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Abstract: Reinforcement learning (RL) is an agent based AI learning method, where learning and
optimization are combined. Dynamic programming is then performed iteratively, based on reward and
next state observations from the system to be controlled. A brief survey of RL is given, followed by an
evaluation of a recently proposed method to include temporal logic safety and liveness guarantees in
RL, here combined with classical performance optimization. RL is based on Markov decision processes
(MDPs), and to reduce the number of observations from the system, a modular MDP framework is
proposed. In the learning process, it is then assumed that some parts of the system are represented
by known MDP models, while other parts can be estimated by observations from the real system.
Local information from the modular system may then be used to reduce the computational complexity,
especially in the handling of safety properties.
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1. INTRODUCTION

Formal verification and optimization of probabilistic systems
are often performed based on MDPs (Baier and Katoen, 2008;
Puterman, 2014). An MDP is a dynamic model including a
number of parameters, where especially the parameters of the
transition probability and reward functions are often unknown
or at least uncertain. When a controller is designed based on an
MDP, it is then natural to include a learning procedure, where
a control policy is determined online based on data from the
system to be controlled.

In adaptive control such a learning procedure is included,
where often a model of the plant to be controlled is estimated
by for instance recursive least square estimation (Astrom and
Wittenmark, 2008). Based on the estimated plant model, a con-
trol policy is then designed on-line. When the plant dynamics
changes, the estimated plant model is also updated and the
control policy is adapted to the modified plant dynamics. An
alternative to this indirect control policy adaption, where the
policy depends on the estimated plant model, is to directly
determine a control policy based on online data from the plant.
In machine learning such a direct adaption procedure has been
proposed, called reinforcement learning (RL).

RL is a popular agent based AI learning method, where learning
and optimization is performed based on a so called Q-function.
The Q-function is a modified value function in the optimization
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that depends on both the system state and possible actions. It is
estimated from real or simulated system data, where the next
state and resulting reward are observed as a result of a given ac-
tion, decided by the agent. The optimization of a control policy
is performed by a modified dynamic programming procedure
for MDPs, where the policy is directly determined by the Q-
function (Bertsekas, 2019; Sutton and Barto, 2018; Busoniu
et al., 2010; Gosavi, 2015).

RL is a black box learning method, where there are no guar-
antees on logical properties of the resulting controlled system.
Recently, some methods have been proposed where the closed
loop behavior also includes temporal logic guarantees. Sadigh
et al. (2014) proposed a transformation of linear temporal logic
(LTL) properties to an MDP optimization problem, based on a
Rabin automaton and solved by Q-learning. Recently, the Rabin
automaton with its double exponential complexity and complex
acceptance condition was replaced by the Limit Deterministic
Büchi Automaton (LDBA) in (Hasanbeig et al., 2019a), mainly
motivated by the simplified acceptance condition. In (Hasan-
beig et al., 2019b) this procedure was extended to also include
uncertainties in the state labelling function.

This model-free Q-learning procedure is in this paper restricted
to LTL formulas with corresponding deterministic Büchi au-
tomata, which further simplifies the acceptance condition. It is
also argued that most LTL formulas of practical interest can
be translated to this deterministic form (Alur and Torre, 2001).
This formulation is evaluated in this paper and also combined
with ordinary performance optimization. In (Aksaray et al.,
2016), Q-learning incorporates signal temporal logic specifica-
tions, and Alshiekh et al. (2018) suggest a shield that corrects
actions from the agent, if they violate safety specifications.

A basic problem with the model-free Q-learning procedure is
the requirement of large data sets. The solution to this problem
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or at least uncertain. When a controller is designed based on an
MDP, it is then natural to include a learning procedure, where
a control policy is determined online based on data from the
system to be controlled.

In adaptive control such a learning procedure is included,
where often a model of the plant to be controlled is estimated
by for instance recursive least square estimation (Astrom and
Wittenmark, 2008). Based on the estimated plant model, a con-
trol policy is then designed on-line. When the plant dynamics
changes, the estimated plant model is also updated and the
control policy is adapted to the modified plant dynamics. An
alternative to this indirect control policy adaption, where the
policy depends on the estimated plant model, is to directly
determine a control policy based on online data from the plant.
In machine learning such a direct adaption procedure has been
proposed, called reinforcement learning (RL).

RL is a popular agent based AI learning method, where learning
and optimization is performed based on a so called Q-function.
The Q-function is a modified value function in the optimization

� This work was supported by The Swedish Foundation for Strategic Research,
through the Smart Assembly 4.0 project, within the Winquist Laboratory;
SyTec – Systematic Testing of Cyber-Physical Systems, a Swedish Science
Foundation grant for strong research environment; Wallenberg Artificial Intel-
ligence, Autonomous Systems and Software Program (WASP) funded by Knut
and Alice Wallenberg Foundation; NSFC 61673229 and the 111 International
Collaboration Project of China (No. BP2018006). The support is gratefully
acknowledged.

that depends on both the system state and possible actions. It is
estimated from real or simulated system data, where the next
state and resulting reward are observed as a result of a given ac-
tion, decided by the agent. The optimization of a control policy
is performed by a modified dynamic programming procedure
for MDPs, where the policy is directly determined by the Q-
function (Bertsekas, 2019; Sutton and Barto, 2018; Busoniu
et al., 2010; Gosavi, 2015).

RL is a black box learning method, where there are no guar-
antees on logical properties of the resulting controlled system.
Recently, some methods have been proposed where the closed
loop behavior also includes temporal logic guarantees. Sadigh
et al. (2014) proposed a transformation of linear temporal logic
(LTL) properties to an MDP optimization problem, based on a
Rabin automaton and solved by Q-learning. Recently, the Rabin
automaton with its double exponential complexity and complex
acceptance condition was replaced by the Limit Deterministic
Büchi Automaton (LDBA) in (Hasanbeig et al., 2019a), mainly
motivated by the simplified acceptance condition. In (Hasan-
beig et al., 2019b) this procedure was extended to also include
uncertainties in the state labelling function.

This model-free Q-learning procedure is in this paper restricted
to LTL formulas with corresponding deterministic Büchi au-
tomata, which further simplifies the acceptance condition. It is
also argued that most LTL formulas of practical interest can
be translated to this deterministic form (Alur and Torre, 2001).
This formulation is evaluated in this paper and also combined
with ordinary performance optimization. In (Aksaray et al.,
2016), Q-learning incorporates signal temporal logic specifica-
tions, and Alshiekh et al. (2018) suggest a shield that corrects
actions from the agent, if they violate safety specifications.

A basic problem with the model-free Q-learning procedure is
the requirement of large data sets. The solution to this problem
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is performed by a modified dynamic programming procedure
for MDPs, where the policy is directly determined by the Q-
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RL is a black box learning method, where there are no guar-
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Recently, some methods have been proposed where the closed
loop behavior also includes temporal logic guarantees. Sadigh
et al. (2014) proposed a transformation of linear temporal logic
(LTL) properties to an MDP optimization problem, based on a
Rabin automaton and solved by Q-learning. Recently, the Rabin
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motivated by the simplified acceptance condition. In (Hasan-
beig et al., 2019b) this procedure was extended to also include
uncertainties in the state labelling function.

This model-free Q-learning procedure is in this paper restricted
to LTL formulas with corresponding deterministic Büchi au-
tomata, which further simplifies the acceptance condition. It is
also argued that most LTL formulas of practical interest can
be translated to this deterministic form (Alur and Torre, 2001).
This formulation is evaluated in this paper and also combined
with ordinary performance optimization. In (Aksaray et al.,
2016), Q-learning incorporates signal temporal logic specifica-
tions, and Alshiekh et al. (2018) suggest a shield that corrects
actions from the agent, if they violate safety specifications.

A basic problem with the model-free Q-learning procedure is
the requirement of large data sets. The solution to this problem
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is generally to utilize as much system information as possi-
ble. A modular approach is therefore suggested in this paper,
where local learning and analysis can reduce the computational
complexity. Partial information can for instance be used to
generate safety restrictions by local synthesis. Models for some
parts of the system may be known, while other parts can be
estimated, and local abstractions can be performed that still
preserve global properties. These examples of local learning
and analysis are all based on a modular formulation of MDPs.

This paper contains the following contributions. 1) A brief
survey of RL is given, including a short but complete derivation
of the model-free Q-learning algorithm. 2) A recently proposed
temporal logic and model-free Q-learning procedure is eval-
uated, including some minor extensions and simplifications.
3) A synchronous composition of modular MDPs is proposed
in a flexible setting, handling different types of atomic propo-
sitions. 4) It is shown how local analysis, based on partial
information of a modular system, can be performed to improve
especially the handling of safety guarantees in the optimization
procedure.

After this introduction, MDPs and their synchronous compo-
sition are defined in Section 2, followed by a brief survey of
reinforcement learning in Section 3. Linear temporal logic and
related Büchi automata are defined in Section 4, including the
Büchi weighted product MDP. A model-free Q-learning pro-
cedure including LTL specifications is evaluated in Section 5.
Finally, in Section 6 it is shown how this procedure can be
extended for modular systems, where model-free and model-
based learning are combined. This is especially focussed on
local handling of safety properties.

2. MODULAR MARKOV DECISION PROCESSES

A Markov decision process (MDP) can be considered as a
transition system with initial and transition probability distribu-
tions (Puterman, 2014). Generally, a transition system includes
both state and transition labels (Baier and Katoen, 2008). An
automaton including marked and forbidden states can therefore
be considered as a special case of a transition system, where the
state labels are limited to marked and forbidden states.

In the discrete event system community, transition labels are
called events (Cassandras and Lafortune, 2008), while in com-
puter science and operation research transition labels are most
often called actions (Milner, 1989; Baier and Katoen, 2008;
Poole and Mackworth, 2017; Puterman, 2014). Also note that
in probability theory, an event is a subset of all possible out-
comes of a random experiment. Hence, all transition labels in an
MDP are called actions, although they may not only represent
(control) actions but also faults and discrete updates of sensor
signals, where the notion event can be seen as a more natural
expression.

2.1 MDP with state labels

An MDP is now defined to be able to specify temporal logic
properties on state labels.
Definition 1. (Markov Decision Process). A Markov decision
process is a tuple

M = 〈S,A, P, s0, AP, λ, ρ〉,
where

(i) S is a countable set of states,
(ii) A is a finite set of actions, where A(s) is the set of

available actions in state s,
(iii) P : S × A × S → [0, 1] is a transition probability

function such that P (s, a, s′) is the transition probability
for transition (s, a, s′) from state s to state s′ for action
a ∈ A(s), where

∑
s′∈S P (s, a, s′) = 1,

(iv) s0 is an initial state,

(v) AP is a set of atomic propositions,

(vi) λ : X → 2AP is a state labeling function,
(vii) ρ : S×A×S → R is a reward function, where ρ(s, a, s′)

is the immediate reward when the transition (s, a, s′) is
performed. �

The image of the state labeling function λ(s) includes those
atomic propositions that are satisfied (true) in state s. Thus, the
propositional formula

ψλ(s) =
∧

p∈λ(s)

p ∧
∧

p∈AP\λ(s)

¬p

is satisfied in state s. Using the satisfaction relation �, this is
formally expressed as s � ψλ. If no state label is shown at a
state s of a transition system, the default state label is assumed
to be λ(s) = ∅.

We also observe that for a deterministic MDP, there is only one
initial state, and for each state s ∈ S and action a ∈ A(s), the
transition probability P (s, a, s′) = 1 for only one specific next
state s′.

Control policy A control policy determines the action to be
taken in each individual state. A memory-less control policy,
which only depends on the current state, will be formulated
in this paper. This state feedback policy is possible, since
desired specifications, in this paper especially temporal logic
specifications, are included in the model to be used for control
policy design, see Sect. 4.

A control policy for an MDP can be either probabilistic or
deterministic. A probabilistic control policy is a mapping π :
S×A → [0, 1], where π(s, a) determines the probability to take
action a in state s, and

∑
a∈A(s) π(s, a) = 1. A deterministic

control policy is simplified to a mapping π : S → A, where
a = π(s) is the action to be taken in state s. In this paper it is
enough to consider deterministic control policies.

2.2 Synchronization of modular MDPs

To be able to join subsystems, the synchronous composition of
two MDPs M1 and M2 is also defined. This is a minor gen-
eralization of Bacci et al. (2013), including a flexible definition
of atomic propositions of the composed system M1‖M2.

The set of atomic propositions AP for M1‖M2 is obtained by
taking the union or intersection of the elements in the individual
sets AP1 and AP2. More precisely, the propositions in AP
are divided into a set of AND-state labels AP∧ and a set of
OR-state labels AP∨ such that AP∧

i ⊆ AP∧, AP∨
i ⊆ AP∨

and AP∧
i ∪̇AP∨

i = APi for i = 1, 2. In the synchronous
composition, the union is taken on the OR-state labels and the
intersection on the AND-state labels.

Forbidden states are examples of OR-state labels, since it is
enough that either s1 or s2 is forbidden to make the composed
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is generally to utilize as much system information as possi-
ble. A modular approach is therefore suggested in this paper,
where local learning and analysis can reduce the computational
complexity. Partial information can for instance be used to
generate safety restrictions by local synthesis. Models for some
parts of the system may be known, while other parts can be
estimated, and local abstractions can be performed that still
preserve global properties. These examples of local learning
and analysis are all based on a modular formulation of MDPs.

This paper contains the following contributions. 1) A brief
survey of RL is given, including a short but complete derivation
of the model-free Q-learning algorithm. 2) A recently proposed
temporal logic and model-free Q-learning procedure is eval-
uated, including some minor extensions and simplifications.
3) A synchronous composition of modular MDPs is proposed
in a flexible setting, handling different types of atomic propo-
sitions. 4) It is shown how local analysis, based on partial
information of a modular system, can be performed to improve
especially the handling of safety guarantees in the optimization
procedure.

After this introduction, MDPs and their synchronous compo-
sition are defined in Section 2, followed by a brief survey of
reinforcement learning in Section 3. Linear temporal logic and
related Büchi automata are defined in Section 4, including the
Büchi weighted product MDP. A model-free Q-learning pro-
cedure including LTL specifications is evaluated in Section 5.
Finally, in Section 6 it is shown how this procedure can be
extended for modular systems, where model-free and model-
based learning are combined. This is especially focussed on
local handling of safety properties.

2. MODULAR MARKOV DECISION PROCESSES

A Markov decision process (MDP) can be considered as a
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both state and transition labels (Baier and Katoen, 2008). An
automaton including marked and forbidden states can therefore
be considered as a special case of a transition system, where the
state labels are limited to marked and forbidden states.

In the discrete event system community, transition labels are
called events (Cassandras and Lafortune, 2008), while in com-
puter science and operation research transition labels are most
often called actions (Milner, 1989; Baier and Katoen, 2008;
Poole and Mackworth, 2017; Puterman, 2014). Also note that
in probability theory, an event is a subset of all possible out-
comes of a random experiment. Hence, all transition labels in an
MDP are called actions, although they may not only represent
(control) actions but also faults and discrete updates of sensor
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where
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(ii) A is a finite set of actions, where A(s) is the set of

available actions in state s,
(iii) P : S × A × S → [0, 1] is a transition probability

function such that P (s, a, s′) is the transition probability
for transition (s, a, s′) from state s to state s′ for action
a ∈ A(s), where

∑
s′∈S P (s, a, s′) = 1,

(iv) s0 is an initial state,

(v) AP is a set of atomic propositions,

(vi) λ : X → 2AP is a state labeling function,
(vii) ρ : S×A×S → R is a reward function, where ρ(s, a, s′)

is the immediate reward when the transition (s, a, s′) is
performed. �

The image of the state labeling function λ(s) includes those
atomic propositions that are satisfied (true) in state s. Thus, the
propositional formula

ψλ(s) =
∧

p∈λ(s)

p ∧
∧

p∈AP\λ(s)

¬p

is satisfied in state s. Using the satisfaction relation �, this is
formally expressed as s � ψλ. If no state label is shown at a
state s of a transition system, the default state label is assumed
to be λ(s) = ∅.

We also observe that for a deterministic MDP, there is only one
initial state, and for each state s ∈ S and action a ∈ A(s), the
transition probability P (s, a, s′) = 1 for only one specific next
state s′.

Control policy A control policy determines the action to be
taken in each individual state. A memory-less control policy,
which only depends on the current state, will be formulated
in this paper. This state feedback policy is possible, since
desired specifications, in this paper especially temporal logic
specifications, are included in the model to be used for control
policy design, see Sect. 4.

A control policy for an MDP can be either probabilistic or
deterministic. A probabilistic control policy is a mapping π :
S×A → [0, 1], where π(s, a) determines the probability to take
action a in state s, and

∑
a∈A(s) π(s, a) = 1. A deterministic

control policy is simplified to a mapping π : S → A, where
a = π(s) is the action to be taken in state s. In this paper it is
enough to consider deterministic control policies.

2.2 Synchronization of modular MDPs

To be able to join subsystems, the synchronous composition of
two MDPs M1 and M2 is also defined. This is a minor gen-
eralization of Bacci et al. (2013), including a flexible definition
of atomic propositions of the composed system M1‖M2.

The set of atomic propositions AP for M1‖M2 is obtained by
taking the union or intersection of the elements in the individual
sets AP1 and AP2. More precisely, the propositions in AP
are divided into a set of AND-state labels AP∧ and a set of
OR-state labels AP∨ such that AP∧

i ⊆ AP∧, AP∨
i ⊆ AP∨

and AP∧
i ∪̇AP∨

i = APi for i = 1, 2. In the synchronous
composition, the union is taken on the OR-state labels and the
intersection on the AND-state labels.

Forbidden states are examples of OR-state labels, since it is
enough that either s1 or s2 is forbidden to make the composed

state (s1, s2) forbidden. On the other hand, marked (goal)
states are examples of AND-state labels, since (s1, s2) is only
marked if both s1 and s2 are marked. Thus, there is a need to
distinguish between AND- and OR-state labels in synchronous
composition.

Another example is opacity, recently reported in (Noori-
Hosseini et al., 2019), where non-safe OR-state labels are used
in the current state opacity, while non-safe AND-state labels
are used in current state anonymity. AND or alternatively OR
synchronization is also proposed for opacity in (Mohajerani and
Lafortune, 2019). The formulation here is more flexible, since
the OR and AND conditions can be introduced individually on
each atomic proposition.
Definition 2. (Synchronous Composition). Let Mi = 〈Si,Ai,
Pi, s0i, APi, λi, ρi〉, i = 1, 2, be two MDPs where AP∧

i ⊆
AP∧, AP∨

i ⊆ AP∨ and AP∧
i ∪̇AP∨

i = APi for i = 1, 2.
The synchronous composition of M1 and M2 is then defined
as

M1‖M2 = 〈S1 × S2,A1 ∪ A2, P, (s01, s02), AP, λ, ρ〉

where

(i) the transition probability P ((s1, s2), a, (s
′
1, s

′
2))

=




P1(s1, a, s
′
1)P2(s2, a, s

′
2) a ∈ A1 ∩ A2,

P1(s1, a, s
′
1) a ∈ A1 \A2,

P2(s2, a, s
′
2) a ∈ A2 \A1,

(ii) the set of atomic propositions AP = (AP∧
1 ∩ AP∧

2 ) ∪
(AP∨

1 ∪AP∨
2 ),

(iii) the state labeling function λ : S1 × S2 → 2AP ,
(iv) the reward ρ((s1, s2), a, (s

′
1, s

′
2))

=




ρ1(s1, a, s
′
1) + ρ2(s2, a, s

′
2) a ∈ A1 ∩ A2,

ρ1(s1, a, s
′
1) a ∈ A1 \A2,

ρ2(s2, a, s
′
2) a ∈ A2 \A1,

�

Observe the two special cases, 1) A1 = A2, also called cross
product and then denoted M1×M2, and 2) A1 ∩A2 = ∅, also
called interleaving, where no shared actions are involved.

To be able to synchronize subsystems in arbitrary order is
important when modular MDPs are joined, as illustrated and
discussed in Sect. 6. The following proposition shows that this
is possible.
Proposition 1. The synchronous composition is associative,
i.e. (M1‖M2)‖M3 = M1‖(M2‖M3).

Proof: This follows by observing the associativity of the mul-
tiplication, union, conjunction and addition operators involved
in Def. 2. Note that all atomic propositions in AP are assumed
to be divided as AP∨ ∪̇AP∨, where only union operations are
performed on the OR-sets and only intersection operations on
the AND-sets. �

3. REINFORCEMENT LEARNING

Reinforcement learning (RL) is a learning procedure including
optimization based on dynamic programming of MDPs (Bert-
sekas, 2019; Sutton and Barto, 2018; Busoniu et al., 2010). A
brief introduction to RL is given in this section, first assuming

that the MDP is known, followed by a model-free online learn-
ing procedure.

3.1 Model-based Q-function

The most well known RL procedure is called Q-learning, which
is based on a reformulation of ordinary dynamic programming
for MDPs (Bertsekas, 2019). The value function in the opti-
mization is then extended to not only depend on the current
state s, but also on available actions a ∈ A(s) in this state.
The extended value function Q : S × A → R, also called the
action-value function, has given the name to this RL procedure
(Sutton and Barto, 2018). First, the relation between dynamic
programming and the Q-function is clarified, followed by a
model-free Q-learning formulation.

Dynamic programming For a given initial state s0, different
transitions (sk, ak, sk+1), k = 0, 1, 2, . . . will take place,
depending on which available actions ak ∈ A(sk) that are
selected. We are searching for a control policy ak = π(sk),
k = 0, 1, 2, . . . that maximizes the following expected infinite
sum of discounted random rewards:

V (s0) = E
[ ∞∑
k=0

γkρ(sk, ak, sk+1)

]
.

The discount factor γ, where 0 < γ < 1, determines how
far ahead rewards should influence a control policy. For an
arbitrary state s and a given policy π, the Bellman Equation
is

V π(s) =
∑
s′∈S

P (s, a, s′)[ρ(s, a, s′) + γV π(s′)].

The Bellman Optimality Equation shows that the optimal state-
value function V ∗ should satisfy for each s ∈ S

V ∗(s) = max
a∈A(s)

∑
s′∈S

P (s, a, s′)
[
ρ(s, a, s′) + γV ∗(s′)

]
.

This expression is the core of dynamic programming for MDPs
(Bertsekas, 2019) .

Q-function For a state-action pair (s, a), the Q-function is now
defined as

Q(s, a) =
∑
s′∈S

P (s, a, s′)
[
ρ(s, a, s′) + γV ∗(s′)

]
.

This means that the Bellman Optimality Equation equation can
be reformulated as V ∗(s) = maxa∈A(s) Q(s, a), and the Q-
function can be expressed as

Q(s, a) =
∑
s′∈S

P (s, a, s′)
[
ρ(s, a, s′) + γ max

a′∈A(s′)
Q(s′, a′)

]
.

(1)
Thus, for each state s the optimal control policy is

π(s) = arg max
a∈A(s)

Q(s, a). (2)

The dependency on available actions in Q(s, a) means that
the control policy π is immediately achieved by the maximum
operator. This is a nontrivial task when only the optimal value
function V ∗ is known. Apart from that, the introduction of
the action-value function Q has only resulted in an alternative
formulation of the dynamic programming problem.

The following subsections show that a model-free optimization
can also be formulated based on the Q-function. This formu-
lation does not include the transition probability and reward
functions P and ρ.
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3.2 Q-learning for deterministic systems

To obtain a model-free Q-learning formulation, a deterministic
model is first considered. It means that the transition probability
P (s, a, s′) = 1 for one specific next state s′. Thus, the probabil-
ity distribution is simplified to one unique transition (s, a, s′),
and the Q-function in (1) is simplified to

Q(s, a) = ρ(s, a, s′) + γ max
a′∈A(s′)

Q(s′, a′).

Since Q(s, a) depends on itself at the next state (Q(s′, a′)), an
iterative procedure is required to determine this Q-function. An
estimate is then normally initiated as Q̂0(s, a) = 0 for all state-
action pairs (s, a).

When the action a is sent to the controlled system in its current
state s, the resulting next state s′ and resulting reward r′ can
be observed and fed back to the control agent. Given this
information, i.e. the tuple (s, a, s′, r′), the estimate of the Q-
function can be updated as

Q̂k+1(s, a) = r′ + γ max
a′∈A(s′)

Q̂k(s
′, a′). (3)

In this update, no underlying model is involved, only the tuple
(s, a, s′, r′) and the estimate Q̂. If A(s) is not known for some
s ∈ S, it can initially be assumed that A(s) = A. If no
transition occurs when an action a is sent to the controlled
system in its state s, that action is removed from A(s).

3.3 Q-learning for probabilistic systems

The Q-function in (1) can be interpreted as an expectation
(average) of the random variable ρ(s, a, s′) + γmaxa′∈A(s′)

Q(s′, a′). Generally, the average m of a random variable is
estimated as m̂k =

∑k
i=1 xi/k, given a set of samples xi,

i = 1 . . . , k. To obtain a recursive formulation of this average
estimate, we observe that (k+1)m̂k+1 = km̂k+xk+1+m̂k−
m̂k. Thus,

m̂k+1 = m̂k + αk+1(xk+1 − m̂k),

where the learning rate αk = 1/k. Indeed, this is the stochas-
tic approximation algorithm proposed by Robbins and Monro
(1951). Replacing the average estimate m̂k with Q̂k(s, a), and
the sample xk+1 with r′ + γmaxa′∈A(s′) Q̂k(s

′, a′), gives the
following update of the Q-function estimate:

Q̂k+1(s, a) = Q̂k(s, a) +

αk+1

[
r′ + γ max

a′∈A(s′)
Q̂k(s

′, a′)− Q̂k(s, a)
]

(4)

For deterministic systems, the optimal learning rate is αk+1 = 1,
which coincides with (3).

Learning rate Generally, the learning rate αk must satisfy the
conditions

∑∞
k=0 α

2
k < ∞ and

∑∞
k=0 αk = ∞, to be able

to guarantee that the estimate Q̂ converges to the optimal Q-
function (1). The simple learning rate αk = 1/k, motivated by
the similarity with the average estimate, fulfills the convergence
conditions, but in practice it often decreases too quickly towards
zero.

The following slower reductions are therefore proposed by
Gosavi (2015), either αk = log(k)/k, or αk = A/(B + k)
with for instance A = 150 and B = 300. Especially, the
second proposal is shown to result in Q̂-factors close to the

optimum, while the simple choice αk = 1/k, often proposed in
the literature, shows large deviations between Q and Q̂ (Gosavi,
2015).

Action exploration In the Q-learning procedure, the conver-
gence of Q̂ towards Q is only guaranteed if all state-action
pairs are updated infinitely many times. In practice, a rea-
sonable trade-off between exploration and exploitation is ob-
tained by the ε-greedy procedure, which is often proposed.
An action is then chosen with equal but reduced probability
Pk(s) = 1/k/|A(s)| as k increases. This is done for each
action a ∈ A(s) and for all states s. A greedy (asymptotically
optimal) action according to (2) is then chosen with probability
1− Pk(s). The latter guarantees that all actions asymptotically
become greedy, since Pk(s) → 0 when k → ∞. A common
alternative to the ε-greedy procedure is to use Boltzmann ex-
ploration (Sutton and Barto, 2018).

Complex models The model-free updates of Q̂ for all feasible
state-action pairs are assumed to be stored in a look-up table.
This limits the application of this learning method to about
106 − 108 state-action pairs. For larger state spaces, approxi-
mate Q-functions can be used based on parametric models, for
instance neural networks.

4. TEMPORAL LOGIC AND RELATED AUTOMATA

Temporal logic is often used to formulate specifications of
system properties. Such formal specifications are used in model
checking (Baier and Katoen, 2008), but also for synthesis of
reactive systems (Pnueli and Rosner, 1989). The two most well
known temporal logics are linear temporal logic (LTL) and
computational tree logic (CTL).

4.1 Syntax and semantics of LTL

For a given sequence of states (a linear order), and a set AP of
atomic propositions, LTL specifies when these propositions are
true or false.
Definition 3. (Syntax of LTL). Given a set AP of atomic propo-
sitions, LTL formulas are defined inductively by the grammar

ϕ ::= p | ¬ϕ | ϕ1 ∧ ϕ2 | ©ϕ | ϕ1Uϕ2,

where p ∈ AP . �

The additional standard connectives for propositional formulas
are obtained as derived formulas. This includes ϕ1 ∨ ϕ2

def
=

¬ (¬ϕ1 ∧ ¬ϕ2), ϕ1 → ϕ2
def
= ¬ϕ1 ∨ ϕ2, while the logical

constants true and false are defined as � def
= p ∨ ¬p and ⊥ def

=
¬�. The modalities eventually and always are derived from the
until operator as ♦ϕ

def
= �Uϕ, �ϕ

def
= ¬♦¬ϕ. These derived

operators are motivated by the fact that �Uϕ holds for all
sequences where ϕ is eventually (finally) true, but before that
any propositional statements are accepted. Then, ϕ is eventually
true, and ♦ϕ holds for all such sequences. Furthermore, ¬♦¬ϕ
holds for all sequences where there is no current or future time
instant where ¬ϕ is true. Thus, ϕ is true for all moments of
time, and therefore �ϕ holds.

The combined formula �♦ϕ means that ♦ϕ will always hold.
This can also be expressed as “eventually ϕ” is repeated forever,
or in other words that ϕ has to be true infinitely many times. An-
other formulation of this fact is therefore “infinitely often ϕ”.
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3.2 Q-learning for deterministic systems

To obtain a model-free Q-learning formulation, a deterministic
model is first considered. It means that the transition probability
P (s, a, s′) = 1 for one specific next state s′. Thus, the probabil-
ity distribution is simplified to one unique transition (s, a, s′),
and the Q-function in (1) is simplified to

Q(s, a) = ρ(s, a, s′) + γ max
a′∈A(s′)

Q(s′, a′).

Since Q(s, a) depends on itself at the next state (Q(s′, a′)), an
iterative procedure is required to determine this Q-function. An
estimate is then normally initiated as Q̂0(s, a) = 0 for all state-
action pairs (s, a).

When the action a is sent to the controlled system in its current
state s, the resulting next state s′ and resulting reward r′ can
be observed and fed back to the control agent. Given this
information, i.e. the tuple (s, a, s′, r′), the estimate of the Q-
function can be updated as

Q̂k+1(s, a) = r′ + γ max
a′∈A(s′)

Q̂k(s
′, a′). (3)

In this update, no underlying model is involved, only the tuple
(s, a, s′, r′) and the estimate Q̂. If A(s) is not known for some
s ∈ S, it can initially be assumed that A(s) = A. If no
transition occurs when an action a is sent to the controlled
system in its state s, that action is removed from A(s).

3.3 Q-learning for probabilistic systems

The Q-function in (1) can be interpreted as an expectation
(average) of the random variable ρ(s, a, s′) + γmaxa′∈A(s′)

Q(s′, a′). Generally, the average m of a random variable is
estimated as m̂k =

∑k
i=1 xi/k, given a set of samples xi,

i = 1 . . . , k. To obtain a recursive formulation of this average
estimate, we observe that (k+1)m̂k+1 = km̂k+xk+1+m̂k−
m̂k. Thus,

m̂k+1 = m̂k + αk+1(xk+1 − m̂k),

where the learning rate αk = 1/k. Indeed, this is the stochas-
tic approximation algorithm proposed by Robbins and Monro
(1951). Replacing the average estimate m̂k with Q̂k(s, a), and
the sample xk+1 with r′ + γmaxa′∈A(s′) Q̂k(s

′, a′), gives the
following update of the Q-function estimate:

Q̂k+1(s, a) = Q̂k(s, a) +

αk+1

[
r′ + γ max

a′∈A(s′)
Q̂k(s

′, a′)− Q̂k(s, a)
]

(4)

For deterministic systems, the optimal learning rate is αk+1 = 1,
which coincides with (3).

Learning rate Generally, the learning rate αk must satisfy the
conditions

∑∞
k=0 α

2
k < ∞ and

∑∞
k=0 αk = ∞, to be able

to guarantee that the estimate Q̂ converges to the optimal Q-
function (1). The simple learning rate αk = 1/k, motivated by
the similarity with the average estimate, fulfills the convergence
conditions, but in practice it often decreases too quickly towards
zero.

The following slower reductions are therefore proposed by
Gosavi (2015), either αk = log(k)/k, or αk = A/(B + k)
with for instance A = 150 and B = 300. Especially, the
second proposal is shown to result in Q̂-factors close to the

optimum, while the simple choice αk = 1/k, often proposed in
the literature, shows large deviations between Q and Q̂ (Gosavi,
2015).

Action exploration In the Q-learning procedure, the conver-
gence of Q̂ towards Q is only guaranteed if all state-action
pairs are updated infinitely many times. In practice, a rea-
sonable trade-off between exploration and exploitation is ob-
tained by the ε-greedy procedure, which is often proposed.
An action is then chosen with equal but reduced probability
Pk(s) = 1/k/|A(s)| as k increases. This is done for each
action a ∈ A(s) and for all states s. A greedy (asymptotically
optimal) action according to (2) is then chosen with probability
1− Pk(s). The latter guarantees that all actions asymptotically
become greedy, since Pk(s) → 0 when k → ∞. A common
alternative to the ε-greedy procedure is to use Boltzmann ex-
ploration (Sutton and Barto, 2018).

Complex models The model-free updates of Q̂ for all feasible
state-action pairs are assumed to be stored in a look-up table.
This limits the application of this learning method to about
106 − 108 state-action pairs. For larger state spaces, approxi-
mate Q-functions can be used based on parametric models, for
instance neural networks.

4. TEMPORAL LOGIC AND RELATED AUTOMATA

Temporal logic is often used to formulate specifications of
system properties. Such formal specifications are used in model
checking (Baier and Katoen, 2008), but also for synthesis of
reactive systems (Pnueli and Rosner, 1989). The two most well
known temporal logics are linear temporal logic (LTL) and
computational tree logic (CTL).

4.1 Syntax and semantics of LTL

For a given sequence of states (a linear order), and a set AP of
atomic propositions, LTL specifies when these propositions are
true or false.
Definition 3. (Syntax of LTL). Given a set AP of atomic propo-
sitions, LTL formulas are defined inductively by the grammar

ϕ ::= p | ¬ϕ | ϕ1 ∧ ϕ2 | ©ϕ | ϕ1Uϕ2,

where p ∈ AP . �

The additional standard connectives for propositional formulas
are obtained as derived formulas. This includes ϕ1 ∨ ϕ2

def
=

¬ (¬ϕ1 ∧ ¬ϕ2), ϕ1 → ϕ2
def
= ¬ϕ1 ∨ ϕ2, while the logical

constants true and false are defined as � def
= p ∨ ¬p and ⊥ def

=
¬�. The modalities eventually and always are derived from the
until operator as ♦ϕ

def
= �Uϕ, �ϕ

def
= ¬♦¬ϕ. These derived

operators are motivated by the fact that �Uϕ holds for all
sequences where ϕ is eventually (finally) true, but before that
any propositional statements are accepted. Then, ϕ is eventually
true, and ♦ϕ holds for all such sequences. Furthermore, ¬♦¬ϕ
holds for all sequences where there is no current or future time
instant where ¬ϕ is true. Thus, ϕ is true for all moments of
time, and therefore �ϕ holds.

The combined formula �♦ϕ means that ♦ϕ will always hold.
This can also be expressed as “eventually ϕ” is repeated forever,
or in other words that ϕ has to be true infinitely many times. An-
other formulation of this fact is therefore “infinitely often ϕ”.

The reverse combination ♦�ϕ implies that eventually �ϕ will
hold, and therefore eventually “always ϕ” is satisfied. Alterna-
tively, this can be expressed as eventually or finally ϕ will hold
forever.
Definition 4. (Semantics of LTL). For a set of atomic proposi-
tions AP , consider an infinite sequence σ = σ(0)σ(1)σ(2) . . .,
where the value σ(t) of the function σ : N → 2AP in-
cludes the set of all propositions p ∈ AP that are true
at time instant t ∈ N. Furthermore, the infinite sequence
σk = σ(k)σ(k+1)σ(k+2) . . . is the suffix of the sequence σ
starting at time instant k. The satisfaction relation � between
the sequence σ and an LTL formula ϕ is here defined in-
ductively as (1) σ � p ⇔ p ∈ σ(0), i.e. σ(0) � p,
(2) σ � ¬ϕ ⇔ σ � ϕ, (3) σ � ϕ1 ∧ ϕ2 ⇔ σ � ϕ1 and σ � ϕ2,
(4) σ � ©ϕ ⇔ σ1 � ϕ, (5) σ � ϕ1Uϕ2 ⇔ (∃k ≥ 0)σk �
ϕ2 and (∀j ∈ [0 . . k−1])σj � ϕ1. �

4.2 Büchi automata for LTL formulas

LTL specifies properties of infinite sequences σ = σ(0)σ(1)
σ(2) . . ., where the symbols σ(i) ∈ Σ = 2AP and σ ∈ Σω .
Any subset L ⊆ Σω , called an ω-language, can also be used
to specify properties that are equivalent to LTL specifications.
For instance, the formulas �p, ♦q, pU q, and �♦p can also be
expressed as the regular ω-languages pω , �∗q�ω , p∗q�ω , and
(�∗p)ω . In the same way as a regular language for finite words
can be recognized by a finite automaton, a regular ω-language
can be recognized by a Büchi automaton.
Definition 5. (Büchi Automaton). A Büchi automaton is a tu-
ple B = 〈Q,Σ, δ, q0,Qm, qf 〉, where Q is a finite set of states,
Σ ⊆ 2AP is a finite set of symbols, δ : Q × Σ → 2Q is a
transition function, q0 is an initial state, Qm is a set of marked
(goal) states, and qf is a forbidden state. �

The main difference between a finite automaton and a Büchi
automaton is the acceptance condition, where a marked state of
a finite automaton must be reached one time, while a marked
state in a Büchi automaton must be reached infinitely many
times. By introducing a state label, say M , for all marked states,
the acceptance conditions can be expressed in LTL as ♦M for a
finite automaton and �♦M for a Büchi automaton. A marked
state is indicated by a double circle. The forbidden state qf ,
indicated by a cross, is included as a trap state to be reached for
all non-accepted words.

An additional difference between a Büchi and a finite automa-
ton is that a nondeterministic Büchi automaton (NBA) can not
be transformed to a deterministic Büchi automaton (DBA),
which is possible for a corresponding finite automaton. Since
verification and synthesis of MDPs generally require DBAs,
more complex but deterministic automata have been proposed.
The most common example is deterministic Rabin automata,
which can represent all LTL formulas. However, most LTL
formulas of practical interest can be translated to DBAs (Alur
and Torre, 2001), and in Sect. 7 another option taking care of the
nondeterminism is also discussed. Hence, DBAs are assumed
in this paper. For more details on the relation between LTL and
Büchi automata, see Baier and Katoen (2008).

4.3 Büchi weighted product MDP

To restrict the behavior of an MDP M such that it satisfies
an LTL formula ϕ, the corresponding Büchi automaton Bϕ

is synchronized with the MDP by a product model M⊗Bϕ,
sometimes called Büchi weighted product MDP or just product
MDP (Baier and Katoen, 2008).
Definition 6. (MDP-Büchi product). Given an MDP M = 〈S,
A, P, s0, AP, λ, ρ〉 and a Büchi automaton B = 〈Q,Σ, δ, q0,
Qm, qf 〉, the product MDP

M⊗B = 〈S × Q,A, P⊗, (s0, δ(q0, λ(s0))) ,

S ×Qm,S × {qf}, ρ⊗〉,
where

(i) the transition probability

P⊗((s, q), a, (s
′, q′)) =

{
P (s, a, s′) if q′ = δ(q, λ(s′)),

0 otherwise,
(ii) the reward

ρ⊗(s, q) = ρ(s) +





ρM > 0 if q ∈ Qm,

ρF < 0 if q = qf ,

0 otherwise.
�

A transition ((s, q), a, (s′, q′)) in the product system M ⊗ B,
determined by the transition probability P⊗, is restricted such
that the state label λ(s′) of the target state s′ in M satisfies the
related transition label in B. This is achieved by the condition
q′ = δ(q, λ(s′)) included in P⊗.

Forbidden states are introduced in our formulation of Büchi
automata for non-accepted words, see Fig. 1. The safety spec-
ification �¬ q in this figure specifies that no state with label q
is accepted. The forbidden state 2 is therefore introduced in Bϕ

to model that a transition in M to a state with label q is not
accepted.

In the reward function ρ⊗, an additional positive reward
ρM > 0 is added to marked states, while a negative reward
ρF < 0 is added to forbidden states. The Q-learning proce-
dure, demonstrated in the next section, will then select actions

M

1

{q}

0 2

{p}

3
a b c

c

Bϕ
ϕ = ♦p ∧ �¬q

0 1

2

q q

¬p ∧ ¬q
p ∧ ¬q

¬q

M⊗Bϕ

(1, 2) (0, 0) (2, 1) (3, 1)
a b c

c

Figure 1. A (deterministic) MDP M has state labels p and q,
and a Büchi automaton Bϕ is shown for the LTL specifi-
cation ϕ = ♦p ∧ �¬ q, including a forbidden state after
transitions with the label q. The resulting product MDP
M⊗Bϕ has two marked states, since the specification ♦p
is fulfilled both in state 2 and 3 in M.
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such that marked states, if possible, will be visited infinitely
often. On the other hand, forbidden states will be avoided,
and all together this means that a given LTL specification ϕ
will be satisfied. When ordinary performance oriented rewards
are included (ρ �= 0), conflicts between the performance and
temporal logic rewards may appear. This is further discussed in
the next section. For the case where only temporal logic rewards
are included (ρ = 0), it can be proven in a similar way as in
(Sadigh et al., 2014; Hasanbeig et al., 2019a,b) that if there
exists a policy such that ϕ can be satisfied with probability one,
the Q-learning algorithm will also find such a policy.

5. MODEL-FREE Q-LEARNING WITH AUTOMATA
SPECIFICATIONS

The model-free Q-learning procedure presented in Sect. 3, in-
cluding temporal logic specifications according to Sect. 4, will
now be evaluated. Some possible extensions are also discussed
and illustrated.

5.1 LTL specifications

Given an LTL specification ϕ, the corresponding Büchi au-
tomaton Bϕ is constructed. For a given state action pair (s, a),
the resulting next state and reward (s′, r′) are determined by
the controlled system. Together with an online execution of
the Büchi automaton, both the next product state (s′, q′) and
the reward can then be achieved on-the-fly. The update of the
Q-function estimate according to (4) is performed when the
new state and reward are available. Note that the Q-function
is constructed for the product MDP. The following examples
illustrate some typical specifications and results for small but
nontrivial examples.
Example 1. (Liveness and safety specification). The LTL for-
mula ϕ = �♦p∧�♦q∧�¬ r includes a liveness and fairness
specification, where at least one state with label p and at least
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Figure 2. MPD with probabilistic uncertainty in state 1, and
a Büchi automaton Bϕ for the desired LTL specification
ϕ = �♦p ∧ �♦q ∧ �¬ r.

one state with label q must be visited infinitely often. At the
same time a safety specification is included, specifying that no
state with label r is allowed to be visited at any time. The Büchi
automaton Bϕ for this LTL specification is shown in Fig. 2.

Applying this specification on the MDP M in Fig. 2 results
after 1000 Q-iterations in a clear decision which action to take
in the states with alternative target states. The decision is made
such that the Q-function is maximized. Note the uncertainty in
state 1, where there is a risk to reach the forbidden state 2. This
is avoided by the resulting policy π(0, 1) = a, π(9, 0) = b,
π(3, 2) = d, where the first state is the MDP state, and the
second one is the Bϕ state. The resulting state sequence in
the MDP is the loop 0, 6, 7, 8, 9, 3, 0, . . ., which means that
the fairness criterion is also fulfilled, where both the p and
the q states are visited in every loop i.e. infinitely often. The
forbidden states 2 and 10 are also always avoided. �

5.2 Alternative specifications

The basic ideas on combining Q-learning with LTL specifi-
cations, proposed by Sadigh et al. (2014); Hasanbeig et al.
(2019a,b), are indeed not limited to LTL, as illustrated in the
following example.
Example 2. (Regular language specification). In Fig. 3 the reg-
ular language L = (∅∗{p}∅∗{q})∗ is represented by an
automaton, including the forbidden behavior (repeated p or q
before the alternating state label occurs). Once again, 1000
Q-iterations give a clear policy π(2, 0) = b, π(2, 1) = b,
π(6, 0) = c, π(6, 1) = d, where the decision in state 2 is related
to the additional rewards in the alternative transitions between
state 2 and 3. In state 6 an alternation between the actions c and
d occurs due to the involved automaton G. �
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Figure 3. MPD with additional rewards in the alternative transi-
tions between state 2 and 3. The specification is in this case
a finite automaton modeling a desired alternating sequence
given by the regular language L = (∅∗{p}∅∗{q})∗.

Action based specifications and supervisory control Example 2
illustrates that any specification automaton with marked and/or
forbidden states can be included in an MDP product with cor-
responding positive and negative rewards. Indeed, also speci-
fications represented as MDPs (often without probability dis-
tributions) can be synchronized with the environment MDP, in
the same way as automata specifications are synchronized with
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such that marked states, if possible, will be visited infinitely
often. On the other hand, forbidden states will be avoided,
and all together this means that a given LTL specification ϕ
will be satisfied. When ordinary performance oriented rewards
are included (ρ �= 0), conflicts between the performance and
temporal logic rewards may appear. This is further discussed in
the next section. For the case where only temporal logic rewards
are included (ρ = 0), it can be proven in a similar way as in
(Sadigh et al., 2014; Hasanbeig et al., 2019a,b) that if there
exists a policy such that ϕ can be satisfied with probability one,
the Q-learning algorithm will also find such a policy.

5. MODEL-FREE Q-LEARNING WITH AUTOMATA
SPECIFICATIONS

The model-free Q-learning procedure presented in Sect. 3, in-
cluding temporal logic specifications according to Sect. 4, will
now be evaluated. Some possible extensions are also discussed
and illustrated.

5.1 LTL specifications

Given an LTL specification ϕ, the corresponding Büchi au-
tomaton Bϕ is constructed. For a given state action pair (s, a),
the resulting next state and reward (s′, r′) are determined by
the controlled system. Together with an online execution of
the Büchi automaton, both the next product state (s′, q′) and
the reward can then be achieved on-the-fly. The update of the
Q-function estimate according to (4) is performed when the
new state and reward are available. Note that the Q-function
is constructed for the product MDP. The following examples
illustrate some typical specifications and results for small but
nontrivial examples.
Example 1. (Liveness and safety specification). The LTL for-
mula ϕ = �♦p∧�♦q∧�¬ r includes a liveness and fairness
specification, where at least one state with label p and at least
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Figure 2. MPD with probabilistic uncertainty in state 1, and
a Büchi automaton Bϕ for the desired LTL specification
ϕ = �♦p ∧ �♦q ∧ �¬ r.

one state with label q must be visited infinitely often. At the
same time a safety specification is included, specifying that no
state with label r is allowed to be visited at any time. The Büchi
automaton Bϕ for this LTL specification is shown in Fig. 2.

Applying this specification on the MDP M in Fig. 2 results
after 1000 Q-iterations in a clear decision which action to take
in the states with alternative target states. The decision is made
such that the Q-function is maximized. Note the uncertainty in
state 1, where there is a risk to reach the forbidden state 2. This
is avoided by the resulting policy π(0, 1) = a, π(9, 0) = b,
π(3, 2) = d, where the first state is the MDP state, and the
second one is the Bϕ state. The resulting state sequence in
the MDP is the loop 0, 6, 7, 8, 9, 3, 0, . . ., which means that
the fairness criterion is also fulfilled, where both the p and
the q states are visited in every loop i.e. infinitely often. The
forbidden states 2 and 10 are also always avoided. �

5.2 Alternative specifications

The basic ideas on combining Q-learning with LTL specifi-
cations, proposed by Sadigh et al. (2014); Hasanbeig et al.
(2019a,b), are indeed not limited to LTL, as illustrated in the
following example.
Example 2. (Regular language specification). In Fig. 3 the reg-
ular language L = (∅∗{p}∅∗{q})∗ is represented by an
automaton, including the forbidden behavior (repeated p or q
before the alternating state label occurs). Once again, 1000
Q-iterations give a clear policy π(2, 0) = b, π(2, 1) = b,
π(6, 0) = c, π(6, 1) = d, where the decision in state 2 is related
to the additional rewards in the alternative transitions between
state 2 and 3. In state 6 an alternation between the actions c and
d occurs due to the involved automaton G. �
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Figure 3. MPD with additional rewards in the alternative transi-
tions between state 2 and 3. The specification is in this case
a finite automaton modeling a desired alternating sequence
given by the regular language L = (∅∗{p}∅∗{q})∗.

Action based specifications and supervisory control Example 2
illustrates that any specification automaton with marked and/or
forbidden states can be included in an MDP product with cor-
responding positive and negative rewards. Indeed, also speci-
fications represented as MDPs (often without probability dis-
tributions) can be synchronized with the environment MDP, in
the same way as automata specifications are synchronized with

plant models in supervisory control. In that case the transition
labels in the specification are actions that restrict the behavior of
the environment, instead of state labels that specify desired state
label sequences, as in Figs. 2 and 3. This shows the possibility
to also combine Q-learning and supervisory control, where
ones again rewards are introduced on marked and forbidden
states.

5.3 Safety specifications and performance rewards

Ordinary rewards are in this paper included in the term ρ in
Def. 1 and from now called performance rewards. They are
often related to time, energy and/or cost reduction. Liveness
demands in temporal logic can sometimes be replaced by
ordinary rewards. A desired goal state can for instance have
a positive reward, and fairness between two states can be
obtained by introducing rewards that are reduced if a state is
visited repeated number of times. This results in more soft
demands than classical liveness demands, but on the other hand
it may generate much more detailed control of the fairness than
just saying that every fairness state must be visited infinitely
often.

Safety demands, on the other hand, are often absolute, and
then logic criteria are natural. Since, there may be conflicts
between liveness and performance rewards, an interesting alter-
native is to only have performance and safety rewards. Liveness
demands are then expected to be reformulated as performance
rewards. In Example 2 this situation is illustrated where a sim-
ple performance reward is included, where there is a choice
between action a with reward 0.5 and action b with reward
1 in state 2 in the MDP M in Fig. 3. The safety condition
is in this case purely determined by the automaton G in the
same figure. The forbidden reward is ρF = −100, and any
conflicts between the positive performance rewards in ρ and the
safety demands can be avoided by selecting the negative size of
ρF large enough. The safety demands are then considered as
absolute demands, while paths among states where forbidden
states can be avoided are optimized based on the performance
rewards. Example 2 is a simple example of this procedure.

6. MODEL-FREE AND MODEL-BASED Q-LEARNING

So far the focus has been on model-free Q-learning. The main
problem with this approach is that it generally requires a lot
of data that often is not available in industrial applications.
In practice, some knowledge of a system is often available.
Specifically, if models are available for some parts, represented
by a number of local MDPs, these models can be joined by
the synchronous composition presented in Sect. 2. Assume for
instance that the system is divided into two MDPs M1 and M2,
where one part say M1 is known at least partly. A relevant
assumption is that for instance possible state transitions are
known in terms of the condition P (s, a, s′) > 0 (the next state
is known but not by which probability). Then offline evaluations
using the structural knowledge of M1 can be used to simplify
the online computations, see (Baier and Katoen, 2008) Chapter
10.

Safety guarantees by local analysis As a simple illustration,
consider the forbidden state 10 in the MDP M in Fig. 2. Going
backward from this state to state 3 directly shows that only
action d is possible in state 3. Evaluating the forbidden state
2 in the same model shows that there is a probability 0.1 to

reach this state from state 1, and therefore state 1 must also be
avoided. Therefore only decision a is possible in state 0. By this
simple local evaluation, the safety demands have already been
taken care of. What remains is only the fairness demand, which
generally requires more global analysis.

This safety analysis can be performed in individual models,
since an (extended) forbidden state can always be taken away.
In the total system, the only difference can be that such states
will never be reached, which means that no flexibility is re-
moved in local handling of this safety problem.

Probabilistic transitions = uncontrollable events An interest-
ing remark from a supervisory control point of view is that
probabilistic choices alternatively can be considered as uncon-
trollable actions, if only safety issues are considered. In this
way supervisory control theory (SCT) algorithms can be used
to evaluate safety issues in a way that has not been considered
in the MDP community (to the authors best knowledge).

Learn deviation between model and real system A simulation
model is often available. This can be used for off-line learning,
but since the model mostly includes uncertainties, an important
research direction is to improve the simulation model by data
from on-line measurements. The deviation between the model
and the real system can then be estimated in an online learning
procedure.

Some other examples of valuable knowledge that may simplify
the Q-learning iteration are:

• Determine available action sets A(s) for all states before
starting the Q-learning. Note that no alternatives |A(s)| =
1 means that there is no decision to take, and such transi-
tions can be abstracted either manually or by abstractions
such as branching bisimulation (Lennartson and Noori-
Hosseini, 2018)

• Solve the Q-learning problem offline by simulation based
on available information to improve the initial value Q̂0

instead of starting with no knowledge (Q̂0 = 0). This is
indeed a very common strategy.

• Many MDP decision problems have an optimal policy of a
“threshold” type (Cassandras and Lafortune, 2008). This
knowledge can reduce the number of iterations extremely
much. Tests on an admission control problem shows a
huge improvement in terms of number of iterations in the
Q-learning procedure.

Finally, we remind again that all information that is available
should be taken into account. The synchronous composition is
then useful, and together with the product MDP the total system
can be synchronized on-the-fly including those parts that are not
known before the Q-learning procedure starts.

7. SUMMARY AND CONCLUSIONS

A brief survey of RL is given in this paper, including a short but
complete derivation of the model-free Q-learning algorithm.
Some recent results on how temporal logic restrictions can be
included to guarantee safety and liveness properties for this
model-free approach are then demonstrated. It is also shown
how local analysis, based on partial information of a modular
system, can be performed to improve especially the handling of
safety guarantees in the optimization procedure.
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An interesting question is to clarify the relation between un-
controllable events and probabilistic nondeterminism. Prelim-
inary results show that it is possible to transform an MDP to
a completely deterministic system but with an uncontrollable
behavior. In that case also nondeterministic Büchi automata
can be used including all LTL formulas, thus avoiding more
complex automata such as Rabin and LDBA automata.
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