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The study of a turbulent premixed flame often involves analysing quantities conditioned
to different iso-surfaces of a reactive scalar field. Under the influence of turbulence,
such a surface is deformed and translated. To track the surface motion, the displacement
speed (Sd) of the scalar field respective to the local flow velocity is widely used and this
quantity is currently receiving growing attention. Inspired by the apparent benefits from a
simple decomposition of Sd into contributions due to (i) curvature, (ii) normal diffusion
and (iii) chemical reaction, this work aims at deriving and exploring new evolution
equations for these three contributions averaged over the reaction surface. Together with
a previously obtained Sd-evolution equation, the three new equations are presented in a
form that emphasizes the decomposition of Sd into three terms. This set of equations is
also supplemented with a curvature-evolution equation, hence providing a new perspective
to link the flame topology and its propagation characteristics. Using two direct numerical
simulation databases obtained from constant-density and variable-density reaction waves,
all the derived equations and the term-wise decomposition relations are demonstrated to
hold numerically. Comparison of the simulated results indicates that the thermal expansion
weakly affects the key terms in the considered evolution equations. Thermal expansion can
cause variations in the averaged Sd and its decomposed parts through multiple routes more
than introducing a dilatation term. The flow plays a major role to influence the key terms
in all equations except the curvature one, due to a cancellation between negatively and
positively curved surface elements.
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1. Introduction

A turbulent premixed flame is often modelled using a reaction progress variable c(x, t).
The reaction progress variable is equal to zero and unity on the unburned reactant and
burned product sides of a flame, respectively. The evolution of c is described by the
convection-diffusion-reaction (CDR) equation

∂c
∂t

+ u · ∇c = 1
ρ

∇ · (ρD∇c)︸ ︷︷ ︸
D

+W, (1.1)

where t, u, ρ, D, D and W denote time, velocity, density, diffusivity, the diffusion term and
reaction rate, respectively. The term W often has a highly nonlinear functional dependence
on c. Consequently, when studying turbulent flames, many quantities of interest exhibit
large spatial and temporal fluctuations and tend to possess a strong dependence on c.
Therefore, both when analysing premixed flames from simulations and experiments, and
when formulating models for turbulent premixed flames for use in Reynolds averaged
Navier–Stokes or large eddy simulation, it is often useful to consider certain statistics
conditioned on c. In particular, a quantity φ(x, t) averaged over an iso-scalar surface of
c(x, t) = ĉ at a given ĉ ∈ (0, 1) (Veynante & Vervisch 2002) received plenty of attention
in the literature.

Consideration of conditional statistics brings forward an analysis perspective of tracing
an iso-c surface and studying its evolution. An iso-c surface is formed by the union of
points sharing an identical value of c, and (1.1) contains all necessary information about
how any particular point on an iso-c surface moves with the flow. To see this, we first
introduce a displacement speed Sd defined at any point (x, t) for which 0 < c(x, t) < 1
(Veynante & Vervisch 2002),

Sd ≡ (D + W)/|∇c|. (1.2)

Then, let us consider a composite ‘total’ velocity u∗ ≡ u − Sdn where the local iso-surface
normal direction is n ≡ ∇c/|∇c|. Finally, a surface-following time derivative operator
∂∗/∂∗t is defined as

∂∗

∂∗t
φ ≡ ∂

∂t
φ + u∗ · ∇φ (1.3)

for any quantity φ(x, t). Using this operator, (1.1) is reduced to (∂∗/∂∗t)c = 0, reflecting
the fact that c is constant for any point following the iso-surface. The displacement speed
Sd represents the self-propagation speed of the scalar field c relative to the local fluid (i.e.
excluding flow convection) due to a combined effect of diffusion and reaction. Thus, Sd is
an essential part of the total velocity u∗ and key information for tracing the movement of
the iso-surface points.

One reason to study the displacement speed stems from the fact that it directly
affects stretch rate, which in turn controls the rate of change of the local area of an
iso-scalar surface within a turbulent reaction wave (Candel & Poinsot 1990). Accordingly,
research into the behaviour of Sd in a turbulent reacting flow is of vital importance for
understanding the influence of turbulence on the bulk reaction rate, which is proportional
to the area of the reaction zone surface. Moreover, studying statistical information about
the displacement speed can benefit premixed combustion modelling based on, for example,
the level-set (G-equation) formulation (Williams 1985) or the flame surface density
approach for reaction rate closure (Candel & Poinsot 1990). Furthermore, variations
in the displacement speed across different zones inside a flame can provide additional
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Equations for the components of displacement speed

information about changes in the intrinsic flame structure. Such changes can be induced by
turbulence and knowledge about the connection between turbulence and the displacement
speed can be particularly useful when studying turbulent flames.

Statistical behaviour of the displacement speed has been the topic of a number of studies
based on direct numerical simulations of various turbulent reacting flows, e.g. see Echekki
& Chen 1996; Gran, Echekki & Chen 1996; Chen & Im 1998; Peters et al. 1998; Echekki &
Chen 1999; Chakraborty & Cant 2005; Dopazo, Martín & Hierro 2007; Wang, Hawkes &
Chen 2017a; Luca et al. 2019 and references therein. In particular, there are many studies
of correlations between displacement speed and other important quantities characterizing
the flame surface or the local turbulent flow. A list of such quantities includes, but is
not limited to (i) the local flame curvature (Echekki & Chen 1996; Chakraborty 2007;
Sankaran et al. 2015; Wang et al. 2017a; Luca et al. 2019), (ii) strain rate (Chakraborty
& Cant 2004; Hawkes & Chen 2006; Kim & Pitsch 2007; Chaudhuri 2015; Cecere et al.
2016), (iii) flame surface topology (Dopazo et al. 2007; Cifuentes et al. 2014), and (iv)
alignment characteristics of scalar gradient with principle strain rates (Chakraborty &
Swaminathan 2007).

Another research direction consists in developing simple model equations for evaluation
of Sd in turbulent reacting flows, e.g. see the review paper by Lipatnikov & Chomiak
(2005). Such equations are typically based on the theory of weakly perturbed laminar
flames (Matalon & Matkowsky 1982; Pelcé & Clavin 1982; Class, Matkowsky & Klimenko
2003; Kelley, Bechtold & Law 2012), but fail in predicting negative local displacement
speeds (Gran et al. 1996; Peters et al. 1998; Chakraborty & Cant 2004; Chakraborty
2007; Wang et al. 2017a; Dave & Chaudhuri 2020) or high local values of Sd/SL = O(10)
documented in recent direct numerical simulation (DNS) studies of premixed turbulent
flames (Chaudhuri 2015; Lipatnikov et al. 2015; Im et al. 2016; Uranakara et al. 2016;
Lipatnikov et al. 2018). Here, SL is the laminar flame speed, with Sd = SL in the
unperturbed laminar flame. Recently, significant progress in modelling the high local
values of Sd/SL was made by Dave & Chaudhuri (2020) who explored the evolution
of local flame displacement speeds by analysing DNS data and adopting flame tracking
techniques developed earlier by Chaudhuri (2015) and Dave, Mohan & Chaudhuri (2018).

It has also been recognized that the displacement speed can naturally be decomposed
into three components SW

d , Sn
d and Sc

d (Chen & Im 1998; Peters et al. 1998; Echekki &
Chen 1999), which represent reaction, diffusion in the normal direction and tangential
diffusion induced due to the surface curvature, respectively. The third component Sc

d
links self-propagation characteristics of an iso-surface with its geometry. Such analyses
have revealed some physical insights. For instance, Peters (1999) argued that SW

d and
Sn

d dominate in weak turbulence, whereas Sc
d dominates in intense turbulence. Based on

this idea, Peters (1999) arrived at an expression for the turbulent flame speed, which is
applicable to different combustion regimes. This and other works motivated investigating
statistics of SW

d , Sn
d and Sc

d, which was addressed in a number of DNS studies (Chakraborty
& Cant 2004; Chakraborty 2007; Wang et al. 2017b).

While statistics of the local values of Sd, SW
d , Sn

d and Sc
d are addressed in many papers, a

transport equation for displacement speed has received little attention yet. Bearing in mind
the direct link between Sd and iso-c surface, such an equation should be analysed in the
iso-surface-following form, i.e. (∂∗/∂∗t)φ =∑ rhs, where rhs abbreviates all right-hand
side terms. Evolution equations written in this form were discussed for some quantities
such as the absolute gradient |∇c| of c, which characterizes a separation distance between
iso-surfaces (the evolution equation for |∇c| is well known and its derivation is given in
appendix A, see (A28), for completeness), curvature φ = ∇ · n (Cifuentes et al. 2018;
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Dopazo et al. 2018), etc. However, to the best of the authors’ knowledge, such an evolution
equation for displacement speed has not been explored until recently. To fill this knowledge
gap and to provide a more direct framework for studying displacement speed, we recently
derived a surface-following evolution equation for Sd (Yu & Lipatnikov 2019c).

In the same paper we also addressed another problem relevant to previous studies.
Given an evolution equation for φ written in surface-following form, how should a
conditioned surface average be applied to ensure that the average of the left-hand side
(lhs) terms matches the average of the right-hand side terms? Noticing the key hurdle
being the surface average does not commute with the time derivative when the surface
itself is changing in time, we derived a general relation, see (2.11) in the next section,
to convert the evolution equation for an arbitrary quantity from a non-averaged ‘local’
form to a ‘surface-averaged’ form, thus providing a quantitative framework for numerical
study of surface averages in turbulent reacting flows. The above relation was used to
generate evolution equations for the surface-averaged Sd and |∇c| (Yu et al. 2019).
Then, using a DNS database obtained from constant-density turbulent reaction waves, we
showed that all terms in the surface-averaged Sd-equation could be numerically evaluated
with satisfactory accuracy, with a reasonable match between the averaged left-hand and
right-hand side terms being achieved. Further numerical investigation (Yu et al. 2020) of
the evolution equation for the surface-averaged Sd (for brevity, we will write Sd-equation
in the following) provided insights into issues such as a retreating iso-surface element
moving at a negative displacement speed and relation between rapidly propagating surface
elements and curvature. By simply grouping all terms involving u, the direct effect of the
flow velocity on the evolution of the surface-averaged Sd was also explored.

Nevertheless, there is still a number of questions related to the Sd-equation that deserve
further investigation. First, several terms in the Sd-equation contain high-order derivatives
and take a relatively complicated form, impeding a better interpretation and understanding
of their physical meaning. Second, in a realistic turbulent combustion system, multiple
phenomena can affect the self-propagation characteristics of a reaction wave. In order to
isolate and study the effect of flow turbulence, our previous numerical assessment on the
Sd-equation (Yu et al. 2020) was limited to DNS data obtained from a constant-density
reaction wave that passively propagated through a background turbulent flow. A simple
examination of the derived equation terms (Yu et al. 2020) has identified multiple routes
through which the flow dilatation can affect the evolution of Sd. However, it is still
unknown whether or not such effects are significant enough to change the main trends
observed in the constant-density case.

In the present work, inspired by the physical insights Peters (1999) obtained using the
simple decomposition of the displacement speed, we derive a set of new surface-averaged
evolution equations for each of three decomposed parts of Sd. It is found that the
corresponding terms in the Sd-equation and the equations for its decomposed parts can
be organized in a consistent way such that they satisfy the same decomposition rule, thus
providing a convenient framework to understand the evolution of Sd and its components.
Specifically, and not surprisingly, the equation for the curvature part of Sd is equivalent to
the equation for mean curvature. To the best of the authors’ knowledge, the latter equation
has not yet been directly linked to the Sd-equation. Moreover, the three decomposed parts
of Sd provide three new surface-averaged constraint relations that must be satisfied in
the statistically fully developed flame. These relations can potentially benefit turbulent
combustion modelling. Finally, to answer the questions pertaining to the flow dilatation,
we also extend the DNS database by simulating a turbulent flame, with the gas density
being decreased due to combustion-induced heat release.
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Equations for the components of displacement speed

In the rest of this article we first derive evolution equations for the decomposed parts of
Sd, see § 2. Direct numerical simulation data used for exploring the equations are discussed
in § 3. Results are reported in § 4 and conclusions are summarised in § 5.

2. Derivation of equations

In this section we derive new transport and surface-averaged evolution equations for the
three components of the displacement speed Sd. These components represent reaction,
tangential diffusion and normal diffusion contributions to Sd. Here, the derivation is
described primarily within the ‘surface average’ framework. Derivation of the transport
equations within the ‘local’ framework is given in appendix A. For completeness, the
appendix also includes the evolution equation for the ordinary displacement speed Sd,
previously derived by Yu & Lipatnikov (2019c).

2.1. General evolution equation for surface-averaged quantities
We begin with some convenient definitions. A long-hat over any expression denotes the
ensemble-averaged value, i.e.

φ̂ ≡ lim
M→∞

1
M

M∑
i=1

φ(i), (2.1)

and an overline denotes ensemble and volume averages taken simultaneously, i.e.

φ̄ ≡ lim
M→∞

1
M

M∑
i=1

1
V

∫∫∫
V

φ(i)(t, x) dx, (2.2)

where M is the number of realizations in the ensemble, V is the domain volume and φ(i)
pertains to the ith realization. An instantaneous surface average of a quantity φ conditioned
on the iso-surface c(x, t) = ĉ is defined (Veynante & Vervisch 2002) as

〈φ〉s |ĉ,t ≡ φ|∇c|δ(c − ĉ)/|∇c|δ(c − ĉ), (2.3)

where ĉ is a reference value of the reaction progress variable and δ(c − ĉ) is the Dirac
delta function.

Let S|ĉ,t denote the iso-surface defined by c(x, t) = ĉ whose total area is equal to A|ĉ,t ≡∫∫
S|ĉ,t ds. The Dirac delta function in (2.3) can now be removed by converting volume

integrals into surface integrals using the identity of∫∫∫
V

φ|∇c|δ(c − ĉ) dx =
∫∫
S|ĉ,t

φ ds (2.4)

(Maz’ja 1985; Kollmann & Chen 1994; Vervisch et al. 1995). We arrive at

〈φ〉s |ĉ,t =
∫∫

S|ĉ,t
φ ds

∧

/Â|ĉ,t. (2.5)

It is well known (Pope 1988; Candel & Poinsot 1990) that the stretch rate, defined as

K ≡ at − Sd∇ · n, (2.6)
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controls the rate of change of the area of an infinitesimal surface element of an iso-scalar
surface according to

K = 1
ds
∂∗

∂∗t
ds. (2.7)

The change of the total area is thus

∂

∂t
A|ĉ,t =

∫∫
S|ĉ,t

K ds. (2.8)

Application of the surface average operator to K yields

〈K〉s |ĉ,t =
∫∫

S|ĉ,t
K ds

∧

/Â|ĉ,t = 1

Â|ĉ,t
∂

∂t
Â|ĉ,t. (2.9)

Here, at ≡ ∇ · u − an is the tangential strain rate and an ≡ nn : ∇u = ninj∇jui is the
normal strain rate, the nabla operator with a subscript denotes spatial derivatives as
∇j ≡ ∂/∂xj, and the summation convention applies to repeated indexes.

As shown by Yu & Lipatnikov (2019c), the time derivative of (2.5) can be expanded as

∂ 〈φ〉s

∂t
+ 〈φ〉s

1

Â

∂Â
∂t

= 1

Â

∫∫
S

∂∗φ
∂∗t

ds

∧

+ 1

Â

∫∫
S
φK ds

∧

. (2.10)

Equation (2.10) can be rewritten to give a general evolution equation for the surface average
of any quantity φ(x, t),

∂ 〈φ〉s |ĉ,t
∂t

=
〈
∂∗

∂∗t
φ

〉
s

∣∣∣∣
ĉ,t

+ 〈φK〉s
∣∣
ĉ,t − 〈φ〉s |ĉ,t 〈K〉s

∣∣
ĉ,t , (2.11)

which holds on all iso-surfaces defined by ĉ ∈ (0, 1) and at all time instants.

2.2. Surface-following evolution equations for Sd and its constituents
In the following we will derive surface-averaged evolution equations for the displacement
speed Sd and its constituents, i.e. the four right-hand side terms in

Sd = Sc
d + Sn

d + SW
d + So

d = D + W

|∇c| . (2.12)

These terms are: a curvature (tangential diffusion) contribution

Sc
d ≡ D∇ · n = D(∇2c − ∇n∇nc)

|∇c| , (2.13)

a normal diffusion contribution

Sn
d ≡ D∇n∇nc

|∇c| = Dn · ∇(|∇c|)
|∇c| , (2.14)

a reaction contribution

SW
d ≡ W

|∇c| , (2.15)
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Equations for the components of displacement speed

as well as a contribution

So
d ≡ Sd − SW

d − Sc
d − Sn

d = 1
ρ

∇n(ρD) (2.16)

due to variations of ρD (often, So
d is merged with Sn

d). Here, ∇n ≡ nj∇j denotes the spatial
derivative along the normal direction. Under the assumption that ρD = const the last
contribution vanishes, i.e. So

d = 0.
Note that |∇c| appears in the denominator in each of the four quantities φ ∈ [∇ ·

n, Sn
d/D, SW

d , Sd]. Consequently, the surface-following derivative of these four quantities
has the following general form:

∂∗

∂∗t
φ = −φ ∂

∗

∂∗t
ln|∇c|︸ ︷︷ ︸

A(φ)

+ 1
|∇c|

∂∗

∂∗t
(φ|∇c|)︸ ︷︷ ︸

B(φ)

. (2.17)

Here, the term A comes from the denominator of φ and represents contribution from
the surface-following rate of change in |∇c|, or in other words, decreasing/increasing
separation distance between neighbouring iso-surfaces. The term B comes from the
numerator of φ and is associated with the surface-following rate of change of
the ‘diffusion’ contained inside (φ|∇c|). When φ designates either curvature or Sn

d/D, the
‘diffusive’ nature of the numerator can be readily seen from the second spatial derivative
of c in (2.13) and (2.14), respectively. For SW

d , if it is assumed that the reaction rate depends
solely on c, the ‘diffusion’ vanishes, i.e.

∂∗

∂∗t
W = ∂W

∂c
∂∗

∂∗t
c = 0. (2.18)

Finally, for the full displacement speed Sd, the additional assumption that ρD = const with
D depending solely on c gives a standard Laplacian ‘diffusion’ of ∇2c. As a summary, the
corresponding B terms under the aforementioned assumptions become

B(Sd) = D
|∇c|

∂∗

∂∗t
(∇2c), (2.19)

B

(
Sn

d
D
)

= 1
|∇c|

∂∗

∂∗t
(∇n∇nc) , (2.20)

B

(
Sc

d
D
)

= 1
|∇c|

∂∗

∂∗t

(
∇2c − ∇n∇nc

)
(2.21)

and B(SW
d ) = 0.

In appendix A we further expand the terms A and B and derive surface-following
evolution equations for the four quantities φ ∈ [∇ · n, Sn

d/D, SW
d , Sd]. All these equations

have the same general form

∂∗φ
∂∗t

= A0(φ)+ A1u(φ)+ A2(φ)︸ ︷︷ ︸
A(φ)

+ B1u(φ)+ B2u(φ)+ B3u(φ)+ B4(φ)+ B5(φ)+ B6(φ)︸ ︷︷ ︸
B(φ)

, (2.22)
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with

A0(φ) ≡ −φK, (2.23)

A1u(φ) ≡ φ(∇ · u), (2.24)

A2(φ) ≡ −φ∇ · (Sdn). (2.25)

The complete equations are given by (A13), (A17), (A18) and (A24), respectively. For
convenience, those terms are also summarized in table 1. Here Sij ≡ (∇iuj + ∇jui)/2 is
the flow strain rate tensor and the subscript ‘u’ in the terms of A1u, B1u, B2u and B3u
highlights that these terms involve flow velocity. We also want to emphasize that, for the
quantities ∇ · n and Sn

d/D, (2.22) has been derived without further assumptions and is
valid for any reaction wave described by (1.1). On the other hand, for (2.22) to be valid for
φ = SW

d , the assumption of (∂∗/∂∗t)W = 0, which is fulfilled when W depends solely on
c, is needed. For (2.22) to be valid for φ = Sd, two assumptions of (i) ρD = const and (ii)
D depends solely on c are needed.

As noted above, under the assumption of ρD = const, the decomposition of
displacement speed simplifies from (2.12) to Sd = Sn

d + D∇ · n + SW
d . By examining

table 1, it can be verified that such a simple decomposition relation also holds for all
terms and their parts in (2.22). More specifically, the relations

Ai(Sd) = D · Ai(Sn
d/D)+ D · Ai(∇ · n)+ Ai(SW

d ),

Bi(Sd) = D · Bi(Sn
d/D)+ D · Bi(∇ · n)+ Bi(SW

d )

}
(2.26)

are satisfied for all terms Ai and Bi in table 1.

2.3. Various terms in the transport equations
For each of the four quantities φ ∈ [∇ · n, Sn

d/D, SW
d , Sd] shown in table 1, each right-hand

side term and its sub-parts in (2.22) contribute to the surface-following variation in
φ, i.e. (∂∗/∂∗t)φ. Additional explanations and implications for those sub-terms may be
summarized as follows.

(a.i) The first part of A, i.e. term A0(φ), defined as a product of the stretch rate and
φ, disappears when (∂∗/∂∗t)φ is inserted into (2.22) to obtain the surface-averaged
equations (2.29).

(a.ii) The second term A1u(φ) stems from the dilatation ∇ · u. This term with φ set as Sd
may stay non-negative for certain simple reacting flows, e.g. the non-conservative
form of continuity equation (3.7) shown later yields A1u(Sd) = S2

d|∇c|/(c + 1/θ) �
0, with θ being a positive constant.

(a.iii) The third term A2(φ) indicates a correlation between φ and the divergence of a
vector field that contains the displacement speed, i.e. the vector Sdn.

(b.i) The first three parts of B contain contributions from the flow. The first term
B1u(Sd) = Dn · ∇2u represents the normal projection of a flow Laplacian vector
and is controlled by the curvature, i.e. B1u(Sd) = DB1u(∇ · n) and B1u(Sn

d/D)) = 0.
(b.ii) The second term B2u(Sd) = −2D(∇∇c/|∇c|) : ∇u = −2D(∇i∇jc/|∇c|)Sij is a

product of the symmetrical strain rate tensor Sij = (∇iuj + ∇jui)/2 and another
tensor (SD

d )
′′
ij ≡ D(∇i∇jc/|∇c|) extended from the total diffusion displacement

speed, i.e. SD
d = Sc

d + Sn
d = Sd − SW

d = D(∇i∇ic/|∇c|), with the latter being the
trace of the former, i.e. SD

d = (SD
d )

′′
ii. Similarly, term B2u(∇ · n) for the curvature
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φ |∇ · n| or
|Sc

d|
D ∇ · n or

Sc
d
D

Sn
d
D SW

d Sd

A(φ) A0(φ) −K|∇ · n| −K∇ · n −KSn
d
D −KSW

d −KSd

A1u(φ) (∇ · u)|∇ · n| (∇ · u)(∇ · n) (∇ · u)
Sn

d
D (∇ · u)SW

d (∇ · u)Sd

A2(φ)
−∇nSd|∇ · n|
−σSd(∇ · n)2

−∇nSd(∇ · n)
−Sd(∇ · n)2 −∇ · (Sdn)

Sn
d
D −∇ · (Sdn)SW

d −∇ · (Sdn)Sd

B(φ) B1u(φ) σ (−n · ∇2u) −n · ∇2u 0 0 −Dn · ∇2u

B2u(φ) −2σSij∇jni −2Sij∇jni −2Sijnj∇i ln|∇c| 0 −2D∇∇c : ∇u
|∇c|

B3u(φ) σ (∇nan) ∇nan −∇nan 0 0

B4(φ)
σ (∇2Sd

−ninj∇i∇jSd)

∇2Sd
−ninj∇i∇jSd

ninj∇i∇jSd 0 D∇2Sd

B5(φ) 0 0 2∇Sd · ∇(ln|∇c|) 0 2D∇Sd · ∇(ln|∇c|)
B6(φ) σSd∇inj∇jni Sd∇inj∇jni Sd(∇inj − ∇jni)∇inj 0 −DSdn · ∇2n

Table 1. Terms in (2.22) for different choices of φ.
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part ∇ini or term B2u(Sn
d/D) for the normal diffusion part Sn

d/D = ni∇i ln|∇c|
is a product of Sij and the curvature tensor ∇inj or the normal diffusion tensor
(Sn

d)
′′
ij ≡ Dni∇j(ln|∇c|)), respectively.

(b.iii) The third term vanishes for the full displacement speed, i.e. B3u(Sd) = 0, due
to cancellation of two contributions of the opposite signs. For the curvature,
B3u(∇ · n) = −B3u(Sn

d/D) = ∇nan represents the normal gradient of the normal
strain rate. Note that application of the curvature equation, i.e. (2.22) for ∇ · n, to
an one-dimensional (1-D) flame reveals a pair of cancelled, but non-zero terms, i.e.
B3u(∇ · n) and B1u(∇ · n), as shown in figure 5(k) discussed later.

(b.iv) The fourth term B4(Sd) = D∇2Sd represents diffusion of Sd calculated as a sum
of the second derivatives along the three orthogonal directions. Among these three
directions, solely the normal direction n appears in B4(Sn

d/D) = ninj∇i∇jSd (note
that ninj∇i∇jψ is not equal to ∇n∇nψ for arbitraryψ). The sum of the two directions
orthogonal to n appears solely in the curvature equation, i.e. B4(∇ · n) = ∇2Sd −
ninj∇i∇jSd.

(b.v) The fifth term B5(Sd) represents a diffusion-driven ‘convective’ transport of Sd
at a generalized velocity based on the normal diffusion contribution to Sd. In
fact, B5(Sd) = 2(Sn

d)
′
i∇iSd, where (Sn

d)
′
i ≡ D∇i(ln|∇c|). Not surprisingly, B5(Sn

d) =
B5(Sd) and B5(∇ · n) = B5(SW

d ) = 0.
(b.vi) The sixth term B6(Sd) stems from variations in the normal vector n along the normal

direction. Its normal diffusion part B6(Sn
d) ≡ Sd(∇inj − ∇jni)∇inj involves a curl of

the normal vector n, which may not necessarily be rotation free. Nevertheless, as
shown later, B6(Sn

d) tends to vanish after being averaged over a wave surface.

Another theoretical perspective for understanding the present set of equations is
discussed in appendix B, where evolution of an 1-D diffusion-reaction wave in a spherical,
cylindrical or planar configuration is studied under assumptions of constant density and
zero velocity. In this case, the original wave transport equation (1.1) simplifies to (B1),
and the set of equations (2.22) for the four components Sd, Sn

d, Sc
d and SW

d reduces to two
non-trivial and much simpler equations for Sd and Sn

d, see (B12) and (B13), respectively.
As later shown in figure 6, the pair of equations for displacement speed and its normal
component forms a closed system and can replace the transport equation (B1) for c, at
least in certain spatial/temporal regions. Interestingly, while (B1) permits different choices
of reaction rate function W(c), this function will solely be translated from the initial
conditions when adopting the above replacement, i.e. (B12) and (B13). Furthermore, the
simplified 1-D curvature equation (B8) suggests that (i) term B4(∇ · n) is balanced by
term A(∇ · n) and (ii) term B6(∇ · n) is balanced by a difference in (∂∗/∂∗t)∇ · n and
(∂/∂t)∇ · n.

2.4. Extension of evolution equations
The decomposition given by (2.22) for the four quantities φ ∈ [∇ · n, Sn

d/D, SW
d , Sd] can

be extended to functions on φ and c. Consider the surface-following derivative of some
function F(φ, c),

∂∗

∂∗t
F(φ, c) = ∂F

∂φ

∂∗

∂∗t
φ + ∂F

∂c
∂∗

∂∗t
c = ∂F

∂φ

∂∗

∂∗t
φ. (2.27)

911 A38-10

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

10
95

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 C

ha
lm

er
s 

Te
kn

is
ka

 H
ög

sk
ol

a,
 o

n 
14

 Ju
n 

20
21

 a
t 1

1:
49

:1
2,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.

https://doi.org/10.1017/jfm.2020.1095
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


Equations for the components of displacement speed

Using (2.22), it reads as

∂∗

∂∗t
F(φ, c) = ∂F

∂φ
A(φ)︸ ︷︷ ︸

A(F)

+ ∂F
∂φ

B(φ)︸ ︷︷ ︸
B(F)

(2.28)

and has a form the same as (2.22). Therefore, the decomposition for F(φ, c) is obtained
directly from the decomposition for φ as long as the derivative ∂F/∂φ can be evaluated.

Let us consider some functions F(φ, c) of physical interest. The ‘absolute’ mean
curvature F(φ, c) = |φ| with φ = ∇ · n is an example of such a quantity. In a commonly
adopted configuration of a statistically planar reaction wave, the mean curvature averaged
over an entire iso-surface is sufficiently small due to cancellation of contributions
from positively and negatively curved surface elements. Conversely, the absolute mean
curvature is non-zero as long as some curved elements appear anywhere on the surface.
Taking a derivative of the module function gives ∂F/∂φ = σ±(φ) in regions where
|φ| /= 0, and σ±(φ) ≡ φ/|φ| is the sign of φ. The expanded terms A(|∇ · n|) and
B(|∇ · n|) in (2.22) are also included in table 1, where σ = σ±(∇ · n) refers to the sign of
∇ · n.

Another function of interest is F(φ, c) = Dφ, with the diffusivity D(c) depending only
on c. Application of this simple function to φ ∈ [∇ · n, |∇ · n|, Sn

d/D] yields (2.28) with
A(Dφ) = DA(φ) and B(Dφ) = DB(φ). Thus, (2.22) holds for the eight quantities φ ∈
[Sd, SW

d , Sn
d/D,∇ · n, |∇ · n|, Sn

d,D∇ · n,D|∇ · n|].

2.5. Surface-averaged evolution equations and statistically steady relations
Substitution of (2.22) to (2.11) yields the following evolution equation for surface-averaged
quantities:

∂

∂t
〈φ〉s = 〈A(φ)〉s + 〈B(φ)〉s + 〈φK〉s − 〈φ〉s 〈K〉s︸ ︷︷ ︸

〈C(φ)〉s

. (2.29)

(It is possible to define C(φ) ≡ φ′K′ with the prime symbol denoting the fluctuation
respective to surface average, ψ ′ ≡ ψ − 〈ψ〉s |ĉ,t.) Henceforth, conditioned subscripts in
the surface average notion 〈·〉s |ĉ,t are omitted for brevity.

Following Yu et al. (2020), (2.29) can be reorganized by grouping all sub-terms
involving the velocity into a single term U in order to highlight the net contribution
affected directly by the flow. By separating u contained in K from 〈C〉s, the separated
u terms can be cancelled with A0. Then, (2.29) reads as

∂

∂t
〈φ〉s = 〈A1u(φ)+ B1u(φ)+ B2u(φ)+ B3u(φ)〉s − 〈φ〉s 〈at〉s︸ ︷︷ ︸

U(φ)
+ 〈A2(φ)+ B4(φ)+ B5(φ)+ B6(φ)〉s − 〈φSd∇ · n〉s + 〈φ〉s 〈Sd∇ · n〉s︸ ︷︷ ︸

R(φ)
,

(2.30)

where R ≡ 〈A〉s + 〈B〉s + 〈C〉s − U denotes the remaining terms that do not contain the
velocity u implicitly. Under the assumptions of (i) ρD = const and (ii) D and W depend
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solely on c, the decomposition rules in (2.26) hold for 〈C〉s, U and R also, i.e.

〈C(Sd)〉s = D · 〈C(Sn
d/D)

〉
s + D · 〈C(∇ · n)〉s + 〈C(SW

d )
〉
s,

U(Sd) = D · U(Sn
d/D)+ D · U(∇ · n)+ U(SW

d ),

R(Sd) = D · R(Sn
d/D)+ D · R(∇ · n)+ R(SW

d ).

⎫⎪⎪⎬
⎪⎪⎭ (2.31)

Finally, by considering a fully developed, statistically stationary wave (t = ∞), (2.29)
and (2.30) yield the constraints

〈A(φ)〉s |ĉ,t∞ + 〈B(φ)〉s |ĉ,t∞ + 〈C(φ)〉s |ĉ,t∞ = 0,

U(φ)|ĉ,t∞ + R(φ)|ĉ,t∞ = 0,

}
(2.32)

for the fully developed reaction waves. These constraints hold for all ĉ ∈ (0, 1) and
for φ ∈ [Sd, SW

d , Sn
d/D,∇ · n, |∇ · n|, Sn

d, Sc
d, |Sc

d|]. Moreover, since the fully developed
surface-averaged stretch rate vanishes due to (2.9), one more constraint of

〈C(φ)〉s |ĉ,t∞ = − 〈A0(φ)〉s |ĉ,t∞ (2.33)

holds.

3. Computational set-up

The above evolution equations derived for different φ, i.e. (2.29) or its equivalent
(2.30), were applied to analyse two different DNS data sets obtained from statistically
1-D, initially planar, single-reaction waves propagating in a homogeneous, isotropic,
statistically stationary forced turbulence. One data set (case B in the following) was
selected from a big DNS database (Yu, Lipatnikov & Bai 2014; Yu, Bai & Lipatnikov
2015b; Elperin et al. 2016; Yu & Lipatnikov 2017a,b; Sabelnikov, Yu & Lipatnikov 2019;
Yu & Lipatnikov 2019a) obtained from dynamically passive reaction waves. Such a wave
affects neither the fluid density nor the fluid viscosity. Therefore, the wave does not affect
the turbulence. These simplifications allowed us to sample more statistics, as will be
discussed later, and facilitated analysing and interpreting numerical results.

The second data set (case C) is largely identical to case B, but the thermal expansion was
enabled, with the heat diffusivity being equal to the mass diffusivity (i.e. the Lewis number
Le = 1). Accordingly, the wave C affected the fluid density, viscosity and turbulence. In
both cases, (i) ρD = const and (ii) both D and W depend solely on c.

The equations derived above can also be applied to realistic premixed flames with
complex chemistry and a non-unity Lewis number. As long as we can define a progress
variable c based either on the temperature or a species mass fraction, (2.22) and (2.29)
hold for both ∇ · n and Sn

d/D. However, the assumptions invoked to derive (2.22) for Sd

or SW
d do not necessarily hold, e.g. ρD may vary within the flame or the quantities D and

W may depend not only on c but also on other mixture characteristics. Such a complicated
problem can be handled using the method developed in the present work, but at a cost of
introducing additional terms when extending the derivations leading to (A18) and (A24).

3.1. Direct numerical simulation database
Since the DNS attributes are discussed in detail elsewhere (Yu et al. 2014, 2015b; Elperin
et al. 2016; Yu & Lipatnikov 2017a,b, 2019a), we will restrict ourselves to a brief summary
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Equations for the components of displacement speed

of the simulations. A unity Lewis number premixed flame is modelled by (1.1) with ρD =
const and a single-step reaction rate term given by

W = 1
(1 + θ)s

1 − c
τR

exp
[
−Ze(1 + θ)2

θ(1 + θc)

]
, (3.1)

where τR is a constant reaction time scale and Ze = 6 in order for the rate W to depend on
c in a highly nonlinear manner. The density depends on c as

ρ = ρu

1 + (1 − s)θc
, (3.2)

where two constants ρu and ρb denote density of unburned and burned gas, respectively. A
constant-density reaction wave (i.e. ρ = ρu = ρb) is modelled by setting s = 1 and θ = 6.
A flame with heat release and, consequently, ρu/ρb > 1 is modelled by setting s = 0 and
θ = ρu/ρb − 1.

The single-reaction wave propagates in a forced turbulence described by the continuity

∂ρ

∂t
+ ∇ · (ρu) = 0, (3.3)

and the Navier–Stokes equations

∂ρu
∂t

+ ∇ · (ρuu) = −∇p + ∇ · τ + f , (3.4)

where p is the pressure, τij ≡ μ(∇jui + ∇iuj − 2
3δij∇kuk) is the viscous stress tensor with

a constant dynamic viscosity μ. A function f ≡ (ρ/ρu) f u is used to maintain turbulence
intensity by applying energy forcing at low wavenumbers, with f u being simulated
using the method developed by Lamorgese, Caughey & Pope (2005) in the case of a
constant density. The reader interested in details regarding the characteristics of the forced
turbulence and the calculation of the forcing term in wavenumber domain is referred to
section 3 in our recent paper (Yu & Lipatnikov 2017b). When simulating a variable-density
reaction wave, the factor (ρ/ρu) in f reduces the energy injection on the burned side, thus
mimicking the turbulence decay due to dilatation and an increase in the kinematic viscosity
(ν ≡ μ/ρ) in the wave.

A reaction wave evolves in a rectangular box with size Λx ×Λ×Λ, represented using
a uniform grid of Nx × N × N cubic cells. The boundary conditions are periodic in the
transverse directions y and z for all simulations. For simulation of a constant-density
wave, periodic conditions are also applied in direction x normal to the mean wave surface,
because the flow is not affected by the wave propagation in this case. In other words, when
a constant-density reaction wave reaches the left boundary (x = 0) of the computational
domain, an identical reaction wave enters the domain through its right boundary (x = Λx).
Such a method greatly improves sampling of statistics by simulating many cycles of the
wave propagation through the computational domain, but this method may only be used
in the case of ρ = const and ν = const, provided that the mean wave brush thickness is
smaller than the length of the computational domain. These constraints are satisfied in our
simulation of a constant-density wave.

For simulation of a variable-density reaction wave (flame), the inlet and outlet
conditions are prescribed at x = 0 and x = Λx, respectively. Unburned gas is fed
into the inlet at x = 0 with an ‘almost’ periodic copy of the downstream velocity at
x = Λ. More specifically, u(0, y, z, t) = u(Λ, y, z, t)− (1/Λ2)

∫∫ Λ,Λ
0,0 u(Λ, y, z, t) dy dz,
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v(0, y, z, t) = v(Λ, y, z, t), w(0, y, z, t) = w(Λ, y, z, t) and c(0, y, z, t) = 0. During the
entire simulation, the values of ρ and c remain close to ρu and zero, respectively, at
0 < x < Λ. Therefore, the near-inlet cubic-box region (i.e. ∀x, y, z ∈ [0,Λ]) resembles
an isolated simulation of periodic constant-density turbulence.

During the simulation of the flame C, a control strategy is used to keep the flame inside
the computational domain. The strategy, which was adopted in a recent DNS study of
intrinsic flame instability (Yu, Bai & Bychkov 2015a), aims at keeping the x-position
of the mean flame brush, i.e. Xm(t) ≡ (1/Λ2)

∫∫∫ Λx,Λ,Λ
0,0,0 (1 − c(x, y, z, t)) dx dy dz, close

to a prescribed target position of XT = 0.6Λx. For this purpose, (1.1), (3.3) and
(3.4) are solved in a coordinate framework that moves at an adjustable axial velocity
Um(t). This velocity is controlled in a so-called proportional-integral-derivative fashion,
i.e. Um(t +�t) = Um(t)+ (dP + dI + dD), where dP = e/(2�t), dI = ∫ t

0 e(t) dt/(10�t),
dD = [e(t)− e(t −�t)]/(10�t), e(t) = Xm(t)− XT is the target error and �t is the
computational time step. When changing the coordinate framework from (t, x, y, z) to
(t′, x′, y′, z′), where t′ = t, x′ = x + ∫ t

0 Um dt, y′ = y and z′ = z, the unsteady terms in
(1.1), (3.3) and (3.4) are appropriately changed, i.e. ∂φ/∂t = ∂φ/∂t′ + Um∂φ/∂x′ for any
relevant φ. Other terms in these governing equations remain unchanged with the exception
of replacement of the coordinates (t, x, y, z) by (t′, x′, y′, z′). Accordingly, the same method
was adopted to numerically solve the governing equations in both coordinate frameworks.

An initial divergence-free turbulence field is generated by synthesizing Fourier waves
(Yu & Bai 2014) with an initial r.m.s. velocity u0 and the integral length scale 0 = Λ/4.
The initial turbulent Reynolds number Re0 = u00ρu/μ can be changed by changing
the domain width Λ. In the simulations of both constant-density reaction wave B and
flame C, a non-decaying turbulent field is obtained by integrating (3.4) to maintain a
r.m.s. velocity u′(t) ≈ u0. Here, u′(t)2 ≡ (2/3Λ′Λ2)

∫∫∫ Λ′,Λ,Λ
0,0,0 k(x, y, z, t) dx dy dz, k ≡

(u2 + v2 + w2)/2 is the turbulent kinetic energy, Λ′ = Λx if ρu/ρb = 1 and Λ′ = Λ

when ρu/ρb > 1. Different longitudinal integral length scales L11 can be generated (Yu
& Lipatnikov 2017b) by appropriately adjusting f u (and, hence, f ) using the method by
Lamorgese et al. (2005).

3.2. Numerical methods
The governing equations are numerically integrated based on an in-house DNS solver (Yu,
Yu & Bai 2012) developed for low Mach number reacting flows. To treat the stiffness in
the calculation of reaction rates in the case of detailed chemistry, the temporal integration
of the CDR equation in the original solver is based on a second-order symmetrical
Strang splitting method (Strang 1968) by placing a full-time step stiff integration of
a chemistry calculation in between two half-time step integrations of convection and
diffusion terms, while the full-time step �t is determined by the CFL condition. In the
present work, which deals with single-step chemistry, the operator splitting strategy is not
adopted, because the reaction rate term (W) is non-stiff. Accordingly, temporal integration
of the whole CDR equation is performed explicitly over a full-time step. An explicit
advancement is proceeded in multiple (K > 1) sub-time steps of smaller size (�t/K)
determined by the diffusion-stability-limit, starting from a Runge–Kutta step and followed
by Adam–Bashforth steps. More specifically, considering advancement of (1.1) from
tn = n�t to tn+1 = (n + 1)�t, let E = −u · ∇c + W denote the combined convection
and reaction term. A two-stage Runge–Kutta step is first performed for (k′ = 0, α = 1

2 ,
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Equations for the components of displacement speed

β = 0) and, then, for (k′ = 1, α = 1, β = −1
2 ), in order to advance the solution to a first

time instant of tn +�t/K,

c((k
′+1)/2K)+n − c(k

′/2K)+n

�t/K
= 1

2

(
3
2

E(cn, un)− 1
2

E(cn−1, un−1)

)
+ (αD(c(k

′/2K)+n)+ βD(c((k
′−1)/2K)+n)), (3.5)

where any superscript multiplied with �t refers to the time instant, followed by K − 1
sequential Adam–Bashforth steps for k ∈ [1, 2, . . . ,K − 1] to reach the final step at tn+1,

c((k+1)/K)+n − c(k/K)+n

�t/K
=
(

3
2

E(cn, un)− 1
2

E(cn−1, un−1)

)

+
(

3
2

D(c(k/K)+n)− 1
2

D(c((k−1)/K)+n)

)
. (3.6)

As described by Yu et al. (2012), to avoid numerical instability associated with
simulation of variable-density flows, the continuity equation (3.3) is rewritten using (1.1)
and (3.2) into a non-conservative form as

∇ · u = − 1
ρ

(
∂ρ

∂t
+ u · ∇ρ

)
= − 1

ρ

∂ρ

∂c

(
∂c
∂t

+ u · ∇c
)

=

⎧⎪⎨
⎪⎩

0 if ρu/ρb =1,

D + W

c + 1/θ
if ρu/ρb > 1.

(3.7)

Discretization of (3.7) yields a constraint for the flow velocity at tn+1. Thereafter,
a standard fractional-step approach for pressure-velocity decoupling results in a
variable-coefficient Poisson equation for the pressure, which is solved using Gauss-Seidel
iterations with multi-grid acceleration (Yu & Bai 2013). For spatial discretization, a
sixth-order central difference scheme is used for all terms containing a spatial derivative
with the exception of the convection term in (1.1), which is discretized with a fifth-order
WENO scheme (Jiang & Shu 1996) to avoid numerical overshooting.

3.3. Simulation set-up
In the constant-density case, both developing and fully developed reaction waves are
simulated starting from the pre-computed laminar wave profile of cL(ξ) with dcL/dξ > 0.
In order to study the fully developed turbulent reaction wave, a planar wave cs(x, 0) =
cL(ξ) is initially (t = 0) released at x0 = Λx/2 such that

∫ 0
−∞ cL(ξ) dξ = ∫∞

0 [1 −
cL(ξ)] dξ and ξ = x − x0. Subsequent evolution of the field cs(x, t) is simulated by
solving (1.1). Computation of fully developed statistics with sampling every 100 time
steps �t is started after the forced turbulence has reached a statistically stationary state
(t = t∗ > 3.5τ 0

t ) and is performed over a time interval longer than 50 τ 0
t . In order to study

transient turbulent reaction waves, several copies of the same pre-computed laminar wave
profile cL(ξ) are simultaneously embedded into the turbulent flow in M equidistantly
separated planar zones centred around xm/Λx = (m − 0.5)/M, i.e. ct

m(x, t∗) = cL(ξm),
where coordinate ξm = x − xm is set using

∫ 0
−∞ cL(ξm) dξm = ∫∞

0 [1 − cL(ξm)] dξm and m
is an integer number (1� m � M =11). Subsequently, evolutions of M non-interfering
transient fields ct

m(x, t) are simulated by solving M independent (1.1). The transient
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Case
ρu

ρb

Λx

Λ
Nx

u0

SL

L11

δF

δF

�x
Da Ka Pe

A 1 8 2048 5 5.3 24 1.07 0.94 27
B 1 4 1024 6 1.2 24 0.2 39.0 6.95
C 7 4 1024 6 1.2 24 0.2 39.0 6.95

Table 2. Three representative DNS cases.

simulations are run over 2τ 0
t before being reset. Subsequently, at t = t∗ + 2jτ 0

t with
1 � j � J, the flow is again populated by M new profiles of cL(ξm), the transient
simulations are repeated J times, giving an ensemble of J × M independent transient
waves. For comparison, the fully developed statistics computed using a single cs-field are
associated with 2Jτ 0

t /(100�t) realizations.
Contrary to the constant-density case, the present flame simulations are restricted to

a single fully developed turbulent wave cs. The simulations are started by embedding
pre-computed laminar flame profiles of uL(ξ) and cL(ξ), with cL(−∞) = uL(−∞) = 0,
into a synthesized turbulence field at x0 = XT . The initial velocity Um(0) of the moving
coordinate framework is equal to the laminar flame speed SL. Subsequently, (1.1), (3.3)
and (3.4) are numerically solved using the inlet and outlet boundary conditions, as well
as the control strategy for adjusting Um(t). Similar to the constant-density case, the fully
developed statistics are sampled after reaching a statistically stationary numerical solution
(t > t∗), with the sampling being performed over at least 50 τ 0

t .
The DNS cases are set up combining one of the forced turbulence fields with a reaction

wave characterized by a laminar wave speed SL and thickness δF = D/SL. The required
reaction time scale τR in (3.1) is found through 1-D pre-computations of the laminar wave.

In the present paper the data analysis is mainly focused on results obtained in two
representative turbulent and well-resolved cases (constant-density reaction wave B and
flame C). The major characteristics are reported in table 2, where Da = τt/τF is the
Damköhler number; Ka = τF/τη is the Karlovitz number; Pe = u′L11/D is the turbulent
Péclet number; τF = δF/SL is the wave time scale; τt = L11/u′ and τη = (νu/ε̄

u)1/2 are
integral and Kolmogorov time scales of the turbulence, respectively; ε̄u = 2νuSijSij

u
is the

dissipation rate averaged (i.e. · u) over either the whole domain in the constant-density
case or the near-inlet cubic-box region in the variable-density case, and over at least 50τ 0

t
after turbulence and the cs-wave has become statistically stationary; and a ratio of δF/�x
characterizes the grid resolution in terms of the number of grid points per laminar wave
thickness. Moreover, in cases B and C, L11/Λ = 0.11, τ 0

t /τt = 2.3 and η/�x = 1.1. Here,
η = [ν3

u/ε̄
u]1/4 is the Kolmogorov length scale. Snapshots for cases B and C are shown in

figures 1 and 2, respectively.
During evolution of a turbulent reaction wave, zero-gradient points characterized by

|∇c|(x, t) = 0 (Gibson 1968) may appear. While the zero-gradient points are excluded
from the definition of the surface average by (2.3), see Yu & Lipatnikov (2019b,c),
certain quantities of interest, e.g. Sd, ∇ · n and K, may locally grow unboundedly in
the neighbourhood of a zero-gradient point, which pose a challenge for the numerical
calculation of surface-averaged quantities. (Note, a surface-averaged value may still remain
bounded even when the local value becomes unbounded, see discussion in appendix
B of Yu & Lipatnikov (2019b).) To explore the eventual influence of such points and
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Ct
1

Ct
4

Ct
7 Cs

Cs

Ct

Y X

Z

(a)

(b)

Figure 1. (a) Three simultaneously embedded, non-interfering, constant-density developing (t = 0.9τ 0
t )

reaction waves ct
m(x, t) with m = 1, 4 and 7 (colour iso-surfaces and fields) and the fully developed

reaction wave cs(x, t) (grey iso-surface and field). Both the peak-reaction-rate iso-surface (ĉ = 0.88) and
two-dimensional image of the c-field on the xz (the transient waves) or xy (the fully developed wave) boundary
surface are shown for each wave. (b) Three-dimensional turbulence field visualized using Lambda2-vortex
method using iso-contours of the intermediate eigenvalue of the strain rate tensor (Jeong & Hussain 1995) in
case B.

z vorticity Level
9 0.9

Y

Z X

0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

8
7
6
5
4
3
2
1

c
10 000

–10 000

5000

–5000
0

Figure 2. Two instantaneous snapshots (two-dimensional cut at the z-middle) demonstrate the evolution of a
flame in a forced homogeneous turbulence in case C, see table 2. The z-vorticity is visualized using different
colours. Black iso-lines are shown for nine c-levels increasing from left to right. The significant drop in the
z-vorticity magnitude downstream of the reaction zone reflects turbulence inhibition due to thermal expansion.
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their neighbourhoods on the accuracy of evaluation of various terms in the evolution
equations, an additional case A is designed. Case A is largely identical to case B, but the
turbulent field is replaced with a frozen shear flow, i.e. u(x, y, z, t) = −u0 cos(2πy/Λ),
v = w = 0, and the momentum equation (3.4) is not solved. Characteristics of case A,
reported in table 2, are calculated using L11 = Λ/2, u′ = u0 and tη = tτ = L11/u0.
Simulation of multiple transient waves ct in case A is performed largely similarly to
case B (some differences between cases A and B are discussed by Yu & Lipatnikov
2019c) but the duration of transient sampling is changed from 2τ 0

t to 2τF. As shown in
supplemental figure S8, in case A iso-surfaces are only bent, but there is no zero-gradient
point in the computational domain. Comparison of results computed in cases A (no
zero-gradient points) and B (no restriction on the appearance of zero-gradient points)
offers an opportunity to estimate the influence of such points on the evaluation of various
surface-averaged terms. Moreover, simulations of developing waves in case B also offer
such an opportunity. Indeed, since the transient waves ct

m begin their evolution from a
regular flat initial surface (there is no zero-gradient point at t = 0), monitoring evolution
of (i) iso-surfaces of the transient fields ct

m(x, t) = ĉ and (ii) the relevant surface-averaged
quantities allows us to detect any anomaly in the developing surface-averaged terms and
to see the eventual influence of the zero-gradient points on these terms. Note that transient
data can also be of interest in themselves because the vast majority of premixed turbulent
flames are developing flames (Lipatnikov & Chomiak 2002; Lipatnikov 2012).

4. Results and discussion

In § 4.1 we will use the three DNS cases A–C summarized in table 2 to verify that
the numerically computed terms in the averaged (2.29) and its counterpart (2.30)
are sufficiently accurate. This will be verified for each of the five quantities φ ∈
[Sd, Sn

d, SW
d ,D∇ · n,D|∇ · n|]. In §§ 4.2 and 4.3 the equations and their terms will be

analysed from a physical perspective. The analysis mainly consists of three parts.
First, while previous numerical assessment of the Sd-equation was limited to

constant-density reaction waves (Yu et al. 2020), the present work aims at investigating
the effect of thermal expansion on the evolution of Sd. For this purpose, results computed
in cases B and C will be compared. Second, from a quantifiable geometrical perspective
enabled by the new averaged equations for ∇ · n and |∇ · n|, we will explore the link
between the self-propagation characteristics of a wave and its geometrical constraints.
Third, we will demonstrate the potential of the extended decomposition rules described by
(2.26) and (2.31). These rules offer a deeper explanation for the mechanisms responsible
for variation in Sd and its constituents. The rules also allow us to explore common trends
between corresponding terms in the different equations.

In the following, results computed in all simulated cases are presented in three figures.
First, for each of the five aforementioned quantities φ, the six terms that appear in (2.29)
and (2.30) are computed. These terms are: (i) the left-hand side term, i.e. the time
derivative of 〈φ〉s, (ii) the term 〈A(φ)〉s, (iii) the term 〈B(φ)〉s, (iv) the term 〈C(φ)〉s,
(v) the right-hand side of (2.29), i.e.

∑
rhs = 〈A(φ)〉s + 〈B(φ)〉s + 〈C(φ)〉s, and (vi) the

velocity-related term U(φ). All relevant equation terms are listed in table 1. In figure 3
such results are plotted at a representative (transient) time instant of 0.125τ ∗

F in the
constant-density cases A and B (τ ∗

F = τF in case A or τ ∗
F = τ 0

t ≈ τF/2.25 in case B).
Similar results obtained from the fully developed reaction waves (t∞) are shown in figure 4
in all three cases. It is emphasized that all cases meet the requirements for the extended
decomposition relations described in (2.26) and (2.31) to be valid. Figures 3 and 4 are
arranged such that any term selected from a sub-figure in the top row is equal to the sum
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Equations for the components of displacement speed

of the corresponding terms plotted in the same style in the three first sub-figures directly
below. For example, the term 〈A(φ)〉s, shown in green triangles in figure 3(a), is equal to
the sum of the curves shown in green triangle in figures 3(c), 3(e) and 3(g).

In § 4.3 we present all sub-terms (A0, A1u, A2, B1u, B2u, B3u, B4, B5 and B6) for all
relevant φ. Plotted in figure 5 are these sub-terms in all three cases at the fully developed
state t∞. For reference, a 1-D steady state version of case C (referred to as case L in the
following) is also included in the bottom row of figure 5. Note that all displayed non-zero
terms in case L are coupled by three relations specified in the figure caption. Some of the
sub-terms are not displayed in figure 5. They either vanish (by definition or due to adopted
case assumption, e.g. curvature terms in case L or dilatation terms in cases A and B), or
can be trivially deduced using (2.31), e.g. some sub-terms for φ = Sn

d and Sc
d.

To evaluate the left-hand side terms ∂/∂t 〈φ〉s during transient wave evolution, a
sequence of transient values of 〈φ〉s for each φ (see supplemental figures S6 and S7)
is calculated at 20 sampling instants ti = (i2/200)τ ∗

F , where i = (1, . . . , 20), and a
discrete approximation of the time derivative is applied to this sequence. In supplemental
material available at https://doi.org/10.1017/jfm.2020.1095, we also include an extra set
of figures (S1–S5) showing the temporal evolution of the above terms conditioned to
three representative iso-surfaces in cases A and B. Further numerical details regarding
evaluation of various terms in (2.29) or (2.30) and calculation of a surface-averaged
quantity according to (2.5) or (2.10), respectively, are given in appendices D.3 and D.2
in Yu & Lipatnikov (2019c). Moreover, characteristics of the term fluctuations for the
Sd-equation have been reported in a recent paper, see figures 5, 6 and § 4.2.1 in Yu et al.
(2020).

4.1. Numerical verification
For (2.29) applied to each of the five quantities φ ∈ [Sd, Sn

d, SW
d ,D∇ · n,D|∇ · n|],

figures 3 and 4 indicate a reasonably good match between the left-hand side term ∂/∂t 〈φ〉s,
shown in red dots, and the sum of the right-hand side terms

∑
rhs, shown in blue open

circles. Such a match is observed for (i) almost all iso-surfaces of ĉ ∈ (0, 1) in all three
cases, (ii) almost all time instants 0 < t < 2τ ∗

F in the constant-density cases A and B, and
(iii) at the fully developed state t∞ in all three cases. Nevertheless, inspection of figures 3
and 4 reveals small mismatches between the left-hand and right-hand side terms.

More specifically, in the turbulent constant-density case B, a small but visible difference
between left-hand side and

∑
rhs is observed during transient evolution, especially for

Sd and Sn
d (see figure 3b,d). On the contrary, there is a nearly perfect match for each of

the five quantities φ in the simple shear flow (case A). This difference between cases
A and B is associated with the lack of zero-gradient points in case A. As discussed
by Yu & Lipatnikov (2019c), the error can be reduced by increasing the number of
realizations that are used for sampling transient statistics at later evolution stages, i.e. when
an increased amount of zero-gradient points appear on the reaction wave surface disturbed
by turbulence. The present data have been obtained using a realization number of M = 170
to sample transient ct, M = 780 to sample fully developed cs in case B and M = 1800
to sample cs in case C. Thus, M is significantly larger when statistics are sampled from
the fully developed reaction waves. Indeed, in line with the above reasoning, the error is
smaller at the fully developed state t∞; see figure 4 for cases B and C.

The observed reasonable match between the left-hand side and
∑

rhs terms implies
that (2.29) for five different φ can be explored with sufficient confidence by analysing
DNS data obtained from turbulent reacting waves both with and without density variation.
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(c) (d )

(e) ( f )
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Figure 3. Various terms in (2.29) and the term U in (2.30) evaluated for each φ ∈ [Sd, Sn
d, SW

d ,D∇ · n,
D|∇ · n|] (from top to bottom) in two constant-density cases A (a,c,e,g,i) and B (b,d, f,h,j) at a representative
time instant of t = 0.125τ ∗

F . All terms are normalized based on a length unit of δF , a speed unit of SL and a
density unit of ρu.
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Figure 4. Various terms in (2.29) and the term U in (2.30) evaluated for each φ ∈ [Sd, Sn
d, SW

d ,D∇ · n,
D|∇ · n|] (from top to bottom) in two constant-density cases A (a,d,g,j,m) and B (b,e,h,k,n) and in the
variable-density case C (c, f,i,l,o) at the fully developed stage of reaction wave evolution. All terms are
normalized based on a length unit of δF , a speed unit of SL and a density unit of ρu.

For instance, a satisfactory match is found in case B, which has a highly complicated
reaction zone and a number of zero-gradient points where |∇c| = 0. It should be pointed
out that, for (2.29) applied to D∇ · n, the left-hand side term ∂/∂t 〈D∇ · n〉s is always
small (red dots in figure 3g,h), because the averaged mean curvature stays close to zero, i.e.
〈D∇ · n〉s |t,ĉ ≈ 0 holds for all time and all iso-surfaces (supplemental figures S7 and S6).
This is a consequence of the global geometrical constraint of a statistically planar wave.
Such a case configuration justifies an additional investigation using the absolute curvature
equation, (2.29) for D|∇ · n|, because the averaged absolute curvature should be positive
in a three-dimensional (3-D) turbulent flow, thus yielding a non-zero left-hand side term
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(a) (b) (c)

(d) (e) ( f )

(g) (h) (i)

( j) (k) (l)

Figure 5. Fully developed sub-terms of 〈A(φ)〉s (a,d,g,j), first three sub-terms of 〈B(φ)〉s (b,e,h,k), and last
three sub-terms of 〈B(φ)〉s (c, f,i,l) plotted for four φ ∈ [Sd, Sn

d,D∇ · n, SW
d ] using solid lines, dashed lines, dot

lines with circles and dash–dot lines, respectively. Lines used to show the same sub-term for different φ are of
the same colour. Results computed in cases A, B, C and L are reported in the first, second, third and fourth
rows, respectively. All terms are normalized using δF , SL and ρu.

∂/∂t 〈D|∇ · n|〉s. Figures 3(i) and 3(j) confirm that the absolute curvature equation can
also be computed accurately.

4.2. Main equation terms
Concerning overall effects due to the two main factors, turbulence and thermal expansion,
a first observation can be made by comparing the range of values that the most relevant
equation terms assume in the different DNS cases. For φ being Sd and its three
constituents, the value range is around [−4, 4], [−40, 40] and [−40, 40] in case A, B and
C, respectively, cf. the first three rows in figure 4 or 5. Thus, an increase in Ka from 0.9 in
case A to 39 in case B results in increasing the range by an order of magnitude. Second,
the bottom row in figure 5 shows that the same value range of [−40, 40] is also obtained
from the 1-D reference laminar flame L without any turbulence. Therefore, both thermal
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Equations for the components of displacement speed

expansion (case L) and turbulence (case B) yield a comparable increase in the value range
with respect to case A. It is worth stressing, however, that dependencies of various terms
on ĉ, plotted for cases B and L in the second and bottom rows, respectively, in
figure 5, show substantially different trends. Accordingly, despite comparable value
ranges, turbulence and thermal expansion differently affect various terms in the discussed
equations. Third, as far as the value range is concerned, thermal expansion and turbulence
do not enhance one another in case C, i.e. the same value range of [−40, 40] has been
computed. As far as the dependencies of various terms on ĉ are concerned, trends
shown for cases B and C in figure 5 look similar, but substantially different from trends
observed in case L. Accordingly, thermal expansion effects appear to be of less importance
when compared with turbulence effects under conditions of the present simulations.
Indeed, fourth, figure 4 shows that the effect of thermal expansion does not cause any
significant change in the four terms 〈A〉s, 〈B〉s, 〈C〉s and U , i.e. results computed in
the constant-density case B and in the variable-density case C appear to be qualitatively
similar.

It may also be noticed that, without heat release, a homogeneous turbulence alone tends
to flatten the profile for all (sub-)terms along ĉ outside the reaction zone, cf. terms
conditioned to ĉ < 0.4 in case B with the corresponding terms in case A in figure 4 or
5. For terms conditioned inside the reaction zone, i.e. ĉ > 0.6, the addition of thermal
expansion brings noticeable effects. For instance, the terms U(SW

d )|t∞ and
〈
C(SW

d )
〉
s |t∞

are very close in the constant-density case B (figure 4h), but are clearly different in the
variable-density case C (figure 4i).

Lines with red plus symbols in figures 3 and 4 show that the magnitude of the ‘direct’
flow effect term, U(φ)|ĉ,t, varies in a significantly wider range when compared with terms
〈A(φ)〉s |ĉ,t, 〈B(φ)〉s |ĉ,t or 〈C(φ)〉s |ĉ,t for all φ with the exception of mean curvature in all
three DNS cases at different instants. It is worth remembering, however, that the ‘indirect’
flow effect term, R(φ)|ĉ,t∞ , counterbalances U(φ)|ĉ,t∞ in the fully developed flames, see
(2.30), because the left-hand side terms ∂/∂t 〈φ〉s vanish in this limiting case. As far as
developing flames are concerned, the sign of U(φ)|ĉ,t controls the sign of ∂/∂t 〈φ〉s for
various φ (with the exception of mean curvature). In case A, the magnitudes of the two
terms are close at ĉ < 0.8, but R(φ)|ĉ,t∞ significantly reduces the magnitude of ∂/∂t 〈φ〉s
in case B; see figure 3. A dominant role played by the flow is more evident at the early time
immediately after releasing the initial planar wave in the constant-density cases A and B.
In fact, any non-zero left-hand side term ∂/∂t 〈φ〉s can only be kick-started by the initial
flow term U(φ)|t=0 (shown in the supplemental figures), whereas all sub-parts within
R(φ)|t=0 in (2.30) should vanish, because the initial quantities are uniform in space.
Outside the reaction zone (ĉ < 0.4) in all three cases, the term U(Sd) is mainly contributed
by its normal diffusion part U(Sn

d) (second row) while its curvature and reaction parts stay
close to zero. Both terms U(Sd)|ĉ and U(Sn

d)|ĉ change sign from positive to negative with
an increase in ĉ. Such sign-flipping behaviour at the fully developed stage is primarily
attributed to the sub-term

〈
B2u(Sn

d)
〉
s; see red lines in figures 5(b), 5(e) and 5(h).

Regarding the flow curvature contribution term U(D∇ · n) shown in the fourth rows
of figures 3 and 4, its value vanishes in constant-density cases A and B which can be
explained by the net flow effect on creating positively curved surface elements cancels
out with those on negatively curved elements. However, the flow curvature term attains
a small negative value in the fully developed variable-density case C (figure 4l) due to
non-zero dilatation; see 〈A1u(D∇ · n)〉s |t∞ in figure 5(g). On the contrary, the absolute
counterpart U(D|∇ · n|)|ĉ,t takes a positive value of significant magnitude for all ĉ shortly
after releasing the initial planar wave (the bottom row in figure 3), reflecting that the flow
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is very efficient to bend and wrinkle initially planar iso-surfaces, whether in a concave or
a convex way. In constant-density cases A and B, which have a constant diffusivity D,
the term U(D|∇ · n|)|ĉ,t shows a flat dependence on ĉ, suggesting that the effect of
bending of surfaces by the flow acts similarly on all different iso-surfaces. The ĉ-profiles
of the fully developed U(D|∇ · n|) are comparable in the constant-density case B and the
variable-density case C. This observation indicates, however, that the effectiveness of the
flow to bend surfaces is significantly inhibited toward the reaction zone due to density
variations in case C. Indeed, U(|∇ · n|) = U(D|∇ · n|)/D, with D being increased by a
factor of seven with increasing ĉ in case C. It is worth mentioning that, in the turbulent
cases B and C, the fully developed term U(D|∇ · n|)|t∞ remains positive with a significant
magnitude, while the same term stays close to zero in case A. This difference appears to
indicate that a stationary wave shape adapts itself to a simple shear flow, thus making the
curvature almost stationary everywhere.

Now we turn to examining surface-averaged terms in (2.29) for various φ. First,
comparison of the relative magnitudes of various terms (i.e. left-hand side, 〈A〉s, 〈B〉s and
〈C〉s) in the equations for D∇ · n and SW

d shows that, in all three cases A–C, there are only
two dominant terms with opposite signs for most of the time. Specifically, in (2.29) for
D∇ · n, the dominant terms are 〈B〉s and 〈C〉s, with the left-hand side vanishing and 〈A〉s
being small. In (2.29) for SW

d , the dominant terms are 〈A〉s and 〈C〉s, with 〈B〉s vanishing
and the left-hand side being small; see figures 3( f,h) and 4(g–l).

Regarding the term 〈C(φ)〉s for various φ with the exception of φ = Sn
d, it evolves

(from an initial zero in cases A and B) to become negative with substantial magnitude
when compared with the other two terms 〈A(φ)〉s and 〈B(φ)〉s in all three cases A–C; see
left-pointing triangles in figure 4 and supplemental figures. This observation indicates a
significant correlation between φ and K. Such a correlation does not seem to be surprising
at first glance, because the considered φ are parts of K according to (2.6). However,〈
C(Sn

d)
〉
s |t∞,ĉ nearly vanishes outside the reaction zone (ĉ < 0.4); see figures 4(e) and 4( f ).

This result indicates a weak correlation between K and Sn
d, thus implying that the normal

diffusion contribution to displacement speed weakly affects the stretch rate outside the
reaction zone.

Let us also note that, when compared with the term 〈C(D∇ · n)〉s, its absolute
counterpart 〈C(D|∇ · n|)〉s attains a much larger magnitude (primarily negative) during
late wave evolution in the turbulent cases B and C. Since DK∇ · n = Dat∇ · n − DSd|∇ ·
n|2, the difference in DK∇ · n and DK|∇ · n| consists solely of the sign of the first term,
Dat∇ · n and Dat|∇ · n|, respectively, which involves the strain rate at. Accordingly,
the aforementioned difference in the magnitudes of 〈C(D∇ · n)〉s and 〈C(D|∇ · n|)〉s
implies that the surface-averaged strain rate term Dat|∇ · n| is significantly larger than
the surface-averaged term DSd|∇ · n|2 in the turbulent cases B and C. On the other hand,
〈C(D|∇ · n|)〉s |ĉ in case A evolves to become more similar to 〈C(D∇ · n)〉s |ĉ, because
the simple shear wave shape evolves to a deep cusp with large (positive) curvature, which
dwarfs a minor crest of small (negative) curvature; see the bottom row in supplemental
figure S8.

The term 〈A(φ)〉s, which is associated with evolution of the separation distance
between iso-surfaces, flips sign during transient wave evolution for some considered
φ; see supplemental figures S1–S3. This observation is associated with transition from
thinning of a turbulent reaction wave during an earlier stage of the wave development
to rebroadening of the wave during a later stage. This transition is discussed in detail
elsewhere (Yu et al. 2019). With exception of a part of

〈
A(Sn

d)
〉
s conditioned to large ĉ,

the fully developed 〈A(φ)〉s |ĉ,t∞ eventually evolves to become positive in cases A–C
911 A38-24

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

10
95

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 C

ha
lm

er
s 

Te
kn

is
ka

 H
ög

sk
ol

a,
 o

n 
14

 Ju
n 

20
21

 a
t 1

1:
49

:1
2,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.

https://doi.org/10.1017/jfm.2020.1095
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


Equations for the components of displacement speed

for almost all ĉ and φ. The fully developed term 〈B(Sd)〉s |t∞ nearly vanishes outside
the reaction zone (ĉ < 0.4) in the constant-density cases A and B. This observation
is associated with mutual cancellation of contributions due to a negative normal
diffusion term

〈
B(Sn

d)
〉
s |t∞ and a positive curvature diffusion term 〈B(D∇ · n)〉s |t∞ ; see

figures 4(a), 4(b), 4(d), 4(e), 4(j) and 4(k).

4.3. Fully developed sub-terms in 〈A〉s and 〈B〉s

In this section various sub-terms in the two fully developed terms 〈A〉s |t∞ and 〈B〉s |t∞ are
examined in detail. For brevity, the averaging operator is omitted in expressions for these
sub-terms in the present subsection.

In terms of value variation along ĉ, B2u(Sd) and B5(Sd) (both plotted in red lines in
figure 5) are two of the most prominent sub-terms in each of the four cases A, B, C and
L. In the first three cases A–C, the term B2u(Sd) or B5(Sd) monotonically decreases or
increases along ĉ, respectively. In case L the two terms vary non-monotonically and reach a
high peak inside the reaction zone. Therefore, allowing turbulence to disturb an exothermic
reaction planar flame flushes the non-monotonic peaks for both terms. In case L these
two terms form a mirror pair (figure 5k,l). In cases A–C variations in these two terms
along ĉ show opposite trends, thus indicating partial mutual cancellation of the two terms.
However, the mirror relation between these two terms does not necessarily hold under all
conditions. For instance, the hypothetical configuration considered in appendix B assumes
zero flow velocity, with all flow-related sub-terms including B2u(Sd) vanishing. On the
contrary, the term B5(Sd) remains significant in that case; see (B12) reduced from (B7).

Comparison of cases C and B shows that thermal expansion affects both aforementioned
terms, with the change in B2u(Sd) being more significant. The difference in B2u(Sd)
between cases C and B is largely contributed by its curvature part, B2u(Sc

d), representing
a correlation between the strain rate and curvature tensors. When only a single effect of
either flow turbulence (i.e. case B) or thermal expansion (i.e. case L) is present, the term
B2u(Sc

d) remains small. Accordingly, the large value of this term observed in case C is
attributed to the interaction between the two effects.

Let us turn to examining the terms B1u(Sd) and B3u(Sc
d). They are both present inside the

curvature equation and represent the correlation between a local normal direction of the
perturbed wave (n) and a flow-related vector involving a high-order derivative (∇2u and
∇an, respectively). In a random turbulent flow these vectors are unlikely to align with each
other. Consequently, the two terms are small in the constant-density cases A and B. On the
other hand, in the 1-D reference case L, these two terms form a mirror pair, with a large
peak being observed at the reaction zone. Then, in case C, i.e. after allowing turbulence
to disturb the planar exothermic flame of case L, these two terms are only moderately
modified and still inherit the peak location from case L.

The term B4(Sc
d) represents tangential diffusion of Sd and has a small magnitude in

all cases. On the contrary, the Laplacian diffusion term B4(Sd) can take non-zero values,
with its magnitude being moderately affected by turbulence and thermal expansion. As the
turbulence acts to wrinkle iso-surfaces, it is responsible for the positive, flat profile of two
comparable sub-terms, i.e. B6(Sd) and its part B6(Sc

d); see cases B and C in figure 5( f,i).
These two terms are barely affected by thermal expansion and vanish in the laminar
flame L.

Finally, let us examine sub-terms of A. In the 1-D case L, dilatation due to thermal
expansion directly introduces three non-zero terms: positive A1u(Sd) and A1u(SW

d ) and
the term A1u(Sn

d) whose sign varies. Indirectly, the thermal expansion induces also three
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corresponding A2-terms that mirror the A1u-terms. Note that, due to (3.7), A1u(Sd) =
S2

d|∇c|/(c + 1/θ) should stay positive everywhere. Under the influence of turbulence, an
additional part A1u(D∇ · n) emerges, cf. cases C and L. This part is positive, implying a
positive correlation between curvature and dilatation. The full dilatation term A1u(Sd) is
therefore boosted by turbulence, while its two constituents A1u(Sn

d) and A1u(SW
d ) barely

change.
Comparing cases A and B outside the reaction zone, one can see that the turbulence

triggers a negative A2(Sc
d) and a positive A2(Sn

d) of comparable magnitude, thus resulting
in a small value of A2(Sd). Comparison of different A2-terms in cases B and C
(figures 5(d) and 5(g), respectively) shows that thermal expansion results in a rather
significant change in A2(Sd) at large ĉ, controlled mainly by the reaction term A2(SW

d ),
whose value is similar to the one in the 1-D case L. In case C the two other terms A2(Sc

d)
and A2(Sn

d) are of the same magnitude as in A and B, but the dependency of A2(Sn
d) on

ĉ is different. The lack of a substantial influence of thermal expansion on the magnitudes
of A2(Sc

d) and A2(Sn
d) is associated with the capability of turbulence to significantly affect

these terms under conditions of the present study. However, turbulence does not directly
affect A2(SW

d ), whereas thermal expansion increases this term, because SW
d is inversely

proportional to the density.

5. Conclusion

Addressed in this work are different terms in the decomposition of the displacement
speed, Sd, of an iso-scalar surface within a turbulent reacting wave. The decomposition
involves the curvature or tangential diffusion D∇ · n, the normal diffusion Sn

d and the
reaction SW

d terms. Evolution equations for these surface-averaged terms conditioned
on the reaction progress variable were derived within a framework developed recently
by Yu & Lipatnikov (2019c). All five equations can be written in the same general
form, see (2.22), which satisfies a term-wise decomposition relation given by (2.26).
More specifically, the derived equations involve three groups of terms responsible for
the evolution of the surface-averaged quantity 〈φ〉s: (i) term 〈A(φ)〉s representing the
rate of change in the separation distance between neighbouring iso-surfaces, (ii) term
〈B(φ)〉s representing the surface-following rate of change in molecular fluxes, and (iii)
term 〈C(φ)〉s representing the surface-averaged correlation between fluctuations in the
considered quantity and the local stretch rate. In order to asses the effect of the flow, an
alternative group of terms U(φ) is defined so that it contains all terms that directly involve
the flow velocity.

The averaged equations are used to examine a DNS database obtained from turbulent
reaction waves characterized by low and moderate Karlovitz numbers. For each
surface-averaged evolution equation, the left-hand and right-hand side terms were shown
to match reasonably well on all iso-c surfaces and during the entire time interval addressed
in the simulations.

The following findings of the present analysis of the DNS data are worth noting.

(i) For a turbulent reacting wave at a moderate Karlovitz number, thermal expansion
only weakly affects the trends of the main terms in all surface-averaged evolution
equations. Further examination of sub-terms reveals that, in addition to introducing
a dilatation term B1u(φ), thermal expansion also affects the surface-averaged
displacement speed and its components through other routes, in particular,
through the two opposite-signed sub-terms B1u(Sc

d) and B2u(Sc
d), which represent
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Equations for the components of displacement speed

a curvature/dilatation correlation and a strain-rate/curvature-tensor correlation,
respectively.

(ii) During the early stage of the reaction wave development, turbulent flow controls
the evolution of all studied quantities with the exception of the curvature term
D∇ · n. A small magnitude of the total flow term U(D∇ · n) results from mutual
cancellation of contributions from flow-bended surface elements with negative or
positive curvature.

(iii) In (2.29) for D∇ · n and SW
d , there are two dominant terms of opposite signs.

(iv) Outside the reaction zone, the correlation between Sn
d and K nearly vanishes.

(v) Among all fully developed surface-averaged sub-terms, B2u(Sd) and B5(Sd) are most
prominent with large value variation.

Based on the present study, we see several potential directions for future work. While
the basic properties of the equations have been established, it remains to be investigated
their dependence on various relevant parameters such as Lewis numbers, combustion
chemistry, etc. To make a more direct connection with modelling concepts, such as the
flame surface density formalism, an extension of the present framework to study the
displacement speeds of filtered or averaged quantities can also be of interest. Furthermore,
as the present derivation of surface-averaged evolution equations is based on the viewpoint
of tracing the evolution of a certain quantity on an iso-surface point, a more systematic
examination of such an approach may provide extra insight together with classical Eulerian
and Lagrangian approaches.

As a concluding remark regarding potential implications of the present study, we also
want to highlight a theoretical analysis of a simplified sub-system of semi-1-D wave
evolution over stationary flows; see appendix B. This analysis shows that, under certain
conditions, the original governing equation (B1), which contains an arbitrary reaction rate
W(c), can be replaced with a set of (B12) and (B13) for two variables of Sd and Sn

d. In this
set of equations, the reaction rate function does not explicitly appear and all information
pertaining to W(c) is encoded in the initial conditions.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2020.1095.
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Appendix A. Surface-following transport equations for displacement speed
and its decomposed parts

Application of the surface-following derivative (∂∗/∂∗t) to a product of |∇c| and an
arbitrary quantity φ yields

∂∗

∂∗t
(φ|∇c|) = φ

∂∗

∂∗t
|∇c| + |∇c| ∂

∗

∂∗t
φ, (A1)
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which can be rewritten as

∂∗

∂∗t
φ = −φ ∂

∗

∂∗t
ln|∇c| + 1

|∇c|
∂∗

∂∗t
(φ|∇c|),

= −φK︸ ︷︷ ︸
A0(φ)

+φ∇ · u︸ ︷︷ ︸
A1u(φ)

−φ∇ · (Sdn)︸ ︷︷ ︸
A2(φ)︸ ︷︷ ︸

A(φ)

+ 1
|∇c|

∂∗

∂∗t
(φ|∇c|)︸ ︷︷ ︸

B(φ)

, (A2)

using the well-known equation (A29) which, for completeness, is included in the last
section of the present appendix. For each of the four quantities φ ∈ [∇ · n, Sn

d/D, SW
d , Sd],

the product (φ|∇c|) contained in B(φ) can be written as

∇ · n|∇c| = (∇ini)|∇c| = ∇i∇ic − ni∇i|∇c|, (A3)

Sn
d/D|∇c| = ni∇i(|∇c|), (A4)

SW
d |∇c| = W, (A5)

Sd|∇c| = D + W. (A6)

In the following four subsections, we derive four ‘surface-following’ transport equations
for φ ∈ [∇ · n, Sn

d/D, SW
d , Sd].

A.1. Transport equation for ∇ · n
The surface-following derivative applied to the normal direction vector ni ≡ ∇ic/|∇c|
reads as

∂∗ni

∂∗t
= − ∇ic

|∇c|
∂∗

∂∗t
ln|∇c| + 1

|∇c|
∂∗

∂∗t
(∇ic)

= −ni
∂∗

∂∗t
ln|∇c| − nj∇iu∗

j , (A7)

using (i) the product rule, (ii) the following equation

∂∗

∂∗t
(∇iΨ ) = ∇i

(
∂∗

∂∗t
Ψ

)
−
(
∇iu∗

j

) (∇jΨ
)

(A8)

with Ψ = c, and (iii) (∂∗/∂∗t)c = 0. The term B(∇ · n) reads as

B(∇ · n) = 1
|∇c|

∂∗

∂∗t
(|∇c|∇ini) = ∂∗

∂∗t
(∇ini)+ ∇ini

∂∗

∂∗t
ln|∇c|

=
(

∇i(
∂∗ni

∂∗t
)− ∇iu∗

j ∇jni

)
+ ∇ini

∂∗

∂∗t
ln|∇c|

= −∇i

(
ni
∂∗

∂∗t
ln|∇c| + nj∇iu∗

j

)
− ∇iu∗

j ∇jni + ∇ini
∂∗

∂∗t
ln|∇c|

= −ni∇i

(
∂∗

∂∗t
ln|∇c|

)
− ∇i

(
nj∇iu∗

j

)
− ∇iu∗

j ∇jni, (A9)
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using (A3), (A8) with Ψ = ni, and (A7). The first right-hand side term in (A9) can be
expressed as

−ni∇i

(
∂∗

∂∗t
ln|∇c|

)
= −ni∇i

(
nj∇jSd − an

)
= −ni∇inj∇jSd − ninj∇i∇jSd + ni∇ian (A10)

using (A28). The second and third right-hand side terms in (A9) read as

−∇iu∗
j ∇jni = −∇iuj∇jni + Sd∇inj∇jni + nj∇jni∇iSd, (A11)

and

−∇i

(
nj∇iu∗

j

)
= −∇iuj∇inj − nj∇i∇iuj + ∇i∇iSd, (A12)

respectively, by expanding u∗
j = uj − Sdnj and applying product rule. Substituting

(A10)–(A12) into (A9), inserting the result into (A2) for φ = ∇ · n, and expanding
∇ · (Sdn) inside A2 in (A2), we finally arrive at the following transport equation for mean
curvature:

∂∗

∂∗t
(∇ · n) = −K∇ · n︸ ︷︷ ︸

A0

+ [∇ · u](∇ · n)︸ ︷︷ ︸
A1u

−[∇nSd](∇ · n)− Sd(∇ · n)2︸ ︷︷ ︸
A2︸ ︷︷ ︸

A

−n · ∇2u︸ ︷︷ ︸
B1u

−2Sij∇jni + ∇nan︸ ︷︷ ︸
B2u

+∇2Sd − ninj∇i∇jSd︸ ︷︷ ︸
B4

+ Sd∇inj∇jni︸ ︷︷ ︸
B6︸ ︷︷ ︸

B

. (A13)

Here Sij ≡ (∇iuj + ∇jui)/2 and ∇n ≡ n · ∇.

A.2. Transport equation for Sn
d/D

Using (A4), we get

B

(
Sn

d
D
)

= 1
|∇c|

∂∗

∂∗t
(ni∇i|∇c|) = 1

|∇c|
(

∇i|∇c| ∂
∗

∂∗t
ni + ni

∂∗

∂∗t
(∇i|∇c|)

)

= ∇i(ln|∇c|)
(

−ni
∂∗

∂∗t
ln|∇c| − nj∇iu∗

j

)

+ 1
|∇c|ni

(
∇i(|∇c| ∂

∗

∂∗t
ln|∇c|)− ∇iu∗

j ∇j|∇c|
)

= −Sn
d
D
∂∗

∂∗t
ln|∇c| − nj∇i ln|∇c|∇iu∗

j + Sn
d
D
∂∗

∂∗t
ln|∇c|

+ ni∇i(−an + nj∇jSd)− ni∇j ln|∇c|∇iu∗
j

= −n · ∇an + ninj∇i∇jSd + ni∇inj∇jSd − ni∇j ln|∇c|(∇iu∗
j + ∇ju∗

i ), (A14)
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where the last right-hand side term can be written as

(nj∇i ln|∇c|)(∇iu∗
j + ∇ju∗

i ) =
(∇i∇jc

|∇c| − ∇inj

)
(∇iu∗

j + ∇ju∗
i )

= 2
∇i∇jc
|∇c| ∇iu∗

j − ∇inj(∇iu∗
j + ∇ju∗

i )

= 2Sij(nj∇i ln|∇c|)− 2∇Sd · ∇(ln|∇c|)+ 2Sdn · ∇2n

+ ∇inj
(
Sd∇jni + Sd∇inj + ni∇jSd + nj∇iSd

)
. (A15)

Applying Laplacian (∇2) to the identity of nini = 1, we get

n · ∇2n = ni∇j∇jni = −∇jni∇jni = −∇n : ∇n. (A16)

Substituting (A15) into the right-hand side of (A14), using (A16), then, inserting (A14)
into (A2) for φ = Sn

d/D, we arrive at the following transport equation for Sn
d/D:

∂∗

∂∗t
Sn

d

D = −KSn
d

D︸ ︷︷ ︸
A0

+ [∇ · u]
Sn

d

D︸ ︷︷ ︸
A1u

−[∇ · (Sdn)]
Sn

d

D︸ ︷︷ ︸
A2︸ ︷︷ ︸

A

−∇nan︸ ︷︷ ︸
B1u

−2Sijnj∇i ln|∇c|︸ ︷︷ ︸
B2u

+ ninj∇i∇jSd︸ ︷︷ ︸
B4

+ 2∇Sd · ∇(ln|∇c|)︸ ︷︷ ︸
B5

+ Sd(∇inj − ∇jni)∇inj︸ ︷︷ ︸
B6︸ ︷︷ ︸

B

.

(A17)

A.3. Transport equation for SW
d

Let us assume that the reaction rate depends solely on c. Therefore, (∂∗/∂∗t)W =
(∂W/∂c)(∂∗/∂∗t)c = 0 and B(SW

d ) vanishes. Thus, (A2) yields the following transport
equation for SW

d :

∂∗

∂∗t
SW

d = −KSW
d︸ ︷︷ ︸

A0

+ [∇ · u]SW
d︸ ︷︷ ︸

A1u

−[∇ · (Sdn)]SW
d︸ ︷︷ ︸

A2︸ ︷︷ ︸
A

. (A18)

A.4. Transport equation for Sd

The displacement speed equation has been obtained previously (Yu & Lipatnikov 2019c)
but is included here for completeness. The assumptions of (i) ρD = const, (ii) D = D(c)
and (iii) W = W(c) result in

D = 1
ρ

∇ · (ρD∇c) = D∇2c = D∇i∇ic, (A19)
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Equations for the components of displacement speed

and (∂∗/∂∗t)W = (∂∗/∂∗t)D = 0. Consequently,

B(Sd) = 1
|∇c|

∂∗

∂∗t
(D∇i∇ic) = D

|∇c|
(
∂

∂t
(∇i∇ic)+ u∗

j ∇j(∇i∇ic)
)

= D
|∇c|

(
∇i∇i(

∂

∂t
c + u∗

j ∇jc)− ∇jc(∇i∇iu∗
j )− 2(∇i∇jc)∇iu∗

j

)

= −Dnj(∇i∇iu∗
j )− 2D∇i∇jc

|∇c| ∇iu∗
j

= −Dn · ∇2u − 2D∇i∇jc
|∇c| ∇iuj + Dnj∇i∇i(Sdnj)+ 2D∇i∇jc

|∇c| ∇i(Sdnj), (A20)

by (i) substituting a = u∗ and b = ∇c into the identity

aj∇i∇ibj = ∇i∇i(ajbj)− bj∇i∇iaj − 2∇iaj∇ibj, (A21)

(ii) using (∂∗/∂∗t)c = 0 and (iii) expanding u∗
j = uj − Sdnj. In (A20) the third right-hand

side term can be written as

Dnj∇i∇i(Sdnj) = D(∇i∇iSd + Sdnj∇i∇inj) = D∇2Sd + DSdn · ∇2n. (A22)

The fourth right-hand side term reads as (a factor of 2D is omitted for brevity)

∇i∇jc
|∇c| ∇i(Sdnj) = ∇i∇jc

|∇c| (nj∇iSd + Sd∇inj)

= ∇iSd(∇i∇jc)
∇jc

|∇c|2 + Sd

|∇c|(∇i∇jc)∇inj

= ∇iSd
∇i(|∇c|2)

2|∇c|2 + Sd

|∇c|∇i(nj|∇c|)∇inj

= ∇iSd
∇i(|∇c|)

|∇c| + Sd

(
∇inj∇inj + ∇i|∇c|

2|∇c| ∇i(njnj)

)
= ∇Sd · ∇(ln|∇c|)− Sdn · ∇2n, (A23)

using (A16).
Finally, substituting (A22) and (A23) into (A20) and inserting the result into (A2), we

arrive at the following transport equation for Sd:

∂∗

∂∗t
Sd = −KSd︸ ︷︷ ︸

A0

+ [∇ · u] Sd︸ ︷︷ ︸
A1u

− [∇ · (Sdn)] Sd︸ ︷︷ ︸
A2︸ ︷︷ ︸

A

−Dn · ∇2u︸ ︷︷ ︸
B1u

−2D∇∇c : ∇u
|∇c|︸ ︷︷ ︸
B2u

+D∇2Sd︸ ︷︷ ︸
B4

+ 2D∇Sd · ∇(ln|∇c|)︸ ︷︷ ︸
B5

−DSdn · ∇2n︸ ︷︷ ︸
B6︸ ︷︷ ︸

B

.

(A24)
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A.5. Transport equation for |∇c|
First, (1.1) reads as

∂c
∂t

+ uj∇jc = Sd|∇c|. (A25)

Second, application of ∇i to (A25), followed by multiplication of the obtained equation
with ∇ic, yields

∇ic
∂

∂t
(∇ic)+ (uj − Sdnj)∇ic(∇i∇jc)+ (∇iuj − Sd∇inj − nj∇iSd

)
(∇jc)∇ic = 0. (A26)

Multiplication of this equation with 1/|∇c|, differentiation of |∇c| with respect to time
and spatial coordinates, and the use of ∇ic = ni|∇c| result in

∂

∂t
|∇c| + (uj − Sdnj)∇j|∇c| + (∇iuj − Sd∇inj − nj∇iSd

)
njni|∇c| = 0. (A27)

Finally, since njnj = 1 and nj∇inj = 0, we arrive at

∂∗

∂∗t
ln|∇c| = 1

|∇c|
∂∗

∂∗t
|∇c| = −an + n · ∇Sd (A28)

= K − ∇ · u + ∇ · (Sdn) (A29)

= K − ∇ · u∗ (A30)

using (1.3). Here, K = at − Sd∇ · n is the stretch rate and at = ∇ · u − ninj∇juj is the
tangential strain rate.

Appendix B. Simplified equations in reduced semi-1-D configurations

The meaning of some terms in (A13), (A17), (A18) and (A24) can be better understood
by considering a simple configuration. Accordingly, let us consider evolution of a
reaction-diffusion wave in an quiescent mixture, i.e. |u| = 0. This wave is further
assumed to have a 1-D structure, i.e. c = c(r, t). The spatial coordinate r may be (i)
r =

√
x2 + y2 + z2 > 0 for a spherical wave, (ii) r =

√
x2 + y2 > 0 for a cylindrical wave,

and (iii) r = x for a planar wave. Under such simplifications, the original CDR equation
(1.1) for c(x, y, z, t) reads as

∂

∂t
c = D 1

rm
∂

∂r

(
rm ∂

∂r
c
)

+ W, (B1)

with m = 0, 1 and 2 in the planar, cylindrical and spherical wave, respectively.
Due to the above assumptions, (i) the four flow-related terms A1u, B1u, B2u and B3u

vanish, and (ii) φ = φ(r, t) for any φ ∈ [Sd, Sc
d, Sn

d, SW
d , |∇c|] as long as the value of φ

stays bounded. Let us assume that there exist no zero-gradient point of |∇c|(r, t) = 0
within a space/time region of 0 < ra(t) < r < rb(t) at τa < t < τb, or in other words,
c(r, t) stays monotonic along r within this region. Then, the surface-following derivative
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Equations for the components of displacement speed

∂∗/(∂∗t) reads as
∂∗

∂∗t
φ = ∂

∂t
φ − σ±Sd

∂

∂r
φ, (B2)

term A in (2.22) reads as

A(φ) = −σ±φ
∂

∂r
Sd, (B3)

the 3-D Laplacian reads as

∇2φ = 1
rm

∂

∂r
(rm ∂

∂r
φ) = ∂2

∂r2φ + m
r
∂

∂r
φ, (B4)

the mean curvature reads as

∇ · n = mσ±
r
, (B5)

and a product of two curvature tensors reads as

∇inj∇inj = ∇inj∇jni = m
r2 . (B6)

Here σ± = n · r = (∂/∂r)c/|(∂/∂r)c| ∈ [1,−1] is a sign function, vector r is normal to
the reaction wave and |∇c| = σ±(∂/∂r)c. Using the above relations, the five transport
equations derived in appendix A, i.e. (A24) for Sd, (A13) for ∇ · n, (A17) for Sn

d/D, (A18)
for SW

d and (A28) for |∇c|, read as

∂

∂t
Sd − σ±Sd

∂

∂r
Sd︸ ︷︷ ︸

lhs

= −σ±Sd
∂

∂r
Sd︸ ︷︷ ︸

A

+D ∂2

∂r2 Sd + mD
r
∂

∂r
Sd︸ ︷︷ ︸

B4

+ 2σ±Sn
d
∂

∂r
Sd︸ ︷︷ ︸

B5

+ mD
r2 Sd︸ ︷︷ ︸

B6

,

(B7)

∂

∂t
m
r

+ mSd

r2︸ ︷︷ ︸
lhs

= −m
r
∂

∂r
Sd︸ ︷︷ ︸

A

+ m
r
∂

∂r
Sd︸ ︷︷ ︸

B4

+ mSd

r2︸︷︷︸
B6

, (B8)

∂

∂t
Sn

d − σ±Sd
∂

∂r
Sn

d︸ ︷︷ ︸
lhs

= −σ±Sn
d
∂

∂r
Sd︸ ︷︷ ︸

A

+D ∂2

∂r2 Sd︸ ︷︷ ︸
B4

+ 2σ±Sn
d
∂

∂r
Sd︸ ︷︷ ︸

B5

+ 0︸︷︷︸
B6

, (B9)

∂

∂t
SW

d − σ±Sd
∂

∂r
SW

d︸ ︷︷ ︸
lhs

= −σ±SW
d
∂

∂r
Sd︸ ︷︷ ︸

A

, (B10)

and
∂

∂t
|∇c| − σ±

∂

∂r
(|∇c|Sd) = 0, (B11)

respectively.
In the curvature equation (B8) different terms are cancelled to yield a net zero sum (note

(∂/∂t)(m/r) = 0) resulting from the assumed geometrical constraint. Such cancellation is
fulfilled not only in the trivial configuration of a zero-curvature planar (m = 0) wave, but
also in a cylindrical (m = 1) or spherical (m = 2) wave. Moreover, two diffusive sub-terms
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Planar wave evolution (m = 0)
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0

1
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Spherical wave evolution (m = 2)

Sd (c(tb, r)) Sn
d (tb, r)

Sn
d (c(tb, r)) c (ta, r)

Sd (tb, r) c (tb, r)

r r

(a) (b)

Figure 6. Comparison of numerical solutions obtained (i) by solving (B1) with W =
((1 − c)/7τR) exp(−49/(1 + 6c)) and τR = 10−5 and (ii) by solving (B12) and (B13), both with D = 1. The
left and right panels report results computed for a ‘planar wave’ with m = 0 and a ‘spherical wave’ with m = 2,
respectively. In each subfigure c(ta, r) and c(tb, r) are numerical solutions obtained at ta = 0.1 and tb = 1.1 by
integrating (B1) over a spatial region of ra = 0.2 � r � rb = 15, with boundary conditions of c(t, ra) = 1 and
c(t, rb) = 0 starting with an initial profile of c(t = 0, r) = 1 − H(r − 6). Here, H is Heaviside step function.
Note that c(t, r) was maintained to be monotonously decreasing in space during the entire wave evolution.
Based on the computed profile of c(ta, r) or c(tb, r), the profiles of Sd(c(ta, r)) and Sn

d(c(ta, r)) or Sd(c(tb, r))
and Sn

d(c(tb, r)) were directly evaluated as follows: Sd = (D(∂2/∂r2)c + W)/(σ±(∂/∂r)c)+ σ±Dm/r and
Sn

d = D(∂2/∂r2)c/(σ±(∂/∂r)c). Subsequently, the former profiles of Sd(c(ta, r)) and Sn
d(c(ta, r)) were

adopted to set the initial conditions for numerically integrating the second set of (B12) and (B13). In these
computations, σ± = −1 and boundary conditions of (Sd − σ±D(m/r)) = 0 and Sn

d = 0 were set at ra and rb.
Finally, the profiles of Sd(tb, r) and Sn

d(tb, r) were computed by numerically solving the second set of (B12)
and (B13). The numerical integration of the two sets of equations was performed using the Matlab partial
differential equation (PDE) solver ‘pdepe’ for 1-D parabolic and elliptic PDEs, a uniform mesh with a size of
0.0148, and a constant time step of 0.01.

B4 and B6 in (B8) are cancelled by term A and the difference ∂∗/∂∗t(∇ · n)− ∂/∂t(∇ ·
n), respectively.

Subsequently, one can rearrange (B7) and (B9) as

∂

∂t
Sd −

(
2σ±Sn

d + mD
r

)
∂

∂r
Sd = D ∂2

∂r2 Sd + mD
r2 Sd, (B12)

and
∂

∂t
Sn

d − σ±
∂

∂r
(SdSn

d) = D ∂2

∂r2 Sd, (B13)

respectively. Thus, the original governing equation (B1) for a single unknown quantity c is
replaced by a pair of (B12) and (B13) for two unknowns (Sd, Sn

d). Such a replacement is at
least valid for a spatial/time region 0 < ra(t) < r < rb(t) and ta < t < tb that contains no
zero-gradient point. Profiles of Sd and Sn

d, obtained by numerically solving two different
sets of equations using equivalently translated initial conditions in either a planar (m = 0)
or a spherical (m = 2) configuration, are plotted in figure 6. These results do show that the
profiles yielded by different equations match very well. It is of interest that a function W(c)
from (B1) is absent in the second set of equations, i.e. (B12) and (B13). Accordingly, all
information about W(c) is ‘encoded’ into the initial conditions, i.e. Sd(ta, r) and Sn

d(ta, r),
for the second set of equations.

If a reduced semi-1-D configuration contains multiple regions separated by some
zero-gradient points, (B12) and (B13) may still hold, however, each of the time/space

911 A38-34

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

10
95

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 C

ha
lm

er
s 

Te
kn

is
ka

 H
ög

sk
ol

a,
 o

n 
14

 Ju
n 

20
21

 a
t 1

1:
49

:1
2,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.

https://doi.org/10.1017/jfm.2020.1095
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


Equations for the components of displacement speed

regions must be prescribed externally. In other words, the replacement equations cannot
tell us how a zero-gradient point moves, while the original (B1) can do so. A similar
equation replacement can be applied to a different pair of two unknowns, e.g. (Sd, |∇c|)
for (B12) and (B11), as long as Sn

d in (B12) is replaced with σ±D(∂/∂r|∇c|)/|∇c|.
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