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1 |  INTRODUCTION

Many countries have included support for bioenergy in their 
energy and climate policies, as a component of national strat-
egies to curb greenhouse gas (GHG) emissions. However, 
the scientific literature shows wide variation in quantitative 
assessments as well as perspectives concerning the climate 
change mitigation effects of bioenergy, including when de-
rived from forest biomass. Many studies have found that forest 
bioenergy can contribute to climate change mitigation, espe-
cially in the medium to long term (e.g. Creutzig et al., 2015; 
Dwivedi et al., 2019; Favero et al., 2017, 2020; Gustavsson 

et al., 2017, 2021; Kilpeläinen et al., 2016; Kraxner et al., 
2003; Lundmark et al., 2014; Marland & Schlamadinger, 
1997; Nabuurs et al., 2017; Smyth et al., 2014; Vance, 2018). 
Other studies contest the climate benefits of forest bioenergy, 
especially in the short term (e.g. Booth, 2018; Brack, 2017; 
Hudiburg et al., 2011; Norton et al., 2019; Pingoud et al., 
2016; Schlesinger, 2018; Soimakallio, 2014; Sterman et al., 
2018). Specific areas of concern include ‘carbon neutrality’ 
assumptions, climate impacts of the growing international 
biomass pellet trade, timing of mitigation benefits and the 
treatment of bioenergy in the United Nations Framework 
Convention on Climate Change (UNFCCC) rules for 
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Abstract
The scientific literature contains contrasting findings about the climate effects of for-
est bioenergy, partly due to the wide diversity of bioenergy systems and associated 
contexts, but also due to differences in assessment methods. The climate effects of bi-
oenergy must be accurately assessed to inform policy- making, but the complexity of 
bioenergy systems and associated land, industry and energy systems raises challenges 
for assessment. We examine misconceptions about climate effects of forest bioenergy 
and discuss important considerations in assessing these effects and devising measures 
to incentivize sustainable bioenergy as a component of climate policy. The tempo-
ral and spatial system boundary and the reference (counterfactual) scenarios are key 
methodology choices that strongly influence results. Focussing on carbon balances of 
individual forest stands and comparing emissions at the point of combustion neglect 
system- level interactions that influence the climate effects of forest bioenergy. We 
highlight the need for a systems approach, in assessing options and developing policy 
for forest bioenergy that: (1) considers the whole life cycle of bioenergy systems, 
including effects of the associated forest management and harvesting on landscape 
carbon balances; (2) identifies how forest bioenergy can best be deployed to support 
energy system transformation required to achieve climate goals; and (3) incentivizes 
those forest bioenergy systems that augment the mitigation value of the forest sector 
as a whole. Emphasis on short- term emissions reduction targets can lead to decisions 
that make medium-  to long- term climate goals more difficult to achieve. The most 
important climate change mitigation measure is the transformation of energy, indus-
try and transport systems so that fossil carbon remains underground. Narrow perspec-
tives obscure the significant role that bioenergy can play by displacing fossil fuels 
now, and supporting energy system transition. Greater transparency and consistency 
is needed in greenhouse gas reporting and accounting related to bioenergy.

K E Y W O R D S

energy system transition, forest carbon stock, forest management, greenhouse gas accounting, 
landscape scale, reference system
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compiling national GHG inventories (Mather- Gratton et al., 
2021). Diverging conclusions can arise from studies that 
consider different research questions and that use different 
methodologies and scope, yielding diverging results.

In this paper, we examine debated aspects related to cli-
mate impacts of forest bioenergy, in applications including 
heat production, electricity generation and transport. We 
identify factors that are relevant to understanding the climate 
effects of forest bioenergy, and misconceptions that can lead 
to conclusions that exaggerate or underestimate the effects. 
We discuss aspects that pertain to analysing the climate ef-
fects of forest bioenergy systems (Sections 2– 11) and ap-
proaches used in GHG inventory reporting and accounting 
for forest bioenergy (Section 12). Our objective is to reduce 
confusion arising from publication of diverging studies on 
forest bioenergy, to inform policy development, business de-
cisions and the public debate on bioenergy.

2 |  BIOENERGY IN ENERGY 
SYSTEM TRANSITIONS

Global energy supply currently depends heavily on fos-
sil fuels, with coal, oil and natural gas providing 84.3% of 
global primary energy use in 2019 (BP, 2020). The use of 
fossil fuels is projected to increase in absolute amount, de-
spite an expected increase in the share of renewable energy 
sources (IEA, 2019). The most important climate change 
mitigation measure is the transformation of energy, indus-
try and transport systems so that fossil carbon remains un-
derground (IPCC, 2014, 2018; Johnsson et al., 2019; Peters 
et al., 2020; Tong et al., 2019). This will require a combina-
tion of measures and technologies, likely to include energy 
efficiency and conservation; carbon capture and storage 
(CCS); replacing fossil fuels with biomass- based fuels, 
hydrogen and e- fuels from renewable electricity; as well 
as non- thermal technologies such as hydro, wind and solar 
power supporting, inter alia, electrification of the transport 
sector (IPCC, 2018).

Biomass- based electricity can provide balancing power 
needed to maintain power stability and quality as the con-
tribution from solar and wind power increases (Arasto et al., 
2017; Lenzen et al., 2016; Li et al., 2020), complementing 
other balancing options such as battery storage, reservoir 
hydropower, grid extensions and demand- side management 
(Göransson & Johnsson, 2018).

Beyond its value as a dispatchable resource for electric-
ity generation, biomass is an important option for renewable 
heating in buildings and industrial processes. In 2019, bio-
energy contributed almost 90% of renewable industrial heat 
consumption and two- thirds of the total modern renewable 
heating and cooling in buildings and industrial processes 
(IEA, 2020; IRENA/IEA/REN21, 2020). It is one of the 

options available to reduce emissions from heavy industries 
such as iron and steel production (Mandova et al., 2018, 
2019) and cement production (IEA, 2018). Furthermore, 
carbon- based transportation fuels will remain important 
in the coming decades, as electrification of the transport 
sector will take time (IEA- AMF/IEA Bioenergy, 2020). 
Biofuels can contribute to reducing fossil fuel use and asso-
ciated GHG emissions while there remain vehicles that use 
carbon- based fuels. In the longer term, biofuels will likely 
be used in sectors where the substitution of carbon- based 
fuels is difficult, such as long- distance aviation and marine 
transportation. As discussed in the following sections, the 
impact on atmospheric GHG concentrations will depend on 
how biomass use for bioenergy influences the land carbon 
stock over time.

In the Intergovernmental Panel on Climate Change (IPCC) 
Special Report on limiting warming to 1.5°C (SR1.5), the con-
tribution of bioenergy to mitigation pathways is substantial, in-
creasing to a median value of 27.3% of global energy supply in 
2050 across the full range of 1.5°C pathways analysed (Rogelj 
et al., 2018). Various bioenergy options contribute to these mit-
igation pathways, including substantial use of biomass for heat 
and liquid fuel applications (Fuss et al., 2018). Biomass use for 
energy may also be combined with carbon capture and storage 
(BECCS) to provide carbon dioxide removal (CDR) from the 
atmosphere. Reaching global net zero, or net negative, GHG 
emissions will require CDR, to offset residual emissions in 
‘hard- to- abate’ sectors. The SR1.5 found that most scenarios 
that achieve climate stabilization at 1.5 or 2°C warming re-
quire substantial deployment of CDR technologies, including 
BECCS (IPCC, 2018; Roe et al., 2019).

The finding from the global integrated assessment mod-
elling studies included in the SR1.5 report, that bioenergy 
commonly has important roles in 1.5 or 2°C pathways, is 
not unanimously supported by studies that apply a more re-
stricted temporal and spatial scope and use other method-
ological approaches than integrated assessment modelling 
to quantify GHG balances and climate effects. One explana-
tion is that different methodologies capture different aspects 
of mitigation and systems transition. For example, indirect 
effects and substitution are not relevant in integrated assess-
ment modelling, yet they are important considerations in life 
cycle assessment (LCA). Conversely, LCA and carbon ac-
counting frameworks do not capture aspects such as inertia 
in energy/transport/industry infrastructure, and economic 
competition among mitigation options.

3 |  ‘CARBON NEUTRALITY’ OF 
BIOENERGY

Bioenergy is often characterized as being ‘carbon neutral’ 
based on the observation that the biogenic carbon released 
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when biomass is combusted was previously sequestered as 
the plants grew, and will be sequestered again during re-
growth. However, ‘carbon neutrality’ is an ambiguous term 
that is used differently in different contexts (Berndes et al., 
2016). Forest biomass is sometimes said to be carbon neutral 
if derived from a forest system in which carbon stocks are 
stable or increasing. However, forest bioenergy should not 
be assumed to be carbon neutral by default. As described in 
methodology developed over 20 years ago for the evaluation 
of climate effects of bioenergy (Schlamadinger et al., 1997), 
both biogenic carbon flows and GHG emissions associated 
with the life cycle of the bioenergy system need to be consid-
ered (Section 9), and GHG emissions associated with the bio-
energy system need to be compared with GHG emissions in 
a realistic reference situation (counterfactual scenario) where 
energy sources other than bioenergy are used (Section 8).

Furthermore, climate effects of forest bioenergy also 
depend on how bioenergy incentives influence forest man-
agement, which in turn depends on biophysical conditions 
and forest characteristics, prevailing forest management 
practices, the character and product portfolio of the asso-
ciated forest industry, alternative land use options and land 
owners' expectations of forest product markets (Abt et al., 
2012; Buchholz et al., 2019; Eggers et al., 2014; Johnston 
& van Cooten, 2016; Levers et al., 2014; Nepal et al., 2019; 
Nielsen et al., 2020; Sedjo & Tian, 2012; Tærø et al., 2017; 
Trømborg & Solberg, 2010). Studies that include economic 
factors and consider the diversity and dynamic characteristics 
of forests and the wood products sector reveal that the effects 
of forest bioenergy incentives on the development of for-
est carbon stocks can be positive or negative, depending on 
the situation and management response (Baker et al., 2019; 
Cintas, Berndes, Hansson, et al., 2017; Costanza et al., 2017; 
Daigneault et al., 2012; Dale et al., 2017; Duden et al., 2017; 
Dwivedi et al., 2019; Gustavsson et al., 2017; Hudiburg 
et al., 2011; Kallio et al., 2013; Khanna et al., 2017; Kim 
et al., 2018; Law et al., 2018; Nabuurs, Delacote, et al., 2017; 
Pingoud et al., 2016; see also Section 6). Thus, the possible 
trade- off between storing carbon in the forest and harvesting 
the forest for wood products needs to be considered, along 
with other objectives, when strategies for climate change 
mitigation are developed (Berndes et al., 2018; Kurz et al., 
2016). The concept of climate- smart forestry is an example 
of a strategy recognizing this. It seeks to integrate climate ob-
jectives across the value chain from forest to wood products 
and energy, with the aims to (i) sustainably increase forest 
productivity; (ii) reduce GHG emissions and remove carbon 
from the atmosphere; and (iii) support adaptation and build 
resilience to climate change (Nabuurs, Delacote, et al., 2017; 
Nabuurs et al., 2019).

The treatment of bioenergy in UNFCCC reporting is 
sometimes described as ‘assuming carbon neutrality’ be-
cause CO2 emissions from bioenergy are reported as zero in 

the energy sector. This may appear to be an inaccurate simpli-
fication; however, this approach is necessary to avoid double 
counting, because all carbon emissions associated with forest 
harvest are already counted in the ‘Land use, land- use change 
and forestry’ sector (see Section 12).

4 |  PAYBACK TIME AND CLIMATE 
TARGETS

If forest management is adapted to provide biomass for en-
ergy in addition to other forest products, this influences the 
magnitude and timing of carbon sequestration and emissions 
in the forest, which in turn influences the scale and timing 
of the climate effect (Cowie et al., 2013). Concepts such as 
‘carbon debt’ and ‘payback time’ have been raised in the con-
text of land use change emissions associated with expansion 
of energy crops (Fargione et al., 2008; Gibbs et al., 2008), 
and also in relation to forest bioenergy, where the magnitude 
and timing of forest carbon sequestration and emissions is the 
concern. Wide variation in published estimates of payback 
time for forest bioenergy systems reflects both inherent dif-
ferences between these systems and different methodology 
choices (Bentsen, 2017; Buchholz et al., 2016; Cintas et al., 
2016; Hanssen et al., 2017; Lamers & Junginger, 2013; Ter- 
Mikaelian et al., 2015; Ter- Mikaelian, Colombo, Lovekin, 
et al., 2015). Critical methodology decisions include the 
definition of spatial and temporal system boundaries (see 
Sections 7 and 11) and reference (counterfactual) scenarios 
(see Section 8).

Some authors (e.g. Booth, 2018; Brack, 2017; Norton 
et al., 2019) propose that forest bioenergy should only re-
ceive support under renewable energy policies if it delivers 
net reduction in atmospheric CO2 within about a decade, 
due to the urgent need to reduce GHG emissions. However, 
besides the subjectivity of payback time analysis raised 
above, applying a 10- year payback time as a criterion for 
identifying suitable mitigation options is inconsistent with 
the long- term temperature goal of the Paris Agreement, 
which requires that a balance between emission and remov-
als is reached in the second half of this century (Tanaka 
et al., 2019). Furthermore, it reflects a view on the relation-
ship between net emissions, global warming and climate 
stabilization that contrasts with the scenarios presented in 
the SR1.5: The report shows many alternative trajectories 
towards stabilization temperatures of 1.5 and 2°C warming 
that reach net zero at different times and require different 
amounts of CDR (IPCC, 2018). The IPCC report did not de-
termine that individual mitigation measures must meet spe-
cific payback times, but rather that a portfolio of mitigation 
measures is required that together limits the total cumula-
tive global anthropogenic emissions of CO2. Furthermore, 
applying a payback time criterion when evaluating forest 
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bioenergy, and determining the contribution of bioenergy 
to meeting the Paris Agreement temperature goal, is com-
plicated by the fact that bioenergy systems operate within 
the biogenic carbon cycle (see Section 3), which implies 
a fundamentally different influence on atmospheric CO2 
concentrations over time compared to fossil fuel emissions 
(Cherubini et al., 2014).

The IPCC emphasizes the need for transformation of all 
sectors of society to achieve the ‘well below 2°C’ goal of 
the Paris Agreement (IPCC, 2018). This will entail technol-
ogy and infrastructure development to generate a portfolio of 
emissions reduction and CDR strategies. Such investments 
may include, for example, scaling- up battery manufactur-
ing to support electrification of car fleets, building rail in-
frastructure and district heating networks and changing the 
management and harvesting of forests and other lands to pro-
vide biomass for biobased products. The mobilization of mit-
igation options such as these can initially increase net GHG 
emissions while providing products and services with low, 
neutral or net negative emissions in the longer term (Cuenot 
& Hernández, 2016; Hausfather, 2019). The contribution 
of specific options to mitigation will depend on technology 
readiness level, costs, resource availability and inertia of ex-
isting technologies and systems. Options assessed as having 
low net GHG emissions per unit energy provided may be re-
stricted by immature development, high cost or dependence 
on new infrastructure. Other options, including bioenergy, 
have greater near- term mitigation potential due to being com-
patible with existing infrastructure and cost competitive in 
many applications.

Strategy development needs to recognize the complemen-
tarity of many mitigation options, and balance trade- offs be-
tween short-  and long- term emissions reduction objectives. 
Critically, strategies based on assessments of individual 
technologies in isolation from their broader context, and that 
apply a strong focus on emissions reduction in the short term, 
can make long- term climate goals more difficult to achieve 
(e.g. Berndes at al., 2018; Smyth et al., 2014). Mitigation op-
tions available in the near term need to be evaluated beyond 
the direct effect on GHG emissions, considering also their 
influence on systems transition and implementation of other 
mitigation options (see Section 2).

Risks related to climate tipping points are sometimes 
raised in relation to the timing of GHG savings: crossing 
thresholds, for example, associated with forest dieback or 
thaw of permafrost, could lead to large, irreversible changes 
in the global climate system (e.g. Grimm et al., 2013). A re-
cent study found a low probability of crossing a tipping point 
in the global climate system if warming does not exceed 2°C 
(Fischer et al., 2018). Also, critical threshold values and ir-
reversibility of specific tipping points are uncertain (Collins 
et al., 2013), and the universal application of critical thresh-
old values is questioned in relation to ecosystem function 

(Hillebrand et al., 2020). Nevertheless, uncertainties and 
risks associated with climate tipping points are additional 
considerations in evaluations of different trajectories towards 
temperature stabilization. Rather than connecting the timing 
of GHG savings to specific but uncertain climate tipping 
points, evaluation of bioenergy options is preferably based 
on a holistic assessment that considers how bioenergy can 
contribute to resilience and adaptation to changes in climate 
along with other environmental stressors.

5 |  EMISSIONS OF BIOGENIC 
VERSUS FOSSIL CARBON

Some scientific papers state that burning biomass for en-
ergy produces higher emissions of CO2 per kWh of elec-
tricity at the smoke- stack compared with burning coal 
due to lower energy density of wood and/or less efficient 
conversion to electricity (e.g. Brack, 2017; Norton et al., 
2019; Searchinger et al., 2018; Sterman et al., 2018; Walker 
et al., 2013), leading to the assertion that ‘biomass is worse 
for the climate than coal’ (Johnston & van Kooten, 2015; 
McClure, 2014; PFPI, 2011; RSBP, 2012; Tsanova, 2018; 
Yassa, 2017). However, this interpretation neglects several 
significant factors.

First, stack emissions will not necessarily increase when 
there is a shift to biomass fuels. The CO2 emission factor (g CO2 
per GJ of fuel) is solely dependent on the chemical composition 
of the fuel. Wood and coal have similar CO2 emission factors, 
as the ratio of heating values between the two fuels is similar 
to the ratio of carbon content (ECN, undated; Edwards et al., 
2014; US EPA, 2018; van Loo & Koppejan, 2008). Where bio-
mass is co- fired with coal in large power plants, the conversion 
efficiency may decrease a few percent, although there is usu-
ally no significant efficiency penalty when the co- firing ratio 
is below 10% (van Loo & Koppejan, 2008). Conversion effi-
ciencies depend on fuel properties including moisture content 
and grindability in addition to heating value (Mun et al., 2016; 
Shi et al., 2019; Zuwała & Lasek, 2017). For low rank coal, 
biomass co- firing (especially torrefied biomass) can increase 
the boiler efficiency and net power plant efficiency (Liu et al., 
2019; Thrän et al., 2016).

Smaller biomass- fired plants can have lower electric con-
version efficiency than large coal- fired plants, but as they are 
typically combined heat and power plants, they also displace 
heat production from other sources, that could otherwise 
have generated fossil fuel emissions (e.g. Madsen & Bentsen, 
2018). Large dedicated biomass units (converted from coal) 
can operate with roughly the same level of thermal efficiency 
as delivered historically from coal (Koss, 2019). For ex-
ample, stack emissions from the Drax power station in the 
United Kingdom have been independently estimated at 2% 
higher for biomass than coal (SIG, 2017).
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Second, and much more important, comparing GHG emis-
sions from biomass and fossil fuels at the point of combustion 
ignores the fundamental difference between fossil fuels and 
biomass fuels. Burning fossil fuels releases carbon that has 
been locked up in the ground for millions of years. Fossil fuel 
emissions transfer carbon from the lithosphere to the biosphere– 
atmosphere system, causing temperature increases that are 
irreversible on timescales relevant for humans (Archer et al., 
2009; Solomon et al., 2009; Ter- Mikaelian, Colombo, & Chen, 
2015). In contrast, bioenergy operates within the biosphere– 
atmosphere system, and burning biomass emits carbon that 
is part of the continuous exchange of carbon between the bio-
sphere and the atmosphere (Smith et al., 2016). Therefore, the 
effect on the atmospheric CO2 concentration of switching from 
fossil fuels to biomass cannot be determined by comparing CO2 
emissions at the point of combustion (Nabuurs, Arets, et al., 
2017; Schlamadinger et al., 1997). To do so essentially equates 
biomass harvest with deforestation to establish another land 
use, such as agriculture or urban infrastructure, causing perma-
nent transfer of carbon from land to atmosphere.

6 |  SOURCING BIOMASS FOR 
BIOENERGY, AND EFFECTS ON 
FOREST MANAGEMENT AND 
FOREST CARBON BALANCE

The source of forest biomass is a key determinant of cli-
mate change effects of bioenergy (Matthews et al., 2018). 
Concerns have been raised that bioenergy demand could lead 
to widespread harvest of forests solely for bioenergy, caus-
ing large GHG emissions and forgone carbon sequestration 
(Brack, 2017; Norton et al., 2019; Searchinger et al., 2018). 
However, long- rotation forests are generally not harvested 
for bioenergy products alone: Biomass for bioenergy is usu-
ally a by- product of sawlog and pulpwood production for 
material applications (Dale et al., 2017; Ghaffariyan et al., 
2017; Spinelli et al., 2019; Figure 1). Logs that meet quality 
requirements are used to produce high- value products such as 
sawnwood and engineered wood products such as cross lami-
nated timber, which can substitute for more carbon- intensive 
building materials such as concrete, steel and aluminium 

F I G U R E  1  Biomass and energy flows from Swedish forest 
Source: IRENA, 2019
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(Leskinen et al., 2018). Residues from forestry operations 
(tops, branches, irregular and damaged stem sections, thin-
nings) and wood processing residues (e.g. sawdust, bark, 
black liquor) are used for bioenergy (Kittler et al., 2020), in-
cluding to provide process heat in the forest industry (Hassan 
et al., 2019). These biomass sources have high likelihood of 
reducing net GHG emissions when substituting fossil fuels 
(Hanssen et al., 2017; Matthews et al., 2018), and their use 
for bioenergy enhances the climate change mitigation value 
of forests managed for wood production (Cintas, Berndes, 
Hansson, et al., 2017; Gustavsson et al., 2015, 2021; Schulze 
et al., 2020; Ximenes et al., 2012). Part of the forest biomass 
used for bioenergy comprises roundwood (also referred to as 
stemwood), such as small stems from forest thinning. For ex-
ample, roundwood was estimated to contribute around 20% 
of the feedstock used for densified wood pellets in the United 
States in 2018 (US EIA, 2019).

The capacity of the world's managed forests to sustainably 
supply biomass is limited, both in terms of rate of increase 
and absolute potential, and lower than the future biomass de-
mand in many scenarios that achieve climate stabilization at 
1.5 or 2°C warming. The GHG consequences of increasing 
the biomass supply depend on how this is done, as there can 
be synergies and trade- offs between forest growth rate, for-
est carbon stocks and production of biomass and other wood 
products (e.g. Wang et al., 2015). The critical question is how 
the net GHG emissions change when the forest sector devises 
management approaches that enable biomass production for 
energy in conjunction with supply of sawlogs and pulpwood. 
One option is to use more residues from forestry operations 
and wood processing (Egnell & Björheden, 2013). Another 
option could involve increase in the harvest of roundwood, 

which could diminish the mitigation value if forest carbon 
stocks and forest sink strength are decreased, such as due to 
a rapid increase in roundwood harvest rates (Agostini et al., 
2014; Kallio et al., 2013; Olesen et al., 2015; Pingoud et al., 
2018).

Expectation of increasing biomass demand could stimu-
late establishment of new forests to secure future wood pro-
duction, which would provide additional carbon storage, and 
motivate management changes in existing forests to enhance 
growth (e.g. improved site preparation, faster growing tree 
species, fertilization), which could improve the climate out-
comes from forests managed for biomass and other products 
(Favero et al., 2020; Galik & Abt, 2012; Kauppi et al., 2020; 
Laganière et al., 2017). For example, in Sweden, which was 
widely deforested in the 1800s, forest expansion together 
with intensive forest management has doubled the standing 
volume of forests over the last 100 years, at the same time 
as annual harvest has increased (Figure 2). This outcome 
was supported by forest policy that ensures harvest does 
not exceed growth, and forests are regenerated after harvest 
(Eriksson et al., 2018). A similar trend of increased forest car-
bon stock with simultaneous increase in harvest has occurred 
in Denmark (Nord- Larsen et al., 2020), Finland (Luke, 2017) 
and in the southeast United States (Aguilar et al., 2020).

The existence of a bioenergy market can improve the 
financial viability of forest thinning (Cintas et al., 2016), 
which stimulates production of high- quality timber with 
the aforementioned climate benefits from product sub-
stitution. In addition, extracting (otherwise unutilized) 
lower quality biomass (e.g. resulting from pest and dis-
ease impacts or overstocking) can reduce the frequency 
and severity of wildfires and associated loss of forest 

F I G U R E  2  Forest stock and annual harvest in Sweden. Growing stock and annual harvest on managed forest land in Sweden 1955– 2015 
(5- year moving average). Excl. national parks, nature reserves and nature protection areas. The peaks in harvest levels coincide with major storm 
damage in 1969, 2005 and 2007, followed by bark beetle damage and consequently salvage logging  
Source: Swedish National Forest Inventory, Swedish Forest Agency Swedish University of Agricultural Sciences
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carbon and release of non- CO2 GHGs, further enhanc-
ing the climate benefit (Agee & Skinner, 2005; Evans & 
Finkral, 2009; Mansuy et al., 2018; Regos et al., 2016; 
Sun et al., 2018; Verkerk et al., 2018). On the other hand, 
the mitigation value of forest bioenergy could be dimin-
ished if policies supporting bioenergy reduce timber 
availability for material applications (Favero et al., 2020), 
thereby reducing the wood products pool and increasing 
use of GHG- intensive materials; if excessive removal of 
residues reduces forest productivity (Achat et al., 2015; 
Helmisaari et al., 2011); or if reforestation displaces food 
production and results in deforestation elsewhere to pro-
vide new cropland.

In some situations, such as high latitudes where forest 
productivity is very low, greater abatement may result from 
retaining and enhancing forest carbon stocks than harvesting 
forests for wood products including bioenergy, especially if 
the GHG savings from bioenergy use are small (Marland & 
Schlamadinger, 1997; Schlamadinger & Marland, 1996a). 
The choice to manage for in- forest carbon sequestration alone 
or for wood products should also consider a broader range of 
impacts beyond climate, to identify and manage trade- offs 
and synergies such as between carbon sequestration and bio-
diversity (Kline & Dale, 2020).

The argument has been made that bioenergy contributes to 
climate change mitigation only if obtained from ‘additional’ 
biomass, defined as biomass grown in excess of that which 
would have grown anyway or residues that would otherwise 
decompose, precluding biomass obtained from existing for-
ests if there is a decline in forest carbon stock (Haberl et al., 
2012; Schlesinger, 2018; Searchinger et al., 2009). However, 
using forest biomass for bioenergy will give a climate benefit 
if the stock reduction is smaller than the net GHG savings 
from displacement of fossil fuels. The biomass produced 
cumulatively across subsequent rotations can far exceed the 
biomass produced in the no- bioenergy scenario, thus consti-
tuting ‘additional biomass’, delivering cumulative net GHG 
savings that exceed the GHG cost of forest carbon stock 
reduction (Cowie et al., 2013). This is particularly the case 
where active management maintains high forest growth (i.e. 
a strong carbon sink), allowing sustained harvesting.

7 |  STAND VERSUS LANDSCAPE 
SCALE ASSESSMENT

Some studies of forest bioenergy consider carbon dynam-
ics at the individual stand level (e.g. Cherubini et al., 2011; 
Holtsmark, 2015; Pingoud et al., 2012; Schlamadinger & 
Marland, 1996b; Walker et al., 2013). Stand- level assess-
ments represent the forest system as a strict sequence of events 
(e.g. site preparation, planting or natural regeneration, thin-
ning and other silvicultural operations, final felling). Results 

are strongly influenced by the starting point: commencing the 
assessment at harvest shows upfront emissions, followed by 
a CO2 removal phase, giving a delay before forest bioenergy 
contributes to net reductions in atmospheric CO2, particu-
larly in long- rotation forests. This delay has been interpreted 
as diminishing the climate benefit of forest bioenergy (e.g. 
Holtsmark, 2013; Norton et al., 2019; Sandbag, 2019). In 
contrast, commencing at the time of replanting shows the op-
posite trend: a period of CO2 removal during forest growth, 
followed by a pulse emission returning the CO2 to the atmos-
phere. Thus, stand- level assessments give inconsistent results 
and can be misleading as a basis to assess climate impacts of 
forest systems (Berndes et al., 2013; Cintas, Berndes, Cowie, 
et al., 2017; Peñaloza et al., 2019). Furthermore, when con-
sidering only the stand level, it is difficult to identify whether 
the forest is sustainably managed or subject to unsustainable 
practices that cause declining productive capacity and de-
creasing carbon stocks.

Note that we are referring to even- aged stands, harvested 
by clear- cutting at the rotation age. This management ap-
proach differs from selective logging, also known as continu-
ous cover forestry. The temporal carbon stock fluctuations at 
stand level are less extreme under selective logging, but the 
same considerations apply when assessing the climate effects 
of forest bioenergy.

The alternative to stand level is landscape- scale as-
sessment, that considers the total area of managed forests. 
Stand-  and landscape- level assessments respond to different 
questions. Stand- level assessment provides detailed informa-
tion about plant community dynamics, growth patterns and 
interactions between carbon pools in the forest. But the stand- 
level perspective overlooks that forests managed for wood 
production generally comprise a series of stands of different 
ages, harvested at different times to produce a continuous 
supply of wood products. Across the whole forest landscape, 
that is, at the scale that forests are generally managed, tem-
poral fluctuations observed at stand level are evened out and 
the forest carbon stock fluctuates around a trend line that can 
be increasing or decreasing, or roughly stable, depending on 
the age class distribution and weather patterns (Cowie et al., 
2013). Landscape- level assessment provides a more com-
plete representation of the dynamics of forest systems, as it 
can integrate the effects of all changes in forest management 
and harvesting taking place in response to— experienced or 
anticipated— bioenergy demand, and it also incorporates the 
effects of landscape- scale processes such as fire (Cintas et al., 
2016; Cowie et al., 2013; Dwivedi et al., 2019; Koponen 
et al., 2018; Peñaloza et al., 2019).

In undertaking a landscape- level assessment, a constant 
spatial boundary should be applied, rather than an expand-
ing boundary in which stands are added sequentially, in 
order to accurately reflect how the management changes 
affect the carbon stock in the whole landscape over time 
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(Cintas, Berndes, Cowie, et al., 2017). A forest landscape 
can be modelled as a series of identical time- shifted stands, 
for example, an ideal forest with uniform age distribution, 
with the same number of stands as the number of years in the 
rotation period. Alternatively, if data are available, models 
can also be used to represent real forest landscapes, which 
usually have unequal distributions of age classes and stands 
of different sizes (e.g. Cintas, Berndes, Cowie, et al., 2017).

A forested area often also includes areas that are unhar-
vested, for example, to comply with conservation regulations 
or best practices. If the management, size and conditions of 
these areas are identical in the ‘with bioenergy’ and ‘with-
out bioenergy’ scenarios, then they can be excluded when 
estimating effects of forest management on climate change 
mitigation. However, there could be differences, for example, 
if forests actively managed for bioenergy are less prone to 
wildfire and disease, which can otherwise spread into and 
damage neighbouring forest reserves (Kline et al., 2021).

In a forest managed such that annual carbon losses due to 
harvest plus other disturbances and natural turnover equal the 
annual growth in the forest, there is no change in forest carbon 
stock when considered at landscape level (Jonker et al., 2014). 
If incentives for bioenergy lead to an increase in the fraction 
of annual growth extracted, then landscape- scale forest carbon 
stocks can decline, or can increase at a slower rate than the 
no- bioenergy scenario, until a new equilibrium is reached be-
tween harvest and growth (Heinonen et al., 2017; Kallio et al., 
2013; Soimakallio et al., 2016). Any reduction in forest car-
bon stock in the new equilibrium relative to the no- bioenergy 
scenario reduces the climate benefit of bioenergy. Forest man-
agement that enhances forest growth (See Section 6) could 
moderate negative impacts on forest carbon stock under the 
bioenergy scenario (Cowie et al., 2013; Favero et al., 2020; 
Gustavsson et al., 2017; Jonker et al., 2018; Khanna et al., 
2017; Sathre et al., 2010; Sedjo & Tian, 2012).

To conclude, impacts of bioenergy policy should be as-
sessed at the landscape scale because it is the change in for-
est carbon stocks at this scale, due to change in management 
to provide bioenergy along with other forest products, that 
determines the climate impact. Understanding of stand- level 
dynamics is critical to forest management and is useful to 
inform assessments at the landscape scale. Studies of real 
forest landscapes show that the net GHG effects of bioenergy 
incentives are more variable than suggested by studies that do 
not consider economic factors and varying conditions in the 
forest and wood products sector.

8 |  REFERENCE SYSTEM 
(COUNTERFACTUAL)

To determine the climate effects of forest bioenergy, it 
is necessary to compare the bioenergy scenario with a 

reference ‘no- bioenergy’ scenario (Gustavsson et al., 2000; 
Schlamadinger et al., 1997) that delivers the same services 
to society. The reference land use is a critical methodo-
logical decision (Dwivedi et al., 2019; Johnson & Tschudi, 
2012; Koponen et al., 2018). Some studies assess unhar-
vested forest as one (and sometimes the only) reference 
scenario (e.g. Haus et al., 2014; Holtsmark, 2015; Lamers 
et al., 2014; Mitchell et al., 2012; Pingoud et al., 2012; 
Soimakallio et al., 2016) and attribute extra GHG emis-
sions to the bioenergy system based on forgone sequestra-
tion in comparison with natural regeneration. Others use a 
historical baseline reference point, without considering the 
dynamic nature of carbon stocks under a no- bioenergy sce-
nario (see Buchholz et al., 2016). However, to accurately 
quantify the consequences of forest bioenergy, the reference 
land use should represent the land carbon stock trajectory 
under the most likely land use(s) in the absence of bioenergy 
(Koponen et al., 2018; Lamers & Junginger, 2013; Parish 
et al., 2017). For biomass obtained as a co- product from for-
ests managed for timber production, the relevant reference is 
commonly management for timber only, with thinning and 
harvest residues decomposing (or burned) on- site (Hanssen 
et al., 2017). In some situations, the most likely reference 
land use could involve land use change. For example, mar-
kets for wood products can be an important incentive for pri-
vate landowners to retain land as managed forest rather than 
converting to other uses (Hodges et al., 2019); the reference 
scenario in this situation may involve: regeneration of natu-
ral forest, possibly subject to higher incidence of wildfire; 
replacement of forest stands with agriculture; or urbaniza-
tion, each with different impacts on the land carbon stock 
(Parish et al., 2017; Wear & Greis, 2013). Assuming the for-
est would remain unharvested in the no- bioenergy scenario 
is not a realistic reference in situations where landholders 
use the land to generate income, unless landholders can ob-
tain equivalent income from payments for carbon sequestra-
tion or other ecosystem services (Srinivasan, 2015). In cases 
where a no- harvest scenario is a valid reference case, there 
are challenges in quantifying future carbon stocks: carbon 
sequestration rate in unharvested forests, especially in the 
longer term, is uncertain in many cases due to a paucity of 
relevant data (e.g. Derderian et al., 2016) and uncertain ef-
fects of climate change. Furthermore, accumulated carbon is 
vulnerable to future loss through disturbances such as storm, 
drought, fire or pest outbreaks. Where more than one alter-
native is plausible, it is informative to analyse several alter-
native reference land- use scenarios (Koponen et al., 2018).

The reference system also needs to describe the wood 
products flow in the absence of bioenergy, as bioenergy in-
centives may influence the quantity and assortment of wood 
products available (see Section 6), and could divert biomass 
from non- energy uses such as pulp or composite products 
(Cowie & Gardner, 2007; Wang et al., 2015). The alternative 
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fate of biomass residues and waste in the reference case could 
involve decomposition, incineration or landfilling, each with 
different emissions implications.

The reference no- bioenergy scenario should also iden-
tify the reference energy system assumed to be displaced 
by bioenergy, which is commonly based on fossil fuels (see 
Section 2). Displacing natural gas gives less benefit due to 
its lower GHG intensity compared with coal, and oil typi-
cally lies between them. A multitude of energy sources and 
technologies including fossil and renewable sources can be 
used for generation of electricity and heat for power grids 
and heat networks, varying geographically and over time, 
which can make it difficult to determine the energy source 
displaced by bioenergy (Bentsen, 2017; Soimakallio et al., 
2011). Uncertainty in the rate of uptake and rate of techno-
logical improvements of other renewables makes it hard to 
characterize the appropriate reference energy system in the 
medium and long term. It is likely, however, that fossil fuels 
will continue to be used, and displaced on the margin, for a 
considerable time (IEA, 2019).

9 |  SUPPLY CHAIN EMISSIONS

It is commonly perceived that bioenergy supply chain 
emissions are substantial, particularly when biomass is 
transported internationally, and could negate the climate 
benefits of fossil fuel substitution. However, fossil en-
ergy use along domestic forest biomass supply chains, 
from harvest, processing and transport, is generally small 
compared to the energy content of the bioenergy prod-
uct and, with efficient handling and shipping, even when 
traded internationally (Batidzirai et al., 2014; Dwivedi 
et al., 2014; Ehrig & Behrendt, 2013; Gustavsson et al., 
2011; Hamelinck et al., 2005; Jonker et al., 2014; Mauro 
et al., 2018; Miedema et al., 2017; Porsö et al., 2018; Uslu 
et al., 2008). The European Commission's Joint Research 
Centre determined that shipping pellets between North 
America and Europe increases supply chain emissions by 
3– 6 g CO2/MJ, from around 3– 15 g CO2/MJ for wood chips 
or pellets dried using bioenergy and transported 500 km by 
truck (Giuntoli et al., 2017). For context, the EU average 
emission factors for hard coal are 96 and 16 g CO2/MJ for 
combustion and supply respectively (Giuntoli et al., 2017). 
This underscores the importance of assessing actual supply 
chains. For example, the international pellet supply chain 
between the southeast United States and Europe has been 
intentionally designed to minimize trucking and associated 
handling costs, with pellet mills and large end users such as 
power plants located near rail lines, waterways and ports, 
thereby minimizing transport emissions and increasing net 
climate benefits (Dwivedi et al., 2014; Favero et al., 2020; 
Kline et al., 2021).

10 |  NON- CO2 CLIMATE FORCERS

The climate effects of forest- based bioenergy can be aug-
mented or diminished by associated changes in biophysi-
cal properties of land, such as surface albedo, emissions of 
biogenic volatile organic compounds, surface roughness, 
evapotranspiration and sensible heat fluxes that directly or 
indirectly affect climate (e.g. Anderson et al., 2011; Bonan, 
2008; Favero et al., 2018; Lutz & Howarth, 2015; Luyssaert 
et al., 2018). These effects are complex and highly dependent 
on location, tree species and management practice, and have 
implications for global as well as regional and local climate 
(e.g. Arora & Montenegro, 2011; Jia et al., 2019). Inclusion 
of non- CO2 climate forcers can significantly influence assess-
ments of forest bioenergy, particularly in areas with seasonal 
snow cover (e.g. Arvesen et al., 2018), although the warming 
and cooling effects of non- CO2 forcers can also counteract 
each other (e.g. Kalliokoski et al., 2020). These factors need 
further study to understand their climate effects and develop 
agreed methodology for their quantification.

11 |  SIGNIFICANCE OF THE 
SYSTEM BOUNDARY

Studies evaluating climate effects of forest- based bioen-
ergy have produced divergent results due to inherent differ-
ences between bioenergy systems and different analytical 
approaches and assumptions (Cherubini et al., 2009). As 
discussed above, the choice of spatial system boundary and 
temporal scope is critical (Cherubini et al., 2009; Gustavsson 
et al., 2000; Marland, 2010; Schlamadinger et al., 1997) and 
should be coherent with the question studied (Koponen et al., 
2018). Figure 3 illustrates alternative system boundaries that 
have been applied in studies of forest- based bioenergy. Focus 
on stack emissions (Option 1) neglects the key differences 
between fossil and biogenic carbon (see Section 3). Focus 
on the forest only (Option 2) captures the effects of biomass 
harvest on forest carbon stocks (see Section 6) but omits the 
climate benefits of displacing fossil fuels. Option 3, the bio-
mass supply chain, overlooks the interactions between bio-
mass and other forest products (Section 6). Option 4 covers 
the whole bioeconomy, that is, the forest, the biomass supply 
chain and all bio- based products from managed forests, and 
thus provides a more complete assessment of the climate ef-
fects of forest bioenergy.

In order to quantify the net climate effect of forest bioen-
ergy, assessments should take a whole systems perspective. 
While this increases the complexity and uncertainty of the 
assessments, it provides a sound basis for robust decision- 
making. Biomass for bioenergy should be considered as one 
component of the bioeconomy (Option 4, Figure 3). Studies 
should therefore assess the effects of increasing biomass 
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demand for bioenergy on carbon stocks of the whole forest, 
and also include the broader indirect impacts on emissions 
(potentially positive or negative) due to policy-  and market- 
driven influences on land use, use of wood products and 
GHG- intensive construction materials, and fossil fuel use, 
outside the bioenergy supply chain. The bioenergy system 
should be compared with a realistic counterfactual(s) that in-
cludes the reference land use and energy systems (Cherubini 
et al., 2009; Koponen et al., 2018; Schlamadinger et al., 
1997). This approach is consistent with consequential LCA 
(Brandão et al., 2017). The temporal boundary should rec-
ognize: forest carbon dynamics, for example, modelling over 
several rotations; the trajectory for energy system transition; 
and short-  and long- term climate objectives. Matthews et al. 
(2018) suggest criteria that could be used to identify woody 
biomass with greater climate benefits when assessed from a 
full life cycle, whole system perspective.

12 |  REPORTING AND 
ACCOUNTING FOR BIOENERGY

The discussion above focusses on methodologies and results 
of studies assessing the climate effects of increased demand 
for forest bioenergy, considering GHG emissions and re-
movals across the life cycle of bioenergy systems includ-
ing the forest and co- product impacts, and comparison with 
a no- bioenergy counterfactual. Another context in which 
GHG emissions and removals associated with bioenergy 
are relevant is country- level reporting and accounting under 
the UNFCCC, and this is another aspect debated in the lit-
erature. In the UNFCCC context, the terms ‘reporting’ and 

‘accounting’ have specific meaning: Reporting refers to the 
national inventories of annual GHG emissions and remov-
als that parties submit to the UNFCCC, whereas accounting 
pertains to comparing GHG emissions with commitments, 
initially under the Kyoto Protocol (2008– 2020; Cowie et al., 
2006), and now the Paris Agreement.

The UNFCCC reporting requirements specify that CO2 
emissions associated with biomass combustion are counted 
in the land use sector, that is, where the harvest takes place; 
they are therefore reported as zero in the energy sector to 
avoid double- counting (Goodwin et al., 2019). This reporting 
approach is accurate, has no gaps and does not assume that 
bioenergy is carbon neutral (Haberl at al., 2012; Marland, 
2010), although it has sometimes been described as such (e.g. 
Norton et al., 2019; Searchinger et al., 2009). Decisions on 
the approach to reporting and accounting for bioenergy and 
other wood products were informed by consideration of im-
pacts on incentives for forest harvest and trade in wood prod-
ucts, practicality of calculation and data availability (Cowie 
et al., 2006; Höhne et al., 2007; Houghton et al., 1997 Vol 3; 
Lim et al., 1999; Penman et al., 2003; Sato & Nojiri, 2019; 
Schlamadinger et al., 2007). As explained by Rüter et al. 
(2019), emissions associated with wood products including 
bioenergy may be reported by the producing or consuming 
country, and may be based on carbon stock change in the for-
est or in the wood products pool, depending on the approach 
chosen by each party for reporting of harvested wood prod-
ucts (HWP). While the UNFCCC reporting approach is the-
oretically sound, incomplete coverage of the Kyoto Protocol 
created a gap in accounting: if an Annex I party (i.e. country 
with a Kyoto Protocol commitment) imported forest biomass 
from a country with no Kyoto Protocol commitment, any 

F I G U R E  3  Alternative system boundaries that have been applied in studies assessing climate effects of forest- based bioenergy. Option 1 
(black) considers only the stack emissions; Option 2 (green) considers only the forest carbon stock; Option 3 (blue) considers the bioenergy supply 
chain; Option 4 (red) covers the whole bioeconomy, including wood products in addition to biomass
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associated stock change in the forest of the exporting coun-
try was not accounted. The issue of incomplete coverage for 
accounting could potentially have been overcome under the 
Paris Agreement, as all parties now have targets (their na-
tionally determined contributions, NDCs) against which they 
are required to account. However, the disparity in sectors and 
emission sources covered in countries' NDCs, and inconsis-
tency in the HWP accounting approach applied, perpetuates 
risks of double- counting or omissions (Rüter et al., 2019; 
Sato & Nojiri, 2019). Within a country, the forest accounting 
approach used in the second commitment period of the Kyoto 
Protocol (2013– 2020) allowed a policy- driven increase in 
harvest, such as resulting from an increase in bioenergy, to be 
included in a country's ‘forest management reference level’, 
and therefore not counted as a debit in the land sector (Grassi 
et al., 2018). Grassi et al. (2018) proposed an accounting ap-
proach using continuation of historical forest management as 
the reference to avoid the loophole of unverified counterfac-
tuals, which has been adopted by the EU under Regulation 
2018/841 of the EU Climate and Energy Framework (Camia 
et al., 2021). Several authors (Brack, 2017; Hudiburg et al., 
2019; Norton et al., 2019) propose changing the UNFCCC 
accounting rules by which biomass is treated as having zero 
emissions at the point of combustion. However, accounting 
for CO2 emissions from bioenergy within the energy sector 
would require revision of the established GHG account-
ing framework to adjust the land sector values to remove 
the component related to biomass used for energy, to avoid 
double- counting of emissions, which would be very difficult 
to achieve, as explained by Camia et al. (2021). It would cre-
ate a disincentive for countries to utilize biomass to displace 
fossil fuels, adversely affecting all types of bioenergy sys-
tems irrespective of their potential to provide climate benefits 
(Pingoud et al., 2010). Rather than changing the accounting 
convention solely for bioenergy, a flux- based ‘atmospheric 
flow approach’ (Rüter et al., 2019) could potentially be ap-
plied to all wood products. However, if carbon fluxes from 
all wood products were to be reported at the time and place 
of emission, emissions due to forest harvest for export would 
not be reported by the country where the harvest takes place, 
thereby removing incentives for maintaining forest carbon 
stocks and potentially leading to deforestation because the 
country where the harvest takes place would report no emis-
sions. Furthermore, reporting only at the time and place of 
emission would create a disincentive for use and trade in 
all sustainable wood products, including use for construc-
tion and bioenergy (Apps et al., 1997; Cowie et al., 2006; 
UNFCCC, 2003).

We suggest that improvements are required to achieve 
greater transparency in GHG reporting and accounting re-
lated to bioenergy, so that the connections between forest 
carbon stock change and use of biomass for energy are not 
overlooked (Cowie et al., 2017; Kurz et al., 2018; Searchinger 

et al., 2018). But rather than counting bioenergy emissions at 
the point of combustion, which would inhibit the beneficial 
use of wood products and forest bioenergy for climate change 
mitigation, we suggest that rules should ensure that all parties 
include the land sector comprehensively and transparently in 
reporting and accounting with respect to their emissions re-
duction commitments, and apply consistent approaches to en-
sure that omissions and double- counting are avoided (Sato & 
Nojiri, 2019; Schlamadinger et al., 2007). Transparency and 
measures to prevent double- counting and perverse incentives 
are also important considerations in formulation of domes-
tic policies to support national targets for climate action, to 
avoid bioenergy incentives causing ‘leakage’, inadvertently 
stimulating loss of forest carbon stock domestically or abroad 
(Fingerman et al., 2019; Searchinger et al., 2018), or indi-
rectly increasing fossil fuel emissions (Cowie & Gardner, 
2007).

Furthermore, it is not the purpose of national- level re-
porting and accounting of GHG emissions to ensure sound 
decision- making and practices by actors operating ‘on the 
ground’. Rather, effective sustainability governance is also 
required, to provide appropriate incentives and boundaries 
for actors in the land use and energy sectors, that also takes 
into consideration issues beyond climate.

13 |  CONCLUSION

Rapid transformation of all sectors of society is needed to 
phase out the use of fossil fuels that adds carbon dioxide to 
the atmosphere causing global warming that is irreversible on 
timescales relevant for humans. The use of sustainable forest 
biomass for energy (heat, electricity or transport fuels) can 
effectively reduce fossil fuel use in the short term, and can 
contribute to phasing out use of fossil fuels in technologies 
and infrastructure that rely on carbon- based fuels, reducing 
future emissions. Furthermore, when combined with CCS, 
forest bioenergy can deliver CDR, likely to be required to 
meet the Paris Agreement's long- term temperature goal.

Misleading conclusions on the climate effects of forest 
bioenergy can be produced by studies that focus on emis-
sions at the point of combustion, or consider only carbon 
balances of individual forest stands, or emphasize short- term 
mitigation contributions over long- term benefits, or disregard 
system- level interactions that influence the climate effects of 
forest bioenergy. Payback time calculations are influenced by 
subjective methodology choices and do not reflect the con-
tribution of bioenergy within a portfolio of mitigation mea-
sures, so it is neither possible nor appropriate to declare a 
generic value for the maximum acceptable payback time for 
specific forest bioenergy options.

To answer the key question ‘what are the climate im-
plications of policies that promote bioenergy?’ assessment 
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should be made at the landscape level, and use a full life 
cycle approach that includes supply chain emissions, 
changes in land carbon stocks and other variables influ-
enced by the policies studied. Effects on land cover, land 
management and the wood products and energy sectors 
need to be considered, including indirect impacts at inter-
national level. The bioenergy system should be compared 
with reference scenarios (counterfactuals) that describe 
the most likely alternative land use(s) and energy sources 
that would be displaced by the bioenergy system, and the 
probable alternative fates for the biomass being utilized. 
A no- harvest counterfactual is not realistic in most current 
circumstances, but markets that pay for carbon sequestra-
tion and other ecosystem services could change incentives 
for harvest in future.

Holistic assessments show that forests managed accord-
ing to sustainable forest management principles and practices 
(around one billion hectares globally, of which over 420 mil-
lion hectares are certified; UNECE FAO, 2019) can contrib-
ute to climate change mitigation by providing bioenergy and 
other forest products that replace GHG- intensive materials 
and fossil fuels, and by storing carbon in the forest and in 
long- lived forest products. Assessments also show that the 
impact of bioenergy implementation on net GHG emission 
savings depends on both feedstock and context, as many im-
portant factors vary across regions and time. Demand for for-
est bioenergy can influence land use and forest management 
decisions, and the wood products sector, and these effects can 
augment or diminish the mitigation value.

The issue of timing of mitigation benefits needs to be 
considered within a holistic assessment that includes land 
carbon dynamics and energy system transition. As for other 
mitigation options, the perceived attractiveness of specific 
forest bioenergy options is influenced by the priority given 
to near- term versus longer term climate objectives. It is im-
portant to consider how forest bioenergy and forest manage-
ment more broadly can serve both short- term and long- term 
objectives.

With respect to the treatment of bioenergy in UNFCCC 
reporting and accounting, we disagree with proposals to 
count emissions at the point of combustion, which could 
have adverse climate impacts. We recommend that com-
plete and transparent reporting and accounting be applied 
consistently across the whole land sector, to ensure recog-
nition of the interactions between terrestrial carbon stocks 
and biomass use for energy and other purposes, and to in-
centivize land use and management systems that deliver 
climate benefits.

Effective sustainability governance is required to en-
sure that forest biomass used for energy makes a positive 
contribution to mitigating climate change, and to broader 
environmental and socioeconomic objectives. The sus-
tainability governance being developed and implemented 

for bioenergy through the Global Bioenergy Partnership 
(GBEP, 2020) and the revised EU Renewable Energy 
Directive (‘REDII’; European Commission, 2018) applies 
measures to ensure climate benefits, and includes, inter 
alia, safeguards for food security and areas of high conser-
vation value, for example. Consistent application of sustain-
ability governance measures globally and across the whole 
land sector would support achievement of the Sustainable 
Development Goals.
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