
Modular Supervisory Synthesis for Unknown Plant Models Using Active
Learning

Downloaded from: https://research.chalmers.se, 2024-03-13 09:53 UTC

Citation for the original published paper (version of record):
Hagebring, F., Farooqui, A., Fabian, M. (2020). Modular Supervisory Synthesis for Unknown Plant
Models Using Active Learning. IFAC-PapersOnLine, 53(4): 324-330.
http://dx.doi.org/10.1016/j.ifacol.2021.04.032

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)



IFAC PapersOnLine 53-4 (2020) 324–330

ScienceDirect

Available online at www.sciencedirect.com

2405-8963 Copyright © 2020 The Authors. This is an open access article under the CC BY-NC-ND license.
Peer review under responsibility of International Federation of Automatic Control.
10.1016/j.ifacol.2021.04.032

10.1016/j.ifacol.2021.04.032 2405-8963

Copyright © 2020 The Authors. This is an open access article under the CC BY-NC-ND license  
(http://creativecommons.org/licenses/by-nc-nd/4.0)

Modular Supervisory Synthesis for Unknown
Plant Models Using Active Learning �

Fredrik Hagebring, Ashfaq Farooqui, Martin Fabian

Department of Electrical Engineering, Chalmers University of
Technology, Göteborg, Sweden 412 96

(e-mail: {ashfaqf, fredrik.hagebring, fabian}@chalmers.se)

Abstract: This paper proposes an approach to synthesize a modular discrete-event supervisor
to control a plant, the behavior model of which is unknown, so as to satisfy given specifications.
To this end, the Modular Supervisor Learner (MSL) is presented that based on the known
specifications and the structure of the system defines the configuration of the supervisors to
learn. Then, by actively querying the simulation and interacting with the specification it explores
the state-space of the system to learn a set of maximally permissive controllable supervisors.

The Supervisory Control Theory (SCT) (Ramadge and
Wonham, 1989) provides a general framework to synthesize
supervisors for Discrete-Event Systems (DES). These DES
are models of systems that at each time instant occupy
a discrete state, and perform state transition on the oc-
currence of events. Examples of such systems are manu-
facturing systems, communication networks, and embed-
ded systems. Given a DES modeling all possible behavior
known as a plant, a supervisor can be synthesized that can
control the plant in order to satisfy given specifications.
However, modeling large complex systems is a challenging
task that requires skill, in-depth knowledge of the system,
and creativity. Manually defining the behaviour of the
plant model is an error prone task; incorrect or incomplete
models are misleading, and can unnecessarily complicate
the development process. Hence, assuming access to a
correct plant model can be limiting.

Though discrete-event models have many advantages, they
suffer from one big and fundamental problem – state-
space explosion. Here, the discrete models very quickly
grow in size making it difficult to store and compute using
them. One technique is to have modular models that when
composed describe the complete behavior. These, modular
models, can then be used for computation and synthesis.

Simulation technologies have gained attention in many
areas of automation, and hence simulation-based devel-
opment has become well accepted. In this mode of devel-
opment, the intended system is first created in a 3D sim-
ulation environment where it can be tested and improved
upon before constructing the physical system. These sim-
ulations implicitly contain within them a behavior of the
plant, though this behavior is not accessible in a usable for-
mat for supervisory synthesis algorithms. However, there
exist active learning algorithms that can be used to infer
a discrete model of the plant from a simulation.

� Work supported by the Swedish Research Council (VR) project
SyTeC, the Chalmers Production Area of Advance, and by the Wal-
lenberg Artificial Intelligence, Autonomous Systems and Software
Program (WASP) funded by Knut and Alice Wallenberg Foundation.

Active learning algorithms are a class of machine learning
algorithms that aim to deduce a discrete-event model
describing the behavior of a system. Active automata
learning has been successfully applied to learn and verify
communication protocols using Mealy machines (Steffen
et al., 2011; Jonsson, 2011); to obtain the formal models
of biometric passports (Aarts et al., 2010) and bank
cards (Aarts et al., 2013).

Within the SCT community, there has been work on
applying active learning algorithms mainly by language
based algorithms. That is, they focus on the sequences of
events that can be performed. Zhang et al. (2018) look at
synthesizing a controller when a plant model is known, and
the specification model is not an automaton; Dai and Lin
(2014) look at learning decentralized supervisors; Hiraishi
(1999) presents a synthesis approach for concurrent sys-
tems; and Yang et al. (1995) propose an algorithm to learn
optimal controllers. However, to the best of the authors’
knowledge, despite most cyber-physical systems being able
to employ a state-based formulation, no state-based active
learning approaches exist within the automata learning
community. Specifically, in the current setting, using a
simulator makes it possible to access the state of the
system. A state, in this paper, is defined by the values
assigned to a set of variables, each of which has its own
domain. Unique combinations of the values assigned to
these variables make up the different states.

Previously in Farooqui et al. (2020), it was shown how a
modular plant model could be learned given a definition
of its modular structure and interacting with a simulation
of the system. It would, however, be useful to directly
synthesize a supervisor from the simulation, instead of first
learning a plant model and then, by using additional tools,
synthesizing a supervisor. In this paper, we extend the
idea and show that it is possible to learn a modular max-
imally permissive controllable supervisor (Åkesson et al.,
2002) given the specifications of the system along with
a simulation and a modular structure definition, without
having first to learn a plant model. To this end, we first
present how the modular structure and specifications are
used to generate a configuration of supervisors to learn.

Modular Supervisory Synthesis for Unknown
Plant Models Using Active Learning �

Fredrik Hagebring, Ashfaq Farooqui, Martin Fabian

Department of Electrical Engineering, Chalmers University of
Technology, Göteborg, Sweden 412 96

(e-mail: {ashfaqf, fredrik.hagebring, fabian}@chalmers.se)

Abstract: This paper proposes an approach to synthesize a modular discrete-event supervisor
to control a plant, the behavior model of which is unknown, so as to satisfy given specifications.
To this end, the Modular Supervisor Learner (MSL) is presented that based on the known
specifications and the structure of the system defines the configuration of the supervisors to
learn. Then, by actively querying the simulation and interacting with the specification it explores
the state-space of the system to learn a set of maximally permissive controllable supervisors.

The Supervisory Control Theory (SCT) (Ramadge and
Wonham, 1989) provides a general framework to synthesize
supervisors for Discrete-Event Systems (DES). These DES
are models of systems that at each time instant occupy
a discrete state, and perform state transition on the oc-
currence of events. Examples of such systems are manu-
facturing systems, communication networks, and embed-
ded systems. Given a DES modeling all possible behavior
known as a plant, a supervisor can be synthesized that can
control the plant in order to satisfy given specifications.
However, modeling large complex systems is a challenging
task that requires skill, in-depth knowledge of the system,
and creativity. Manually defining the behaviour of the
plant model is an error prone task; incorrect or incomplete
models are misleading, and can unnecessarily complicate
the development process. Hence, assuming access to a
correct plant model can be limiting.

Though discrete-event models have many advantages, they
suffer from one big and fundamental problem – state-
space explosion. Here, the discrete models very quickly
grow in size making it difficult to store and compute using
them. One technique is to have modular models that when
composed describe the complete behavior. These, modular
models, can then be used for computation and synthesis.

Simulation technologies have gained attention in many
areas of automation, and hence simulation-based devel-
opment has become well accepted. In this mode of devel-
opment, the intended system is first created in a 3D sim-
ulation environment where it can be tested and improved
upon before constructing the physical system. These sim-
ulations implicitly contain within them a behavior of the
plant, though this behavior is not accessible in a usable for-
mat for supervisory synthesis algorithms. However, there
exist active learning algorithms that can be used to infer
a discrete model of the plant from a simulation.

� Work supported by the Swedish Research Council (VR) project
SyTeC, the Chalmers Production Area of Advance, and by the Wal-
lenberg Artificial Intelligence, Autonomous Systems and Software
Program (WASP) funded by Knut and Alice Wallenberg Foundation.

Active learning algorithms are a class of machine learning
algorithms that aim to deduce a discrete-event model
describing the behavior of a system. Active automata
learning has been successfully applied to learn and verify
communication protocols using Mealy machines (Steffen
et al., 2011; Jonsson, 2011); to obtain the formal models
of biometric passports (Aarts et al., 2010) and bank
cards (Aarts et al., 2013).

Within the SCT community, there has been work on
applying active learning algorithms mainly by language
based algorithms. That is, they focus on the sequences of
events that can be performed. Zhang et al. (2018) look at
synthesizing a controller when a plant model is known, and
the specification model is not an automaton; Dai and Lin
(2014) look at learning decentralized supervisors; Hiraishi
(1999) presents a synthesis approach for concurrent sys-
tems; and Yang et al. (1995) propose an algorithm to learn
optimal controllers. However, to the best of the authors’
knowledge, despite most cyber-physical systems being able
to employ a state-based formulation, no state-based active
learning approaches exist within the automata learning
community. Specifically, in the current setting, using a
simulator makes it possible to access the state of the
system. A state, in this paper, is defined by the values
assigned to a set of variables, each of which has its own
domain. Unique combinations of the values assigned to
these variables make up the different states.

Previously in Farooqui et al. (2020), it was shown how a
modular plant model could be learned given a definition
of its modular structure and interacting with a simulation
of the system. It would, however, be useful to directly
synthesize a supervisor from the simulation, instead of first
learning a plant model and then, by using additional tools,
synthesizing a supervisor. In this paper, we extend the
idea and show that it is possible to learn a modular max-
imally permissive controllable supervisor (Åkesson et al.,
2002) given the specifications of the system along with
a simulation and a modular structure definition, without
having first to learn a plant model. To this end, we first
present how the modular structure and specifications are
used to generate a configuration of supervisors to learn.

Modular Supervisory Synthesis for Unknown
Plant Models Using Active Learning �

Fredrik Hagebring, Ashfaq Farooqui, Martin Fabian

Department of Electrical Engineering, Chalmers University of
Technology, Göteborg, Sweden 412 96

(e-mail: {ashfaqf, fredrik.hagebring, fabian}@chalmers.se)

Abstract: This paper proposes an approach to synthesize a modular discrete-event supervisor
to control a plant, the behavior model of which is unknown, so as to satisfy given specifications.
To this end, the Modular Supervisor Learner (MSL) is presented that based on the known
specifications and the structure of the system defines the configuration of the supervisors to
learn. Then, by actively querying the simulation and interacting with the specification it explores
the state-space of the system to learn a set of maximally permissive controllable supervisors.

The Supervisory Control Theory (SCT) (Ramadge and
Wonham, 1989) provides a general framework to synthesize
supervisors for Discrete-Event Systems (DES). These DES
are models of systems that at each time instant occupy
a discrete state, and perform state transition on the oc-
currence of events. Examples of such systems are manu-
facturing systems, communication networks, and embed-
ded systems. Given a DES modeling all possible behavior
known as a plant, a supervisor can be synthesized that can
control the plant in order to satisfy given specifications.
However, modeling large complex systems is a challenging
task that requires skill, in-depth knowledge of the system,
and creativity. Manually defining the behaviour of the
plant model is an error prone task; incorrect or incomplete
models are misleading, and can unnecessarily complicate
the development process. Hence, assuming access to a
correct plant model can be limiting.

Though discrete-event models have many advantages, they
suffer from one big and fundamental problem – state-
space explosion. Here, the discrete models very quickly
grow in size making it difficult to store and compute using
them. One technique is to have modular models that when
composed describe the complete behavior. These, modular
models, can then be used for computation and synthesis.

Simulation technologies have gained attention in many
areas of automation, and hence simulation-based devel-
opment has become well accepted. In this mode of devel-
opment, the intended system is first created in a 3D sim-
ulation environment where it can be tested and improved
upon before constructing the physical system. These sim-
ulations implicitly contain within them a behavior of the
plant, though this behavior is not accessible in a usable for-
mat for supervisory synthesis algorithms. However, there
exist active learning algorithms that can be used to infer
a discrete model of the plant from a simulation.

� Work supported by the Swedish Research Council (VR) project
SyTeC, the Chalmers Production Area of Advance, and by the Wal-
lenberg Artificial Intelligence, Autonomous Systems and Software
Program (WASP) funded by Knut and Alice Wallenberg Foundation.

Active learning algorithms are a class of machine learning
algorithms that aim to deduce a discrete-event model
describing the behavior of a system. Active automata
learning has been successfully applied to learn and verify
communication protocols using Mealy machines (Steffen
et al., 2011; Jonsson, 2011); to obtain the formal models
of biometric passports (Aarts et al., 2010) and bank
cards (Aarts et al., 2013).

Within the SCT community, there has been work on
applying active learning algorithms mainly by language
based algorithms. That is, they focus on the sequences of
events that can be performed. Zhang et al. (2018) look at
synthesizing a controller when a plant model is known, and
the specification model is not an automaton; Dai and Lin
(2014) look at learning decentralized supervisors; Hiraishi
(1999) presents a synthesis approach for concurrent sys-
tems; and Yang et al. (1995) propose an algorithm to learn
optimal controllers. However, to the best of the authors’
knowledge, despite most cyber-physical systems being able
to employ a state-based formulation, no state-based active
learning approaches exist within the automata learning
community. Specifically, in the current setting, using a
simulator makes it possible to access the state of the
system. A state, in this paper, is defined by the values
assigned to a set of variables, each of which has its own
domain. Unique combinations of the values assigned to
these variables make up the different states.

Previously in Farooqui et al. (2020), it was shown how a
modular plant model could be learned given a definition
of its modular structure and interacting with a simulation
of the system. It would, however, be useful to directly
synthesize a supervisor from the simulation, instead of first
learning a plant model and then, by using additional tools,
synthesizing a supervisor. In this paper, we extend the
idea and show that it is possible to learn a modular max-
imally permissive controllable supervisor (Åkesson et al.,
2002) given the specifications of the system along with
a simulation and a modular structure definition, without
having first to learn a plant model. To this end, we first
present how the modular structure and specifications are
used to generate a configuration of supervisors to learn.

Modular Supervisory Synthesis for Unknown
Plant Models Using Active Learning �

Fredrik Hagebring, Ashfaq Farooqui, Martin Fabian

Department of Electrical Engineering, Chalmers University of
Technology, Göteborg, Sweden 412 96

(e-mail: {ashfaqf, fredrik.hagebring, fabian}@chalmers.se)

Abstract: This paper proposes an approach to synthesize a modular discrete-event supervisor
to control a plant, the behavior model of which is unknown, so as to satisfy given specifications.
To this end, the Modular Supervisor Learner (MSL) is presented that based on the known
specifications and the structure of the system defines the configuration of the supervisors to
learn. Then, by actively querying the simulation and interacting with the specification it explores
the state-space of the system to learn a set of maximally permissive controllable supervisors.

The Supervisory Control Theory (SCT) (Ramadge and
Wonham, 1989) provides a general framework to synthesize
supervisors for Discrete-Event Systems (DES). These DES
are models of systems that at each time instant occupy
a discrete state, and perform state transition on the oc-
currence of events. Examples of such systems are manu-
facturing systems, communication networks, and embed-
ded systems. Given a DES modeling all possible behavior
known as a plant, a supervisor can be synthesized that can
control the plant in order to satisfy given specifications.
However, modeling large complex systems is a challenging
task that requires skill, in-depth knowledge of the system,
and creativity. Manually defining the behaviour of the
plant model is an error prone task; incorrect or incomplete
models are misleading, and can unnecessarily complicate
the development process. Hence, assuming access to a
correct plant model can be limiting.

Though discrete-event models have many advantages, they
suffer from one big and fundamental problem – state-
space explosion. Here, the discrete models very quickly
grow in size making it difficult to store and compute using
them. One technique is to have modular models that when
composed describe the complete behavior. These, modular
models, can then be used for computation and synthesis.

Simulation technologies have gained attention in many
areas of automation, and hence simulation-based devel-
opment has become well accepted. In this mode of devel-
opment, the intended system is first created in a 3D sim-
ulation environment where it can be tested and improved
upon before constructing the physical system. These sim-
ulations implicitly contain within them a behavior of the
plant, though this behavior is not accessible in a usable for-
mat for supervisory synthesis algorithms. However, there
exist active learning algorithms that can be used to infer
a discrete model of the plant from a simulation.

� Work supported by the Swedish Research Council (VR) project
SyTeC, the Chalmers Production Area of Advance, and by the Wal-
lenberg Artificial Intelligence, Autonomous Systems and Software
Program (WASP) funded by Knut and Alice Wallenberg Foundation.

Active learning algorithms are a class of machine learning
algorithms that aim to deduce a discrete-event model
describing the behavior of a system. Active automata
learning has been successfully applied to learn and verify
communication protocols using Mealy machines (Steffen
et al., 2011; Jonsson, 2011); to obtain the formal models
of biometric passports (Aarts et al., 2010) and bank
cards (Aarts et al., 2013).

Within the SCT community, there has been work on
applying active learning algorithms mainly by language
based algorithms. That is, they focus on the sequences of
events that can be performed. Zhang et al. (2018) look at
synthesizing a controller when a plant model is known, and
the specification model is not an automaton; Dai and Lin
(2014) look at learning decentralized supervisors; Hiraishi
(1999) presents a synthesis approach for concurrent sys-
tems; and Yang et al. (1995) propose an algorithm to learn
optimal controllers. However, to the best of the authors’
knowledge, despite most cyber-physical systems being able
to employ a state-based formulation, no state-based active
learning approaches exist within the automata learning
community. Specifically, in the current setting, using a
simulator makes it possible to access the state of the
system. A state, in this paper, is defined by the values
assigned to a set of variables, each of which has its own
domain. Unique combinations of the values assigned to
these variables make up the different states.

Previously in Farooqui et al. (2020), it was shown how a
modular plant model could be learned given a definition
of its modular structure and interacting with a simulation
of the system. It would, however, be useful to directly
synthesize a supervisor from the simulation, instead of first
learning a plant model and then, by using additional tools,
synthesizing a supervisor. In this paper, we extend the
idea and show that it is possible to learn a modular max-
imally permissive controllable supervisor (Åkesson et al.,
2002) given the specifications of the system along with
a simulation and a modular structure definition, without
having first to learn a plant model. To this end, we first
present how the modular structure and specifications are
used to generate a configuration of supervisors to learn.

Modular Supervisory Synthesis for Unknown
Plant Models Using Active Learning �

Fredrik Hagebring, Ashfaq Farooqui, Martin Fabian

Department of Electrical Engineering, Chalmers University of
Technology, Göteborg, Sweden 412 96

(e-mail: {ashfaqf, fredrik.hagebring, fabian}@chalmers.se)

Abstract: This paper proposes an approach to synthesize a modular discrete-event supervisor
to control a plant, the behavior model of which is unknown, so as to satisfy given specifications.
To this end, the Modular Supervisor Learner (MSL) is presented that based on the known
specifications and the structure of the system defines the configuration of the supervisors to
learn. Then, by actively querying the simulation and interacting with the specification it explores
the state-space of the system to learn a set of maximally permissive controllable supervisors.

The Supervisory Control Theory (SCT) (Ramadge and
Wonham, 1989) provides a general framework to synthesize
supervisors for Discrete-Event Systems (DES). These DES
are models of systems that at each time instant occupy
a discrete state, and perform state transition on the oc-
currence of events. Examples of such systems are manu-
facturing systems, communication networks, and embed-
ded systems. Given a DES modeling all possible behavior
known as a plant, a supervisor can be synthesized that can
control the plant in order to satisfy given specifications.
However, modeling large complex systems is a challenging
task that requires skill, in-depth knowledge of the system,
and creativity. Manually defining the behaviour of the
plant model is an error prone task; incorrect or incomplete
models are misleading, and can unnecessarily complicate
the development process. Hence, assuming access to a
correct plant model can be limiting.

Though discrete-event models have many advantages, they
suffer from one big and fundamental problem – state-
space explosion. Here, the discrete models very quickly
grow in size making it difficult to store and compute using
them. One technique is to have modular models that when
composed describe the complete behavior. These, modular
models, can then be used for computation and synthesis.

Simulation technologies have gained attention in many
areas of automation, and hence simulation-based devel-
opment has become well accepted. In this mode of devel-
opment, the intended system is first created in a 3D sim-
ulation environment where it can be tested and improved
upon before constructing the physical system. These sim-
ulations implicitly contain within them a behavior of the
plant, though this behavior is not accessible in a usable for-
mat for supervisory synthesis algorithms. However, there
exist active learning algorithms that can be used to infer
a discrete model of the plant from a simulation.

� Work supported by the Swedish Research Council (VR) project
SyTeC, the Chalmers Production Area of Advance, and by the Wal-
lenberg Artificial Intelligence, Autonomous Systems and Software
Program (WASP) funded by Knut and Alice Wallenberg Foundation.

Active learning algorithms are a class of machine learning
algorithms that aim to deduce a discrete-event model
describing the behavior of a system. Active automata
learning has been successfully applied to learn and verify
communication protocols using Mealy machines (Steffen
et al., 2011; Jonsson, 2011); to obtain the formal models
of biometric passports (Aarts et al., 2010) and bank
cards (Aarts et al., 2013).

Within the SCT community, there has been work on
applying active learning algorithms mainly by language
based algorithms. That is, they focus on the sequences of
events that can be performed. Zhang et al. (2018) look at
synthesizing a controller when a plant model is known, and
the specification model is not an automaton; Dai and Lin
(2014) look at learning decentralized supervisors; Hiraishi
(1999) presents a synthesis approach for concurrent sys-
tems; and Yang et al. (1995) propose an algorithm to learn
optimal controllers. However, to the best of the authors’
knowledge, despite most cyber-physical systems being able
to employ a state-based formulation, no state-based active
learning approaches exist within the automata learning
community. Specifically, in the current setting, using a
simulator makes it possible to access the state of the
system. A state, in this paper, is defined by the values
assigned to a set of variables, each of which has its own
domain. Unique combinations of the values assigned to
these variables make up the different states.

Previously in Farooqui et al. (2020), it was shown how a
modular plant model could be learned given a definition
of its modular structure and interacting with a simulation
of the system. It would, however, be useful to directly
synthesize a supervisor from the simulation, instead of first
learning a plant model and then, by using additional tools,
synthesizing a supervisor. In this paper, we extend the
idea and show that it is possible to learn a modular max-
imally permissive controllable supervisor (Åkesson et al.,
2002) given the specifications of the system along with
a simulation and a modular structure definition, without
having first to learn a plant model. To this end, we first
present how the modular structure and specifications are
used to generate a configuration of supervisors to learn.

Modular Supervisory Synthesis for Unknown
Plant Models Using Active Learning �

Fredrik Hagebring, Ashfaq Farooqui, Martin Fabian

Department of Electrical Engineering, Chalmers University of
Technology, Göteborg, Sweden 412 96

(e-mail: {ashfaqf, fredrik.hagebring, fabian}@chalmers.se)

Abstract: This paper proposes an approach to synthesize a modular discrete-event supervisor
to control a plant, the behavior model of which is unknown, so as to satisfy given specifications.
To this end, the Modular Supervisor Learner (MSL) is presented that based on the known
specifications and the structure of the system defines the configuration of the supervisors to
learn. Then, by actively querying the simulation and interacting with the specification it explores
the state-space of the system to learn a set of maximally permissive controllable supervisors.

The Supervisory Control Theory (SCT) (Ramadge and
Wonham, 1989) provides a general framework to synthesize
supervisors for Discrete-Event Systems (DES). These DES
are models of systems that at each time instant occupy
a discrete state, and perform state transition on the oc-
currence of events. Examples of such systems are manu-
facturing systems, communication networks, and embed-
ded systems. Given a DES modeling all possible behavior
known as a plant, a supervisor can be synthesized that can
control the plant in order to satisfy given specifications.
However, modeling large complex systems is a challenging
task that requires skill, in-depth knowledge of the system,
and creativity. Manually defining the behaviour of the
plant model is an error prone task; incorrect or incomplete
models are misleading, and can unnecessarily complicate
the development process. Hence, assuming access to a
correct plant model can be limiting.

Though discrete-event models have many advantages, they
suffer from one big and fundamental problem – state-
space explosion. Here, the discrete models very quickly
grow in size making it difficult to store and compute using
them. One technique is to have modular models that when
composed describe the complete behavior. These, modular
models, can then be used for computation and synthesis.

Simulation technologies have gained attention in many
areas of automation, and hence simulation-based devel-
opment has become well accepted. In this mode of devel-
opment, the intended system is first created in a 3D sim-
ulation environment where it can be tested and improved
upon before constructing the physical system. These sim-
ulations implicitly contain within them a behavior of the
plant, though this behavior is not accessible in a usable for-
mat for supervisory synthesis algorithms. However, there
exist active learning algorithms that can be used to infer
a discrete model of the plant from a simulation.

� Work supported by the Swedish Research Council (VR) project
SyTeC, the Chalmers Production Area of Advance, and by the Wal-
lenberg Artificial Intelligence, Autonomous Systems and Software
Program (WASP) funded by Knut and Alice Wallenberg Foundation.

Active learning algorithms are a class of machine learning
algorithms that aim to deduce a discrete-event model
describing the behavior of a system. Active automata
learning has been successfully applied to learn and verify
communication protocols using Mealy machines (Steffen
et al., 2011; Jonsson, 2011); to obtain the formal models
of biometric passports (Aarts et al., 2010) and bank
cards (Aarts et al., 2013).

Within the SCT community, there has been work on
applying active learning algorithms mainly by language
based algorithms. That is, they focus on the sequences of
events that can be performed. Zhang et al. (2018) look at
synthesizing a controller when a plant model is known, and
the specification model is not an automaton; Dai and Lin
(2014) look at learning decentralized supervisors; Hiraishi
(1999) presents a synthesis approach for concurrent sys-
tems; and Yang et al. (1995) propose an algorithm to learn
optimal controllers. However, to the best of the authors’
knowledge, despite most cyber-physical systems being able
to employ a state-based formulation, no state-based active
learning approaches exist within the automata learning
community. Specifically, in the current setting, using a
simulator makes it possible to access the state of the
system. A state, in this paper, is defined by the values
assigned to a set of variables, each of which has its own
domain. Unique combinations of the values assigned to
these variables make up the different states.

Previously in Farooqui et al. (2020), it was shown how a
modular plant model could be learned given a definition
of its modular structure and interacting with a simulation
of the system. It would, however, be useful to directly
synthesize a supervisor from the simulation, instead of first
learning a plant model and then, by using additional tools,
synthesizing a supervisor. In this paper, we extend the
idea and show that it is possible to learn a modular max-
imally permissive controllable supervisor (Åkesson et al.,
2002) given the specifications of the system along with
a simulation and a modular structure definition, without
having first to learn a plant model. To this end, we first
present how the modular structure and specifications are
used to generate a configuration of supervisors to learn.

Modular Supervisory Synthesis for Unknown
Plant Models Using Active Learning �

Fredrik Hagebring, Ashfaq Farooqui, Martin Fabian

Department of Electrical Engineering, Chalmers University of
Technology, Göteborg, Sweden 412 96

(e-mail: {ashfaqf, fredrik.hagebring, fabian}@chalmers.se)

Abstract: This paper proposes an approach to synthesize a modular discrete-event supervisor
to control a plant, the behavior model of which is unknown, so as to satisfy given specifications.
To this end, the Modular Supervisor Learner (MSL) is presented that based on the known
specifications and the structure of the system defines the configuration of the supervisors to
learn. Then, by actively querying the simulation and interacting with the specification it explores
the state-space of the system to learn a set of maximally permissive controllable supervisors.

The Supervisory Control Theory (SCT) (Ramadge and
Wonham, 1989) provides a general framework to synthesize
supervisors for Discrete-Event Systems (DES). These DES
are models of systems that at each time instant occupy
a discrete state, and perform state transition on the oc-
currence of events. Examples of such systems are manu-
facturing systems, communication networks, and embed-
ded systems. Given a DES modeling all possible behavior
known as a plant, a supervisor can be synthesized that can
control the plant in order to satisfy given specifications.
However, modeling large complex systems is a challenging
task that requires skill, in-depth knowledge of the system,
and creativity. Manually defining the behaviour of the
plant model is an error prone task; incorrect or incomplete
models are misleading, and can unnecessarily complicate
the development process. Hence, assuming access to a
correct plant model can be limiting.

Though discrete-event models have many advantages, they
suffer from one big and fundamental problem – state-
space explosion. Here, the discrete models very quickly
grow in size making it difficult to store and compute using
them. One technique is to have modular models that when
composed describe the complete behavior. These, modular
models, can then be used for computation and synthesis.

Simulation technologies have gained attention in many
areas of automation, and hence simulation-based devel-
opment has become well accepted. In this mode of devel-
opment, the intended system is first created in a 3D sim-
ulation environment where it can be tested and improved
upon before constructing the physical system. These sim-
ulations implicitly contain within them a behavior of the
plant, though this behavior is not accessible in a usable for-
mat for supervisory synthesis algorithms. However, there
exist active learning algorithms that can be used to infer
a discrete model of the plant from a simulation.

� Work supported by the Swedish Research Council (VR) project
SyTeC, the Chalmers Production Area of Advance, and by the Wal-
lenberg Artificial Intelligence, Autonomous Systems and Software
Program (WASP) funded by Knut and Alice Wallenberg Foundation.

Active learning algorithms are a class of machine learning
algorithms that aim to deduce a discrete-event model
describing the behavior of a system. Active automata
learning has been successfully applied to learn and verify
communication protocols using Mealy machines (Steffen
et al., 2011; Jonsson, 2011); to obtain the formal models
of biometric passports (Aarts et al., 2010) and bank
cards (Aarts et al., 2013).

Within the SCT community, there has been work on
applying active learning algorithms mainly by language
based algorithms. That is, they focus on the sequences of
events that can be performed. Zhang et al. (2018) look at
synthesizing a controller when a plant model is known, and
the specification model is not an automaton; Dai and Lin
(2014) look at learning decentralized supervisors; Hiraishi
(1999) presents a synthesis approach for concurrent sys-
tems; and Yang et al. (1995) propose an algorithm to learn
optimal controllers. However, to the best of the authors’
knowledge, despite most cyber-physical systems being able
to employ a state-based formulation, no state-based active
learning approaches exist within the automata learning
community. Specifically, in the current setting, using a
simulator makes it possible to access the state of the
system. A state, in this paper, is defined by the values
assigned to a set of variables, each of which has its own
domain. Unique combinations of the values assigned to
these variables make up the different states.

Previously in Farooqui et al. (2020), it was shown how a
modular plant model could be learned given a definition
of its modular structure and interacting with a simulation
of the system. It would, however, be useful to directly
synthesize a supervisor from the simulation, instead of first
learning a plant model and then, by using additional tools,
synthesizing a supervisor. In this paper, we extend the
idea and show that it is possible to learn a modular max-
imally permissive controllable supervisor (Åkesson et al.,
2002) given the specifications of the system along with
a simulation and a modular structure definition, without
having first to learn a plant model. To this end, we first
present how the modular structure and specifications are
used to generate a configuration of supervisors to learn.

Modular Supervisory Synthesis for Unknown
Plant Models Using Active Learning �

Fredrik Hagebring, Ashfaq Farooqui, Martin Fabian

Department of Electrical Engineering, Chalmers University of
Technology, Göteborg, Sweden 412 96

(e-mail: {ashfaqf, fredrik.hagebring, fabian}@chalmers.se)

Abstract: This paper proposes an approach to synthesize a modular discrete-event supervisor
to control a plant, the behavior model of which is unknown, so as to satisfy given specifications.
To this end, the Modular Supervisor Learner (MSL) is presented that based on the known
specifications and the structure of the system defines the configuration of the supervisors to
learn. Then, by actively querying the simulation and interacting with the specification it explores
the state-space of the system to learn a set of maximally permissive controllable supervisors.

The Supervisory Control Theory (SCT) (Ramadge and
Wonham, 1989) provides a general framework to synthesize
supervisors for Discrete-Event Systems (DES). These DES
are models of systems that at each time instant occupy
a discrete state, and perform state transition on the oc-
currence of events. Examples of such systems are manu-
facturing systems, communication networks, and embed-
ded systems. Given a DES modeling all possible behavior
known as a plant, a supervisor can be synthesized that can
control the plant in order to satisfy given specifications.
However, modeling large complex systems is a challenging
task that requires skill, in-depth knowledge of the system,
and creativity. Manually defining the behaviour of the
plant model is an error prone task; incorrect or incomplete
models are misleading, and can unnecessarily complicate
the development process. Hence, assuming access to a
correct plant model can be limiting.

Though discrete-event models have many advantages, they
suffer from one big and fundamental problem – state-
space explosion. Here, the discrete models very quickly
grow in size making it difficult to store and compute using
them. One technique is to have modular models that when
composed describe the complete behavior. These, modular
models, can then be used for computation and synthesis.

Simulation technologies have gained attention in many
areas of automation, and hence simulation-based devel-
opment has become well accepted. In this mode of devel-
opment, the intended system is first created in a 3D sim-
ulation environment where it can be tested and improved
upon before constructing the physical system. These sim-
ulations implicitly contain within them a behavior of the
plant, though this behavior is not accessible in a usable for-
mat for supervisory synthesis algorithms. However, there
exist active learning algorithms that can be used to infer
a discrete model of the plant from a simulation.

� Work supported by the Swedish Research Council (VR) project
SyTeC, the Chalmers Production Area of Advance, and by the Wal-
lenberg Artificial Intelligence, Autonomous Systems and Software
Program (WASP) funded by Knut and Alice Wallenberg Foundation.

Active learning algorithms are a class of machine learning
algorithms that aim to deduce a discrete-event model
describing the behavior of a system. Active automata
learning has been successfully applied to learn and verify
communication protocols using Mealy machines (Steffen
et al., 2011; Jonsson, 2011); to obtain the formal models
of biometric passports (Aarts et al., 2010) and bank
cards (Aarts et al., 2013).

Within the SCT community, there has been work on
applying active learning algorithms mainly by language
based algorithms. That is, they focus on the sequences of
events that can be performed. Zhang et al. (2018) look at
synthesizing a controller when a plant model is known, and
the specification model is not an automaton; Dai and Lin
(2014) look at learning decentralized supervisors; Hiraishi
(1999) presents a synthesis approach for concurrent sys-
tems; and Yang et al. (1995) propose an algorithm to learn
optimal controllers. However, to the best of the authors’
knowledge, despite most cyber-physical systems being able
to employ a state-based formulation, no state-based active
learning approaches exist within the automata learning
community. Specifically, in the current setting, using a
simulator makes it possible to access the state of the
system. A state, in this paper, is defined by the values
assigned to a set of variables, each of which has its own
domain. Unique combinations of the values assigned to
these variables make up the different states.

Previously in Farooqui et al. (2020), it was shown how a
modular plant model could be learned given a definition
of its modular structure and interacting with a simulation
of the system. It would, however, be useful to directly
synthesize a supervisor from the simulation, instead of first
learning a plant model and then, by using additional tools,
synthesizing a supervisor. In this paper, we extend the
idea and show that it is possible to learn a modular max-
imally permissive controllable supervisor (Åkesson et al.,
2002) given the specifications of the system along with
a simulation and a modular structure definition, without
having first to learn a plant model. To this end, we first
present how the modular structure and specifications are
used to generate a configuration of supervisors to learn.

Modular Supervisory Synthesis for Unknown
Plant Models Using Active Learning �

Fredrik Hagebring, Ashfaq Farooqui, Martin Fabian

Department of Electrical Engineering, Chalmers University of
Technology, Göteborg, Sweden 412 96

(e-mail: {ashfaqf, fredrik.hagebring, fabian}@chalmers.se)

Abstract: This paper proposes an approach to synthesize a modular discrete-event supervisor
to control a plant, the behavior model of which is unknown, so as to satisfy given specifications.
To this end, the Modular Supervisor Learner (MSL) is presented that based on the known
specifications and the structure of the system defines the configuration of the supervisors to
learn. Then, by actively querying the simulation and interacting with the specification it explores
the state-space of the system to learn a set of maximally permissive controllable supervisors.

The Supervisory Control Theory (SCT) (Ramadge and
Wonham, 1989) provides a general framework to synthesize
supervisors for Discrete-Event Systems (DES). These DES
are models of systems that at each time instant occupy
a discrete state, and perform state transition on the oc-
currence of events. Examples of such systems are manu-
facturing systems, communication networks, and embed-
ded systems. Given a DES modeling all possible behavior
known as a plant, a supervisor can be synthesized that can
control the plant in order to satisfy given specifications.
However, modeling large complex systems is a challenging
task that requires skill, in-depth knowledge of the system,
and creativity. Manually defining the behaviour of the
plant model is an error prone task; incorrect or incomplete
models are misleading, and can unnecessarily complicate
the development process. Hence, assuming access to a
correct plant model can be limiting.

Though discrete-event models have many advantages, they
suffer from one big and fundamental problem – state-
space explosion. Here, the discrete models very quickly
grow in size making it difficult to store and compute using
them. One technique is to have modular models that when
composed describe the complete behavior. These, modular
models, can then be used for computation and synthesis.

Simulation technologies have gained attention in many
areas of automation, and hence simulation-based devel-
opment has become well accepted. In this mode of devel-
opment, the intended system is first created in a 3D sim-
ulation environment where it can be tested and improved
upon before constructing the physical system. These sim-
ulations implicitly contain within them a behavior of the
plant, though this behavior is not accessible in a usable for-
mat for supervisory synthesis algorithms. However, there
exist active learning algorithms that can be used to infer
a discrete model of the plant from a simulation.

� Work supported by the Swedish Research Council (VR) project
SyTeC, the Chalmers Production Area of Advance, and by the Wal-
lenberg Artificial Intelligence, Autonomous Systems and Software
Program (WASP) funded by Knut and Alice Wallenberg Foundation.

Active learning algorithms are a class of machine learning
algorithms that aim to deduce a discrete-event model
describing the behavior of a system. Active automata
learning has been successfully applied to learn and verify
communication protocols using Mealy machines (Steffen
et al., 2011; Jonsson, 2011); to obtain the formal models
of biometric passports (Aarts et al., 2010) and bank
cards (Aarts et al., 2013).

Within the SCT community, there has been work on
applying active learning algorithms mainly by language
based algorithms. That is, they focus on the sequences of
events that can be performed. Zhang et al. (2018) look at
synthesizing a controller when a plant model is known, and
the specification model is not an automaton; Dai and Lin
(2014) look at learning decentralized supervisors; Hiraishi
(1999) presents a synthesis approach for concurrent sys-
tems; and Yang et al. (1995) propose an algorithm to learn
optimal controllers. However, to the best of the authors’
knowledge, despite most cyber-physical systems being able
to employ a state-based formulation, no state-based active
learning approaches exist within the automata learning
community. Specifically, in the current setting, using a
simulator makes it possible to access the state of the
system. A state, in this paper, is defined by the values
assigned to a set of variables, each of which has its own
domain. Unique combinations of the values assigned to
these variables make up the different states.

Previously in Farooqui et al. (2020), it was shown how a
modular plant model could be learned given a definition
of its modular structure and interacting with a simulation
of the system. It would, however, be useful to directly
synthesize a supervisor from the simulation, instead of first
learning a plant model and then, by using additional tools,
synthesizing a supervisor. In this paper, we extend the
idea and show that it is possible to learn a modular max-
imally permissive controllable supervisor (Åkesson et al.,
2002) given the specifications of the system along with
a simulation and a modular structure definition, without
having first to learn a plant model. To this end, we first
present how the modular structure and specifications are
used to generate a configuration of supervisors to learn.



 Fredrik Hagebring  et al. / IFAC PapersOnLine 53-4 (2020) 324–330 325

Copyright © 2020 The Authors. This is an open access article under the CC BY-NC-ND license  
(http://creativecommons.org/licenses/by-nc-nd/4.0)

Modular Supervisory Synthesis for Unknown
Plant Models Using Active Learning �

Fredrik Hagebring, Ashfaq Farooqui, Martin Fabian

Department of Electrical Engineering, Chalmers University of
Technology, Göteborg, Sweden 412 96

(e-mail: {ashfaqf, fredrik.hagebring, fabian}@chalmers.se)

Abstract: This paper proposes an approach to synthesize a modular discrete-event supervisor
to control a plant, the behavior model of which is unknown, so as to satisfy given specifications.
To this end, the Modular Supervisor Learner (MSL) is presented that based on the known
specifications and the structure of the system defines the configuration of the supervisors to
learn. Then, by actively querying the simulation and interacting with the specification it explores
the state-space of the system to learn a set of maximally permissive controllable supervisors.

The Supervisory Control Theory (SCT) (Ramadge and
Wonham, 1989) provides a general framework to synthesize
supervisors for Discrete-Event Systems (DES). These DES
are models of systems that at each time instant occupy
a discrete state, and perform state transition on the oc-
currence of events. Examples of such systems are manu-
facturing systems, communication networks, and embed-
ded systems. Given a DES modeling all possible behavior
known as a plant, a supervisor can be synthesized that can
control the plant in order to satisfy given specifications.
However, modeling large complex systems is a challenging
task that requires skill, in-depth knowledge of the system,
and creativity. Manually defining the behaviour of the
plant model is an error prone task; incorrect or incomplete
models are misleading, and can unnecessarily complicate
the development process. Hence, assuming access to a
correct plant model can be limiting.

Though discrete-event models have many advantages, they
suffer from one big and fundamental problem – state-
space explosion. Here, the discrete models very quickly
grow in size making it difficult to store and compute using
them. One technique is to have modular models that when
composed describe the complete behavior. These, modular
models, can then be used for computation and synthesis.

Simulation technologies have gained attention in many
areas of automation, and hence simulation-based devel-
opment has become well accepted. In this mode of devel-
opment, the intended system is first created in a 3D sim-
ulation environment where it can be tested and improved
upon before constructing the physical system. These sim-
ulations implicitly contain within them a behavior of the
plant, though this behavior is not accessible in a usable for-
mat for supervisory synthesis algorithms. However, there
exist active learning algorithms that can be used to infer
a discrete model of the plant from a simulation.

� Work supported by the Swedish Research Council (VR) project
SyTeC, the Chalmers Production Area of Advance, and by the Wal-
lenberg Artificial Intelligence, Autonomous Systems and Software
Program (WASP) funded by Knut and Alice Wallenberg Foundation.

Active learning algorithms are a class of machine learning
algorithms that aim to deduce a discrete-event model
describing the behavior of a system. Active automata
learning has been successfully applied to learn and verify
communication protocols using Mealy machines (Steffen
et al., 2011; Jonsson, 2011); to obtain the formal models
of biometric passports (Aarts et al., 2010) and bank
cards (Aarts et al., 2013).

Within the SCT community, there has been work on
applying active learning algorithms mainly by language
based algorithms. That is, they focus on the sequences of
events that can be performed. Zhang et al. (2018) look at
synthesizing a controller when a plant model is known, and
the specification model is not an automaton; Dai and Lin
(2014) look at learning decentralized supervisors; Hiraishi
(1999) presents a synthesis approach for concurrent sys-
tems; and Yang et al. (1995) propose an algorithm to learn
optimal controllers. However, to the best of the authors’
knowledge, despite most cyber-physical systems being able
to employ a state-based formulation, no state-based active
learning approaches exist within the automata learning
community. Specifically, in the current setting, using a
simulator makes it possible to access the state of the
system. A state, in this paper, is defined by the values
assigned to a set of variables, each of which has its own
domain. Unique combinations of the values assigned to
these variables make up the different states.

Previously in Farooqui et al. (2020), it was shown how a
modular plant model could be learned given a definition
of its modular structure and interacting with a simulation
of the system. It would, however, be useful to directly
synthesize a supervisor from the simulation, instead of first
learning a plant model and then, by using additional tools,
synthesizing a supervisor. In this paper, we extend the
idea and show that it is possible to learn a modular max-
imally permissive controllable supervisor (Åkesson et al.,
2002) given the specifications of the system along with
a simulation and a modular structure definition, without
having first to learn a plant model. To this end, we first
present how the modular structure and specifications are
used to generate a configuration of supervisors to learn.

Modular Supervisory Synthesis for Unknown
Plant Models Using Active Learning �

Fredrik Hagebring, Ashfaq Farooqui, Martin Fabian

Department of Electrical Engineering, Chalmers University of
Technology, Göteborg, Sweden 412 96

(e-mail: {ashfaqf, fredrik.hagebring, fabian}@chalmers.se)

Abstract: This paper proposes an approach to synthesize a modular discrete-event supervisor
to control a plant, the behavior model of which is unknown, so as to satisfy given specifications.
To this end, the Modular Supervisor Learner (MSL) is presented that based on the known
specifications and the structure of the system defines the configuration of the supervisors to
learn. Then, by actively querying the simulation and interacting with the specification it explores
the state-space of the system to learn a set of maximally permissive controllable supervisors.

The Supervisory Control Theory (SCT) (Ramadge and
Wonham, 1989) provides a general framework to synthesize
supervisors for Discrete-Event Systems (DES). These DES
are models of systems that at each time instant occupy
a discrete state, and perform state transition on the oc-
currence of events. Examples of such systems are manu-
facturing systems, communication networks, and embed-
ded systems. Given a DES modeling all possible behavior
known as a plant, a supervisor can be synthesized that can
control the plant in order to satisfy given specifications.
However, modeling large complex systems is a challenging
task that requires skill, in-depth knowledge of the system,
and creativity. Manually defining the behaviour of the
plant model is an error prone task; incorrect or incomplete
models are misleading, and can unnecessarily complicate
the development process. Hence, assuming access to a
correct plant model can be limiting.

Though discrete-event models have many advantages, they
suffer from one big and fundamental problem – state-
space explosion. Here, the discrete models very quickly
grow in size making it difficult to store and compute using
them. One technique is to have modular models that when
composed describe the complete behavior. These, modular
models, can then be used for computation and synthesis.

Simulation technologies have gained attention in many
areas of automation, and hence simulation-based devel-
opment has become well accepted. In this mode of devel-
opment, the intended system is first created in a 3D sim-
ulation environment where it can be tested and improved
upon before constructing the physical system. These sim-
ulations implicitly contain within them a behavior of the
plant, though this behavior is not accessible in a usable for-
mat for supervisory synthesis algorithms. However, there
exist active learning algorithms that can be used to infer
a discrete model of the plant from a simulation.

� Work supported by the Swedish Research Council (VR) project
SyTeC, the Chalmers Production Area of Advance, and by the Wal-
lenberg Artificial Intelligence, Autonomous Systems and Software
Program (WASP) funded by Knut and Alice Wallenberg Foundation.

Active learning algorithms are a class of machine learning
algorithms that aim to deduce a discrete-event model
describing the behavior of a system. Active automata
learning has been successfully applied to learn and verify
communication protocols using Mealy machines (Steffen
et al., 2011; Jonsson, 2011); to obtain the formal models
of biometric passports (Aarts et al., 2010) and bank
cards (Aarts et al., 2013).

Within the SCT community, there has been work on
applying active learning algorithms mainly by language
based algorithms. That is, they focus on the sequences of
events that can be performed. Zhang et al. (2018) look at
synthesizing a controller when a plant model is known, and
the specification model is not an automaton; Dai and Lin
(2014) look at learning decentralized supervisors; Hiraishi
(1999) presents a synthesis approach for concurrent sys-
tems; and Yang et al. (1995) propose an algorithm to learn
optimal controllers. However, to the best of the authors’
knowledge, despite most cyber-physical systems being able
to employ a state-based formulation, no state-based active
learning approaches exist within the automata learning
community. Specifically, in the current setting, using a
simulator makes it possible to access the state of the
system. A state, in this paper, is defined by the values
assigned to a set of variables, each of which has its own
domain. Unique combinations of the values assigned to
these variables make up the different states.

Previously in Farooqui et al. (2020), it was shown how a
modular plant model could be learned given a definition
of its modular structure and interacting with a simulation
of the system. It would, however, be useful to directly
synthesize a supervisor from the simulation, instead of first
learning a plant model and then, by using additional tools,
synthesizing a supervisor. In this paper, we extend the
idea and show that it is possible to learn a modular max-
imally permissive controllable supervisor (Åkesson et al.,
2002) given the specifications of the system along with
a simulation and a modular structure definition, without
having first to learn a plant model. To this end, we first
present how the modular structure and specifications are
used to generate a configuration of supervisors to learn.

Modular Supervisory Synthesis for Unknown
Plant Models Using Active Learning �

Fredrik Hagebring, Ashfaq Farooqui, Martin Fabian

Department of Electrical Engineering, Chalmers University of
Technology, Göteborg, Sweden 412 96

(e-mail: {ashfaqf, fredrik.hagebring, fabian}@chalmers.se)

Abstract: This paper proposes an approach to synthesize a modular discrete-event supervisor
to control a plant, the behavior model of which is unknown, so as to satisfy given specifications.
To this end, the Modular Supervisor Learner (MSL) is presented that based on the known
specifications and the structure of the system defines the configuration of the supervisors to
learn. Then, by actively querying the simulation and interacting with the specification it explores
the state-space of the system to learn a set of maximally permissive controllable supervisors.

The Supervisory Control Theory (SCT) (Ramadge and
Wonham, 1989) provides a general framework to synthesize
supervisors for Discrete-Event Systems (DES). These DES
are models of systems that at each time instant occupy
a discrete state, and perform state transition on the oc-
currence of events. Examples of such systems are manu-
facturing systems, communication networks, and embed-
ded systems. Given a DES modeling all possible behavior
known as a plant, a supervisor can be synthesized that can
control the plant in order to satisfy given specifications.
However, modeling large complex systems is a challenging
task that requires skill, in-depth knowledge of the system,
and creativity. Manually defining the behaviour of the
plant model is an error prone task; incorrect or incomplete
models are misleading, and can unnecessarily complicate
the development process. Hence, assuming access to a
correct plant model can be limiting.

Though discrete-event models have many advantages, they
suffer from one big and fundamental problem – state-
space explosion. Here, the discrete models very quickly
grow in size making it difficult to store and compute using
them. One technique is to have modular models that when
composed describe the complete behavior. These, modular
models, can then be used for computation and synthesis.

Simulation technologies have gained attention in many
areas of automation, and hence simulation-based devel-
opment has become well accepted. In this mode of devel-
opment, the intended system is first created in a 3D sim-
ulation environment where it can be tested and improved
upon before constructing the physical system. These sim-
ulations implicitly contain within them a behavior of the
plant, though this behavior is not accessible in a usable for-
mat for supervisory synthesis algorithms. However, there
exist active learning algorithms that can be used to infer
a discrete model of the plant from a simulation.

� Work supported by the Swedish Research Council (VR) project
SyTeC, the Chalmers Production Area of Advance, and by the Wal-
lenberg Artificial Intelligence, Autonomous Systems and Software
Program (WASP) funded by Knut and Alice Wallenberg Foundation.

Active learning algorithms are a class of machine learning
algorithms that aim to deduce a discrete-event model
describing the behavior of a system. Active automata
learning has been successfully applied to learn and verify
communication protocols using Mealy machines (Steffen
et al., 2011; Jonsson, 2011); to obtain the formal models
of biometric passports (Aarts et al., 2010) and bank
cards (Aarts et al., 2013).

Within the SCT community, there has been work on
applying active learning algorithms mainly by language
based algorithms. That is, they focus on the sequences of
events that can be performed. Zhang et al. (2018) look at
synthesizing a controller when a plant model is known, and
the specification model is not an automaton; Dai and Lin
(2014) look at learning decentralized supervisors; Hiraishi
(1999) presents a synthesis approach for concurrent sys-
tems; and Yang et al. (1995) propose an algorithm to learn
optimal controllers. However, to the best of the authors’
knowledge, despite most cyber-physical systems being able
to employ a state-based formulation, no state-based active
learning approaches exist within the automata learning
community. Specifically, in the current setting, using a
simulator makes it possible to access the state of the
system. A state, in this paper, is defined by the values
assigned to a set of variables, each of which has its own
domain. Unique combinations of the values assigned to
these variables make up the different states.

Previously in Farooqui et al. (2020), it was shown how a
modular plant model could be learned given a definition
of its modular structure and interacting with a simulation
of the system. It would, however, be useful to directly
synthesize a supervisor from the simulation, instead of first
learning a plant model and then, by using additional tools,
synthesizing a supervisor. In this paper, we extend the
idea and show that it is possible to learn a modular max-
imally permissive controllable supervisor (Åkesson et al.,
2002) given the specifications of the system along with
a simulation and a modular structure definition, without
having first to learn a plant model. To this end, we first
present how the modular structure and specifications are
used to generate a configuration of supervisors to learn.

Modular Supervisory Synthesis for Unknown
Plant Models Using Active Learning �

Fredrik Hagebring, Ashfaq Farooqui, Martin Fabian

Department of Electrical Engineering, Chalmers University of
Technology, Göteborg, Sweden 412 96

(e-mail: {ashfaqf, fredrik.hagebring, fabian}@chalmers.se)

Abstract: This paper proposes an approach to synthesize a modular discrete-event supervisor
to control a plant, the behavior model of which is unknown, so as to satisfy given specifications.
To this end, the Modular Supervisor Learner (MSL) is presented that based on the known
specifications and the structure of the system defines the configuration of the supervisors to
learn. Then, by actively querying the simulation and interacting with the specification it explores
the state-space of the system to learn a set of maximally permissive controllable supervisors.

The Supervisory Control Theory (SCT) (Ramadge and
Wonham, 1989) provides a general framework to synthesize
supervisors for Discrete-Event Systems (DES). These DES
are models of systems that at each time instant occupy
a discrete state, and perform state transition on the oc-
currence of events. Examples of such systems are manu-
facturing systems, communication networks, and embed-
ded systems. Given a DES modeling all possible behavior
known as a plant, a supervisor can be synthesized that can
control the plant in order to satisfy given specifications.
However, modeling large complex systems is a challenging
task that requires skill, in-depth knowledge of the system,
and creativity. Manually defining the behaviour of the
plant model is an error prone task; incorrect or incomplete
models are misleading, and can unnecessarily complicate
the development process. Hence, assuming access to a
correct plant model can be limiting.

Though discrete-event models have many advantages, they
suffer from one big and fundamental problem – state-
space explosion. Here, the discrete models very quickly
grow in size making it difficult to store and compute using
them. One technique is to have modular models that when
composed describe the complete behavior. These, modular
models, can then be used for computation and synthesis.

Simulation technologies have gained attention in many
areas of automation, and hence simulation-based devel-
opment has become well accepted. In this mode of devel-
opment, the intended system is first created in a 3D sim-
ulation environment where it can be tested and improved
upon before constructing the physical system. These sim-
ulations implicitly contain within them a behavior of the
plant, though this behavior is not accessible in a usable for-
mat for supervisory synthesis algorithms. However, there
exist active learning algorithms that can be used to infer
a discrete model of the plant from a simulation.

� Work supported by the Swedish Research Council (VR) project
SyTeC, the Chalmers Production Area of Advance, and by the Wal-
lenberg Artificial Intelligence, Autonomous Systems and Software
Program (WASP) funded by Knut and Alice Wallenberg Foundation.

Active learning algorithms are a class of machine learning
algorithms that aim to deduce a discrete-event model
describing the behavior of a system. Active automata
learning has been successfully applied to learn and verify
communication protocols using Mealy machines (Steffen
et al., 2011; Jonsson, 2011); to obtain the formal models
of biometric passports (Aarts et al., 2010) and bank
cards (Aarts et al., 2013).

Within the SCT community, there has been work on
applying active learning algorithms mainly by language
based algorithms. That is, they focus on the sequences of
events that can be performed. Zhang et al. (2018) look at
synthesizing a controller when a plant model is known, and
the specification model is not an automaton; Dai and Lin
(2014) look at learning decentralized supervisors; Hiraishi
(1999) presents a synthesis approach for concurrent sys-
tems; and Yang et al. (1995) propose an algorithm to learn
optimal controllers. However, to the best of the authors’
knowledge, despite most cyber-physical systems being able
to employ a state-based formulation, no state-based active
learning approaches exist within the automata learning
community. Specifically, in the current setting, using a
simulator makes it possible to access the state of the
system. A state, in this paper, is defined by the values
assigned to a set of variables, each of which has its own
domain. Unique combinations of the values assigned to
these variables make up the different states.

Previously in Farooqui et al. (2020), it was shown how a
modular plant model could be learned given a definition
of its modular structure and interacting with a simulation
of the system. It would, however, be useful to directly
synthesize a supervisor from the simulation, instead of first
learning a plant model and then, by using additional tools,
synthesizing a supervisor. In this paper, we extend the
idea and show that it is possible to learn a modular max-
imally permissive controllable supervisor (Åkesson et al.,
2002) given the specifications of the system along with
a simulation and a modular structure definition, without
having first to learn a plant model. To this end, we first
present how the modular structure and specifications are
used to generate a configuration of supervisors to learn.

Modular Supervisory Synthesis for Unknown
Plant Models Using Active Learning �

Fredrik Hagebring, Ashfaq Farooqui, Martin Fabian

Department of Electrical Engineering, Chalmers University of
Technology, Göteborg, Sweden 412 96

(e-mail: {ashfaqf, fredrik.hagebring, fabian}@chalmers.se)

Abstract: This paper proposes an approach to synthesize a modular discrete-event supervisor
to control a plant, the behavior model of which is unknown, so as to satisfy given specifications.
To this end, the Modular Supervisor Learner (MSL) is presented that based on the known
specifications and the structure of the system defines the configuration of the supervisors to
learn. Then, by actively querying the simulation and interacting with the specification it explores
the state-space of the system to learn a set of maximally permissive controllable supervisors.

The Supervisory Control Theory (SCT) (Ramadge and
Wonham, 1989) provides a general framework to synthesize
supervisors for Discrete-Event Systems (DES). These DES
are models of systems that at each time instant occupy
a discrete state, and perform state transition on the oc-
currence of events. Examples of such systems are manu-
facturing systems, communication networks, and embed-
ded systems. Given a DES modeling all possible behavior
known as a plant, a supervisor can be synthesized that can
control the plant in order to satisfy given specifications.
However, modeling large complex systems is a challenging
task that requires skill, in-depth knowledge of the system,
and creativity. Manually defining the behaviour of the
plant model is an error prone task; incorrect or incomplete
models are misleading, and can unnecessarily complicate
the development process. Hence, assuming access to a
correct plant model can be limiting.

Though discrete-event models have many advantages, they
suffer from one big and fundamental problem – state-
space explosion. Here, the discrete models very quickly
grow in size making it difficult to store and compute using
them. One technique is to have modular models that when
composed describe the complete behavior. These, modular
models, can then be used for computation and synthesis.

Simulation technologies have gained attention in many
areas of automation, and hence simulation-based devel-
opment has become well accepted. In this mode of devel-
opment, the intended system is first created in a 3D sim-
ulation environment where it can be tested and improved
upon before constructing the physical system. These sim-
ulations implicitly contain within them a behavior of the
plant, though this behavior is not accessible in a usable for-
mat for supervisory synthesis algorithms. However, there
exist active learning algorithms that can be used to infer
a discrete model of the plant from a simulation.

� Work supported by the Swedish Research Council (VR) project
SyTeC, the Chalmers Production Area of Advance, and by the Wal-
lenberg Artificial Intelligence, Autonomous Systems and Software
Program (WASP) funded by Knut and Alice Wallenberg Foundation.

Active learning algorithms are a class of machine learning
algorithms that aim to deduce a discrete-event model
describing the behavior of a system. Active automata
learning has been successfully applied to learn and verify
communication protocols using Mealy machines (Steffen
et al., 2011; Jonsson, 2011); to obtain the formal models
of biometric passports (Aarts et al., 2010) and bank
cards (Aarts et al., 2013).

Within the SCT community, there has been work on
applying active learning algorithms mainly by language
based algorithms. That is, they focus on the sequences of
events that can be performed. Zhang et al. (2018) look at
synthesizing a controller when a plant model is known, and
the specification model is not an automaton; Dai and Lin
(2014) look at learning decentralized supervisors; Hiraishi
(1999) presents a synthesis approach for concurrent sys-
tems; and Yang et al. (1995) propose an algorithm to learn
optimal controllers. However, to the best of the authors’
knowledge, despite most cyber-physical systems being able
to employ a state-based formulation, no state-based active
learning approaches exist within the automata learning
community. Specifically, in the current setting, using a
simulator makes it possible to access the state of the
system. A state, in this paper, is defined by the values
assigned to a set of variables, each of which has its own
domain. Unique combinations of the values assigned to
these variables make up the different states.

Previously in Farooqui et al. (2020), it was shown how a
modular plant model could be learned given a definition
of its modular structure and interacting with a simulation
of the system. It would, however, be useful to directly
synthesize a supervisor from the simulation, instead of first
learning a plant model and then, by using additional tools,
synthesizing a supervisor. In this paper, we extend the
idea and show that it is possible to learn a modular max-
imally permissive controllable supervisor (Åkesson et al.,
2002) given the specifications of the system along with
a simulation and a modular structure definition, without
having first to learn a plant model. To this end, we first
present how the modular structure and specifications are
used to generate a configuration of supervisors to learn.

Modular Supervisory Synthesis for Unknown
Plant Models Using Active Learning �

Fredrik Hagebring, Ashfaq Farooqui, Martin Fabian

Department of Electrical Engineering, Chalmers University of
Technology, Göteborg, Sweden 412 96

(e-mail: {ashfaqf, fredrik.hagebring, fabian}@chalmers.se)

Abstract: This paper proposes an approach to synthesize a modular discrete-event supervisor
to control a plant, the behavior model of which is unknown, so as to satisfy given specifications.
To this end, the Modular Supervisor Learner (MSL) is presented that based on the known
specifications and the structure of the system defines the configuration of the supervisors to
learn. Then, by actively querying the simulation and interacting with the specification it explores
the state-space of the system to learn a set of maximally permissive controllable supervisors.

The Supervisory Control Theory (SCT) (Ramadge and
Wonham, 1989) provides a general framework to synthesize
supervisors for Discrete-Event Systems (DES). These DES
are models of systems that at each time instant occupy
a discrete state, and perform state transition on the oc-
currence of events. Examples of such systems are manu-
facturing systems, communication networks, and embed-
ded systems. Given a DES modeling all possible behavior
known as a plant, a supervisor can be synthesized that can
control the plant in order to satisfy given specifications.
However, modeling large complex systems is a challenging
task that requires skill, in-depth knowledge of the system,
and creativity. Manually defining the behaviour of the
plant model is an error prone task; incorrect or incomplete
models are misleading, and can unnecessarily complicate
the development process. Hence, assuming access to a
correct plant model can be limiting.

Though discrete-event models have many advantages, they
suffer from one big and fundamental problem – state-
space explosion. Here, the discrete models very quickly
grow in size making it difficult to store and compute using
them. One technique is to have modular models that when
composed describe the complete behavior. These, modular
models, can then be used for computation and synthesis.

Simulation technologies have gained attention in many
areas of automation, and hence simulation-based devel-
opment has become well accepted. In this mode of devel-
opment, the intended system is first created in a 3D sim-
ulation environment where it can be tested and improved
upon before constructing the physical system. These sim-
ulations implicitly contain within them a behavior of the
plant, though this behavior is not accessible in a usable for-
mat for supervisory synthesis algorithms. However, there
exist active learning algorithms that can be used to infer
a discrete model of the plant from a simulation.

� Work supported by the Swedish Research Council (VR) project
SyTeC, the Chalmers Production Area of Advance, and by the Wal-
lenberg Artificial Intelligence, Autonomous Systems and Software
Program (WASP) funded by Knut and Alice Wallenberg Foundation.

Active learning algorithms are a class of machine learning
algorithms that aim to deduce a discrete-event model
describing the behavior of a system. Active automata
learning has been successfully applied to learn and verify
communication protocols using Mealy machines (Steffen
et al., 2011; Jonsson, 2011); to obtain the formal models
of biometric passports (Aarts et al., 2010) and bank
cards (Aarts et al., 2013).

Within the SCT community, there has been work on
applying active learning algorithms mainly by language
based algorithms. That is, they focus on the sequences of
events that can be performed. Zhang et al. (2018) look at
synthesizing a controller when a plant model is known, and
the specification model is not an automaton; Dai and Lin
(2014) look at learning decentralized supervisors; Hiraishi
(1999) presents a synthesis approach for concurrent sys-
tems; and Yang et al. (1995) propose an algorithm to learn
optimal controllers. However, to the best of the authors’
knowledge, despite most cyber-physical systems being able
to employ a state-based formulation, no state-based active
learning approaches exist within the automata learning
community. Specifically, in the current setting, using a
simulator makes it possible to access the state of the
system. A state, in this paper, is defined by the values
assigned to a set of variables, each of which has its own
domain. Unique combinations of the values assigned to
these variables make up the different states.

Previously in Farooqui et al. (2020), it was shown how a
modular plant model could be learned given a definition
of its modular structure and interacting with a simulation
of the system. It would, however, be useful to directly
synthesize a supervisor from the simulation, instead of first
learning a plant model and then, by using additional tools,
synthesizing a supervisor. In this paper, we extend the
idea and show that it is possible to learn a modular max-
imally permissive controllable supervisor (Åkesson et al.,
2002) given the specifications of the system along with
a simulation and a modular structure definition, without
having first to learn a plant model. To this end, we first
present how the modular structure and specifications are
used to generate a configuration of supervisors to learn.

Modular Supervisory Synthesis for Unknown
Plant Models Using Active Learning �

Fredrik Hagebring, Ashfaq Farooqui, Martin Fabian

Department of Electrical Engineering, Chalmers University of
Technology, Göteborg, Sweden 412 96

(e-mail: {ashfaqf, fredrik.hagebring, fabian}@chalmers.se)

Abstract: This paper proposes an approach to synthesize a modular discrete-event supervisor
to control a plant, the behavior model of which is unknown, so as to satisfy given specifications.
To this end, the Modular Supervisor Learner (MSL) is presented that based on the known
specifications and the structure of the system defines the configuration of the supervisors to
learn. Then, by actively querying the simulation and interacting with the specification it explores
the state-space of the system to learn a set of maximally permissive controllable supervisors.

The Supervisory Control Theory (SCT) (Ramadge and
Wonham, 1989) provides a general framework to synthesize
supervisors for Discrete-Event Systems (DES). These DES
are models of systems that at each time instant occupy
a discrete state, and perform state transition on the oc-
currence of events. Examples of such systems are manu-
facturing systems, communication networks, and embed-
ded systems. Given a DES modeling all possible behavior
known as a plant, a supervisor can be synthesized that can
control the plant in order to satisfy given specifications.
However, modeling large complex systems is a challenging
task that requires skill, in-depth knowledge of the system,
and creativity. Manually defining the behaviour of the
plant model is an error prone task; incorrect or incomplete
models are misleading, and can unnecessarily complicate
the development process. Hence, assuming access to a
correct plant model can be limiting.

Though discrete-event models have many advantages, they
suffer from one big and fundamental problem – state-
space explosion. Here, the discrete models very quickly
grow in size making it difficult to store and compute using
them. One technique is to have modular models that when
composed describe the complete behavior. These, modular
models, can then be used for computation and synthesis.

Simulation technologies have gained attention in many
areas of automation, and hence simulation-based devel-
opment has become well accepted. In this mode of devel-
opment, the intended system is first created in a 3D sim-
ulation environment where it can be tested and improved
upon before constructing the physical system. These sim-
ulations implicitly contain within them a behavior of the
plant, though this behavior is not accessible in a usable for-
mat for supervisory synthesis algorithms. However, there
exist active learning algorithms that can be used to infer
a discrete model of the plant from a simulation.

� Work supported by the Swedish Research Council (VR) project
SyTeC, the Chalmers Production Area of Advance, and by the Wal-
lenberg Artificial Intelligence, Autonomous Systems and Software
Program (WASP) funded by Knut and Alice Wallenberg Foundation.

Active learning algorithms are a class of machine learning
algorithms that aim to deduce a discrete-event model
describing the behavior of a system. Active automata
learning has been successfully applied to learn and verify
communication protocols using Mealy machines (Steffen
et al., 2011; Jonsson, 2011); to obtain the formal models
of biometric passports (Aarts et al., 2010) and bank
cards (Aarts et al., 2013).

Within the SCT community, there has been work on
applying active learning algorithms mainly by language
based algorithms. That is, they focus on the sequences of
events that can be performed. Zhang et al. (2018) look at
synthesizing a controller when a plant model is known, and
the specification model is not an automaton; Dai and Lin
(2014) look at learning decentralized supervisors; Hiraishi
(1999) presents a synthesis approach for concurrent sys-
tems; and Yang et al. (1995) propose an algorithm to learn
optimal controllers. However, to the best of the authors’
knowledge, despite most cyber-physical systems being able
to employ a state-based formulation, no state-based active
learning approaches exist within the automata learning
community. Specifically, in the current setting, using a
simulator makes it possible to access the state of the
system. A state, in this paper, is defined by the values
assigned to a set of variables, each of which has its own
domain. Unique combinations of the values assigned to
these variables make up the different states.

Previously in Farooqui et al. (2020), it was shown how a
modular plant model could be learned given a definition
of its modular structure and interacting with a simulation
of the system. It would, however, be useful to directly
synthesize a supervisor from the simulation, instead of first
learning a plant model and then, by using additional tools,
synthesizing a supervisor. In this paper, we extend the
idea and show that it is possible to learn a modular max-
imally permissive controllable supervisor (Åkesson et al.,
2002) given the specifications of the system along with
a simulation and a modular structure definition, without
having first to learn a plant model. To this end, we first
present how the modular structure and specifications are
used to generate a configuration of supervisors to learn.

Next, by tracking the state in the supervisor, we present an
approach to identify and forbid states that are not control-
lable. This is followed by the Modular Supervisor Learner
algorithm that uses the configuration of supervisors and
the controllability algorithm to learn a set of supervisors
for the given simulation and specification. Additionally,
the specific implementation of MSL proposed in this paper
is formulated such that it can employ distributed compu-
tation to improve scalability. That is, the search is divided
into small independent operations that can be distributed
over multiple processors or computers.

In the following, Section 1 introduces the relevant no-
tation. Section 2 presents the modeling framework that
enables learning a modular discrete supervisor. Section 3
then presents the Modular Supervisor Learner followed by
Section 4 that discusses an example to show the different
components before concluding in Section 5.

1. PREREQUISITES

Let Σ, called an alphabet, be a finite set of events. Partition
Σ into the two sets Σc, the set of controllable events, and
Σu, the set of uncontrollable events. A language L ⊆ Σ∗ is
a set of strings over Σ.

1.1 Deterministic Finite State Automaton (DFA)

Let I be a totally ordered index set. Let V = { vi | i ∈ I }
be a set of variables such that each variable is indexed
by one element of the indexing set, that is |V | = |I|. Let
V ′ = { vi′ ∈ V | i′ ∈ I ′ ⊆ I } be a subset of variables of
V respecting the indexing order, with |V ′| = |I ′|. Each
variable vi has a (finite discrete) domain Di, and let the
domain of V be DV = Di1 ×Di2 × · · · ×Di|I| , where the
indices ij ∈ I (for j ∈ 1..|I|) respect the indexing order. In
the same way, the domain of V ′ is given as the Cartesian
product over the domains of the variables of V ′ in the
order defined by the indexing subset I ′ ⊆ I.

Let a state q be defined as an element of the domain of
V , that is, q ∈ DV . Thus, a state q is a valuation of the
variables of V . Likewise, let a sub-state q′ be a valuation
over V ′. Define the projection of a state q ∈ DV onto a
sub-state q′ ∈ DV ′ as PV ′(q) = q′, such that all vi ∈ q′

have the same valuation as in q. For a set of states Q, let
PV ′(Q) denote the projection of each element in Q on V ′

Definition 1. (DFA). A (deterministic finite) automaton
is defined as a 6-tuple 〈Q,Σ, δ, q0, Qm, Qf 〉, where:

• Q is the set of states
• Σ is the alphabet containing the events
• δ : Q× Σ → Q is the partial transition function
• q0 ∈ Q is the initial state of the system
• Qm ⊆ Q is the set of marked states
• Qf ⊆ Q is the set of forbidden states

Given an automaton G, its language L(G) = {s ∈ Σ∗ |
δ(q0, s) is defined} is the set of all sequences of events,
strings, defined from G’s initial state. A state q ∈ Q such
that δ(q0, s) = q for some s ∈ L(G) is said to be reachable.
The marked language Lm(G) = {s ∈ L(G) | δ(q0, s) ∈
Qm} is the set of strings that reach marked states. A state
q ∈ Q such that δ(q, t) ∈ Qm for some st ∈ Lm(G) is said
to be coreachable.

1.2 Supervisory Control Theory

The supervisory control theory (Ramadge and Wonham,
1989) provides a method to synthesize a supervisor S,
given a plant G and a specification K such that the
behavior of G dynamically restricted by S always fulfills K.
The closed-loop system where S controls G can be modeled
by synchronous composition (Cassandras and Lafortune,
2009) G ||S, where events are generated by G only if
enabled by S.

However, S does not have full control over the event
generation of G, only the controllable events Σc can be
restricted by S, while the uncontrollable events Σu are
not susceptible to influence by S. This is captured by the
notion of controllability.
Definition 2. (Controllability). For a plant G and uncon-
trollable events Σu, a supervisor S is said to be controllable
if ∀s ∈ L(G ||S), σ ∈ Σu : sσ ∈ L(G) =⇒ sσ ∈ L(G ||S).

A controllable S is able to restrict G to a subset of
the state-space that is considered safe. However, while
restricting bad states from being reached, S must allow
marked states to be reached. This is captured by the notion
of non-blocking
Definition 3. (Non-blocking). For a plant G, a supervisor
S is said to be non-blocking if in the closed-loop system
G ||S from any reachable state some marked state can be
reached, that is, L(G ||S) = Lm(G ||S).

It is known (Cassandras and Lafortune, 2009) that for
a given G and K, there exists a maximally permissive
controllable and non-blocking S, such that L(G ||S) is
the unique supremal controllable and non-blocking sub-
language sup C(G ||S) ⊆ L(K).

Given a plant G = {G1, G2, . . . , Gj}, let K = {K1,K2, . . . ,
Ki} be a set of automata describing the specifications
of the system. A set of supervisors S = {S1, S2, . . . , Si}
can then be calculated for each specification Ki in such a
way (Åkesson et al., 2002) that the synchronous composi-
tion of the supervisors results in a maximally permissive
controllable supervisor.

2. THE MODELING FRAMEWORK

Farooqui et al. (2020) showed how a modular discrete
event plant model can be learned from a simulation. In
some cases, however, it is beneficial to learn a supervi-
sor that satisfies given specifications when controlling the
plant. To this end, we modify the previous algorithm to
interact with a simulation of the plant for which a super-
visor is to be learned, and actively query the simulation in
a smart way to learn what states are reachable from the
initial state, and also to check if they are controllable with
respect to the given specification. To be able to do this
modularly, the algorithm uses a plant structure hypothesis
(PSH) to split the learning into a set of modules. This
section highlights the inputs required by the algorithm.

2.1 The Simulation

Simulations provide several advantages in comparison to
using a real physical system. Unlike the real system, the



326 Fredrik Hagebring  et al. / IFAC PapersOnLine 53-4 (2020) 324–330

simulation can run faster than real-time, even multiple
instances in parallel, thereby speeding up the learning
process. Dangerous collisions and unforeseen events are
avoided and confined to the simulation, providing a safe
learning environment. Additionally, the financial invest-
ment needed, once a simulation is obtained, relates to
obtaining powerful computers – which in today’s world
is relatively cheap.

It is important to highlight the requirements of the plant
simulation. Firstly, it should be possible to, using an
interface, execute an event, or a string of events. The plant
simulation has at each time a set of enabled events that
can be executed to perform specific actions. When these
actions are performed the state of the plant is updated
resulting in another set of enabled events. Hence, a string
of events can be executed taking the plant from one state
to another state. In case an event is requested to be
executed that is not enabled by the plant in a particular
state, the simulation should reply with an error message.

Secondly, it should be possible to observe and set the state
of the system. The state is here given by the values of a set
of variables in the simulation; these could, for example in a
manufacturing context, be the status of sensors, actuators,
and product position.

For this purpose, define a function getNextState that takes
as input an assignment to the variables and an event to
be executed. The output of this function is the resulting
variable assignment when the given event is executed in
the simulator from the given state, or the aforementioned
error message.

It is important to note here that we have presented the
simulator to be a discrete system. In most cases, these are
not discrete, neither in time nor variable values. However,
we assume that the simulation can be discretized in order
to learn a discrete model.

2.2 Plant Structure Hypothesis

The PSH can be considered the core of the modular learn-
ing technique proposed in this paper. It can be viewed as a
high-level meta-model that defines the modular structure
of the system. The modular structure refers to a division
of the complete plant behavior as separate modules, usu-
ally, but not necessarily, representing the separate sub-
systems that together define the behavior of the plant.
This can then be exploited by the MSL to divide the
learned information into separate modules and to reduce
the search space, ultimately mitigating the state-space
explosion problem.

The PSH is defined using three pieces of information.
Firstly, a set M provides a unique name for each module
in the system. The cardinality of M defines the number
of modules in the system. Secondly, a mapping E, called
event mapping, defines which events of the global alphabet
Σ = Σc ∪ Σu belong to which module. Thus, E(m) ⊆ Σ
is the local alphabet of the module m ∈ M . That an
event is part of an event mapping implies that the cor-
responding module is involved in executing the event and,
furthermore, that it requires this event to be represented
as transitions in the automaton of the module.

A state mapping S defines the relation between the mod-
ules and the set of variables in the simulator. That is,
for all m ∈ M , S(m) ⊆ V contains those variables that
either affect or are affected by events in the module.
Variables that are not part of a specific state mapping
can be ignored by that module. Thus, for a given module
m ∈ M , two global states qi, qj ∈ DV are equal within the
module if their projections onto S(m) are equal, that is,
if PS(m)(qi) = PS(m)(qj). Hereinafter the projection of a
state q onto a state mapping S(m) is denoted Pm(q).
Definition 4. (PSH). Formally, the PSH is a 3-tuple H =
〈M,E, S〉, where:

• M is a set of identifiers for the modules;
• E : M −→ 2Σ is the event mapping ;
• S : M −→ 2V is the state mapping ;

For any given system there may exist multiple approaches
to define the PSH. To guarantee that the MSL explores the
full system, however, requires a valid PSH. A valid PSH
is one where the union of all event mappings encompass
the whole alphabet Σ and the union of all state mappings
encompass the whole of V . That is, each event σ ∈ Σ and
variable v ∈ V must be included in the event and state
mapping of at least one module. In addition, the PSH must
conform to the simulation to agree on which module has
what events and what variables.

Further details about creating a PSH for a system along
with an example can be found in Farooqui et al. (2020).

2.3 Specifications

Along with the possibility to interact with the simulation
and a PSH, the MSL requires specifications to calculate su-
pervisors. A specification is an automaton whose language
defines the intended behavior of the system. Additionally,
specifying the accepted states and forbidden states is done
by adding these states in the specification automaton to
the appropriate sets.

The input to the algorithm is a set of specifications K =
{K1,K2, . . .Kn }, each with its own alphabet, ΣKi

.

3. THE MODULAR SUPERVISORY LEARNER

This section describes the MSL and its working. Before
presenting the algorithm we will define how the supervisors
to be learned are calculated from the PSH. Followed by
explaining how controllability is tracked in our approach.

3.1 Calculating the modules

It is known (Åkesson et al., 2002), that a controllable
modular supervisor can be calculated by selecting for each
specification Ki ∈ K, all plant components Gj ∈ G such
that ΣKi

∩ ΣGj
∩ Σu �= ∅ and performing monolithic

synthesis on this sub-system. To guarantee a maximally
permissive modular supervisor, also all plant components
Gk ∈ G such that ΣGk

∩ ΣGj ∩ Σu �= ∅ for each Gj

previously selected have to be included. This selection of
new plant components sharing uncontrollable events with
the already selected ones has to be iterated until a fix-
point. However, these latter Gk plant components can be



 Fredrik Hagebring  et al. / IFAC PapersOnLine 53-4 (2020) 324–330 327

simulation can run faster than real-time, even multiple
instances in parallel, thereby speeding up the learning
process. Dangerous collisions and unforeseen events are
avoided and confined to the simulation, providing a safe
learning environment. Additionally, the financial invest-
ment needed, once a simulation is obtained, relates to
obtaining powerful computers – which in today’s world
is relatively cheap.

It is important to highlight the requirements of the plant
simulation. Firstly, it should be possible to, using an
interface, execute an event, or a string of events. The plant
simulation has at each time a set of enabled events that
can be executed to perform specific actions. When these
actions are performed the state of the plant is updated
resulting in another set of enabled events. Hence, a string
of events can be executed taking the plant from one state
to another state. In case an event is requested to be
executed that is not enabled by the plant in a particular
state, the simulation should reply with an error message.

Secondly, it should be possible to observe and set the state
of the system. The state is here given by the values of a set
of variables in the simulation; these could, for example in a
manufacturing context, be the status of sensors, actuators,
and product position.

For this purpose, define a function getNextState that takes
as input an assignment to the variables and an event to
be executed. The output of this function is the resulting
variable assignment when the given event is executed in
the simulator from the given state, or the aforementioned
error message.

It is important to note here that we have presented the
simulator to be a discrete system. In most cases, these are
not discrete, neither in time nor variable values. However,
we assume that the simulation can be discretized in order
to learn a discrete model.

2.2 Plant Structure Hypothesis

The PSH can be considered the core of the modular learn-
ing technique proposed in this paper. It can be viewed as a
high-level meta-model that defines the modular structure
of the system. The modular structure refers to a division
of the complete plant behavior as separate modules, usu-
ally, but not necessarily, representing the separate sub-
systems that together define the behavior of the plant.
This can then be exploited by the MSL to divide the
learned information into separate modules and to reduce
the search space, ultimately mitigating the state-space
explosion problem.

The PSH is defined using three pieces of information.
Firstly, a set M provides a unique name for each module
in the system. The cardinality of M defines the number
of modules in the system. Secondly, a mapping E, called
event mapping, defines which events of the global alphabet
Σ = Σc ∪ Σu belong to which module. Thus, E(m) ⊆ Σ
is the local alphabet of the module m ∈ M . That an
event is part of an event mapping implies that the cor-
responding module is involved in executing the event and,
furthermore, that it requires this event to be represented
as transitions in the automaton of the module.

A state mapping S defines the relation between the mod-
ules and the set of variables in the simulator. That is,
for all m ∈ M , S(m) ⊆ V contains those variables that
either affect or are affected by events in the module.
Variables that are not part of a specific state mapping
can be ignored by that module. Thus, for a given module
m ∈ M , two global states qi, qj ∈ DV are equal within the
module if their projections onto S(m) are equal, that is,
if PS(m)(qi) = PS(m)(qj). Hereinafter the projection of a
state q onto a state mapping S(m) is denoted Pm(q).
Definition 4. (PSH). Formally, the PSH is a 3-tuple H =
〈M,E, S〉, where:

• M is a set of identifiers for the modules;
• E : M −→ 2Σ is the event mapping ;
• S : M −→ 2V is the state mapping ;

For any given system there may exist multiple approaches
to define the PSH. To guarantee that the MSL explores the
full system, however, requires a valid PSH. A valid PSH
is one where the union of all event mappings encompass
the whole alphabet Σ and the union of all state mappings
encompass the whole of V . That is, each event σ ∈ Σ and
variable v ∈ V must be included in the event and state
mapping of at least one module. In addition, the PSH must
conform to the simulation to agree on which module has
what events and what variables.

Further details about creating a PSH for a system along
with an example can be found in Farooqui et al. (2020).

2.3 Specifications

Along with the possibility to interact with the simulation
and a PSH, the MSL requires specifications to calculate su-
pervisors. A specification is an automaton whose language
defines the intended behavior of the system. Additionally,
specifying the accepted states and forbidden states is done
by adding these states in the specification automaton to
the appropriate sets.

The input to the algorithm is a set of specifications K =
{K1,K2, . . .Kn }, each with its own alphabet, ΣKi

.

3. THE MODULAR SUPERVISORY LEARNER

This section describes the MSL and its working. Before
presenting the algorithm we will define how the supervisors
to be learned are calculated from the PSH. Followed by
explaining how controllability is tracked in our approach.

3.1 Calculating the modules

It is known (Åkesson et al., 2002), that a controllable
modular supervisor can be calculated by selecting for each
specification Ki ∈ K, all plant components Gj ∈ G such
that ΣKi

∩ ΣGj
∩ Σu �= ∅ and performing monolithic

synthesis on this sub-system. To guarantee a maximally
permissive modular supervisor, also all plant components
Gk ∈ G such that ΣGk

∩ ΣGj ∩ Σu �= ∅ for each Gj

previously selected have to be included. This selection of
new plant components sharing uncontrollable events with
the already selected ones has to be iterated until a fix-
point. However, these latter Gk plant components can be

included incrementally, as needed (Åkesson et al., 2002),
to lessen the risk of including the monolithic plant.

In the current case, where plant components are not avail-
able, the information about the plant structure available
in the PSH is used to select the subsystems.

Define an event dependence function Dep(M,Σ′) that,
given a set of modules M and a set of events Σ′, selects the
modules that have any events in Σ′ in their event mapping.
Definition 5. (Event Dependence). Given an alphabet Σ′

and a set M = {m1,m2, . . . ,mi} of modules, let
Dep(M,Σ′) = {mi ∈ M | E(mi) ∩ Σ′ �= ∅ }

The modules are then selected using the following rules.
Let M contain the set of plant modules defined in the PSH.
Then for each specification component Ki ∈ K:

First initialize
Σ(1) = Σu ∩ ΣKi

M
(1)
Ki

= Dep(M,Σ(1))

Then repeat the following statements until Σ(n+1) = Σ(n).

Σ(n+1) = Σ(n) ∪ (Σ
M

(n)

Ki

∩ Σu)

M
(n+1)
Ki

= Dep(M (n)
Ki

,Σ(n))

The resulting set MKi
is the set of plant modules that

are related, directly and indirectly, to specification Ki

through uncontrollable events. The state mapping and
event mapping for these modules need to be aggregated
as well:

EKi
= ΣKi

∪
⋃

m∈MKi

E(m), and SKi
=

⋃
m∈MKi

S(m).

The above steps are repeated for each specification Ki ∈ K
creating the set MK = {MK1

,MK2
, . . .MKj

} which is
the configuration of supervisors to learn. Similarly, EK =
{EK1

, EK2
, . . . EKj

} and SK = {SK1
, SK2

, . . . SKj
}. Ad-

ditionally, it is possible that some modules of M are not
included in any of the module groupings; define MG = M \⋃
Ki∈K

MKi
. These modules need to be learned as plant

modules alongside the supervisors.

A new structure, similar to the PSH, is constructed con-
sisting of 〈M ′, E′, S′,K ′〉. Where, M ′ = MK ∪ MG is a
set of identifiers of the modules to learn. Hence the total
number of modules to learn is given by the cardinality of
|M ′| = |MK |+ |MG|. E′ and S′ are functions that map the
modules to be learned in M ′ to their respective alphabets
and variable sets with signatures: E′ : M ′ −→ 2Σ and
S′ : M ′ −→ 2V , and are defined as:

E′(m) =

{
EKi , if m ∈ MK and m = MKi

E(m), if m ∈ MG

S′(m) =

{
SKi

, if m ∈ MK and m = MKi

S(m), if m ∈ MG

Also, K ′, is a partial function that tracks the specification
associated with each module in M ′, if it exists, and has

the signature K ′ : M ′ −→ K, where K is the set of
specifications:

K ′(m) =

{
Ki, where m = MKi

undefined , otherwise.

3.2 Checking Controllability

Controllability for any given string can be checked using
Definition 2. However, in the present case, as will be shown
later, the algorithm works by exploring the simulated
system one state at a time. In doing so, there explicitly
does not exist a path to any state; only a set of states and
transitions Hence, to check controllability the algorithm
requires to track states reached in the specification.

To do this, each state in the specification is given a unique
name. Then, we add one state variable per specification to
the state vector, the valuation of which defines the current
state of the corresponding specification:

V = V ∪
⋃

∀Ki∈K

varKi .

This variable is updated when a transition is fired in the
specification. Similarly, the state mapping S′ is updated to
contain also the variable corresponding to its specification,
SKi

= SKi
∪ {varKi

}. Furthermore, those states in the
specification that are marked as forbidden or accepting can
be determined using the valuation of the added variable.

Now, using the above defined setting, it is possible to
check for controllability. A state valuation is controllable
if it allows an uncontrollable event σu ∈ ΣKi ∩ Σu to
occur in the simulation and σu is defined from the state
corresponding to the value of varKi .

When a state is not controllable, it and all states from
which it can be reached by uncontrollable events need to
be added to the set of forbidden states. Pseudo-code for
this is given in Algorithm 1.

begin
Procedure IsControllable(〈q, σ, q′〉, Ki)

if σ ∈ Σu then
if the state in specification Ki given by the
projection P{ varKi

}(q) allows σ then
Return true

else
Qf = Qf ∪ {q}
-run processUncontrollableState(q)
-Return false

end
else

Return true
end

Procedure processUncontrollableState(q)
- T = {〈q′, σu, q〉 ∈ δ | σu ∈ Σu}
- ∀t ∈ T, Qf = Qf ∪ {t.q′}
- processUncontrollableState(t.q′)

end
Algorithm 1: Algorithm to check controllability and
process uncontrollable states

3.3 The MSL algorithm

The MSL algorithm consists of three procedures, Main,
Explorer , and ModuleBuilder, see Algorithm 2, and is
constructed so that the latter two procedures execute



328 Fredrik Hagebring  et al. / IFAC PapersOnLine 53-4 (2020) 324–330

concurrently. The functioning of the algorithm is similar to
what is presented in Farooqui et al. (2020) with the main
addition being the check for controllability and selection of
plant components to include in order to learn the supervi-
sor. The algorithm is initiated by Main that launches the
Explorer and one instance of ModuleBuilder for each su-
pervisor and plant module that is to be learned, calculated
in accordance to Section 3.1. The Explorer is responsible
for exploring the new states, and the ModuleBuilder keeps
track of the module as it is learned.

The Explorer maintains a queue of states that need to
be explored, terminating the algorithm when the queue
is empty. The learning is initiated by adding an initial
state to the queue, which becomes the starting state of the
search. For each element in the queue, the Explorer checks
if an event defined in the alphabet can be executed. This
is achieved using the simulator interface. If a transition
is possible, the Explorer broadcasts the current state
(q), the event (σ) and the state reached (q′) to all the
ModuleBuilders.

The ModuleBuilder tracks the learning of each module as
an automaton. This is done by maintaining a set Q(m)
containing the states of the module, and a transition func-
tion T (m) : Q(m) × E(m) → Q(m). The ModuleBuilder,
on receiving a broadcast of a transition, checks if this
transition is controllable as defined in Section 3.2. If a
transition is found to be uncontrollable, then the source
state needs to be added to the list of forbidden states
Qf (m) followed by processing of all uncontrollable states
according to Algorithm 1. Next, the ModuleBuilder finds
all the variables V ′ that have been updated in the reached
state. The ModuleBuilder then evaluates if the received
transition is of interest to the particular module and con-
tinues following the same procedure as Farooqui et al.
(2020). Furthermore, specifications define the markings on
the states. If a reached state is marked as accepting or
forbidden in the specification, then this state is also added
to Qm(m) or Qf (m), respectively.

Once the transition is processed the ModuleBuilder waits
for further broadcasts. The algorithm terminates when
all modules are waiting for broadcasts, and the global
exploration queue is empty. Each ModuleBuilder can now
construct and return an automaton based on Q(m), T (m),
Qm(m), and Qf (m).

The result of this algorithm is a set of supervisors and
plant models, with one supervisor for each specification
that shares uncontrollable events with one or more mod-
ules defined in the PSH. Modules in the PSH that are not
in any supervisor module are learned as plant models.

3.4 On Controllability and Non-blocking

Assuming that the modular system is represented by a
valid PSH for the given simulation, the resulting super-
visor is a maximally permissive controllable, but possibly
blocking, modular supervisor. To show that the resulting
supervisor is controllable, assume that a supervisor S is
learned and is uncontrollable. Then there exists a non-
forbidden state q in S, which does not have a transition
labelled with an uncontrollable event that exists in the
simulation. This would mean that this state q has not been

Input: An interface to a simulator defined in Section 2.1, the
initial state, q0, a PSH H = 〈M,E, S〉, and a set of
specifications K.

begin
Procedure Main

- 〈M ′, E′, S′,K′〉 ←− calculate modules according to
Section 3.1

- QG ←− {q0} - Run ←− true
foreach m ∈ M ′ do

- run ModuleBuilder(m)
end
- run Explorer()
- Wait until QG is empty AND all ModuleBuilders are
waiting

- Run ←− false
- Collect Supm returned by ModuleBuilders into a set
Sup

return Sup
Procedure Explorer

while Run do
for q ∈ QG do

for σ ∈ Σ do
- find q′ by executing σ from state q in the
simulator

- Broadcast the transition 〈q, σ, q′〉
end
- Remove q from QG

end
end

Procedure ModuleBuilder(m)
Q(m) ←− {Pm(q0)}, T (m) ←− ∅, Qm(m) ←− ∅,
Qf (m) ←− ∅, Ki ←− K′(m)

while Run do
if 〈q, σ, q′〉 received then

controllable ←− if Ki is defined then
IsControllable(〈q, σ, q′〉, Ki) else true

V ′ ←− {v ∈ V | q(v) �= q′(v)}
if σ ∈ E′(m) or S′(m) ∩ V ′ �= ∅ then

σ′ ←− if σ ∈ E′(m) then σ else τ
T (m) ←− T (m) ∪ {(Pm(q), σ′) → Pm(q′)}
if Pm(q′) /∈ Q(m) then

Q(m) ←− Q(m) ∪ {Pm(q′)}
if P{ varKi

}(q
′) is marked in K then

Qm(m) ←− Qm(m) ∪ {Pm(q′)}
end
newState ←− True

end
end
if newState and controllable then

QG ←− QG ∪ {q′}
end

else
"waiting for broadcasts"

end
end
return
Supm〈Q(m), E′(m), T (m), Pm(q0),Qm(m), Qf (m)〉

end
Algorithm 2: The Modular Supervisor Learner algo-
rithm that learns a modular supervisor from a simula-
tion model, a PSH, and a set of specifications without
knowing the plant model.

explored by the algorithm. Had the state been explored,
the transition labeled with the uncontrollable event would
be found and by checking for controllability q would be
added to the list of forbidden states. The fact that q was
not explored would imply that the PSH and simulation do
not define a valid PSH.



 Fredrik Hagebring  et al. / IFAC PapersOnLine 53-4 (2020) 324–330 329

concurrently. The functioning of the algorithm is similar to
what is presented in Farooqui et al. (2020) with the main
addition being the check for controllability and selection of
plant components to include in order to learn the supervi-
sor. The algorithm is initiated by Main that launches the
Explorer and one instance of ModuleBuilder for each su-
pervisor and plant module that is to be learned, calculated
in accordance to Section 3.1. The Explorer is responsible
for exploring the new states, and the ModuleBuilder keeps
track of the module as it is learned.

The Explorer maintains a queue of states that need to
be explored, terminating the algorithm when the queue
is empty. The learning is initiated by adding an initial
state to the queue, which becomes the starting state of the
search. For each element in the queue, the Explorer checks
if an event defined in the alphabet can be executed. This
is achieved using the simulator interface. If a transition
is possible, the Explorer broadcasts the current state
(q), the event (σ) and the state reached (q′) to all the
ModuleBuilders.

The ModuleBuilder tracks the learning of each module as
an automaton. This is done by maintaining a set Q(m)
containing the states of the module, and a transition func-
tion T (m) : Q(m) × E(m) → Q(m). The ModuleBuilder,
on receiving a broadcast of a transition, checks if this
transition is controllable as defined in Section 3.2. If a
transition is found to be uncontrollable, then the source
state needs to be added to the list of forbidden states
Qf (m) followed by processing of all uncontrollable states
according to Algorithm 1. Next, the ModuleBuilder finds
all the variables V ′ that have been updated in the reached
state. The ModuleBuilder then evaluates if the received
transition is of interest to the particular module and con-
tinues following the same procedure as Farooqui et al.
(2020). Furthermore, specifications define the markings on
the states. If a reached state is marked as accepting or
forbidden in the specification, then this state is also added
to Qm(m) or Qf (m), respectively.

Once the transition is processed the ModuleBuilder waits
for further broadcasts. The algorithm terminates when
all modules are waiting for broadcasts, and the global
exploration queue is empty. Each ModuleBuilder can now
construct and return an automaton based on Q(m), T (m),
Qm(m), and Qf (m).

The result of this algorithm is a set of supervisors and
plant models, with one supervisor for each specification
that shares uncontrollable events with one or more mod-
ules defined in the PSH. Modules in the PSH that are not
in any supervisor module are learned as plant models.

3.4 On Controllability and Non-blocking

Assuming that the modular system is represented by a
valid PSH for the given simulation, the resulting super-
visor is a maximally permissive controllable, but possibly
blocking, modular supervisor. To show that the resulting
supervisor is controllable, assume that a supervisor S is
learned and is uncontrollable. Then there exists a non-
forbidden state q in S, which does not have a transition
labelled with an uncontrollable event that exists in the
simulation. This would mean that this state q has not been

Input: An interface to a simulator defined in Section 2.1, the
initial state, q0, a PSH H = 〈M,E, S〉, and a set of
specifications K.

begin
Procedure Main

- 〈M ′, E′, S′,K′〉 ←− calculate modules according to
Section 3.1

- QG ←− {q0} - Run ←− true
foreach m ∈ M ′ do

- run ModuleBuilder(m)
end
- run Explorer()
- Wait until QG is empty AND all ModuleBuilders are
waiting

- Run ←− false
- Collect Supm returned by ModuleBuilders into a set
Sup

return Sup
Procedure Explorer

while Run do
for q ∈ QG do

for σ ∈ Σ do
- find q′ by executing σ from state q in the
simulator

- Broadcast the transition 〈q, σ, q′〉
end
- Remove q from QG

end
end

Procedure ModuleBuilder(m)
Q(m) ←− {Pm(q0)}, T (m) ←− ∅, Qm(m) ←− ∅,
Qf (m) ←− ∅, Ki ←− K′(m)

while Run do
if 〈q, σ, q′〉 received then

controllable ←− if Ki is defined then
IsControllable(〈q, σ, q′〉, Ki) else true

V ′ ←− {v ∈ V | q(v) �= q′(v)}
if σ ∈ E′(m) or S′(m) ∩ V ′ �= ∅ then

σ′ ←− if σ ∈ E′(m) then σ else τ
T (m) ←− T (m) ∪ {(Pm(q), σ′) → Pm(q′)}
if Pm(q′) /∈ Q(m) then

Q(m) ←− Q(m) ∪ {Pm(q′)}
if P{ varKi

}(q
′) is marked in K then

Qm(m) ←− Qm(m) ∪ {Pm(q′)}
end
newState ←− True

end
end
if newState and controllable then

QG ←− QG ∪ {q′}
end

else
"waiting for broadcasts"

end
end
return
Supm〈Q(m), E′(m), T (m), Pm(q0),Qm(m), Qf (m)〉

end
Algorithm 2: The Modular Supervisor Learner algo-
rithm that learns a modular supervisor from a simula-
tion model, a PSH, and a set of specifications without
knowing the plant model.

explored by the algorithm. Had the state been explored,
the transition labeled with the uncontrollable event would
be found and by checking for controllability q would be
added to the list of forbidden states. The fact that q was
not explored would imply that the PSH and simulation do
not define a valid PSH.

The method outlined above results in the set of max-
imally permissive and controllable modular supervisors.
The synchronous composition of these supervisors can
still be blocking, though. However, if the obtained re-
sult is blocking, the maximally permissive controllable
and non-blocking supervisor can be synthesized from the
maximally permissive controllable supervisor by existing
methods (Ramadge and Wonham, 1989; Cassandras and
Lafortune, 2009). Essentially this means extracting from
the learned supervisor the largest (in terms of states and
transitions) sub-automaton that is both controllable and
non-blocking. Note that this can be done while still pre-
serving the modular structure of the supervisor (Flordal
et al., 2007; Malik et al., 2017).

3.5 Notes on Efficiency

Running this algorithm with a PSH that defines a mono-
lithic model produces the worst case runtime. The more
accurately the PSH defines a modular model, the better
is the learning time as it avoids searching the complete
monolithic state-space.

However even with an accurate PSH the search could
end up being monolithic, and this has to do with the
specifications and how supervisor modules are calculated.
If specifications share uncontrollable events with some
plant modules, and those in turn share uncontrollable
events with other plant modules, this could result in a
domino effect that leads to all the modules being included
in a supervisor. The resulting learning would then be an
inefficient monolithic search.

This can be improved by using an incremental approach
to learning the supervisor, similar to the one proposed
by Åkesson et al. (2002). Doing so requires a slight modifi-
cation to the calculation of modules. Instead of calculating
these supervisor modules iteratively until a fixed-point as
in Section 3.1, the learning algorithm is applied only to
the modules contained in the first iteration. That is, all
plant modules defined in the PSH that directly share an
uncontrollable event with the specification are taken to-
gether to learn a supervisor. Using the learning algorithm
in such a manner will result in one supervisor for each
specification and a set of plant models for those modules in
the PSH that did not share any uncontrollable event with
any specification. These resulting supervisors can then be
used offline to check if the supervisor is uncontrollable
with respect to other modules learned. If it is found to
be uncontrollable, a supervisor is then synthesized using
existing synthesis tools like Supremica (Malik et al., 2017).

4. CASE STUDY:THE CAT AND MOUSE PROBLEM

In this section, we will present the working of the algorithm
using the Cat and Mouse example introduced by Ramadge
and Wonham (1987). This example consists of a cat and
mouse that can move in a seven-room maze as seen in
Figure 1. The rooms are connected with doors of two sizes,
small ones for the mouse (mi) and larger ones for the
cat (ci). The cat and mouse can only use their respective
doors. These are one-way doors, which can be locked.
Thus, the cat and mouse can only pass through the door in
the direction indicated by the arrows in the figure. Door c7

Fig. 1. Five room maze for the cat and mouse. The cat
moves between the rooms using events ci and the
mouse using mi in the direction indicated.

though, allows the cat to pass through in both directions
and cannot be locked. All files for this example can be
found online 1 in Supremica 2 format.

A simulation of this system is built up using two state
variables varc and varm to track the location of the cat
and mouse, respectively. Both these variables have the
domain {R0, R1, R2, R3, R4 } to represent the different
rooms. Initially, varc = R2 and varm = R4.

Hence, the PSH is defined as follows:

• M = {Cat,Mouse},
• E(Cat) = {c1, c2, c3, c4, c5, c6, c7},
• E(Mouse) = {m1,m2,m3,m4,m5,m6},
• S(Cat) = { varc},
• S(Mouse) = { varm},

There are five specifications (Figure 2), one for each room,
defining that both the cat and the mouse cannot be
simultaneously in the same room, and each animal should
be able to return to its initial room.

r0e

r0c

r0m

m4

c4

m6

c6

m3

c3 c1

m1

(a)

r1e

r1c

r1m

m2

c2

c7 c7

c1

m3

(b)

r2e

r2c

r2m

m1

c3

m2

c2

(c)

r3e

r3c

r3m

m5

c5c7

c7

c4

m6

(d)

r4e

r4c

r4m

m4

c6

m5

c5

(e)

Fig. 2. Specifications for the different rooms (Kr0,Kr1,
Kr2,Kr3,Kr4, in that order) ensuring that only one
of either the cat or the mouse can be present at a given
time. Each state is identified using a unique name.

The different specifications have the following alphabets:

• ΣKr0 = { c1, c3, c4, c6,m1,m3,m4,m6 },
• ΣKr1 = { c1, c2, c7,m2,m3 },
• ΣKr2 = { c2, c3,m1,m2 },
• ΣKr3 = { c4, c5, c7,m5,m6 },
• ΣKr4 = { c5, c6,m4,m5 },

1 https://github.com/ashfaqfarooqui/ModularSupLearner
2 www.supremica.org



330 Fredrik Hagebring  et al. / IFAC PapersOnLine 53-4 (2020) 324–330

StateMap(States(cat=R4), Specs(room1=r1e))

StateMap(States(cat=R1), Specs(room1=r1c))

StateMap(States(cat=R4), Specs(room1=r1m))

StateMap(States(cat=R0), Specs(room1=r1e))

StateMap(States(cat=R2), Specs(room1=r1m))

INIT: StateMap(States(cat=R2), Specs(room1=r1e))

StateMap(States(cat=R3), Specs(room1=r1e))

StateMap(States(cat=R0), Specs(room1=r1m))

StateMap(States(cat=R3), Specs(room1=r1m)), cost=1.7976931348623157E308

c7

c6

c4

m2

c1

m3

c7

m2

c4

c2

m3

m2c5

c6

m2

c3

c3
m3

m3

c5

Fig. 3. The resulting supervisor for specification Kr1 and
the plant simulation

As can be seen, only the specifications Kr1 and Kr3
contain c7, the uncontrollable event. Hence, the supervisor
configuration to learn consists of two supervisors, one for
specification Kr1 and the other for Kr3. Calculating the
modules results in the following:

MKr1 = {Cat } , and MKr3 = {Cat } ;
EKr1 = ΣKr1 ∪ E(Cat), and EKr3 = ΣKr3 ∪ E(Cat);

SKr1 = { varc, varKr1 } , and SKr3 = { varc, varKr3 } .

Hence, the set of supervisors to learn, MK , and the plant
modules to learn, MG, are defined as:

MK = {MKr1 ,MKr3 } , and MG = {Mouse } ;
V = { varc, varm, varKr1 , varKr3 } .

The remaining specifications Kr0,Kr2,Kr4 can be treated
as supervisors.

The workings of the learning algorithm are similar to Fa-
rooqui et al. (2020). The main difference in this case is
the check for controllability. Consider the state defined
by the variables 〈varc, varKr1〉 with valuation 〈R3, r1m〉.
On exploration, event c7 is possible from this state in the
simulator, leading the cat into room 1. The module builder
when receiving the transition (〈R3, r1m〉, c7) −→ 〈R1, r1m〉
checks if the transition is uncontrollable. To do so, the
state r1m in the specification is checked if allows the
uncontrollable transition c7. As can be seen in Figure 2b,
transition c7 is not allowed from the state named r1m.
Hence, the source state is added to the set of forbidden
states. Since no incoming transition is uncontrollable there
is no need to further process uncontrollable states.

Figure 3 shows the supervisor for specification Kr1. As
seen, the supervisor has one state marked with a red cross,
indicating that this is a forbidden state, since the state is
uncontrollable. The forbidden state and its incoming tran-
sitions can be removed to obtain the controllable super-
visor. Along with these two supervisors, the specifications
for Kr0,Kr2, and Kr4 are treated as supervisors.

5. CONCLUSION

Previously in Farooqui et al. (2020) a method to learn
plant models from simulations and a known plant struc-
ture hypothesis PSH was presented. This paper extends
upon the previous approach to directly learn maximally
permissive controllable supervisors when supplied with
specifications of the unknown plant. To this end, first,
an approach to calculate the different grouping of plant

modules for each specification is presented. Next, we add
additional state variables to track each specification in
order to find controllability issues. Finally, the presented
Modular Supervisor Learner performs the learning. The
result of the MSL is a set of controllable supervisors that
can then be made non-blocking using known techniques.

The accuracy and performance of this method depends
on the PSH. Defining a correct PSH is crucial and the
most difficult aspect of using this method, as it relies on
the knowledge, creativity, and experience of the engineer.
Further research on how to define the PSH is needed.

REFERENCES
Aarts, F., de Ruiter, J., and Poll, E. (2013). Formal models

of bank cards for free. doi:10.1109/ICSTW.2013.60.
Aarts, F., Schmaltz, J., and Vaandrager, F. (2010). In-

ference and abstraction of the biometric passport. In
T. Margaria and B. Steffen (eds.), Leveraging Applica-
tions of Formal Methods, Verification, and Validation,
673–686. Springer, Berlin, Heidelberg.

Åkesson, K., Flordal, H., and Fabian, M. (2002). Exploit-
ing modularity for synthesis and verification of supervi-
sors. IFAC Proceedings Volumes, 35(1), 175 – 180. 15th
IFAC World Congress.

Cassandras, C.G. and Lafortune, S. (2009). Introduction
to discrete event systems. Springer Verlag.

Dai, J. and Lin, H. (2014). A learning-based synthesis
approach to decentralized supervisory control of discrete
event systems with unknown plants. Control Theory and
Technology, 12(3), 218–233.

Farooqui, A., Hagebring, F., and Fabian, M. (2020). Active
learning of modular plant models. WODES 2020.

Flordal, H., Malik, R., Fabian, M., and Åkesson, K. (2007).
Compositional synthesis of maximally permissive super-
visors using supervision equivalence. Discrete Event
Dynamic Systems, 17(4), 475–504.

Hiraishi, K. (1999). Synthesis of supervisors for discrete
event systems allowing concurrent behavior. In IEEE
SMC’99 Conference Proc., volume 5, 13–20.

Jonsson, B. (2011). Learning of Automata Models Ex-
tended with Data, 327–349. Springer, Berlin, Heidelberg.

Malik, R., Åkesson, K., Flordal, H., and Fabian, M. (2017).
Supremica–an efficient tool for large-scale discrete event
systems. IFAC-PapersOnLine, 50(1), 5794 – 5799. 20th
IFAC World Congress.

Ramadge, P.J. and Wonham, W.M. (1987). Supervisory
control of a class of discrete event processes. SIAM
journal on control and optimization, 25(1), 206–230.

Ramadge, P.J. and Wonham, W.M. (1989). The control of
discrete event systems. Proc. of the IEEE, 77(1), 81–98.

Steffen, B., Howar, F., and Merten, M. (2011). Intro-
duction to active automata learning from a practical
perspective. In Lecture Notes in Computer Science, vol
6659. Springer.

Yang, X., Lemmon, M., and Antsaklis, P. (1995). In-
ductive inference of optimal controllers for uncertain
logical discrete event systems. In Proceedings of Tenth
International Symposium on Intelligent Control. IEEE.

Zhang, H., Feng, L., and Li, Z. (2018). A learning-
based synthesis approach to the supremal nonblocking
supervisor of discrete-event systems. IEEE Trans. on
Automatic Control, 63(10), 3345–3360. doi:10.1109/
TAC.2018.2793662.


