
Formal Synthesis of Safe Stop Tactical Planners for an Automated Vehicle

Downloaded from: https://research.chalmers.se, 2024-03-09 00:49 UTC

Citation for the original published paper (version of record):
Krook, J., Kianfar, R., Fabian, M. (2020). Formal Synthesis of Safe Stop Tactical Planners for an
Automated Vehicle. IFAC-PapersOnLine, 53(4): 445-452.
http://dx.doi.org/10.1016/j.ifacol.2021.04.059

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)

IFAC PapersOnLine 53-4 (2020) 445–452

ScienceDirectScienceDirect

Available online at www.sciencedirect.com

2405-8963 Copyright © 2020 The Authors. This is an open access article under the CC BY-NC-ND license.
Peer review under responsibility of International Federation of Automatic Control.
10.1016/j.ifacol.2021.04.059

10.1016/j.ifacol.2021.04.059 2405-8963

Copyright © 2020 The Authors. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0)

Formal Synthesis of Safe Stop Tactical
Planners for an Automated Vehicle �

Jonas Krook ∗,∗∗ Roozbeh Kianfar ∗ Martin Fabian ∗∗

∗ Zenuity, Gothenburg, Sweden
(e-mail: firstname.lastname@zenuity.com)

∗∗ Department of Electrical Engineering,
Chalmers University of Technology, Gothenburg, Sweden

(e-mail: {krookj,fabian}@chalmers.se)

Abstract: Automated vehicles need a safe back-up solution in the presence of system
degradations since a driver cannot be expected to take control on short notice. In the event
of a degradation, the vehicle is required to reach a minimal risk condition via a minimal risk
maneuver. The activation of such maneuvers is safety critical, and a correct implementation
of the tactical planner that takes the activation decision is paramount. One way to ensure
correctness is to employ formal methods since they can provide proofs thereof. Earlier, a tactical
planner was formally verified to activate a minimal risk maneuver if and only if a failure occurs.
Formal verification has some drawbacks, so this paper investigates the applicability of using the
tools Supremica and TuLiP to synthesize correct-by-construction tactical planners. These two
tools amend some of the verification’s drawbacks, but also introduce their own.

Keywords: Automated Driving, Supervisory Control Theory, Reactive Synthesis.

1. INTRODUCTION

This paper builds upon previous work where formal ver-
ification was applied during development of a planner
for an automated vehicle (Krook et al., 2019). Instead
of manual implementation followed by verification, this
paper investigates how the two different formal synthesis
methods Supervisory Control Theory (SCT) and Reactive
Synthesis (RS) (Ramadge and Wonham, 1989; Kupferman
et al., 2000) can be used in an industrial setting to auto-
matically create safe and correct-by-construction software.
These methods are applied to the same problem as in the
earlier work, and are evaluated against each other, and
against the earlier result.

Krook et al. (2019) apply Linear Temporal Logic (LTL)
model checking (Baier and Katoen, 2008) in a concurrent
fashion to develop a state machine, unfortunately called
supervisor, that acts as a tactical planner (Michon, 1985)
for an automated vehicle. This planner will be referred
to as the Manual Planner. Its task is to coordinate two
path planners and ascertain that a safe stop trajectory
planner is activated and stops the car in a safe place if
and only if a failure occurs. Krook et al. (2019) model key
aspects of the system’s software modules and abstracted
vehicle dynamics in Promela and model checks it with
Spin (Holzmann, 2003). As the requirements are formally
verified during the development process, faults are avoided
and the final software is correct with respect to the
requirements.

� This work was partially supported by the Wallenberg AI, Au-
tonomous Systems and Software Program (WASP) funded by the
Knut and Alice Wallenberg Foundation.

Although formal verification is a versatile tool when de-
signing, developing, or testing software, it has drawbacks.
For instance, when Zita et al. (2017) used the formal
verification tool Supremica to verify a lane change software
module, a fault was detected and an offending trace was
presented in the user interface. Such traces can be difficult
to analyze and understand, and they do not give any
suggestion on how to correct the fault.

Furthermore, formal verification often requires a sepa-
rate model in a different syntax from the implementa-
tion 1 (Baier and Katoen, 2008). This can be problematic
for several reasons. If the formal model is an abstracted
version of the software, then it may be difficult to con-
vert an offending trace back into something meaningful in
terms of the implementation.

Additionally, the formal model and the software both need
to be updated to reflect changes in the other. If they
are not, any correctness proof is invalid. The updating
can be done manually or automatically, where manual
modeling of the software can introduce modeling errors,
while automatic modeling might be difficult to implement.
The development of the Manual Planner suffered from the
latter point (Krook et al., 2019). Although the software
implementation was done in a subset of a high level
language, it was difficult to automate the modeling step,
and the formal modeling was done manually.

By using formal synthesis, the hope is to free the time
spent on implementation and verification of software and
put it to use on development of requirements and models,
and on validation of requirements. The assumption is that
such a shift of effort would make the vehicle safer and the

1 As is the case in both former works presented above.

Formal Synthesis of Safe Stop Tactical
Planners for an Automated Vehicle �

Jonas Krook ∗,∗∗ Roozbeh Kianfar ∗ Martin Fabian ∗∗

∗ Zenuity, Gothenburg, Sweden
(e-mail: firstname.lastname@zenuity.com)

∗∗ Department of Electrical Engineering,
Chalmers University of Technology, Gothenburg, Sweden

(e-mail: {krookj,fabian}@chalmers.se)

Abstract: Automated vehicles need a safe back-up solution in the presence of system
degradations since a driver cannot be expected to take control on short notice. In the event
of a degradation, the vehicle is required to reach a minimal risk condition via a minimal risk
maneuver. The activation of such maneuvers is safety critical, and a correct implementation
of the tactical planner that takes the activation decision is paramount. One way to ensure
correctness is to employ formal methods since they can provide proofs thereof. Earlier, a tactical
planner was formally verified to activate a minimal risk maneuver if and only if a failure occurs.
Formal verification has some drawbacks, so this paper investigates the applicability of using the
tools Supremica and TuLiP to synthesize correct-by-construction tactical planners. These two
tools amend some of the verification’s drawbacks, but also introduce their own.

Keywords: Automated Driving, Supervisory Control Theory, Reactive Synthesis.

1. INTRODUCTION

This paper builds upon previous work where formal ver-
ification was applied during development of a planner
for an automated vehicle (Krook et al., 2019). Instead
of manual implementation followed by verification, this
paper investigates how the two different formal synthesis
methods Supervisory Control Theory (SCT) and Reactive
Synthesis (RS) (Ramadge and Wonham, 1989; Kupferman
et al., 2000) can be used in an industrial setting to auto-
matically create safe and correct-by-construction software.
These methods are applied to the same problem as in the
earlier work, and are evaluated against each other, and
against the earlier result.

Krook et al. (2019) apply Linear Temporal Logic (LTL)
model checking (Baier and Katoen, 2008) in a concurrent
fashion to develop a state machine, unfortunately called
supervisor, that acts as a tactical planner (Michon, 1985)
for an automated vehicle. This planner will be referred
to as the Manual Planner. Its task is to coordinate two
path planners and ascertain that a safe stop trajectory
planner is activated and stops the car in a safe place if
and only if a failure occurs. Krook et al. (2019) model key
aspects of the system’s software modules and abstracted
vehicle dynamics in Promela and model checks it with
Spin (Holzmann, 2003). As the requirements are formally
verified during the development process, faults are avoided
and the final software is correct with respect to the
requirements.

� This work was partially supported by the Wallenberg AI, Au-
tonomous Systems and Software Program (WASP) funded by the
Knut and Alice Wallenberg Foundation.

Although formal verification is a versatile tool when de-
signing, developing, or testing software, it has drawbacks.
For instance, when Zita et al. (2017) used the formal
verification tool Supremica to verify a lane change software
module, a fault was detected and an offending trace was
presented in the user interface. Such traces can be difficult
to analyze and understand, and they do not give any
suggestion on how to correct the fault.

Furthermore, formal verification often requires a sepa-
rate model in a different syntax from the implementa-
tion 1 (Baier and Katoen, 2008). This can be problematic
for several reasons. If the formal model is an abstracted
version of the software, then it may be difficult to con-
vert an offending trace back into something meaningful in
terms of the implementation.

Additionally, the formal model and the software both need
to be updated to reflect changes in the other. If they
are not, any correctness proof is invalid. The updating
can be done manually or automatically, where manual
modeling of the software can introduce modeling errors,
while automatic modeling might be difficult to implement.
The development of the Manual Planner suffered from the
latter point (Krook et al., 2019). Although the software
implementation was done in a subset of a high level
language, it was difficult to automate the modeling step,
and the formal modeling was done manually.

By using formal synthesis, the hope is to free the time
spent on implementation and verification of software and
put it to use on development of requirements and models,
and on validation of requirements. The assumption is that
such a shift of effort would make the vehicle safer and the

1 As is the case in both former works presented above.

Formal Synthesis of Safe Stop Tactical
Planners for an Automated Vehicle �

Jonas Krook ∗,∗∗ Roozbeh Kianfar ∗ Martin Fabian ∗∗

∗ Zenuity, Gothenburg, Sweden
(e-mail: firstname.lastname@zenuity.com)

∗∗ Department of Electrical Engineering,
Chalmers University of Technology, Gothenburg, Sweden

(e-mail: {krookj,fabian}@chalmers.se)

Abstract: Automated vehicles need a safe back-up solution in the presence of system
degradations since a driver cannot be expected to take control on short notice. In the event
of a degradation, the vehicle is required to reach a minimal risk condition via a minimal risk
maneuver. The activation of such maneuvers is safety critical, and a correct implementation
of the tactical planner that takes the activation decision is paramount. One way to ensure
correctness is to employ formal methods since they can provide proofs thereof. Earlier, a tactical
planner was formally verified to activate a minimal risk maneuver if and only if a failure occurs.
Formal verification has some drawbacks, so this paper investigates the applicability of using the
tools Supremica and TuLiP to synthesize correct-by-construction tactical planners. These two
tools amend some of the verification’s drawbacks, but also introduce their own.

Keywords: Automated Driving, Supervisory Control Theory, Reactive Synthesis.

1. INTRODUCTION

This paper builds upon previous work where formal ver-
ification was applied during development of a planner
for an automated vehicle (Krook et al., 2019). Instead
of manual implementation followed by verification, this
paper investigates how the two different formal synthesis
methods Supervisory Control Theory (SCT) and Reactive
Synthesis (RS) (Ramadge and Wonham, 1989; Kupferman
et al., 2000) can be used in an industrial setting to auto-
matically create safe and correct-by-construction software.
These methods are applied to the same problem as in the
earlier work, and are evaluated against each other, and
against the earlier result.

Krook et al. (2019) apply Linear Temporal Logic (LTL)
model checking (Baier and Katoen, 2008) in a concurrent
fashion to develop a state machine, unfortunately called
supervisor, that acts as a tactical planner (Michon, 1985)
for an automated vehicle. This planner will be referred
to as the Manual Planner. Its task is to coordinate two
path planners and ascertain that a safe stop trajectory
planner is activated and stops the car in a safe place if
and only if a failure occurs. Krook et al. (2019) model key
aspects of the system’s software modules and abstracted
vehicle dynamics in Promela and model checks it with
Spin (Holzmann, 2003). As the requirements are formally
verified during the development process, faults are avoided
and the final software is correct with respect to the
requirements.

� This work was partially supported by the Wallenberg AI, Au-
tonomous Systems and Software Program (WASP) funded by the
Knut and Alice Wallenberg Foundation.

Although formal verification is a versatile tool when de-
signing, developing, or testing software, it has drawbacks.
For instance, when Zita et al. (2017) used the formal
verification tool Supremica to verify a lane change software
module, a fault was detected and an offending trace was
presented in the user interface. Such traces can be difficult
to analyze and understand, and they do not give any
suggestion on how to correct the fault.

Furthermore, formal verification often requires a sepa-
rate model in a different syntax from the implementa-
tion 1 (Baier and Katoen, 2008). This can be problematic
for several reasons. If the formal model is an abstracted
version of the software, then it may be difficult to con-
vert an offending trace back into something meaningful in
terms of the implementation.

Additionally, the formal model and the software both need
to be updated to reflect changes in the other. If they
are not, any correctness proof is invalid. The updating
can be done manually or automatically, where manual
modeling of the software can introduce modeling errors,
while automatic modeling might be difficult to implement.
The development of the Manual Planner suffered from the
latter point (Krook et al., 2019). Although the software
implementation was done in a subset of a high level
language, it was difficult to automate the modeling step,
and the formal modeling was done manually.

By using formal synthesis, the hope is to free the time
spent on implementation and verification of software and
put it to use on development of requirements and models,
and on validation of requirements. The assumption is that
such a shift of effort would make the vehicle safer and the

1 As is the case in both former works presented above.

Formal Synthesis of Safe Stop Tactical
Planners for an Automated Vehicle �

Jonas Krook ∗,∗∗ Roozbeh Kianfar ∗ Martin Fabian ∗∗

∗ Zenuity, Gothenburg, Sweden
(e-mail: firstname.lastname@zenuity.com)

∗∗ Department of Electrical Engineering,
Chalmers University of Technology, Gothenburg, Sweden

(e-mail: {krookj,fabian}@chalmers.se)

Abstract: Automated vehicles need a safe back-up solution in the presence of system
degradations since a driver cannot be expected to take control on short notice. In the event
of a degradation, the vehicle is required to reach a minimal risk condition via a minimal risk
maneuver. The activation of such maneuvers is safety critical, and a correct implementation
of the tactical planner that takes the activation decision is paramount. One way to ensure
correctness is to employ formal methods since they can provide proofs thereof. Earlier, a tactical
planner was formally verified to activate a minimal risk maneuver if and only if a failure occurs.
Formal verification has some drawbacks, so this paper investigates the applicability of using the
tools Supremica and TuLiP to synthesize correct-by-construction tactical planners. These two
tools amend some of the verification’s drawbacks, but also introduce their own.

Keywords: Automated Driving, Supervisory Control Theory, Reactive Synthesis.

1. INTRODUCTION

This paper builds upon previous work where formal ver-
ification was applied during development of a planner
for an automated vehicle (Krook et al., 2019). Instead
of manual implementation followed by verification, this
paper investigates how the two different formal synthesis
methods Supervisory Control Theory (SCT) and Reactive
Synthesis (RS) (Ramadge and Wonham, 1989; Kupferman
et al., 2000) can be used in an industrial setting to auto-
matically create safe and correct-by-construction software.
These methods are applied to the same problem as in the
earlier work, and are evaluated against each other, and
against the earlier result.

Krook et al. (2019) apply Linear Temporal Logic (LTL)
model checking (Baier and Katoen, 2008) in a concurrent
fashion to develop a state machine, unfortunately called
supervisor, that acts as a tactical planner (Michon, 1985)
for an automated vehicle. This planner will be referred
to as the Manual Planner. Its task is to coordinate two
path planners and ascertain that a safe stop trajectory
planner is activated and stops the car in a safe place if
and only if a failure occurs. Krook et al. (2019) model key
aspects of the system’s software modules and abstracted
vehicle dynamics in Promela and model checks it with
Spin (Holzmann, 2003). As the requirements are formally
verified during the development process, faults are avoided
and the final software is correct with respect to the
requirements.

� This work was partially supported by the Wallenberg AI, Au-
tonomous Systems and Software Program (WASP) funded by the
Knut and Alice Wallenberg Foundation.

Although formal verification is a versatile tool when de-
signing, developing, or testing software, it has drawbacks.
For instance, when Zita et al. (2017) used the formal
verification tool Supremica to verify a lane change software
module, a fault was detected and an offending trace was
presented in the user interface. Such traces can be difficult
to analyze and understand, and they do not give any
suggestion on how to correct the fault.

Furthermore, formal verification often requires a sepa-
rate model in a different syntax from the implementa-
tion 1 (Baier and Katoen, 2008). This can be problematic
for several reasons. If the formal model is an abstracted
version of the software, then it may be difficult to con-
vert an offending trace back into something meaningful in
terms of the implementation.

Additionally, the formal model and the software both need
to be updated to reflect changes in the other. If they
are not, any correctness proof is invalid. The updating
can be done manually or automatically, where manual
modeling of the software can introduce modeling errors,
while automatic modeling might be difficult to implement.
The development of the Manual Planner suffered from the
latter point (Krook et al., 2019). Although the software
implementation was done in a subset of a high level
language, it was difficult to automate the modeling step,
and the formal modeling was done manually.

By using formal synthesis, the hope is to free the time
spent on implementation and verification of software and
put it to use on development of requirements and models,
and on validation of requirements. The assumption is that
such a shift of effort would make the vehicle safer and the

1 As is the case in both former works presented above.

Formal Synthesis of Safe Stop Tactical
Planners for an Automated Vehicle �

Jonas Krook ∗,∗∗ Roozbeh Kianfar ∗ Martin Fabian ∗∗

∗ Zenuity, Gothenburg, Sweden
(e-mail: firstname.lastname@zenuity.com)

∗∗ Department of Electrical Engineering,
Chalmers University of Technology, Gothenburg, Sweden

(e-mail: {krookj,fabian}@chalmers.se)

Abstract: Automated vehicles need a safe back-up solution in the presence of system
degradations since a driver cannot be expected to take control on short notice. In the event
of a degradation, the vehicle is required to reach a minimal risk condition via a minimal risk
maneuver. The activation of such maneuvers is safety critical, and a correct implementation
of the tactical planner that takes the activation decision is paramount. One way to ensure
correctness is to employ formal methods since they can provide proofs thereof. Earlier, a tactical
planner was formally verified to activate a minimal risk maneuver if and only if a failure occurs.
Formal verification has some drawbacks, so this paper investigates the applicability of using the
tools Supremica and TuLiP to synthesize correct-by-construction tactical planners. These two
tools amend some of the verification’s drawbacks, but also introduce their own.

Keywords: Automated Driving, Supervisory Control Theory, Reactive Synthesis.

1. INTRODUCTION

This paper builds upon previous work where formal ver-
ification was applied during development of a planner
for an automated vehicle (Krook et al., 2019). Instead
of manual implementation followed by verification, this
paper investigates how the two different formal synthesis
methods Supervisory Control Theory (SCT) and Reactive
Synthesis (RS) (Ramadge and Wonham, 1989; Kupferman
et al., 2000) can be used in an industrial setting to auto-
matically create safe and correct-by-construction software.
These methods are applied to the same problem as in the
earlier work, and are evaluated against each other, and
against the earlier result.

Krook et al. (2019) apply Linear Temporal Logic (LTL)
model checking (Baier and Katoen, 2008) in a concurrent
fashion to develop a state machine, unfortunately called
supervisor, that acts as a tactical planner (Michon, 1985)
for an automated vehicle. This planner will be referred
to as the Manual Planner. Its task is to coordinate two
path planners and ascertain that a safe stop trajectory
planner is activated and stops the car in a safe place if
and only if a failure occurs. Krook et al. (2019) model key
aspects of the system’s software modules and abstracted
vehicle dynamics in Promela and model checks it with
Spin (Holzmann, 2003). As the requirements are formally
verified during the development process, faults are avoided
and the final software is correct with respect to the
requirements.

� This work was partially supported by the Wallenberg AI, Au-
tonomous Systems and Software Program (WASP) funded by the
Knut and Alice Wallenberg Foundation.

Although formal verification is a versatile tool when de-
signing, developing, or testing software, it has drawbacks.
For instance, when Zita et al. (2017) used the formal
verification tool Supremica to verify a lane change software
module, a fault was detected and an offending trace was
presented in the user interface. Such traces can be difficult
to analyze and understand, and they do not give any
suggestion on how to correct the fault.

Furthermore, formal verification often requires a sepa-
rate model in a different syntax from the implementa-
tion 1 (Baier and Katoen, 2008). This can be problematic
for several reasons. If the formal model is an abstracted
version of the software, then it may be difficult to con-
vert an offending trace back into something meaningful in
terms of the implementation.

Additionally, the formal model and the software both need
to be updated to reflect changes in the other. If they
are not, any correctness proof is invalid. The updating
can be done manually or automatically, where manual
modeling of the software can introduce modeling errors,
while automatic modeling might be difficult to implement.
The development of the Manual Planner suffered from the
latter point (Krook et al., 2019). Although the software
implementation was done in a subset of a high level
language, it was difficult to automate the modeling step,
and the formal modeling was done manually.

By using formal synthesis, the hope is to free the time
spent on implementation and verification of software and
put it to use on development of requirements and models,
and on validation of requirements. The assumption is that
such a shift of effort would make the vehicle safer and the

1 As is the case in both former works presented above.

Formal Synthesis of Safe Stop Tactical
Planners for an Automated Vehicle �

Jonas Krook ∗,∗∗ Roozbeh Kianfar ∗ Martin Fabian ∗∗

∗ Zenuity, Gothenburg, Sweden
(e-mail: firstname.lastname@zenuity.com)

∗∗ Department of Electrical Engineering,
Chalmers University of Technology, Gothenburg, Sweden

(e-mail: {krookj,fabian}@chalmers.se)

Abstract: Automated vehicles need a safe back-up solution in the presence of system
degradations since a driver cannot be expected to take control on short notice. In the event
of a degradation, the vehicle is required to reach a minimal risk condition via a minimal risk
maneuver. The activation of such maneuvers is safety critical, and a correct implementation
of the tactical planner that takes the activation decision is paramount. One way to ensure
correctness is to employ formal methods since they can provide proofs thereof. Earlier, a tactical
planner was formally verified to activate a minimal risk maneuver if and only if a failure occurs.
Formal verification has some drawbacks, so this paper investigates the applicability of using the
tools Supremica and TuLiP to synthesize correct-by-construction tactical planners. These two
tools amend some of the verification’s drawbacks, but also introduce their own.

Keywords: Automated Driving, Supervisory Control Theory, Reactive Synthesis.

1. INTRODUCTION

This paper builds upon previous work where formal ver-
ification was applied during development of a planner
for an automated vehicle (Krook et al., 2019). Instead
of manual implementation followed by verification, this
paper investigates how the two different formal synthesis
methods Supervisory Control Theory (SCT) and Reactive
Synthesis (RS) (Ramadge and Wonham, 1989; Kupferman
et al., 2000) can be used in an industrial setting to auto-
matically create safe and correct-by-construction software.
These methods are applied to the same problem as in the
earlier work, and are evaluated against each other, and
against the earlier result.

Krook et al. (2019) apply Linear Temporal Logic (LTL)
model checking (Baier and Katoen, 2008) in a concurrent
fashion to develop a state machine, unfortunately called
supervisor, that acts as a tactical planner (Michon, 1985)
for an automated vehicle. This planner will be referred
to as the Manual Planner. Its task is to coordinate two
path planners and ascertain that a safe stop trajectory
planner is activated and stops the car in a safe place if
and only if a failure occurs. Krook et al. (2019) model key
aspects of the system’s software modules and abstracted
vehicle dynamics in Promela and model checks it with
Spin (Holzmann, 2003). As the requirements are formally
verified during the development process, faults are avoided
and the final software is correct with respect to the
requirements.

� This work was partially supported by the Wallenberg AI, Au-
tonomous Systems and Software Program (WASP) funded by the
Knut and Alice Wallenberg Foundation.

Although formal verification is a versatile tool when de-
signing, developing, or testing software, it has drawbacks.
For instance, when Zita et al. (2017) used the formal
verification tool Supremica to verify a lane change software
module, a fault was detected and an offending trace was
presented in the user interface. Such traces can be difficult
to analyze and understand, and they do not give any
suggestion on how to correct the fault.

Furthermore, formal verification often requires a sepa-
rate model in a different syntax from the implementa-
tion 1 (Baier and Katoen, 2008). This can be problematic
for several reasons. If the formal model is an abstracted
version of the software, then it may be difficult to con-
vert an offending trace back into something meaningful in
terms of the implementation.

Additionally, the formal model and the software both need
to be updated to reflect changes in the other. If they
are not, any correctness proof is invalid. The updating
can be done manually or automatically, where manual
modeling of the software can introduce modeling errors,
while automatic modeling might be difficult to implement.
The development of the Manual Planner suffered from the
latter point (Krook et al., 2019). Although the software
implementation was done in a subset of a high level
language, it was difficult to automate the modeling step,
and the formal modeling was done manually.

By using formal synthesis, the hope is to free the time
spent on implementation and verification of software and
put it to use on development of requirements and models,
and on validation of requirements. The assumption is that
such a shift of effort would make the vehicle safer and the

1 As is the case in both former works presented above.

446	 Jonas Krook et al. / IFAC PapersOnLine 53-4 (2020) 445–452

development more efficient, as the development effort can
then be focused on building the right and safe product. To
facilitate such a shift, there is a need to understand the
type of problems to which formal synthesis can be applied,
and how subsystems and requirements shall be modeled in
a useful way. This is not trivial; for instance, Krook et al.
(2018) found that automatically fixing the fault found by
Zita et al. (2017) based on the verification model did not
work because of how the problem was modeled.

In this paper we investigate how the SCT tool Suprem-
ica (Malik et al., 2017) and the RS tool TuLiP (Fil-
ippidis et al., 2016) can formally synthesize correct-by-
construction tactical planners. We further investigate how
the process of applying these synthesis methods compare
to the process of formal verification with Spin. In the
end, we are interested in what methods are suitable for
the development of provably safe tactical planners in an
automotive setting. Therefore, we compare the synthesis
results of Supremica and TuLiP (referred to as the Super-
visory Planner and the Reactive Planner, respectively),
both with each other and the Manual Planner, to find
benefits and drawbacks of each method. There are a lot
of formal synthesis tools available and the conclusions
from Supremica and TuLiP cannot be extrapolated to
all of them. However, in addition to specific results, our
comparison indicates some general properties of the SCT
and RS fields.

For instance, it seems like neither Supremica nor TuLiP
can take a model with detailed vehicle dynamics and
synthesize a generic tactical planner that is not dependent
on absolute position. By considering other works on formal
synthesis it seems like this is a general result for the
two fields (Wongpiromsarn et al., 2013; Korssen et al.,
2018; Ramezani et al., 2019). The work by Nilsson et al.
(2016) seems to avoid the issue, but the result depends on
relative coordinates and bounds on maximal values of the
continuous states.

2. PRELIMINARIES

2.1 Supervisory Control Theory

Supervisory Control Theory (Ramadge and Wonham,
1989; Cassandras and Lafortune, 2010) is a model-based
approach for control of Discrete Event System (DES). A
DES is a dynamic system that can be characterized by a
set of states whose transitions are triggered by occurrences
of events. Given a DES to be controlled, the plant G, and
a specification K describing the desired behavior, a control
entity, called supervisor S, can be automatically synthe-
sized to dynamically restrict the behavior of the plant,
such that the closed-loop system satisfies the specification.

The supervisor and the plant form an asymmetric closed-
loop system where the supervisor restricts the event gen-
eration of the plant. As the plant generates events enabled
by the supervisor, the supervisor observes the generated
sequences of events and determines, at each state, which
of the currently possible events should be enabled. Some
of the events cannot be disabled by the supervisor. These
events are uncontrollable. The supervisor is required to
be controllable, i.e. it must never try to disable an un-
controllable event. By disabling controllable events, the

supervisor can confine the plant to a subset of its possible
states so that the closed-loop system only visits states that
are considered “good” by the specification. At the same
time, the supervisor guarantees that from any closed-loop
state, the system can always continue to a desired marked
state, it is non-blocking. Finally, the supervisor minimizes
the behavior that is removed, it is maximally permissive.

Basically, supervisor synthesis is an iterative removal of
states and/or transitions of an initially calculated super-
visor “candidate”. Practically, this candidate is calculated
from G||K where || denotes the full synchronous compo-
sition operator (Cassandras and Lafortune, 2010). The
iterative algorithm removes from G||K the states that
break the controllability and/or the non-blocking prop-
erties. Iteration is necessary since enforcing one property
may break the other. The iteration will eventually reach
a fix-point, and what then is obtained is the maximally
permissive supervisor. In Supremica, one way to model
this supervisor candidate is to use an Extended Finite
Automaton (EFA).

EFAs are automata extended with bounded discrete vari-
ables, and updates defining logical conditions over those
variables. Let V = 〈v1, v2, . . . , vn〉 be an ordered set
of variables, with each variable vi associated to a finite
discrete domain, dom(vi) = {v̂i1, v̂i2, . . . , v̂ij}, having an
initial value v̂i

◦ ∈ dom(vi), and a set of marked values
V̂ m
i = {v̂im1 , v̂i

m2 , . . . , v̂i
mk} ⊆ dom(vi). Define the do-

main of V as dom(V) = dom(v1)×dom(v2)×· · ·×dom(vn).
Definition 1. An Extended Finite Automaton (EFA) is an
8-tuple:

E = 〈L, V,Σ,→, Li, Lm, V̂ ◦, V̂ m〉
where L is a finite set of locations; V is as above. Σ denotes
a finite set of events; Li ⊆ L and Lm ⊆ L denote the
set of initial locations and marked locations, respectively;
V̂ ◦ = {v̂◦i : i = 1, . . . , n} is the set of initial values;
V̂ m = {V̂ m

i : i = 1, . . . , n} is the set of marked values;
→ ⊆ L×Σ×Π×L is the extended transition relation where
Π denotes the set of updates, which are formulas consisting
of variables, integer constants, Boolean literals, as well
as propositional logic and discrete arithmetic connectives.
A state of an EFA is a tuple (�, V̂) where � ∈ L and
V̂ ∈ dom(V). Hence, the initial states are defined as
Qi = Li × V̂ ◦ and the marked states as Qm = Lm × V̂ m.

A transition between locations �, �′ with event σ ∈ Σ and
update p ∈ Π is written as �

σ:p→ �′. The transition can be
fired if E is at location � and the update p evaluates to true;
consequently, E changes its location to �′ while updating
the variables in p; variables not in p remain unchanged.

For SCT, the alphabet Σ of an EFA is partitioned into the
disjoint sets of the controllable, Σc, and uncontrollable,
Σu, event sets; Σ = Σc ∪ Σu. An uncontrollable event
eu ∈ Σu is prefixed by ! as a convention.

2.2 Reactive Synthesis

The Reactive Synthesis problem is to automatically syn-
thesize a controller, referred to as a reactive module, that
satisfies the desired guarantees φs, under the assumptions
of the environment φe. In other words, the reactive module

	 Jonas Krook et al. / IFAC PapersOnLine 53-4 (2020) 445–452	 447

development more efficient, as the development effort can
then be focused on building the right and safe product. To
facilitate such a shift, there is a need to understand the
type of problems to which formal synthesis can be applied,
and how subsystems and requirements shall be modeled in
a useful way. This is not trivial; for instance, Krook et al.
(2018) found that automatically fixing the fault found by
Zita et al. (2017) based on the verification model did not
work because of how the problem was modeled.

In this paper we investigate how the SCT tool Suprem-
ica (Malik et al., 2017) and the RS tool TuLiP (Fil-
ippidis et al., 2016) can formally synthesize correct-by-
construction tactical planners. We further investigate how
the process of applying these synthesis methods compare
to the process of formal verification with Spin. In the
end, we are interested in what methods are suitable for
the development of provably safe tactical planners in an
automotive setting. Therefore, we compare the synthesis
results of Supremica and TuLiP (referred to as the Super-
visory Planner and the Reactive Planner, respectively),
both with each other and the Manual Planner, to find
benefits and drawbacks of each method. There are a lot
of formal synthesis tools available and the conclusions
from Supremica and TuLiP cannot be extrapolated to
all of them. However, in addition to specific results, our
comparison indicates some general properties of the SCT
and RS fields.

For instance, it seems like neither Supremica nor TuLiP
can take a model with detailed vehicle dynamics and
synthesize a generic tactical planner that is not dependent
on absolute position. By considering other works on formal
synthesis it seems like this is a general result for the
two fields (Wongpiromsarn et al., 2013; Korssen et al.,
2018; Ramezani et al., 2019). The work by Nilsson et al.
(2016) seems to avoid the issue, but the result depends on
relative coordinates and bounds on maximal values of the
continuous states.

2. PRELIMINARIES

2.1 Supervisory Control Theory

Supervisory Control Theory (Ramadge and Wonham,
1989; Cassandras and Lafortune, 2010) is a model-based
approach for control of Discrete Event System (DES). A
DES is a dynamic system that can be characterized by a
set of states whose transitions are triggered by occurrences
of events. Given a DES to be controlled, the plant G, and
a specification K describing the desired behavior, a control
entity, called supervisor S, can be automatically synthe-
sized to dynamically restrict the behavior of the plant,
such that the closed-loop system satisfies the specification.

The supervisor and the plant form an asymmetric closed-
loop system where the supervisor restricts the event gen-
eration of the plant. As the plant generates events enabled
by the supervisor, the supervisor observes the generated
sequences of events and determines, at each state, which
of the currently possible events should be enabled. Some
of the events cannot be disabled by the supervisor. These
events are uncontrollable. The supervisor is required to
be controllable, i.e. it must never try to disable an un-
controllable event. By disabling controllable events, the

supervisor can confine the plant to a subset of its possible
states so that the closed-loop system only visits states that
are considered “good” by the specification. At the same
time, the supervisor guarantees that from any closed-loop
state, the system can always continue to a desired marked
state, it is non-blocking. Finally, the supervisor minimizes
the behavior that is removed, it is maximally permissive.

Basically, supervisor synthesis is an iterative removal of
states and/or transitions of an initially calculated super-
visor “candidate”. Practically, this candidate is calculated
from G||K where || denotes the full synchronous compo-
sition operator (Cassandras and Lafortune, 2010). The
iterative algorithm removes from G||K the states that
break the controllability and/or the non-blocking prop-
erties. Iteration is necessary since enforcing one property
may break the other. The iteration will eventually reach
a fix-point, and what then is obtained is the maximally
permissive supervisor. In Supremica, one way to model
this supervisor candidate is to use an Extended Finite
Automaton (EFA).

EFAs are automata extended with bounded discrete vari-
ables, and updates defining logical conditions over those
variables. Let V = 〈v1, v2, . . . , vn〉 be an ordered set
of variables, with each variable vi associated to a finite
discrete domain, dom(vi) = {v̂i1, v̂i2, . . . , v̂ij}, having an
initial value v̂i

◦ ∈ dom(vi), and a set of marked values
V̂ m
i = {v̂im1 , v̂i

m2 , . . . , v̂i
mk} ⊆ dom(vi). Define the do-

main of V as dom(V) = dom(v1)×dom(v2)×· · ·×dom(vn).
Definition 1. An Extended Finite Automaton (EFA) is an
8-tuple:

E = 〈L, V,Σ,→, Li, Lm, V̂ ◦, V̂ m〉
where L is a finite set of locations; V is as above. Σ denotes
a finite set of events; Li ⊆ L and Lm ⊆ L denote the
set of initial locations and marked locations, respectively;
V̂ ◦ = {v̂◦i : i = 1, . . . , n} is the set of initial values;
V̂ m = {V̂ m

i : i = 1, . . . , n} is the set of marked values;
→ ⊆ L×Σ×Π×L is the extended transition relation where
Π denotes the set of updates, which are formulas consisting
of variables, integer constants, Boolean literals, as well
as propositional logic and discrete arithmetic connectives.
A state of an EFA is a tuple (�, V̂) where � ∈ L and
V̂ ∈ dom(V). Hence, the initial states are defined as
Qi = Li × V̂ ◦ and the marked states as Qm = Lm × V̂ m.

A transition between locations �, �′ with event σ ∈ Σ and
update p ∈ Π is written as �

σ:p→ �′. The transition can be
fired if E is at location � and the update p evaluates to true;
consequently, E changes its location to �′ while updating
the variables in p; variables not in p remain unchanged.

For SCT, the alphabet Σ of an EFA is partitioned into the
disjoint sets of the controllable, Σc, and uncontrollable,
Σu, event sets; Σ = Σc ∪ Σu. An uncontrollable event
eu ∈ Σu is prefixed by ! as a convention.

2.2 Reactive Synthesis

The Reactive Synthesis problem is to automatically syn-
thesize a controller, referred to as a reactive module, that
satisfies the desired guarantees φs, under the assumptions
of the environment φe. In other words, the reactive module

satisfies the formula φe → φs (Bloem et al., 2014). One
way to model the RS problem is to consider the reactive
module and the environment as adversaries that play a
finite-state game and take turns to provide input to each
other (Wongpiromsarn et al., 2011). Then, an iterative
process can be adopted to find a fix-point of a subset of
states and transitions that solves the RS problem. The
states, transitions, inputs and outputs can be modeled by
a Kripke structure.
Definition 2. A Kripke Structure is a tuple

M = 〈S, I, R,AP,LAP 〉,
where S is a set of states; I ⊆ S is a set of initial states;
R ⊆ S × S is a transition relation; AP is a set of atomic
propositions; and LAP : S → 2AP is a labeling function
that defines the atomic propositions that are true in each
state. AP is divided into two disjoint subsets APe and APs,
representing the propositions of the environment and the
reactive module, respectively.

The atomic propositions in APe are seen as the inputs
to the reactive module, while APs are its outputs. The
atomic propositions in AP can be composed of relational
operators on functions of discrete finite domain variables
as they can be considered either true or false, given a
certain valuation in a certain state.

In TuLiP, the environment and the requirements on the
reactive module are modeled with LTL. LTL formulas can
be evaluated over infinite runs on a Kripke structure. In
addition to standard propositional logic operators, LTL
includes temporal operators (Pnueli, 1977). The temporal
operators ′ (next), � (always), and � (eventually) are used
in this paper. A run π of a Kripke structure M is an
infinite sequence of states {π0, π1, . . . }, where π0 ∈ I and
(πi, πi+1) ∈ R. Let π[i] represent the infinite run starting
from state πi. Let θ be an LTL formula, and ψ be an atomic
proposition. The satisfiability of an LTL formula τ by π is
given inductively:

• π � τ iff π[0] � τ
• π[i] � ψ iff ψ ∈ LAP (πi)
• π[i] � ¬τ iff π[i] � τ
• π[i] � τ ∨ θ iff π[i] � τ or π[i] � θ
• π[i] � τ ′ iff π[i+ 1] � τ
• π[i] � �τ iff π[k] � τ for all k ≥ i
• π[i] � �τ iff π[k] � τ for some k ≥ i

The Kripke Structure M satisfies a formula τ if every
possible run π satisfies the formula.

Given an LTL formula ϕ modeling the environment and
the requirements, TuLiP synthesizes a reactive module
such that it satisfies ϕ, if such reactive module exists. In
RS, such an LTL formula is called the specification, and
the subformulas modeling the environment and require-
ments are called environment and system specifications,
respectively. This paper uses system in a wider sense, and
to be consistent, the formalization of the requirements will
be referred to as the specification 2 . The LTL formula ϕ
has to be in GR(1) form (Piterman et al., 2006):

2 See the work by Ramezani et al. (2019) for the overlapping
nomenclature of SCT and RS.

A

B

Structured Path

Transition Point 1

UnstructuredPath 2

Unstru
ctured

Path 1

Transition Point 2

Fig. 1. A map showing a principal transport mission.

ϕ �
(
(ψe

init ∧
∧

ψe
safe,i∈Ψe

safe

�ψe
safe,i ∧

∧
ψe

live,i∈Ψe
live

��ψe
live,i) →

(ψs
init ∧

∧
ψs

safe,i∈Ψs
safe

�ψs
safe,i ∧

∧
ψs

live,i∈Ψs
live

��ψs
live,i)

)
, (1)

where ψe
init and ψs

init contain all the initial conditions of the
environment and the reactive module, respectively. Ψe

safe
and Ψe

live are the sets of safety and liveness assumptions
on the environment. Ψs

safe and Ψs
live are the sets of safety

and liveness guarantees of the synthesized planner. Note
that TuLiP interprets the implication in (1) as a strict
realizability implication (Klein and Pnueli, 2011).

3. SCENARIO

The KTH Research Concept Vehicle (RCV) is used as a
target platform for the synthesized tactical planners. The
RCV is a custom-built, fully electric and drive-by-wire con-
cept vehicle, hosted by the Integrated Transport Research
Lab at KTH, for validating and demonstrating research
results (Kokogias et al., 2017). This section describes a use
case that the RCV shall solve, and the system components
that are available to do so.

3.1 Transport mission

The scenario considered is a transport mission where the
RCV is initially parked in a parking spot in parking lot A,
and receives a mission goal where it needs to drive to and
park in a goal parking spot in parking lot B (Fig. 1). To do
this, it first has to plan a path connecting the two parking
lots via the road network. This path is called the structured
path (SP). The start and end points of the SP are called
transition point 1 and 2 (Tp1 and Tp2), respectively. Then
the RCV needs to generate a path from a point in A to
Tp1, called unstructured path 1 (UP1). When the RCV
arrives at parking lot B it needs to construct a path from
Tp2 on the road to the goal parking spot in B, called
unstructured path 2 (UP2). The purpose of this paper is
to synthesize and evaluate two different tactical planners
that coordinate these tasks. One, called the Supervisory
Planner, based on an SCT supervisor, and another, called
the Reactive Planner, based on an RS reactive module.

448	 Jonas Krook et al. / IFAC PapersOnLine 53-4 (2020) 445–452

3.2 Safe stop

The task of the tactical planner is to complete the trans-
port mission safely. One purpose for having them is also
to relieve the driver of driving tasks. However, a driver
who is not participating in the driving tasks (or might
not even be physically present) cannot reliably take over
control of the vehicle in case of safety critical software
system failures (Rudin-Brown and Parker, 2004; Merat
et al., 2014). Therefore, the RCV needs a safe backup
solution when such a system degradation occurs. One such
backup solution is a minimal risk maneuver. When a safety
critical system becomes degraded, the task of a minimal
risk maneuver is to swiftly bring the automated vehicle to a
minimal risk condition, which is supposed to be a safe state
where the risk of harm or damage is minimal (European
Commission, 2019). For instance, if an automated vehicle
no longer ‘knows’ where it is on an otherwise empty low-
speed road because of a GPS system failure, then it needs
to stop, or it may drive off the road. In that scenario, being
stopped on the road would be the minimal risk condition,
and braking would be a minimal risk maneuver.

3.3 Architecture

Available to the tactical planner to complete the transport
mission safely are the subsystems shown in the system
architecture of Fig. 2. The figure shows how different sub-
systems are connected and in which way information flows.
The different subsystems provide the following services:

• Localization: The localization subsystem uses a GPS
sensor to position the RCV in a global map. It is
also responsible for sending the goal position to the
tactical planner. If the GPS sensor experiences a failure
the localization subsystem cannot perform these tasks
anymore and indicates this to the tactical planner.

• Structure Area Path Planner (SPP) and Unstruc-
tured Area Path Planner (UPP): These two path
planners make plans in the road network (structured
area) and in parking lots (unstructured areas), respec-
tively. The tactical planner sends a start and goal lo-
cation, and the path planner responds with a path con-
necting the locations, or a failure message. The SPP also
provides the transition points (Tp1 and Tp2) between
parking lots and the road network. The SPP and UPP
are implemented based on the works by Bender et al.
(2014) and Kutzer (2016), respectively.

• Trajectory Planner (TP): The trajectory planner
receives a path from the tactical planner and generates
trajectories of speeds and yaw angles by considering the
vehicle dynamics and physical limits of the RCV (Koko-
gias et al., 2017). The trajectory planner also plans a
stop at the end of the current path.

• Safe Stop Trajectory Planner (SSTP): The safe
stop trajectory planner has a set of safe stop trajectories
(SST) that are candidate minimal risk maneuvers that
bring the RCV to a stop once they are activated. The set
of trajectories is evaluated against the current position
in the map, and the trajectory that is considered best is
selected as the minimal risk maneuver (Svensson et al.,
2018). The number of feasible trajectories is always
communicated to the tactical planner.

Fig. 2. The RCV architecture.

• Controller: The controller receives commands from
three sources: TP, SSTP, and the tactical planner. The
nominal operation is to execute the trajectories from
TP, but depending on the mode sent by the tactical
planner the controller either executes the minimal risk
maneuver, or applies the brakes as hard as possible,
referred to as Automatic Emergency Braking (AEB).

3.4 Requirements

The requirements that a tactical planner for the RCV must
fulfill are based on the above subsections and the original
requirements from Krook et al. (2019). There are mainly
four requirements, presented here in natural language. The
details of these requirements are discussed in Section 4.2
when they are formalized.

(i) The RCV shall reach the goal or a minimal risk
condition, or emergency stop with AEB.

(ii) The RCV shall always eventually stop.
(iii) An SST is only allowed to be activated if failures are

detected.
(iv) AEB is only allowed to be activated if no SST is

available since the aggressive deceleration and stop
position that results from AEB is considered less safe
than the effects of a minimal risk maneuver.

Krook et al. (2019) proposed 7 requirements and also
checked that the goal could be reached with the pro-
posed planner. These 8 properties were called mission-
Complete, stopInTheEnd, allPathsKnown, driveOnlyOn-
Paths, safeStop, unsafeStop, failure, and failToReachGoal.
Four of these are omitted: driveOnlyOnPaths refers to
current position, which is abstracted away; the allPaths-
Known requirement is replaced with requirements that
specify that paths must be known before being activated;
failure is removed because the sensor might fail very close
to the goal, and then it is unnecessary to require activation
of the safety systems; finally, the check failToReachGoal
follows from the remaining four requirements.

4. RESULTS

This section presents the results of the modeling and syn-
theses, limited to the last path, UP2. The complete models
cannot fit in this paper and are therefore supplementary
material (Krook, 2020).

To the largest extent possible, the locations and automata
in Supremica and the variables and values in TuLiP have

	 Jonas Krook et al. / IFAC PapersOnLine 53-4 (2020) 445–452	 449

3.2 Safe stop

The task of the tactical planner is to complete the trans-
port mission safely. One purpose for having them is also
to relieve the driver of driving tasks. However, a driver
who is not participating in the driving tasks (or might
not even be physically present) cannot reliably take over
control of the vehicle in case of safety critical software
system failures (Rudin-Brown and Parker, 2004; Merat
et al., 2014). Therefore, the RCV needs a safe backup
solution when such a system degradation occurs. One such
backup solution is a minimal risk maneuver. When a safety
critical system becomes degraded, the task of a minimal
risk maneuver is to swiftly bring the automated vehicle to a
minimal risk condition, which is supposed to be a safe state
where the risk of harm or damage is minimal (European
Commission, 2019). For instance, if an automated vehicle
no longer ‘knows’ where it is on an otherwise empty low-
speed road because of a GPS system failure, then it needs
to stop, or it may drive off the road. In that scenario, being
stopped on the road would be the minimal risk condition,
and braking would be a minimal risk maneuver.

3.3 Architecture

Available to the tactical planner to complete the transport
mission safely are the subsystems shown in the system
architecture of Fig. 2. The figure shows how different sub-
systems are connected and in which way information flows.
The different subsystems provide the following services:

• Localization: The localization subsystem uses a GPS
sensor to position the RCV in a global map. It is
also responsible for sending the goal position to the
tactical planner. If the GPS sensor experiences a failure
the localization subsystem cannot perform these tasks
anymore and indicates this to the tactical planner.

• Structure Area Path Planner (SPP) and Unstruc-
tured Area Path Planner (UPP): These two path
planners make plans in the road network (structured
area) and in parking lots (unstructured areas), respec-
tively. The tactical planner sends a start and goal lo-
cation, and the path planner responds with a path con-
necting the locations, or a failure message. The SPP also
provides the transition points (Tp1 and Tp2) between
parking lots and the road network. The SPP and UPP
are implemented based on the works by Bender et al.
(2014) and Kutzer (2016), respectively.

• Trajectory Planner (TP): The trajectory planner
receives a path from the tactical planner and generates
trajectories of speeds and yaw angles by considering the
vehicle dynamics and physical limits of the RCV (Koko-
gias et al., 2017). The trajectory planner also plans a
stop at the end of the current path.

• Safe Stop Trajectory Planner (SSTP): The safe
stop trajectory planner has a set of safe stop trajectories
(SST) that are candidate minimal risk maneuvers that
bring the RCV to a stop once they are activated. The set
of trajectories is evaluated against the current position
in the map, and the trajectory that is considered best is
selected as the minimal risk maneuver (Svensson et al.,
2018). The number of feasible trajectories is always
communicated to the tactical planner.

Fig. 2. The RCV architecture.

• Controller: The controller receives commands from
three sources: TP, SSTP, and the tactical planner. The
nominal operation is to execute the trajectories from
TP, but depending on the mode sent by the tactical
planner the controller either executes the minimal risk
maneuver, or applies the brakes as hard as possible,
referred to as Automatic Emergency Braking (AEB).

3.4 Requirements

The requirements that a tactical planner for the RCV must
fulfill are based on the above subsections and the original
requirements from Krook et al. (2019). There are mainly
four requirements, presented here in natural language. The
details of these requirements are discussed in Section 4.2
when they are formalized.

(i) The RCV shall reach the goal or a minimal risk
condition, or emergency stop with AEB.

(ii) The RCV shall always eventually stop.
(iii) An SST is only allowed to be activated if failures are

detected.
(iv) AEB is only allowed to be activated if no SST is

available since the aggressive deceleration and stop
position that results from AEB is considered less safe
than the effects of a minimal risk maneuver.

Krook et al. (2019) proposed 7 requirements and also
checked that the goal could be reached with the pro-
posed planner. These 8 properties were called mission-
Complete, stopInTheEnd, allPathsKnown, driveOnlyOn-
Paths, safeStop, unsafeStop, failure, and failToReachGoal.
Four of these are omitted: driveOnlyOnPaths refers to
current position, which is abstracted away; the allPaths-
Known requirement is replaced with requirements that
specify that paths must be known before being activated;
failure is removed because the sensor might fail very close
to the goal, and then it is unnecessary to require activation
of the safety systems; finally, the check failToReachGoal
follows from the remaining four requirements.

4. RESULTS

This section presents the results of the modeling and syn-
theses, limited to the last path, UP2. The complete models
cannot fit in this paper and are therefore supplementary
material (Krook, 2020).

To the largest extent possible, the locations and automata
in Supremica and the variables and values in TuLiP have

none
sst

up2

aeb

activate_path_up2
activate_path_none

activate_path_aeb
activate_path_none

activate_path_up2
activate_path_sst

activate_path_sst
activate_path_aeb

Fig. 3. The plant active_path.

been given the same names. For instance, the Supremica
plant called active_path (Fig. 3) has the four locations
“none”, “up2”, “sst”, and “aeb”, while the TuLiP variable
active_path has the domain “none”, “up2”, “sst”, and
“aeb”. Supremica allows updates on transitions to refer
to automata and location names as if they were variables
and domains (Definition 1), so the update active_path �=
“none” in Fig. 4 means that the transition can only be
taken if the automaton active_path in Fig. 3 is not in
location “none”.

The variables that are used in TuLiP are ‘owned’ by
the environment or the Reactive Planner. The owner-
ship is important and similar in effect to controllabil-
ity in Supremica. The variables goal, safe_stopped,
emergency_stopped, sensor_failure, driving, and
upp_2_response are part of the environment model and
are all initially false, except for upp_2_response which is
“none”. active_path and up_2_available are owned by
the Reactive Planner, and they are initially “none” and
false, respectively.

4.1 Vehicle, trajectory planner, and controller

When the Manual Planner was formally verified with Spin
it was verified against a simple model of the RCV dynamics
and the controller; a simple discrete point mass model in
one dimension along the length of the paths (of arbitrary
length), where braking distances for different speeds were
pre-calculated. The trajectory planner passed the paths
through from the tactical planner to the controller. As long
as the controller had a path available and the RCV had not
reached the end of the path, it was forced to travel forward
such that it could stop before the end of the current path.
Otherwise the controller would block all progress.

The Manual Planner can be implemented to operate on
paths of arbitrary lengths, and then be verified against
a path of arbitrary, but constant, length. Although that
method does not give a proof for all different path lengths,
it can be argued by induction that the result is general.

The synthesis methods evaluated in this paper have trou-
ble to do the same. If a specific path length is chosen,
then the Supervisory Planner and Reactive Planner have
a dependence on specific positions along the path. Since
the transport mission, and the paths needed to complete
it, are not known a priori, this fixed-length path approach
is not reasonable. Paths with variable lengths would solve
that problem, but if the length of the paths are allowed
to vary, the state space explodes, making the synthesis
intractable.

The approach for the syntheses is to use a higher abstrac-
tion level for the RCV dynamics and controller. Instead
of using a model of the dynamics and the controller,

stopped

driving

!starting:
active_path �= “none”
∧ goal �= “AtGoal”

!stopping

Fig. 4. Plant state describing when the RCV may drive.

NotGoal AtGoal

!goal_reached:
state = “driving”

∧ active_path = “up2”

Fig. 5. Plant goal describing how the goal is reached.

a sort of assume-guarantee contract is provided to the
syntheses. This contract is similar in SCT and RS, but
have key differences because of the different semantics.
Basically, both contracts state that the RCV only moves
after the controller has received a path, and that the end
of the path is only reached if the RCV is moving. There
is also no possibility that the controller drives past the
end point. However, when a path is supplied, the contract
states in SCT that the RCV might, and in RS that the
RCV eventually does, reach the end of the path. The
plants for Supremica are shown in figures 4 and 5. The
environment model for TuLiP is the following (where the
set memberships at the end of the formulas indicate which
part of the model in (1) they belong to):

driving′ → (active_path �= “none”) ∈ Ψe
safe (2)

goal → ¬driving ∈ Ψe
safe (3)

(¬(driving ∧ active_path = “up2”) ∧ ¬goal)
→ ¬goal′ ∈ Ψe

safe
(4)

(active_path = “up2” ∧ ¬sensor_failure)
→ goal ∈ Ψe

live
(5)

Another part of the assume-guarantee contracts is the
effect of the sensor failure. If the global localization fails,
the controller cannot guarantee that the end of the path
is reached. For SCT it is part of the semantics that the
uncontrollable event !goal_reached in the plant goal in
Fig. 5 might not fire, so the effect of the sensor failure is
implicitly included. For RS on the other hand it must be
explicitly stated in (5) that goal is only guaranteed to be
reached if the sensor has not encountered any failures.

4.2 Requirements

The four requirements from Section 3.4 all have simple for-
malizations. Figures 6 and 7 show the SCT-specifications
for reaching one of the end points, and that activating the
safe stop in absence of failures is forbidden, respectively.
The specification for activating AEB is analogous to Fig. 7.
The marking in Fig. 4 specifies that the RCV shall stop.
These specifications closely resemble the original require-
ments used in the verification, but since the semantics
differ they do not mean exactly the same. For instance,
the marking in the plant state expresses that a supervisor
may not restrict the RCV from stopping, while the original
requirement expresses that the RCV must be stopped
infinitely often.

The requirements for RS are in principle the same as
for the Manual Planner, but GR(1) does not support

450	 Jonas Krook et al. / IFAC PapersOnLine 53-4 (2020) 445–452

Safe stopped

Goal

Emergency stopped

!goal_reached

!emergency_stopping

!safe_stopping

Fig. 6. Specification stating that the goal, safe stop, or
emergency stop shall be reached.

!safe_stopping:
sensor_failure = “NoFailure”

!safe_stopping:
sensor_failure �= “NoFailure”

Fig. 7. Specification safe_stop_req stating that activa-
tion of the safe stop in absence of errors leads to a
blocking state.

activate_path_up2:
upp2 �= “Up2Available”

activate_path_up2:
upp2 = “Up2Available”

Fig. 8. Specification request_path stating that activation
of UP2 when it is unavailable leads to a blocking state.

�� so the formalization of requirement (i) must dif-
fer from missionComplete, ��goal∨��safe_stopped∨
��emergency_stopped. For instance, once safe_stopped
is reached the RCV shall not leave it, and that can
be enforced by the two formulas safe_stopped →
¬driving ∈ Ψe

safe and (¬driving ∧ safe_stopped) →
safe_stopped′ ∈ Ψe

safe; once the RCV has safely stopped
it cannot be moving, and if it is not moving it cannot leave
the safe stop. emergency_stopped can be made terminal
analogously. Requirements (i)-(iv) thus become:

goal ∨ safe_stopped ∨ emergency_stopped ∈ Ψs
live (6)

¬driving ∈ Ψs
live (7)

safe_stopped →
(sensor_failure ∨ up_2_failed) ∈ Ψs

safe
(8)

emergency_stopped →
(sensor_failure ∨ up_2_failed) ∈ Ψs

safe
(9)

Some extra requirements are needed that describe how the
planner interacts with the environment. For instance, a
path must be acquired before it can be activated. Fig. 8
shows how this is specified in SCT, and in RS it becomes:

upp_2_response = “success” →
up_2_available′ ∈ Ψs

safe
(10)

upp_2_response �= “success” →
up_2_available′ ↔ up_2_available ∈ Ψs

safe
(11)

active_path = “up2” → up_2_available ∈ Ψs
safe (12)

!sensor_failed
activate_path_sst

upp_2_request

Fig. 9. A choice between two controllable events.

activate_path_sst
!safe_stopping

upp_2_request

Fig. 10. A choice between firing a controllable event or not.

4.3 Synthesis Result

The synthesized planners are too big to display. The
Supervisory Planner has 116 states which are difficult to
inspect. The Reactive Planner has 73 states with some
clear clusters. For instance, one cluster contains states
where the creation of UP2 failed. Both synthesis methods
require less than a second to synthesize the planners.

Visual inspection of these synthesized planners shows that
they are similar, but still difficult to compare. The Su-
pervisory Planner has many more allowed behaviors and
only change one ‘variable’ between states. The Supervisory
Planner allows all behaviors that the Reactive Planner
allows, but not vice versa. For instance, the Reactive
Planner only sets the path to “none” when one of “goal”,
“safe stop”, or “emergency stop” is reached, but the Super-
visory Planner allows the path to be “none” whenever the
RCV is stopped. This complicates comparisons of the two
planners, but does also have implications for applications.
If the problem is best solved with a tactical planner that
decides which action to take, then the Supervisory Planner
requires more specifications to limit options.

The semantics and maximal permissiveness of SCT fur-
thermore makes the Supervisory Planner difficult to imple-
ment as a planner; the Supervisory Planner protects from
bad states, but gives no indication which controllable event
that brings the RCV to a marked state. An event generator
is needed that chooses what to do, but the implementation
of such generator is not always clear. For instance, it
is obvious that after a sensor failure the SST shall be
activated (Fig. 9), but it is more difficult to select the
correct action when the choice is to fire a controllable event
or wait for an uncontrollable event (Fig. 10). Obviously,
after the SST is activated there is no point in requesting
UP2, but it is unclear how a generic event generator would
come to that conclusion.

The Reactive Planner does not require an event generator.
It is guaranteed to bring the system to a desired state,
which makes it easy to implement. However, when there
is a choice between two actions, TuLiP has to choose one,
and the effects of that can be deceptive. For instance, the
Reactive Planner fulfills requirement (iv) in that the AEB
is only activated if no SST is available. However, in fact,
this is not specified, as is evident from (9) and the following
liveness assumption:

active_path = “aeb” →
emergency_stopped ∈ Ψe

live. (13)

	 Jonas Krook et al. / IFAC PapersOnLine 53-4 (2020) 445–452	 451

Safe stopped

Goal

Emergency stopped

!goal_reached

!emergency_stopping

!safe_stopping

Fig. 6. Specification stating that the goal, safe stop, or
emergency stop shall be reached.

!safe_stopping:
sensor_failure = “NoFailure”

!safe_stopping:
sensor_failure �= “NoFailure”

Fig. 7. Specification safe_stop_req stating that activa-
tion of the safe stop in absence of errors leads to a
blocking state.

activate_path_up2:
upp2 �= “Up2Available”

activate_path_up2:
upp2 = “Up2Available”

Fig. 8. Specification request_path stating that activation
of UP2 when it is unavailable leads to a blocking state.

�� so the formalization of requirement (i) must dif-
fer from missionComplete, ��goal∨��safe_stopped∨
��emergency_stopped. For instance, once safe_stopped
is reached the RCV shall not leave it, and that can
be enforced by the two formulas safe_stopped →
¬driving ∈ Ψe

safe and (¬driving ∧ safe_stopped) →
safe_stopped′ ∈ Ψe

safe; once the RCV has safely stopped
it cannot be moving, and if it is not moving it cannot leave
the safe stop. emergency_stopped can be made terminal
analogously. Requirements (i)-(iv) thus become:

goal ∨ safe_stopped ∨ emergency_stopped ∈ Ψs
live (6)

¬driving ∈ Ψs
live (7)

safe_stopped →
(sensor_failure ∨ up_2_failed) ∈ Ψs

safe
(8)

emergency_stopped →
(sensor_failure ∨ up_2_failed) ∈ Ψs

safe
(9)

Some extra requirements are needed that describe how the
planner interacts with the environment. For instance, a
path must be acquired before it can be activated. Fig. 8
shows how this is specified in SCT, and in RS it becomes:

upp_2_response = “success” →
up_2_available′ ∈ Ψs

safe
(10)

upp_2_response �= “success” →
up_2_available′ ↔ up_2_available ∈ Ψs

safe
(11)

active_path = “up2” → up_2_available ∈ Ψs
safe (12)

!sensor_failed
activate_path_sst

upp_2_request

Fig. 9. A choice between two controllable events.

activate_path_sst
!safe_stopping

upp_2_request

Fig. 10. A choice between firing a controllable event or not.

4.3 Synthesis Result

The synthesized planners are too big to display. The
Supervisory Planner has 116 states which are difficult to
inspect. The Reactive Planner has 73 states with some
clear clusters. For instance, one cluster contains states
where the creation of UP2 failed. Both synthesis methods
require less than a second to synthesize the planners.

Visual inspection of these synthesized planners shows that
they are similar, but still difficult to compare. The Su-
pervisory Planner has many more allowed behaviors and
only change one ‘variable’ between states. The Supervisory
Planner allows all behaviors that the Reactive Planner
allows, but not vice versa. For instance, the Reactive
Planner only sets the path to “none” when one of “goal”,
“safe stop”, or “emergency stop” is reached, but the Super-
visory Planner allows the path to be “none” whenever the
RCV is stopped. This complicates comparisons of the two
planners, but does also have implications for applications.
If the problem is best solved with a tactical planner that
decides which action to take, then the Supervisory Planner
requires more specifications to limit options.

The semantics and maximal permissiveness of SCT fur-
thermore makes the Supervisory Planner difficult to imple-
ment as a planner; the Supervisory Planner protects from
bad states, but gives no indication which controllable event
that brings the RCV to a marked state. An event generator
is needed that chooses what to do, but the implementation
of such generator is not always clear. For instance, it
is obvious that after a sensor failure the SST shall be
activated (Fig. 9), but it is more difficult to select the
correct action when the choice is to fire a controllable event
or wait for an uncontrollable event (Fig. 10). Obviously,
after the SST is activated there is no point in requesting
UP2, but it is unclear how a generic event generator would
come to that conclusion.

The Reactive Planner does not require an event generator.
It is guaranteed to bring the system to a desired state,
which makes it easy to implement. However, when there
is a choice between two actions, TuLiP has to choose one,
and the effects of that can be deceptive. For instance, the
Reactive Planner fulfills requirement (iv) in that the AEB
is only activated if no SST is available. However, in fact,
this is not specified, as is evident from (9) and the following
liveness assumption:

active_path = “aeb” →
emergency_stopped ∈ Ψe

live. (13)

!sensor_failed
!goal_reached

activate_path_aeb

activate_path_sst

Fig. 11. The maximal permissiveness allows both SST and
AEB after a sensor failure.

Formulas (9) and (13) allow AEB activation when an SST
is available. Requirement (iv) is formalized the same way in
Supremica, but looking at the fragment of the Supervisory
Planner in Fig. 11 it is evident that it is not formalized
correctly. So, if it is feasible to inspect the synthesis result,
then it is possible to see this problem in the Supervisory
Planner but not always in the Reactive Planner.

Additionally, inspection of the results is important because
it can be difficult to understand exactly what is being
specified. For instance, during the formalization of the
requirements it was discovered that the Reactive Planner
stopped the RCV by setting the path to “none”. This is
not how he RCV works; it has a stopping distance when
driving. This was solved by the specification:
(active_path = “up2” ∧ driving′) →

active_path′ �= “none” ∈ Ψs
safe.

However, in large models and with subtle corner cases, it
might be difficult to find such instances without extensive
inspection or testing, which defeats one goal of using
formal methods, which is as a mean to overcome the
hurdles of inspection and testing.

5. CONCLUSION

In this paper, an existing manually implemented and for-
mally verified tactical planner for an automated vehicle
is re-implemented using Supervisory Control Theory and
Reactive Synthesis. Specifically, Supremica is used for the
synthesis of an SCT Supervisory Planner, and TuLiP is
used for the synthesis of an RS Reactive Planner. This
paper investigates how these two tools can be used to syn-
thesize tactical planners fulfilling the same requirements,
and what adaptations of the model and requirements that
are required to achieve that.

Since models and requirements were available from before,
it was hypothesized that the synthesis effort would be
low. However, this hypothesis assumes that the models
and requirements can be used without much rework. This
is not generally the case, since formal verification does
not need a strict separation between the environment
and the planner, while synthesis, especially in the case
of TuLiP, needs separation to make sense. Also, during
verification, the requirements are only used to verify some
selected properties, and they are not necessarily complete;
some requirements are implicitly defined in the tactical
planner’s implementation. So, although the requirements
and model are available, it can be difficult to separate the
environment model from the tactical planner model and
to extract implicit requirements from the model of the
tactical planner. This lack of separation slows the process.

Furthermore, the verification model was modeled in
Promela, an imperative modeling language, whereas Suprem-
ica uses automata and TuLiP uses LTL. The Promela

model must be translated to automata and LTL before
synthesis, and this translation slowed the process. In
the case of Supremica the event-based automata further
complicate the modeling since ‘variable’ values must be
translated to events. Possibly, the approach developed by
Filippidis et al. (2015) might be faster when the initial
model is written in Promela and LTL is used in synthesis.

The synthesis process makes it fast and easy to introduce
new requirements, but it is under the proviso that the re-
quirements are consistent. However, in practice, it may be
very difficult to determine why a newly introduced require-
ment makes the system inconsistent, especially when de-
signing large and complicated systems. Here the available
synthesis tools provide no direct support and only present
an empty result when the requirements are inconsistent.
Supremica has the advantage of being able to simulate the
uncontrolled system; such simulations can give clues as
to where the issue lies. To us it is unknown whether this
would be an approach that could be feasible to implement
in an RS tool.

One benefit of employing synthesis is that a forced separa-
tion of the environment model and the requirements makes
it very clear which assumptions that have been made and
what is guaranteed, a distinction that can be difficult
to discern in formal verification, and almost impossible
in source code. Knowledge of the exact assumptions is
important since they define the safe operational domain in
which the tactical planner can operate. Especially TuLiP
is good for this since the separation is forced into assume-
guarantee statements, but Supremica also provides good
separation into controllable and uncontrollable events.

One significant difference between the syntheses results
and the verification is the model of the controller and
the vehicle dynamics. The Manual Planner has a con-
nection to a discrete point-mass model of the RCV, but
the Supervisory Planner and the Reactive Planner only
observe stopped/driving and ‘know’ that supplying a path
eventually leads to the goal. In this application the higher-
level abstraction is acceptable, but if requirements of the
type ‘do not crash’ are desired, the abstraction pushes
a lot of responsibility on correctness onto the controller.
The compromise between general planners and specific
requirements can be seen elsewhere. Synthesis with a close
connection to continuous dynamics might require states
for every driving location as shown in the works by Wong-
piromsarn et al. (2013), while more generic supervisors
might lack a direct connection to the continuous dynamics
as shown in the works by Korssen et al. (2018). Nilsson
et al. (2016) present two methods that are both generic
and concrete, but the feasibility of the solutions depends
on a maximal sensor range, and such constraints are not
applicable for the synthesis in this paper.

REFERENCES

Baier, C. and Katoen, J.P. (2008). Principles of Model
Checking (Representation and Mind Series). The MIT
Press.

Bender, P., Ziegler, J., and Stiller, C. (2014). Lanelets:
Efficient map representation for autonomous driving. In
IEEE Intelligent Vehicles Symposium Proceedings (IV),
420–425. doi:10.1109/IVS.2014.6856487.

452	 Jonas Krook et al. / IFAC PapersOnLine 53-4 (2020) 445–452

Bloem, R., Ehlers, R., Jacobs, S., and Könighofer, R.
(2014). How to handle assumptions in synthesis. In
K. Chatterjee, R. Ehlers, and S. Jha (eds.), Proceedings
3rd Workshop on Synthesis, volume 157 of Electronic
Proceedings in Theoretical Computer Science, 34–50.
Open Publishing Association, Vienna, Austria.

Cassandras, C.G. and Lafortune, S. (2010). Introduction
to Discrete Event Systems, 2nd Edition. Springer.

European Commission (2019). Guidelines on the exemp-
tion procedure for the EU approval of automated vehi-
cles.

Filippidis, I., Dathathri, S., Livingston, S.C., Ozay, N.,
and Murray, R.M. (2016). Control design for hybrid sys-
tems with TuLiP: The temporal logic planning toolbox.
In IEEE Conference on Control Applications (CCA),
1030–1041.

Filippidis, I., Murray, R.M., and Holzmann, G.J. (2015). A
multi-paradigm language for reactive synthesis. In Pro-
ceedings Fourth Workshop on Synthesis, SYNT 2015,
San Francisco, CA, USA, 18th July 2015, 73–97. doi:
10.4204/EPTCS.202.6.

Holzmann, G. (2003). The SPIN Model Checker: Primer
and Reference Manual. Addison-Wesley Professional,
first edition.

Klein, U. and Pnueli, A. (2011). Revisiting synthesis of
GR(1) specifications. In S. Barner, I. Harris, D. Kroen-
ing, and O. Raz (eds.), Hardware and Software: Verifica-
tion and Testing, 161–181. Springer, Berlin, Heidelberg.

Kokogias, S., Svensson, L., Pereira, G.C., Oliveira, R.,
Zhang, X., Song, X., and Mårtensson, J. (2017). De-
velopment of platform-independent system for coop-
erative automated driving evaluated in GCDC 2016.
IEEE Transactions on Intelligent Transportation Sys-
tems, PP(99), 1–13. doi:10.1109/TITS.2017.2684623.

Korssen, T., Dolk, V., Van De Mortel-Fronczak, J., Re-
niers, M., and Heemels, M. (2018). Systematic model-
based design and implementation of supervisors for ad-
vanced driver assistance systems. IEEE Transactions
on Intelligent Transportation Systems, 19(2), 533–544.
doi:10.1109/TITS.2017.2776354.

Krook, J. (2020). krooken/RCV-Synthesis: RCV-
Synthesis v1.0.1. doi:10.5281/zenodo.3695638. URL
https://doi.org/10.5281/zenodo.3695638.

Krook, J., Svensson, L., Li, Y., Feng, L., and Fabian,
M. (2019). Design and formal verification of a safe
stop supervisor for an automated vehicle. In 2019
International Conference on Robotics and Automation
(ICRA), 5607–5613. doi:10.1109/ICRA.2019.8793636.

Krook, J., Zita, A., Kianfar, R., Mohejerani, S., and
Fabian, M. (2018). Modeling and synthesis of
the lane change function of an autonomous vehi-
cle. IFAC-PapersOnLine, 51(7), 133–138. doi:
https://doi.org/10.1016/j.ifacol.2018.06.291. 14th IFAC
Workshop on Discrete Event Systems (WODES).

Kupferman, O., Madhusudan, P., Thiagarajan, P., and
Vardi, M. (2000). Open systems in reactive environ-
ments: Control and synthesis. In CONCUR 2000 —
Concurrency Theory, volume 1877 of Lecture Notes in
Computer Science. Springer, Berlin, Heidelberg.

Kutzer, K. (2016). Path Planning in Unstructured Envi-
ronments: A Real-time Hybrid A∗ Implementation for
Fast and Deterministic Path Generation for the KTH
Research Concept Vehicle. Master’s thesis, KTH, Royal

Institute of Technology.
Malik, R., Åkesson, K., Flordal, H., and Fabian, M. (2017).

Supremica – an efficient tool for large-scale discrete
event systems. IFAC-PapersOnLine, 50(1), 5794 – 5799.
20th IFAC World Congress.

Merat, N., Jamson, A.H., Lai, F.C., Daly, M., and Carsten,
O.M. (2014). Transition to manual: Driver behaviour
when resuming control from a highly automated vehicle.
Transportation Research Part F: Traffic Psychology and
Behaviour, 27, 274 – 282. doi:10.1016/j.trf.2014.09.005.

Michon, J.A. (1985). A critical view of driver behavior
models: What do we know, what should we do? In
L. Evans and R.C. Schwing (eds.), Human Behavior and
Traffic Safety, 485–524. Springer US, Boston, MA. doi:
10.1007/978-1-4613-2173-6_19.

Nilsson, P., Hussien, O., Balkan, A., Chen, Y., Ames,
A.D., Grizzle, J.W., Ozay, N., Peng, H., and Tabuada,
P. (2016). Correct-by-construction adaptive cruise
control: Two approaches. IEEE Transactions on
Control Systems Technology, 24(4), 1294–1307. doi:
10.1109/TCST.2015.2501351.

Piterman, N., Pnueli, A., and Sa’ar, Y. (2006). Synthesis
of Reactive(1) designs. In E. Emerson and K. Namjoshi
(eds.), Verification, Model Checking, and Abstract In-
terpretation, volume 3855 of Lecture Notes in Computer
Science, 364–380. Springer.

Pnueli, A. (1977). The temporal logic of programs. In
18th Annual Symposium on Foundations of Computer
Science, 46–57.

Ramadge, P.J.G. and Wonham, W.M. (1989). The control
of discrete event systems. Proceedings of the IEEE,
77(1), 81–98.

Ramezani, Z., Krook, J., Fei, Z., Fabian, M., and Åkesson,
K. (2019). Comparative case studies of reactive syn-
thesis and supervisory control. In 2019 18th Eu-
ropean Control Conference (ECC), 1752–1759. doi:
10.23919/ECC.2019.8795696.

Rudin-Brown, C.M. and Parker, H.A. (2004). Behavioural
adaptation to adaptive cruise control (ACC): implica-
tions for preventive strategies. Transportation Research
Part F: Traffic Psychology and Behaviour, 7(2), 59 – 76.
doi:10.1016/j.trf.2004.02.001.

Svensson, L., Masson, L., Mohan, N., Ward, E., Brenden,
A.P., Feng, L., and Törngren, M. (2018). Safe stop
trajectory planning for highly automated vehicles: An
optimal control problem formulation. In 2018 IEEE
Intelligent Vehicles Symposium (IV), 517–522. doi:
10.1109/IVS.2018.8500536.

Wongpiromsarn, T., Topcu, U., and Murray, R.M. (2013).
Synthesis of control protocols for autonomous systems.
Unmanned Systems, 01(01), 21–39.

Wongpiromsarn, T., Topcu, U., Ozay, N., Xu, H., and
Murray, R. (2011). TuLiP: A software toolbox for
receding horizon temporal logic planning. In Proceedings
of the 14th International Conference on Hybrid Systems:
Computation and Control, 313–314.

Zita, A., Mohajerani, S., and Fabian, M. (2017). Appli-
cation of formal verification to the lane change module
of an autonomous vehicle. In 13th IEEE Conference on
Automation Science and Engineering (CASE), 932–937.
doi:10.1109/COASE.2017.8256223.

