efficient for different types
of problems. However, the efficiency of various objective functions is not easily determined beforehand.
This paper evaluates the efficiency of using multiple objective functions in the falsification process. The
hypothesis is that this will, in general, be more efficient, meaning that it falsifies a system in fewer
iterations, than just applying a single objective function to a specific problem. Two objective functions
are evaluated, Max, Additive, on a set of benchmark problems. The evaluation shows that using multiple
objective functions can reduce the number of iterations necessary to falsify a property.

Keywords: Testing, Falsification, Multiple Objective Functions, Cyber-Physical Systems.

1. INTRODUCTION

Cyber-Physical Systems (CPSs) consist of computational parts
described by state models, communicating with a physical envi-
ronment described by differential equations. Using high fidelity
models is typical in model-based design of CPSs. Testing and
verifying the correctness of all physical and cyber components
of CPSs are important and a big challenge (Abbaspour Asadol-
lah et al., 2015). An autonomous car is an example of a CPS
where it is necessary with rigorous methods to assure the cor-
rectness of the system. Typically, formal verification and/or
testing are used for this purpose.

For complex systems, testing is a necessary part of the design
process since formal verification of systems with a combination
of discrete and continuous dynamics is an undecidable prob-
lem (Henzinger et al., 1995). However, for both formal verifi-
cation and testing, formal specifications of the properties that
should be fulfilled are required in order to enable an automated
approach. One approach, surveyed by Bartocci et al. (2018),
that can be used is formal specification of properties that the
closed-loop system should satisfy, combined with simulation
of models and where the given specifications are monitored
and it is evaluated whether they are satisfied or not. This can
be combined with falsification techniques that search for coun-
terexamples to given specifications of the closed-loop system.

? This work was supported by the Swedish Research Council (VR) project
SyTeC VR 2016-06204 and from the Swedish Governmental Agency for
Innovation Systems (VINNOVA) under project TESTRON 2015-04893.

The falsification process can be based on an optimization
procedure where the optimization is performed over an input
parametrization expressing possible input signals. The aim is
to find counterexamples, if possible, to specifications of the
system under test. This is done in an iterative manner where
an objective function measures the distance to the specifica-
tion being falsified. The objective function is determined by
the definition of quantitative semantics for temporal logic for-
malisms (Fainekos and Pappas, 2009). Metric Interval Tem-
poral Logic (MITL) (Koymans, 1990) and Signal Temporal
Logic (STL) (Maler and Nickovic, 2004), are two variants of
formalisms for which quantitative semantics can be defined.
The main purpose of calculating an objective function value
is to guide the testing process towards falsification by choosing
the next set of parameters for the input signals to the system
being simulated, such that the likelihood of falsifying the spec-
ification is increased.

For industrial systems typically only a black-box of the system
under test is available, meaning that only input-output behavior
of the system can be observed. In general, these systems are
a mix of continuous dynamics, discrete event dynamics, and
algorithms implemented using general-purpose programming
languages. Parts of the system might also be implemented using
physical hardware. Breach (Donzé, 2010) and S-TaLiRo (An-
npureddy et al., 2011) are two Matlab/Simulink based tool-
boxes used for test monitoring and falsification. Both tools
search for trajectories of minimal quantitative value to find
counterexamples to MITL/STL specifications. Eddeland et al.
(2020) show how STL specifications can be automatically de-



rived from Simulink blocks expressing the specifications, this
is of practical value to engineers that are working with testing
and falsification since it is not necessary to work with temporal
logic specifications directly.

For both Breach and S-TaLiRo, the falsification process is
guided by an optimization procedure. Due the system being a
black-box, gradient-free optimization methods have to be used.
Nelder-Mead (Nelder and Mead, 1965) is a common gradient-
free optimization method that can be used by Breach to guide
the falsification process. Although the optimization method
does not use explicit gradients, the method will attempt to
search in a direction that results in a smaller objective value,
where the quantitative semantics are defined in such a way
that a negative objective value means that the specification is
falsified. In this work, we evaluate three quantitative semantics,
Max and Additive to define the objective function for the fal-
sification processes. In previous work, (Claessen et al., 2018),
Valued Booleans (VBools) were introduced as a way to express
different quantitative semantics in a coherent way.

In Ramezani et al. (2019), the Max and MARV semantics for
defining objective functions were evaluated for an autonomous
driving example. It was shown that, for certain areas of the
parameter space, Max results in constant objective values, while
MARV results in non-constant objective values. If the Nelder-
Mead (NM) solver starts in an area where the objective values
are constant (like for Max), it might eventually finish the opti-
mization procedure without finding any falsifying point. This
happens because there is no useful information for the opti-
mization algorithm to guide the search to areas with parameters
where the objective function has a lower value. As the simula-
tion time is the most limiting factor; the more simulations that
have to be run, the longer the falsification process takes.

The contribution of this paper is the introduction of a mod-
ified optimization approach that takes advantage of multiple
objective functions for the purpose of falsifying specifications.
The objective functions have in common that if the specifica-
tion is satisfied the value of the objective function is positive
and if the specification is falsified the value is negative. The
motivation for this work is that evaluating multiple objective
functions is often significantly less time-consuming than sim-
ulating or executing the system, and the objective values of
multiple quantitative semantics can be computed using a single
simulation of the system under test. The modified optimization
approach then heuristically chooses which one of the parameter
configurations to simulate next based on the variance of the
respective objective function values. That is, for each iteration
of the NM solver, the heuristic picks the point given by the
quantitative semantic that has the largest variance. This avoids
using the semantic that has close to constant objective values.
The approach is evaluated on a set of benchmark examples. The
results show that using multiple objective functions can indeed
falsify system properties in fewer simulation runs, compared to
using only a single objective function.

In the following, Section 2 introduces the quantitative seman-
tics and different ways to define the objective functions used
for the falsification process. Section 3 proposes the suggested
multiple objective functions in this paper. Section 4 introduces
the three benchmark examples. Section 5 evaluates the perfor-
mance of the suggested optimization on benchmark examples.
Finally, Section 6 summarizes the contributions.

2. QUANTITATIVE SEMANTICS AND OBJECTIVE
FUNCTIONS

In this paper, Breach is used for falsification, hence STL is used
to model the specifications. The syntax of STL is defined as
follows (Raman et al., 2014)

ϕ ::= µ | ¬µ |ϕ ∧ ψ |ϕ ∨ ψ |�[a,b]ψ | ♦[a,b]ψ

where the predicate µ is µ ≡ µ(s) > 0 and s is a signal; ϕ and ψ
are STL formulas; �[a,b] denotes the globally operator between
times a and b (with a < b); ♦[a,b] denotes the finally operator
between a and b.

The satisfaction of the formula ϕ with respect to the discrete
signal s at the discrete time instant k is defined as:

(s, k) |= µ ⇔ µ(s[k])
(s, k) |= ¬µ ⇔ ¬((s, k) |= µ)
(s, k) |= ϕ ∧ ψ ⇔ (s, k) |= ϕ ∧ (s, k) |= ψ

(s, k) |= ϕ ∨ ψ ⇔ (s, k) |= ϕ ∨ (s, k) |= ψ

(s, k) |= �[a,b]ϕ ⇔ ∀k′ ∈ [k + a, k + b], (s, k′) |= ϕ

(s, k) |= ♦[a,b]ϕ ⇔ ∃k′ ∈ [k + a, k + b], (s, k′) |= ϕ

Instead of only checking the boolean satisfaction of an STL for-
mula, the notion of a quantitative value, i.e. an objective value,
will be defined in order to measure how far away a specification
is from being falsified. A Valued Boolean (VBool) (Claessen
et al., 2018) (v, x) is a combination of a Boolean value v (true
>, or false ⊥) together with a real number x that is a measure
of how true or false the specification is. This value will be
used as a measure of how convincingly a test passed, or how
severely it failed, respectively. In the original VBool definition,
x is defined to always be non-negative. However, in this paper
we use the convention that x is negative when v is false, and
positive otherwise.

2.1 Quantitative Semantics

Using VBools, we define three quantitative semantics: Max,
which is essentially the same as standard STL quantitative se-
mantics; Additive; For these semantics we define the respective
and, or, always, and eventually operators.

For conjunction, the semantics differ only in the two cases
where the truth values are the same:

Max Additive
(>, x) ∧ (>, y) = (>,min(x, y))

(
>, 1

1
x + 1

y

)
(>, x) ∧ (⊥, y) = (⊥, y)
(⊥, x) ∧ (>, y) = (⊥, x)
(⊥, x) ∧ (⊥, y) = (⊥,max(x, y)) (⊥, x + y)

Using the de Morgan laws, the or operator can be defined in
terms of and, as (vx, x)∨(vy, y) = ¬v(¬v(vx, x)∧¬v(vy, y)), where
VBool negation is defined as ¬v(vx, x) = (¬vx,−x).

For the Max semantics, the always operator over an interval
[a, b] is straightforwardly defined in terms of and, as �[a,b]ϕ =

b∧
k=a

ϕ [k], where ϕ is a finite sequence of VBools defined for all

the discrete time instants in [a, b].

For the Additive semantics, though, always is a bit more elabo-

rate: �[a,b]ϕ =
b∧

k=a
ϕ [k] # δt, where δt is the simulation step size



that makes the quantitative value independent of the simulation
time, and # is (⊥, x) # δt = (⊥, x · δt) and (>, x) # δt = (>, x/δt).
Furthermore, the eventually operator is for all three semantics
defined over an interval [a, b] in terms of always, as ♦[a,b]ϕ =
¬(�[a,b](¬v ϕ)).

3. FALSIFICATION USING MULTIPLE OBJECTIVE
FUNCTIONS

This section presents the multiple objective functions for fal-
sification of CPSs. Different combinations of objective func-
tions and different strategies for switching between objective
functions is discussed in this paper. The main optimization
algorithm considered in this paper is an implementation of
Nelder-Mead which is also included in Breach. This algorithm
is implemented as fminsearch (Lagarias et al., 1998) in Mat-
lab. We propose a modified optimization algorithm, based on
Nelder-Mead, that exploits multiple objective functions. The
new algorithm is presented in Algorithm 1 and works in the
following way. The presentation of the algorithms is based on
two objective functions, in this case using the Max and Additive
semantics, however the approach is generic and can be applied
to an arbitrary number of objective functions.

(1) The algorithms starts with p sample points. For each
example, p is different and it refers to the number of
inputs of each example multiple by 10. All these points
are sorted from lowest to highest according to the values
of different objective functions. Note, that objective values
will be different for each used quantitative semantic, thus
there will be one ordering for each semantic. By using a
heuristic algorithm to choose which quantitative semantic,
the minimum point is considered and it will generate n
new points surround the first point before starting the
optimization.

(2) The first n + 1 points in the parameter space are needed by
the NM style optimization algorithm to start the optimiza-
tion process. Again, all these points must be sorted from
lowest to highest according to the values of the different
objective functions.

(3) For each ordering of the objective values, the algorithm
will suggest a new point in the parameter space for evalua-
tion. For each quantitative semantic there will be an order-
ing of the points in the parameter space that is based on the
objective value used for the specific semantic. By using a
heuristic algorithm to choose which quantitative semantic,
one new point will be selected for further evaluation, i.e.
being simulated.

(4) Now, one iteration in the optimization can execute, i.e. the
execution of Step 4 to 7 in Algorithm 1.

(5) When reaching to Step 8, once again calculate the objec-
tive values for all of the considered quantitative semantics
and saved points, and create one ordering for each of the
considered quantitative semantic. Choose n+1 points with
lowest objective value function of the semantic that wins
the heuristic strategy.

Note, a new quantitative semantic can be selected in each
iteration of the algorithm. In this paper, we have implemented
two heuristic algorithms that are based on the variance of the
n + 1 lowest objective values and the distance of largest and
lowest objective functions.

Strategy 1 (Variance). For each ordering of objective values,
i.e. one ordering for each quantitative semantic, consider the

n + 1 points with lowest objective value, i.e. the points that
according to the semantics that are closest to falsifying the
specification. For these points, calculate the variance among

the n + 1 points using σ2
k =

n+1∑
i=1

( f k
i −µ)2

n+1 , where f k
i refers to the

objective function value of each n + 1 points that have lowest
value for each semantic. µ is the mean of n + 1 points.

Strategy 2 (Distance). The distance can be calculated using
Disk =

f k
max− f k

min

||xk
max−xk

min ||
, where f k

max and f k
min refer to the maximum

and minimum objective function values of the n + 1 points that
have the lowest objective value of each semantic. xk

max and xk
min

refers to their points, respectively.

The heuristic will choose the point given by the quantitative
semantic that corresponds to the largest variance in strategy 1;
largest distance in strategy 2. These heuristics are thus selecting
the quantitative semantic that has a clear sense of direction
and avoids using semantic that has close to constant objective
values resulting in small variance and distance. However, other
heuristics could be used as well, but a more thorough evaluation
of possible heuristics is future research.

4. BENCHMARK PROBLEMS

Three examples are considered here to show the performance
of the multiple objective functions approach, that are also used
in Eddeland et al. (2020), below is a brief description of the
examples.

4.1 Automatic Transmission (AT) Benchmark

The inputs to the model are the throttle and brake of a vehicle.
The outputs of the model are the vehicle speed v, the engine
speed ω, and the gear, see Hoxha et al. (2014) for details.

4.2 Third Order ∆ − Σ Modulator

The third order ∆ − Σ modulator is a model of a technique for
analog to digital conversion. It has one input U, three states
x1, x2, x3, and three initial conditions xinit

1 , xinit
2 , xinit

3 , see Dang
et al. (2004) for details.

4.3 Static Switched (SS) System

The static switched system is a model without any dynamics
that is included as a simple case make falsification worse than
only using single boolean objective function. The model has
been inspired by Dokhanchi et al. (2015).

5. EXPERIMENTAL SETUP AND RESULTS

The experimental setup is described in more detail in Eddeland
et al. (2020). The implementation starts by evaluating 100
random points for the AT example, 40 for third order ∆ − Σ
modulator example and 20 for the SS example before starting
the optimization. After doing that if the falsified point is not
found, the optimization solver starts from the point with lowest
objective value. In Table 1, the STL specifications that should
be falsified for all the models, and the benchmark models are
presented.

The results of running Algorithm 1 on the benchmark problems
are shown in Tables 2, 3, and 4, and the aggregated results are



Algorithm 1 Modified Nelder-Mead Algorithm Using Multiple
Objective Functions

1. Choose p random points. Start with p random points and order and re-
label the vertices from lowest function value to highest function value:
f Max(x1

1) ≤ f Max(x1
2) ≤ · · · ≤ f Max(x1

p),
f Add(x2

1) ≤ f Add(x2
2) ≤ · · · ≤ f Add(x2

p),
Use a heuristic algorithm to choose which quantitative semantic to follow in
this iteration of the optimization. Take the minimum point of semantic that
wins the heuristic algorithm.
2. Let xi denote the list of vertices in the current simplex, i = 1, . . . , n + 1.
These points are generated from the minimum point of Step 1.
3. Order. For each objective function i = 1, . . . , j, order and re-label the n+1
vertices from lowest function value to highest function value:
f Max(x1

1) ≤ f Max(x1
2) ≤ · · · ≤ f Max(x1

n+1),
f Add(x2

1) ≤ f Add(x2
2) ≤ · · · ≤ f Add(x2

n+1),
Use a heuristic algorithm to choose which quantitative semantic to follow in
this iteration of the optimization, see Strategy 1 and 2 for examples.
4. Reflection. Compute the reflected point xr by xr = x̄ + ρ (x̄ − x(n+1)),
where x̄ is the centroid of the n points with lowest objective function values,
x̄ =

∑ xi
n , i = 1, . . . , n. The rest of the optimization will be executed with

the chosen semantic, then f refers to the objective function value of that
semantic.
if f (x1) < f (xr) < f (xn) then

Replace xn+1 with the point xr and go to Step 8.
end if
5. Expansion.
if f (xr) < f (x1) then

Compute the expanded point xe by xe = x̄ + χ (xr − x̄).
if f (xe) < f (x1) then

Replace xn+1 with xe and go to Step 8.
else

Replace xn+1 with xr and go to Step 8.
end if

end if
6. Contraction.
if f (xr) ≥ f (xn) then

Perform a contraction between x̄ and the best among xn+1 and xr .
if f (xn) ≤ f (xr) < f (xn+1) then

Calculate xoc = x̄ + τ (xr − x̄) Outside contract.
if f (xoc) ≤ f (xr) then

Replace xn+1 with xoc and go to Step 8.
else

Go to Step 7.
end if

end if
end if
if f (xr) ≥ f (xn+1) then

Calculate xic = x̄ + τ (xn+1 − x̄) Inside contract.
if f (xic) ≥ f (x(n+1)) then

Replace xn+1 with xic and go to Step 8.
end if

end if
7. Shrink. Evaluate the n new vertices x′ = x1 + φ (xi − x1), i = 2, . . . , n + 1.
Replace the vertices x2, ..., xn+1 with the new vertices x′2, ..., x

′
n+1.

8. Re-Order. Calculate the objective values for the new point for all the
quantitative semantics and for each quantitative semantic and save it or them
(If ”Shrink” happens). Order and re-label the vertices of all m calculated
points from lowest function value to highest function:
f Max(x1

1) ≤ f Max(x1
2) ≤ · · · ≤ f Max(x1

m),
f Add(x2

1) ≤ f Add(x2
2) ≤ · · · ≤ f Add(x2

m),
where k refers to the number of n + 1 of Step 2 and plus the number of points
that are reached at each the iterations (Steps 4-7).
9. Selecting semantics. Take n+1 of each semantic that has lowest objective
function values from Step 8. Select the semantic according to the heuristic
algorithm and continue with the chosen semantic, f refers to the objective
function value of the chosen semantic. While the stopping condition is not
reached go to Step 4, thus
if f (xn+1) − f (x1) < ε then

Stop, where ε > 0 is a small predetermined tolerance.
else

Go to Step 4.
end if
Note: ρ, χ, τ are constant parameters.

Table 1. Specifications to falsify for the three
benchmark models AT, (∆ − Σ), and SS.

Spec. Formula

ϕAT
1 ♦[0,T ](ω ≥ 2000)

ϕAT
2 �♦[0,T ](ω ≤ 3500 ∨ ω ≥ 4500)

ϕAT
3 �[0,T ](¬(gear == 4))

ϕAT
4 ♦(�[0,T ](gear == 3))

ϕAT
5

∧
i=1,...,4 �((¬(gear == i) ∧ ♦[0,ε](gear == i)

=⇒ (�[ε,T+ε](gear == i)))

ϕAT
6 �[0,T ](v ≤ 85) ∨ ♦(ω ≥ 4500)

ϕAT
7 ¬

(
(�[0,1]gear == 1) ∧ (�[2,4]gear == 2)

∧(�[5,7]gear == 3) ∧ (�[8,10]gear == 3)

∧(�[12,15]gear == 2)
)

ϕAT
8 �[0,20]

(
(gear == 4 ∧ throttle > 45

∧throttle < 50) =⇒ ω < ω̄
)

ϕ∆−Σ �
(∧3

i=1(−1 ≤ xi ∧ xi ≤ 1)
)
.

ϕS S �(y ≥ 0)

shown in Fig. 1. The tables are formatted as follows. The first
column denotes the specification falsified. Each specification
has one to three parameter values, these parameter values are
shown in the second columns. The remaining columns show
the different semantics including the Max, Additive, and their
combination with two difference strategies. For each parameter
value and semantic, two values are presented. The first value
is the relative success rate of falsification, in percent. There
are a total of 20 falsification run for each parameter value
and objective functions, meaning that the success rate will
be a multiple of 5%. The second value, inside parentheses,
is the average number of needed simulations per successful
falsification. Each falsification is set to have a maximum of
1000 simulations performed.

In addition, for each parameter value, the semantic with the
highest (or tied highest) success rate has the success rate dis-
played in bold characters. For each parameter value if there are
semantics with same success rate, the semantic with the lowest
average number of simulations per successful simulation has
that number displayed in bold characters (inside the parenthe-
ses).

5.1 Results

As can be seen from Fig 1, the top two approaches are Multiple
semantics. All two strategies of the multiple objective func-
tions, perform better than when we only have a single objective
function. They are more successful in falsifying with fewer
simulations.

By looking at three tables of results, it can been seen that for
automatic transmission, ϕAT

1 (T = 20), ϕAT
3 (T = 5), ϕAT

5
(T = 2), ϕAT

6 (T = 12), ϕAT
8 (ω̄ = 3000), the Multi-Max-Add

using variance strategy works better. While, for ϕAT
1 (T = 30),

ϕAT
2 , ϕAT

4 , ϕAT
5 (T = 1), ϕAT

6 (T = 12), ϕAT
7 , the Multi-Max-Add

using distance works better. Only, for ϕAT
3 (T = 4.5), Max is

better. Additive works for ϕAT
1 (T = 40), ϕAT

8 (ω̄ = 3500).

For ϕ∆−Σ Benchmark, except U ∈ [−0.45, 0.45] that Max per-
forms better for that, multiple objective function using vari-
ance perform well. For all specifications of the Static Switched



Table 2. Results for the automatic transmission benchmark. For each parameter value and quantitative
semantics, the first number indicates relative success ratio of falsification (%). The second number, in

parentheses, indicates average number of simulations per successful falsification.

Spec.
Parameters

Semantics
Max Add Mul Max-Add (Variance) Mul Max-Add (Distance)

ϕAT
1

T = 20 100 (138) 100 (156) 100 (93) 100 (134)
T = 30 85 (264) 95 (364) 95 (375) 100 (309)
T = 40 35 (315) 65 (556) 55 (561) 50 (483)

ϕAT
2 T = 10 100 (33) 100 (14) 100 (20) 100 (11)

ϕAT
3

T = 4.5 100 (141) 90 (323) 100 (223) 100 (272)
T = 5 100 (65) 100 (95) 100 (44) 100 (67)

ϕAT
4

T = 1 60 (505) 35 (357) 40 (367) 65 (402)
T = 2 100 (21) 100 (19) 100 (19) 100 (14)

ϕAT
5

T = 1 95 (406) 90 75 (516) 95 (333) 100 (330)
T = 2 100 (5) 100 (4) 100 (4) 100 (6)

ϕAT
6

T = 10 50 (722) 45 (482) 55 (534) 55 (526)
T = 12 100 (236) 100 (215) 100 (186) 100 (198)

ϕAT
7 65 (766) 75 (382) 65 (483) 90 (421)

ϕAT
8

ω̄ = 3000 100 (13) 100 (11) 100 (7) 100 (10)
ω̄ = 3500 30 (439) 90 (375) 60 (372) 15 (323)

Table 3. Results for the Third Order ∆ − Σ modulator. For each parameter value and quantitative
semantics, the first number indicates relative success ratio of falsification (%). The second number, in

parentheses, indicates average number of simulations per successful falsification.

Spec.
Parameters

Semantics
Max Add Mul Max-Add (Variance) Mul Max-Add (Distance)

ϕ∆−Σ

U ∈ [−0.35, 0.35] 55 (331) 20 (515) 85 (361) 65 (445)
U ∈ [−0.40, 0.40] 100 (271) 75 (279) 100 (228) 100 (255)
U ∈ [−0.45, 0.45] 100 (73) 95 (314) 100 (136) 100 (141)

Table 4. Results for the Static Switched System. For each parameter value and quantitative semantics,
the first number indicates relative success ratio of falsification (%). The second number, in parentheses,

indicates average number of simulations per successful falsification.

Spec.
Parameters

Semantics
Max Add Mul Max-Add (Variance) Mul Max-Add (Distance)

ϕS S
thresh = 0.7 100 (120) 100 (248) 100 (43) 100 (89)
thresh = 0.8 90 (201) 100 (219) 100 (114) 85 (356)
thresh = 0.9 55 (511) 45 (519) 80 (334) 40 (365)

system, multiple objective function using variance give better
results.

One conclusion that can be given here is that the Max-Additive
multiple objective function using both strategies work better
than others, and for only a few of specifications, the single
semantics works better. Only for the specifications ϕAT

8 (ω̄ =

3500) and ϕAT
5 (T = 30) of the automatic transmission example,

the Additive was successful in finding more falsification. For
other semantics that Max or Additive work better still the single
and multiple objective functions have same success ratio of
falsification, only the number of simulations is different. As a
result, the multiple objective functions using both strategies can
guide the testing process towards falsification better than only
single semantic is used, on the given benchmark set.

6. CONCLUSION

In this paper, the use of multiple objective functions for falsifi-
cation of CPSs was proposed. With a single objective function,
the optimization may get the wrong or even no information for
it to be able to guide the falsification process towards falsifying
the specification. Since for CPSs, the simulation time is the

most limiting factor, not the evaluation of the simulation results,
multiple objective functions were suggested. Combinations of
two different semantics Max and Additive were evaluated. A
variance and distance based strategy were used to switch be-
tween the objective functions, such that the objective function
with highest variance (distance) was picked for each iteration
of the falsification. Three benchmark CPSs examples were
considered to show the performance of the multiple objective
functions.

The main conclusion drawn from the data gathered is that the
proposed optimization algorithm perform better than when only
a single objective function is used on the used benchmark ex-
amples. Also multiple objective functions are more successful
in finding counterexamples in less number of simulation runs.
This so, since multiple objective functions can better guide
the optimization algorithm towards falsification, increasing the
chance of falsifying the specification.

For future work, it would be interesting to explore different
heuristics for choosing between multiple objective functions as
well as extending the number of benchmark problems to further
evaluate the performance of the proposed approach.
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Fig. 1. A cactus plot showing performance of using optimization based on multiple objective functions compared to using a single
objective function. The plotted values tell how many successful falsifications (x-axis) were completed in less than a specific
number of simulations (y-axis). The maximum number of simulations per falsification is 1000. Note that we also include the
cactus plot for Uniform Random sampling, as a baseline approach.
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