Mathematical Optimization of the Tactical Allocation of Machining Resources in Aerospace Industry

Sunney Fotedar

Division of Mathematical Statistics
Department of Mathematical Sciences
Chalmers University of Technology and University of Gothenburg
Göteborg, Sweden 2021
Mathematical Optimization of the Tactical Allocation of Machining Resources in Aerospace Industry
Sunney Fotedar
Göteborg 2021
Email sunney@chalmers.se

The research is financially supported by VINNOVA, Chalmers University of Technology, and GKN Aerospace Sweden AB.

© Sunney Fotedar, 2021

Division of Mathematical Statistics
Department of Mathematical Sciences
Chalmers University of Technology and University of Gothenburg
SE-412 96 Göteborg
Sweden
Telephone +46 (0)31 772 4275

Typeset with \LaTeX
Printed by Chalmers digitaltryck
Göteborg, Sweden 2021
Mathematical Optimization of the Tactical Allocation of Machining Resources in Aerospace Industry

Sunney Fotedar

Division of Mathematical Statistics
Department of Mathematical Sciences
Chalmers University of Technology and University of Gothenburg

Abstract

In the aerospace industry, efficient management of machining capacity is crucial to meet the required service levels to customers (which includes, measures of quality and production lead-times) and to maintain control of the tied-up working capital. In this work, we introduce a new multi-item, multi-level capacitated planning model with a medium-to-long term planning horizon. The model can be used by most companies having functional workshops where costly and/or time- and resource demanding preparations (or qualifications) are required each time a product needs to be (re)allocated to a machining resource. Our goal is to identify possible product routings through the factory which minimizes the maximum excess resource loading above a given loading threshold, while incurring as low qualification costs as possible.

In Paper I, we propose a new bi-objective mathematical optimization model for the Tactical Resource Allocation Problem (TRAP). We highlight some of the mathematical properties of the TRAP which are utilized to enhance the solution process. Another contribution is a modified version of the bi-directional ϵ-constraint method especially tailored for our problem. We perform numerical tests on industrial test cases generated for our class of problem which indicates computational superiority of our method over conventional solution approaches.

In Paper II, we address the uncertainty in the coefficients of one of the objective functions considered in the bi-objective TRAP. We propose a new bi-objective robust efficiency concept and highlight its benefits over existing robust efficiency concepts. We also suggest a solution approach for identifying all the relevant robust efficient (RE) solutions. Our proposed approach is significantly faster than an existing approach for robust bi-objective optimization problems.

Keywords: Capacity planning, Bi-objective mixed integer programming, Ro-
bust optimization, Robust efficient solutions, Decision-making.
List of publications (or manuscripts)

This thesis is based on the work represented by the following two papers:

I. **Fotedar, S., Strömberg, A.-B., Almgren, T.** (2021). Bi-objective optimization of the tactical allocation of job types to machines. Mathematical modelling, theoretical analysis, and numerical tests. *Submitted to a journal*

Conference papers not included in this thesis:

Author contributions

I. I developed the tactical resource allocation model, and the modified bi-directional ϵ-constraint method used to solve the problem. I implemented the code, ran the experiments, and wrote the manuscript. Ann-Brith Strömberg and Torgny Almgren reviewed the manuscript.

II. I suggested the new extension to a robust formulation for the given bi-objective MILP. I suggested a new robust efficiency concept for our model and a new 3-stage approach to find relevant multi-objective robust efficient solutions. The co-authors reviewed the manuscript, critically examined the approach and its scientific contributions.
Abbreviations

• **APICS**: currently known as the Association for Supply Chain Management
• **AWT**: Augmented Weighted Tchebycheff
• **BB**: Balanced Box
• **BOIP**: Bi-Objective Integer Programming
• **BOMIP**: Bi-Objective Mixed Integer Programming
• **BOMILP**: Bi-Objective Mixed Integer Linear Programming
• **DM**: Decision-maker
• **FRE**: Flimsily Robust Efficient
• **HPC**: High Pressure Compressor
• **HRE**: Highly Robust Efficient
• **ILP**: Integer Linear Programming
• **LP**: Linear Programming
• **LPC**: Low Pressure Compressor
• **LPT**: Low Pressure Turbine
• **MILP**: Mixed Integer Linear Programming
• **MIP**: Mixed Integer Programming
• **TRAP**: Tactical Resource Allocation Problem
• **MPC**: Manufacturing, Planning and Control
• **MRP**: Material Requirements Planning
• **MOOP**: Multi-Objective Optimization Problem
• **PRO**: Pareto Robust Optimal
• **RE**: Robust Efficient
• **SO-RO**: Single-Objective Robust Optimization
• **QSM**: Quadrant Shrinking Method
• **TOIP**: Tri-Objective Integer Programming
Acknowledgements

I would like to thank my supervisor Prof. Ann-Brith Strömberg for her constructive criticisms and guidance throughout this period. I would also like to thank my industrial supervisors Dr. Torgny Almgren and Dr. Stefan Cedergren for their continued assistance/guidance in defining the problem for GKN Aerospace, and sharing valuable knowledge in logistics, and machining aspects of the problem. I would also like to thank Prof. Joakim Wikner, and Prof. Michael Patriksson for their contributions. Special thanks to fellow Ph.D.-students in the optimization group (Edvin, Gabrijela, Caroline, and Quanjiang). I am also grateful of the support from Prof. Annika Lang, and other staff at the Mathematical Sciences department. I appreciate all the help from GKN Aerospace (especially, Håkan Colliander and Dr. Karin Thörnblad, and other members of the logistics department). Lastly, I would like to thank my wife Dr. Indu Dhar and my newborn son Neel, for their love, and inspiration.

Sunney Fotedar, Göteborg, 2021
3.3 Specialized algorithms for BOIP and TOIP problems 30
3.4 MOOP under parameter uncertainty of objective functions 33

4 Summary of manuscripts ... 41
4.1 Paper I: Bi-objective optimization of the tactical allocation of job
types to machines ... 41
4.2 Paper II: Robust optimization of a bi-objective tactical resource
allocation problem with uncertain qualification costs 43

5 Conclusion .. 45
5.1 Practical implications ... 45
5.2 Future research .. 49

Bibliography .. 51
1 Introduction

The field of Manufacturing, Planning, and Control (MPC) as defined in APICS dictionary [Blackstone Jr. 2013, p. 99] is described as a closed-loop information system which includes planning functions of production planning, sales and operations (S&OP) [Blackstone Jr. 2013, p. 154], master production scheduling [Blackstone Jr. 2013, p. 101], material requirements planning [Blackstone Jr. 2013, p. 103], and capacity requirements planning. Due to increased complexity of businesses and production methods, most of the medium- and large-sized companies have implemented computerized planning systems in the past few decades. Generally, these are transactional systems helping to track flows of material. Therefore, it maintains an updated procurement and manufacturing information on each planning decision. However, unless these tools are combined with mathematical optimization, the chances of getting a best possible solution are minimal (and not guaranteed at all).

Mathematical optimization is a topic/subject in applied mathematics that deals with finding the best possible solution to a decision problem (although, sometimes only dealing with the feasibility problem is sufficient). The definition of best can vary depending on the definition of the objective function(s) of the optimization problem. In 1960s and 1970s, mixed integer programming (MIP) models became popular among operations research practitioners who tried to tackle simple planning problems using MIPs. However, as the size of the problem instance grows solving a MIP to optimality becomes computationally demanding. Many state-of-the-art commercial solvers have made solving MIPs relatively easier as compared to a few decades ago. The adoption of mathematical optimization has increased in industrial planning processes. In this work, a novel mathematical optimization model is proposed for allocating machining resources to jobs for medium-to-long-range planning horizons for GKN Aerospace Engine Systems (GKN for short) in Trollhättan, Sweden. The model is intended to assist engineers and planners to make decisions regarding product routings in the factory.
1.1 Case Company: GKN Aerospace Engine Systems

GKN is a leading supplier of aircraft engine parts. GKN’s products are present in almost all major commercial aircrafts. The products manufactured at the Trollhättan factory in Sweden include fans at the front of the jet engines or gas turbines, rotors, stators, and other turbine structures. Rotation and a high temperature difference between different parts of the engine put high, in many cases extreme, quality demands (tight tolerance limits). The capital-intensive production at a large aerospace tier-1 supplier like GKN is generally influenced by expensive materials, long supply lead times, a large product mix and demand variations (see Lewestam and Mäki [2015]).

1.2 Production context

Manufacturing is performed in multiple steps, such as cutting (milling, turning, drilling, and grinding), welding, assembly, heat/surface treatments, and control/measurements. For cutting, GKN has a variety of production resources (machines) with different functions. The factory is organized in several functionally oriented production shops, and most of the production resources are shared by several products. Each production shop is organized as a job-shop [Blackstone Jr., 2013, p. 87], where similar types of machines are placed in proximity to each other. A complication is that it is, in practice, impossible to physically move machines, as they are bulky and fixed into the ground in 2–5 meters deep pits to avoid mechanical vibrations. Thus, the factory as such can only to a very limited extent be adapted to changes in the product mix. It is therefore not possible to maintain perfect flows of parts through the factory over time. Hence, managing capacity, especially machining capacity (since it takes up a large share of the total lead times) is crucial for GKN.

1.3 Capacity management

The focus of our research is on capacity management [Blackstone Jr., 2013, p. 22] which is defined as the function of establishing, measuring, monitoring, and adjusting limits or levels of capacity in order to execute all manufacturing activities. Capacity management is also referred to as a response to variation in demand. However, demand is generally not the only source of variation; another source
that is internally generated is due to additional capacity requirements caused by re-works, which is the reprocessing done to salvage a defective item or part (see Blackstone Jr. [2013, p. 152]). Our interest in aspects of capacity management is because it helps the planners to absorb some of these variations.

In this work, we use a hierarchical approach (see Tan and Alp [2008]) to plan for the machining capacity, instead of using one big monolithic model; this is both reasonable (from a practical aspect) and tractable (from a computational aspect). In a hierarchical approach, the decisions made at the top levels influence (set the boundary conditions/constraints) the decisions made at lower levels. Within this hierarchical approach a feedback loop can help to continuously improve the efficiency of the planning system by appropriately adjusting the control parameters.

Figure 1.1 illustrates the decomposition of the capacity management into the three levels, capacity strategy, capacity planning, and capacity control. The capacity strategy deals with the decision regarding investment in new machines and identify product structures. This is done between 2–6 years in advance. Capacity strategy requires input from manufacturing experts to establish the bill of material (see Blackstone Jr. [2013, p. 15]), which is simply a list of parts, sub-assemblies and raw materials required to form a final product, and the operations list, that details the method of manufacture of a part and its sequences.

The output from the capacity strategy level defines the solution space for capacity planning, also popularly known as rough-cut capacity planning (see Blackstone Jr. [2013, p. 153]). Capacity planning deals with tactical allocation decisions made 1–4 years in advance. This identifies product routings which includes the operations performed, their sequences, and machines involved to process them (see Blackstone Jr. [2013, p. 153]. It is also necessary to prepare/qualify more than one possible routing for each product, rendering flexibility to the production planners.

The next level is the capacity control [Blackstone Jr. 2013, p. 22], which is the process of measuring output from production, and comparing it with the actual capacity plan. There is usually a difference between the two, and necessary corrective measures are required to prevent serious delivery issues. The input is all possible qualified (approved) routings. These alternative routings [Blackstone Jr. 2013, p. 6] provide necessary flexibility to the planners to tackle any short-term demand variability. Certain performance indices are tracked at each level, and a feedback loop that goes up one level could be used to adjust different control parameters. This gradually improves accuracy of models for capacity planning as some of the control parameters are appropriately adjusted to produce desirable changes.
1.4 The need for a tactical resource allocation model

The decision regarding where to process products/parts are generally made at the time of introduction of new products to a factory. The process of introducing a new product is inevitably linked with resource allocation decisions. These tactical resource allocations referred to in this text should not be mistaken for the short-term resource allocations done when choosing between resources (among several qualified resources) while scheduling. The latter is commonly addressed in the industry (see an example from GKN, [Thörnblad et al. 2015]).

At the time of introduction of new products, manufacturing experts decide the operations list for a product and where respective operations will be performed. This process involves qualifying machines for a new job, running simulations and physical tests to check the quality of features (for example, how accurate (e.g. roundness) was a certain hole drilled in a job) produced. Thus, once a product’s operations are assigned to certain machines, changing it is a very costly, and time-consuming, activity.

A decision-making tool that supports GKN in resource allocations for medium-to-long term planning horizon is needed. Our proposed model provides the routings to be used by products, and suggestions of new qualifications to be performed either for new or old products. A general framework for the decision-making tool is presented in Figure 1.2. Although the focus in this thesis is mainly on the model (i.e. step 2), it is still important to understand how the results are going to be utilised. All four steps are part of a continuous
1.4. The need for a tactical resource allocation model

procedure. In the first step, the input regarding constraints are provided by logisticians and product experts, who are the two types of decision-makers (DMs) involved. Soft constraints are related to decision makers’ preferences, and can be modelled either as objective functions or as hard constraints accompanied with lexicographic minimization (see Definition 4 routing efficient solution in Paper I). Hard constraints are related to the feasibility of allocating a job to a machine, and to capacity limitations of machines. Hard constraints are modelled as constraints in the optimization model. In the second step, a bi-objective optimization model is solved. In both Paper I and II, two variants of a bi-objective optimization model is presented. This step is the main focus of this thesis. The output from the model is a set of efficient (or robust efficient, in Paper II) solutions, which are assessed by the decision makers (DMs), and one of the solutions is selected. Then, this solution is further analyzed by the product experts to check if the new qualifications are indeed feasible, using simulations or lab experimentation. If the qualification is not acceptable, then product experts add new constraints to the model, and a new (or slightly different) set of efficient solutions is identified. The final solution is sent to the logistics department responsible for utilizing these new routings in its scheduling software. The fourth step is about tracking the effect of new qualifications on lead times, capacity utilization, and other performance indices. This can be utilized to further improve the accuracy of parameters used in the model.

1.4.1 Routings

The term routings is sometimes used as an alternative term for instruction sheet and bill of operations, which detail the method of manufacture of a particular product. Routings includes a list of operations to be performed, along with details about the machines in which the operations must be performed. For example in Figure 1.3, a product’s/part’s routings are illustrated. It begins with raw material released from the inventory. Then, all such types of products/parts are sent to machine M_1 where the first operation is performed for all the three routings (R_1, R_2, R_3). The second operation can be performed in three different machines M_2 (in R_1), M_3 (in R_2) and M_6 (in R_3). Afterwards, the parts/products are sent to M_3 for the third operation, to machine M_2 for the fourth (the last operation). All the products/parts are sent to the final inventory of finished goods. The three different routings differ only at one operation, i.e. the second operation. The two dashed rectangles enclosing several machines represent two different shop-floors (physical locations in the factory). Note that the same product/part may visit the same machine multiple times in the process of getting transformed into the finished product (for example, in Figure 1.3 machine M_2 is visited twice in routing R_1).
shown at the bottom of Figure 1.3. It is generally well-known that having several alternative routings for a product provides necessary capacity cushion for managing short-term demand variations, especially, when machines are shared among products. Thus, it is beneficial to have several routings qualified for a product.

Each operation has to be qualified for a machine, which requires a significant one-time cost in the form of man-hours for programming the control systems and of buying new fixtures or tools. These new qualifications also require approval from the customers. Thus, it requires time as well as money to prepare new routings. Hence it should be done well-in-advance, and with some thought. GKN has 120 machines and thousands of different parts with at least 5–10 operations, hence, the number of feasible allocations/routings are simply too many to enumerate and a mathematical analysis of the problem is therefore necessary.
1.5 Previous work

The research field of production planning is broad. We provide a brief overview of the field before diving into the specific variant of the production planning problem studied and solved in this work.

One popular way of classifying production planning models is by acknowledging the considered time-horizons. This simplifies to some extent the decision variables and parameters used in the model. Several authors (e.g. Min and Zhou [2002], Gupta and Maranas [1999]) classify production planning problems as strategic, tactical, or operational. Our focus is on tactical-level models, since for the problem of our studies it is required to make medium-to-long term capacity planning decisions. To the best of our knowledge the most recent review of tactical level mathematical production planning models is done by Díaz-Madroñero et al. [2014]. The authors have identified the following categorizations:

(a) Number of products and number of levels of the product structure

The number of products/parts being manufactured; their levels refer to whether a product has a flat bill of material (BOM) or BOM with multiple levels consisting of various sub-assemblies.
(b) **Time periods**

Deals with the size of the time-buckets used. In a *small* time-bucket, the time period is long enough to produce only one part/item, whereas in long time-buckets, either multiple items can be produced or a final product consisting of multiple items. In Transchel et al. [2011], the authors have considered both types.

(c) **Nature of the demand**

The demand uncertainty is mainly tackled by stochastic approaches, and less commonly by robust or fuzzy approaches. Some of the research done in stochastic demand production planning models are Genin et al. [2008] (added noise to demand patterns), Wei et al. [2011] (uses robust approaches with interval uncertainty) and Chen and Huang [2010] (uses fuzzy approaches).

(d) **Capacity constraint classes**

Numerous combinations of capacity constraint classes comprehensively reviewed in Díaz-Madroñero et al. [2014, p. 5176, Table 6]. The classes include inventory, supply, production resources, and transport services.

(e) **Types of objective functions**

The most common type of objective function minimizes costs/time (processing time, set-up time, and fixture costs) are minimized (see Bradley and Glynn [2002], Mieghem [2003]). However, using such a function has drawbacks since most of the cost measures rely heavily on the used accounting principles, which are sometimes misleading as highlighted in Myrelid and Olhager [2019]. Some of the other objectives considered in the literature are minimizing backlogs, maximizing throughput, and maximizing utilization.

Apart from the above mentioned categorizations, there are numerous other extensions. One of them is for *parallel machine* problems. In this categorization are identical or unrelated parallel machine problems (see Garey and Johnson [1979] for theoretical definitions). In *unrelated* parallel machine problems, the processing times of jobs (tasks/operations) at machines are not related to each other and depend on the machine in which it is being processed. On the contrary, in identical parallel machine problems, the processing times of jobs are independent of the machine in which they are being processed.
1.6 Scope

The aim of our project is to create a multi-item, multi-level, big time-bucket capacitated, unrelated parallel machine tactical resource allocation model for machining resources related to cutting operations, such as milling, drilling, turning, and grinding at GKN. The focus of our models is long-range resource loading, i.e. planning the allocation of capacity of machines for a time frame where reliable weekly or daily demand predictions do not exist. Consequently, short time-buckets are not relevant for our models. Instead the time discretization employs long time steps (a quarter of a year) wherein it is reasonable to assume a constant material flow. For example, a product or a part \(P_1 \) requires a set of operations \{ OP100, OP200, OP300 \}. A job-type is a combination of part type and an operation. The orders of job-types, that is, each element of the set of 2-tuples \{ (P1, OP100), (P1, OP200), (P1, OP300) \}, must be allocated to machines in each time period over a long time horizon (1–4 years) with quarterly time-buckets.
1. Introduction
2 Problem description

In this chapter, the two variants of the Tactical resource allocation model tackled in Paper I and Paper II, respectively, are presented.

2.1 Description

In Table 2.1 routings for a dummy production system is illustrated with three machines and the two operations milling and turning, performed on a single product (with a single part). In the first time-period, milling is done in machines 1 and 3, in the second time-period the same operation is done in machines 1 and 2, and in the third time-period it is done only in machine 2. For machine 2, the box around the M indicates that the milling operation is to be qualified and performed in time-period 2. Similarly, for machine 3 the turning operation is to be qualified in time-period 2 and performed in time-period 3. This qualification requires a one-time cost which includes the cost of new fixtures and the cost for time spent on programming the control systems. The qualification must be done either before or at the beginning of the time-period when it is to be used.

Table 2.1: Product routings for a single product: M (milling) and T (turning) indicate time-periods (t) when machines (1, 2, and 3) are used for the respective purposes; the box indicates time-periods when machines are qualified for milling and turning, respectively.

<table>
<thead>
<tr>
<th>Machine</th>
<th>Feasible routings</th>
</tr>
</thead>
<tbody>
<tr>
<td>#</td>
<td>t = 1</td>
</tr>
<tr>
<td>1</td>
<td>M</td>
</tr>
<tr>
<td>2</td>
<td>T</td>
</tr>
<tr>
<td>3</td>
<td>M</td>
</tr>
</tbody>
</table>
2.2 The Feasible set: a non-mathematical description

Constraints in an optimization model limit the domain of feasible solutions (decision variables) acceptable to the planner. However, in [Wierzbicki et al., 2000, Chapter 5], it is argued that in the real-world many constraints are divided into so-called soft constraints, and hard constraints. The authors suggest modelling soft constraints as additional objectives for the optimization problem, and hard constraints as constraints of the mathematical model. In this section, a non-mathematical description of the hard constraints is presented.

(a) Demand

Due to each time-bucket being a quarter of a year, which is significantly larger than the total lead time of products, no inventory is maintained to be utilized in the subsequent time-periods. Hence, the demand in each time-period must be satisfied within the same time-period.

(b) Routing limitations (τ)

These types of constraints ensure that it is not allowed to allocate orders of the same job-type to more than a user-defined number of machines in each time-period denoted by $\tau \geq 1$. These constraint maintains the product flow less complex for the production planners. For instance, in Figure 2.1, we assume a part type P_1 (represented by a red-node) requiring two operations $\{OP100, OP200\}$, and the two corresponding job-types are $(P_1, OP100)$ and $(P_1, OP200)$ (see the black rectangles at the top of Figure 2.1). If $\tau = 2$, then only two machines are allowed to perform job-types $(P_1, OP100)$ and $(P_1, OP200)$ during the same time-period. Hence, there are at most four different feasible routings for product P_1 (in Figure 2.1 these routings are R_2, R_3, R_4, R_5 marked with black-arrows). However, if $\tau = 3$, the number of possible routings can be nine (three machines for each job-type). Increasing the value of τ results in a greater chance to balance the capacity utilization; however, having too many routings may result in a complicated product flow. In Figure 2.1 it is evident that if the value of τ is increased to three, the routings R_1 and R_6 (blue-dashed arrows) are allowed as well. The end-user should provide a hard limitation on the parameter τ.

(c) Qualification costs (β) and related limitations (γ)

These types of constraints ensure that a given job-type must be qualified for a machine before planners can start using them. The qualification cost
2.2. The Feasible set: a non-mathematical description

Associated with qualifying jobs for machines may be in the form of time spent by manufacturing experts to program the control systems, or of buying new fixtures or tools. The exact costs for qualifying a machine for a job-type is not known a priori, and an accurate prediction requires detailed simulation work by the engineering team.

In Figures 2.2a and 2.2b, the two multi-task machines capable of performing both milling and turning operations are illustrated. One of the significant differences between the two is that the one to the left (Figure 2.2a) has smaller diameter turning table as compared to the one to the right (Figure 2.2b). Hence, given that all the other operational conditions are the same, it should be technically possible to move some jobs from the machine to the left to the machine to the right. However, there will still be a not too high cost associated with it. Note that apart from diameter of the parts/products, and the turning tables, there are many other part/product features and machine capabilities that have to match for the allocation to be feasible. In this work, it is assumed that such information is available. The multi-task machines illustrated in Figure 2.2c and Figure 2.2d have the so-called B-axis, that is, they are inclined at 45°. This is the only difference between the machines in Figure 2.2a and Figure 2.2c, otherwise they are the same size, both having diameter of the
turning table 1.25 m. The turning table in the machine in Figure 2.2d is larger than that of Figure 2.2a–Figure 2.2c. There are both benefits and drawbacks of moving a job from the multi-task machine in Figure 2.2a or Figure 2.2b to any of the B-axis machines in Figure 2.2c or Figure 2.2d. A benefit is that the productivity is increased due to the use of lower cutting parameters, such as feed rate or depth of cut, to reach the same level of quality; hence, the operations are faster. Furthermore, inclined machines are also more robust w.r.t. the production of more accurate features on products/parts; hence, less chances of need for re-works. So, both productivity and robustness are increased in the machine with the 45° inclined axis. However, the downside is that the inclined spindle head may reduce the accessibility to certain sections of the part/product, thus, making it incapable of producing certain types of product features. In Figure 2.2e and Figure 2.2f, the two vertical lathes are capable of performing only turning operations. All of this information has to be encoded appropriately to be used as parameters in the mathematical model.

There is also a limitation on the total number of new qualifications to perform in each time-period. This is a result of the limited number of trained technical experts. This upper bound is denoted by $\gamma \in \mathbb{Z}_+$.
2.2. The Feasible set: a non-mathematical description

(a) A multi-task machine performing both turning and milling operations with a **small-sized turning table**

(b) A multi-task machine performing both turning and milling operations with a **medium-sized turning table**

(c) A multi-task machine with inclined spindle head performing both turning and milling operations with a **small-sized turning table**

(d) A multi-task machine with inclined spindle head performing both turning and milling operations with a **large-sized turning table**

(e) A vertical lathe machine performing turning operations with a **large-sized turning table**

(f) A vertical lathe machine performing turning operation with a **medium-sized turning table**

Figure 2.2: Different machine alternatives
2.3 Problem definition: a mathematical description

The deterministic version of the tactical resource allocation problem (TRAP) addressed in this work is defined in this section. It is called deterministic, as the values of all the parameters are known. The notation used for the model is described in Table 2.2.

Definition 2.3.1 (Tactical Resource Allocation Problem (TRAP)). Given a set J of job-types (tasks) and a set K of machines, let p_{jk} be the average processing time (including set-up time) of job-type $j \in J$ when performed in a compatible machine $k \in K_j \subseteq K$. Each machine $k \in K$ has the capacity C_{kt} (time units) in time-period $t \in T$ and a relative loading threshold $\zeta_k \in [0, 1]$. The demand a_{jt} of each job-type $j \in J$ in time-period $t \in T$ must be met. The number of machines allocated to the same job-type in each time-period may not exceed the value of the parameter $\tau \in \mathbb{Z}^+$. For assignments (j, k), such that $k \in N_j$ and $j \in J$, so-called qualifications are required, which generate additional one-time costs. It holds that $N_j \subseteq K_j$ for all $j \in J$; for the case of a new job-type (associated with a new product) j, $K_j = N_j$ holds. For a job-type $j \in J$, the machines in the set $K_j \setminus N_j$ do not require any qualifications. The total number of qualifications performed per time-period t may not exceed the value of the parameter $\gamma \in \mathbb{Z}^+$. The objectives considered are to minimize the sum (over time-periods) of maximum excess resource loading above a given threshold ζ_k over each machine $k \in K$ and to minimize the sum of qualification costs incurred.

Excess resource loading (g_1) The objective function is defined by g_1, to be minimized, considers the sum over the time-periods $t \in T$ of the excess resource loading of the machines (i.e. $n_t \geq 0$), which is defined as the maximum (over the machines) ratio between the allocated machining hours (i.e. $\frac{1}{C_{kt}} \sum_{j \in J} p_{jk} x_{jkt}$) minus the loading threshold $\zeta_k \in [0, 1]$ for the machine. The thresholds ζ_k are provided by the users. Therefore, in a solution y that minimizes the objective g_1, the equality $n_t = \max \{ 0; \max_{k \in K} \left\{ \frac{1}{C_{kt}} \sum_{j \in J} p_{jk} x_{jkt} - \zeta_k \right\} \}$ will hold for $t \in T$. In the context of a bi-objective mixed integer programming (BOMIP) problem, it is defined by (2.1a), (2.2d), (2.2g), and (2.2j), below.

The practical motivation for employing this objective function is to avoid—for each machine in each time-period—that the planned loading level (i.e. $\sum_{j \in J} p_{jk} x_{jkt}$) exceeds the user-defined threshold (ζ_k). As a result, this will help in maintaining some capacity buffers to be used when there is a short-term demand variation, which in turn implies that the queuing-times are kept at minimum.
Table 2.2: Notation for the tactical resource allocation problem (TRAP)

<table>
<thead>
<tr>
<th>Sets</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathcal{J} = {1, \ldots, J}$</td>
<td>set of job-types to be performed on the products</td>
</tr>
<tr>
<td>$\mathcal{K} = {1, \ldots, K}$</td>
<td>set of machines</td>
</tr>
<tr>
<td>$\mathcal{K}_j \subseteq \mathcal{K}$</td>
<td>set of machines feasible for job-type $j \in \mathcal{J}$</td>
</tr>
<tr>
<td>$\mathcal{N}_j \subseteq \mathcal{K}_j$</td>
<td>set of machines feasible, but not qualified for job-type $j \in \mathcal{J}$</td>
</tr>
<tr>
<td>$\mathcal{T} = {1, \ldots, T}$</td>
<td>set of time-periods</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variables</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x_{jkt} \in \mathbb{Z}_+$</td>
<td>number of orders of job-type $j \in \mathcal{J}$ performed in machine $k \in \mathcal{K}_j$ in time-period $t \in \mathcal{T}$</td>
</tr>
<tr>
<td>$s_{jkt} \in {0, 1}$</td>
<td>equals 1 if job-type $j \in \mathcal{J}$ is allocated to machine $k \in \mathcal{K}_j$ in time-period $t \in \mathcal{T}$; equals 0 otherwise</td>
</tr>
<tr>
<td>$z_{jkt} \in {0, 1}$</td>
<td>equals 1 if machine $k \in \mathcal{N}_j$ is qualified for job-type $j \in \mathcal{J}$ in time-period $t \in \mathcal{T}$; equals 0 otherwise</td>
</tr>
<tr>
<td>$n_t \in \mathbb{R}_+$</td>
<td>maximum resource loading above thresholds ζ_k, $k \in \mathcal{K}$, in time-period $t \in \mathcal{T}$</td>
</tr>
<tr>
<td>$y := (x, s, n, z)$</td>
<td>bold notations representing vectors of the corresponding indexed variables</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a_{jt} \in \mathbb{Z}_+$</td>
<td>demand of orders of job-type $j \in \mathcal{J}$ in time-period $t \in \mathcal{T}$</td>
</tr>
<tr>
<td>$p_{jk} \in \mathbb{Q}_+$</td>
<td>average machining time in machine $k \in \mathcal{K}_j$ for job-type $j \in \mathcal{J}$</td>
</tr>
<tr>
<td>$C_{kt} \in \mathbb{Z}_+$</td>
<td>capacity (hours) available in machine $k \in \mathcal{K}$ in time-period $t \in \mathcal{T}$</td>
</tr>
<tr>
<td>$\beta_{jk} \in \mathbb{Z}_+$</td>
<td>nominal qualification cost associated with qualifying machine $k \in \mathcal{N}_j$ for job-type $j \in \mathcal{J}$</td>
</tr>
<tr>
<td>$\gamma \in \mathbb{Z}_+$</td>
<td>upper limit on the number of qualifications in a single time-period</td>
</tr>
<tr>
<td>$\tau \in \mathbb{Z}_+$</td>
<td>upper limit on number of alternative machines for each job-type in a single time-period</td>
</tr>
<tr>
<td>$\zeta_k \in [0, 1]$</td>
<td>loading threshold for machine $k \in \mathcal{K}$.</td>
</tr>
</tbody>
</table>
2. Problem description

Total qualification cost \((g_2)\) The objective function \(g_2\), to be minimized, is defined as the sum of the one-time costs incurred by qualifying machines for job-types, over all the time-periods, i.e. \((2.1b)\). An increase in the number of qualifications may enable a reduction of the excess loading of the machines.

2.3.1 Model description [Deterministic-TRAP]

The minimization objectives defined in the previous subsection are mathematically expressed as

\[
\begin{align*}
\text{minimize} & \quad g_1(x, s, n, z) := \sum_{t \in \mathcal{T}} n_t, \quad \text{(2.1a)} \\
\text{minimize} & \quad g_2(x, s, n, z) := \sum_{t \in \mathcal{T}} \sum_{j \in \mathcal{J}} \sum_{k \in \mathcal{K}_j} \beta_{jk} z_{jkt}, \quad \text{(2.1b)}
\end{align*}
\]

while the feasible set is described by the constraints

\[
\begin{align*}
s.t. \quad & \sum_{k \in \mathcal{K}_j} x_{jkt} = a_{jt}, \quad j \in \mathcal{J}, t \in \mathcal{T}, \quad (2.2a) \\
& x_{jkt} \leq a_{jt}s_{jkt}, \quad k \in \mathcal{K}_j, j \in \mathcal{J}, t \in \mathcal{T}, \quad (2.2b) \\
& \sum_{k \in \mathcal{K}_j} s_{jkt} \leq \tau, \quad j \in \mathcal{J}, t \in \mathcal{T}, \quad (2.2c) \\
& \frac{1}{C_{kt}} \sum_{j \in \mathcal{J}} p_{jk} x_{jkt} - \zeta_k \leq n_t, \quad k \in \mathcal{K}, t \in \mathcal{T}, \quad (2.2d) \\
& \sum_{l \in \mathcal{T}: l \leq t} z_{jkl} \geq s_{jkt}, \quad k \in \mathcal{N}_j, j \in \mathcal{J}, t \in \mathcal{T}, \quad (2.2e) \\
& \sum_{j \in \mathcal{J}} \sum_{k \in \mathcal{N}_j} z_{jkt} \leq \gamma, \quad t \in \mathcal{T}, \quad (2.2f) \\
& x_{jkt} \in \mathbb{Z}_+, \quad k \in \mathcal{K}_j, j \in \mathcal{J}, t \in \mathcal{T}, \quad (2.2g) \\
& s_{jkt} \in \{0, 1\}, \quad k \in \mathcal{K}_j, j \in \mathcal{J}, t \in \mathcal{T}, \quad (2.2h) \\
& z_{jkt} \in \{0, 1\}, \quad k \in \mathcal{N}_j, j \in \mathcal{J}, t \in \mathcal{T}, \quad (2.2i) \\
& 1 - \zeta_k \geq n_t \geq 0, \quad t \in \mathcal{T}, k \in \mathcal{K}. \quad (2.2j)
\end{align*}
\]

Defining\footnote{The notations \((x, s, n, z)\) and \(y\) will be used interchangeably throughout this section.} \(y := (x, s, n, z)\), for any values of \(\tau, \gamma \in \mathbb{Z}_+\), the set of feasible
2.3. Problem definition: a mathematical description

The solutions to the model (2.2) is denoted as

\[Y(\tau, \gamma) := \{ y \mid \text{the constraints (2.2a)--(2.2j) hold} \}. \]

We denote the number of orders of job-type \(j \in J \), processed in machine \(k \in K_j \) in time-period \(t \) by the decision variables \(x_{jkt} \). In our model, the number of job-types processed should be equal to the demand for each job-type \(j \in J \) in each time-period \(t \in T \), as expressed in (2.2a). The constraints (2.2b) ensure that the number of orders \(x_{jkt} \) of job-type \(j \) performed in machine \(k \) in time-period \(t \) does not exceed the demand \(a_{jt} \); they also set an auxiliary variable \(s_{jkt} = 1 \) whenever \(x_{jkt} > 0 \). The constraints (2.2c) set an upper bound for each job-type and time-period, the number of machines to be used to \(\tau \), the value of which is given as an input by the user. The reason behind the use of this constraint is to keep the product flow less complex (see Section 2.2). The constraints (2.2d) make sure to minimize the maximum excess loading above a given threshold for each machine (referred as \(\zeta_k \)) by setting an upper bound on the variables \(n_t \) for each time-period. Furthermore, a binary variable \(z_{jkt} \) equals one when a job-type \(j \in J \) is qualified for machine \(k \in N_j \). The constraints (2.2e) imply that if a job-type \(j \) is performed in a machine \(k \in N_j \) in time-period \(t \), where \(N_j \) is the set of machines that have not been qualified for job-type \(j \), then a qualification of machine \(k \) for job-type \(j \) must be done once within the time-periods \(\{1, \ldots, t\} \). The constraints (2.2f) limit the number of qualifications allowed to be scheduled in each time-period to \(\gamma \).

The constraints (2.2g), (2.2h), (2.2i), and (2.2j) define the allowed values of the variables \(x_{jkt}, s_{jkt}, z_{jkt}, n_t \), respectively. The two objectives (2.1a) and (2.1b) represent the sum of excess loading above thresholds and the sum of qualification cost incurred by the planners, respectively. Clearly, this a bi-objective mixed integer programming (BOMIP) model.

2.3.2 Model description [Robust-TRAP]

In Paper II, the uncertainty in the qualification cost parameter \(\beta \) is considered. It is well-known from the robust optimization literature that when dealing with robust counterparts of a deterministic optimization problem, the selection of an uncertainty set is the most crucial part in hedging against unwanted events (for more details, see [Ben-Tal et al., 2009, Chapter 3]; Bertsimas and Sim [2004]). The two types of uncertainty sets that are commonly used are finite uncertainty sets and polyhedral uncertainty sets (see, [Kuhn et al., 2016, Section 3.2] for definitions).
For the applications considered in this work, the qualification cost of each allocation \((j, k)\), where \(j \in J\) and \(k \in N_j\) is a natural number; hence, a finite uncertainty set is considered. We define two scenarios, the so-called nominal-case (most likely case) and a worst-case of qualification cost for each job-type \(j\) to be qualified for a machine \(k \in N_j\). It is common in the robust optimization literature to assume a nominal or most likely scenario (see Bertsimas and Sim [2004]). We represent the indices of scenarios by \(Q := \{\bar{q}, \tilde{q}\}\) where \(\bar{q}\) and \(\tilde{q}\) refer to the nominal and the worst-case scenarios, respectively. It is to be noted that the qualification cost in the nominal scenario, i.e. \(\beta_{\bar{q}jk}\) is always lower than or equal to that of the worst-case scenario i.e. \(\beta_{\tilde{q}jk}\).

Thus, in a robust counterpart to the deterministic TRAP, we can define an objective function \(g : Y(\tau, \gamma) \times Q \rightarrow \mathbb{R}_2^+\), i.e. the scenarios in \(Q\) affect the objective values. Hence, an uncertain bi-objective TRAP is defined as

\[
P(Q) := \{P(q), q \in Q\},
\]

where \(P(q)\) is defined as

\[
g((x, s, n, z), q) := \min_{(x, s, n, z) \in Y(\tau, \gamma)} \left(g_1(x, s, n, z), q \right),
\]

where

\[
g_2((x, s, n, z), q) := \sum_{t \in T} \sum_{j \in J} \sum_{k \in N_j} \beta_{qjk}^q z_{jkt}, \quad q \in Q, \quad (2.4c)
\]

\[
g_1(x, s, n, z) := \sum_{t \in T} n_t. \quad (2.4d)
\]

The conventional concept of efficient solutions (see [Miettinen, 1988, Section 2.7]) from multi-objective optimization is not entirely valid here. Hence, it is necessary to define alternative concepts that result in desirable solutions when one of the objective functions is uncertain. Paper II deals with the bi-objective robust optimization problem with an uncertain objective function.

The above mentioned two variants, the Deterministic-TRAP and the Robust-TRAP are considered in Paper I and Paper II, respectively.

\[\text{More than two scenarios may exist and the methods presented in Paper II can be applied to such uncertainty sets as well}\]
3 Related scientific fields

The theoretical background required to solve the two variants of the TRAP model, i.e. Deterministic-TRAP and Robust-TRAP, is presented. The objective functions are linear functions w.r.t. the decision variables, and the constraints are affine functions of the same variables. The decision variables are constrained to have one of the following properties: continuous, integer, and binary. Hence, our problems are bi-objective mixed integer linear programming (BOMILP) problems. The latter variant (Robust-TRAP) is also a bi-objective mixed integer linear programming problem (similar to the Deterministic-TRAP) but with an uncertain objective function. A proof of the \mathcal{NP}-hardness (more on this in the coming sections) of the TRAP is presented in Paper I. Hence, solving the TRAP is computationally hard, especially for the large instances dealt with in the given industrial problem. Hence it is important that efforts are made to solve a bi-objective MILP as well as a robust bi-objective MILP in a reasonable time-frame. Ease of interpretation and reasonable computation times are generally extremely important for an optimization model which is part of a decision-making tool. For this purpose, in the coming sections some of the relevant theory that builds the background for the contributions in Paper I and Paper II are discussed.

3.1 Preliminaries: MILP and MOOP

In this section, some preliminaries for Mixed Integer Linear Programming (MILP) problems and Multi-Objective Optimization Problems (MOOP) are discussed.
3.1.1 Mixed Integer Linear Programming

A mixed integer linear programming problem is of the form

\[
\begin{align*}
\text{min} & \quad c^T x + h^T y, \\
\text{s.t.} & \quad Ax + Gy \leq b, \\
& \quad x \in \mathbb{Z}^{n_1}_+, \\
& \quad y \in \mathbb{R}^{n_2}_+,
\end{align*}
\]

(3.1a) (3.1b) (3.1c) (3.1d)

where the data, assumed rational, are denoted as \(c \in \mathbb{Q}^{n_1}, h \in \mathbb{Q}^{n_2}, A \in \mathbb{R}^{m \times n_1}, \) and \(G \in \mathbb{R}^{m \times n_2}. \) The decision variable vector \(x \) is non-negative and integral, and the variable vector \(y \) is non-negative and continuous. The feasible set to (3.1) is denoted \(S := \{(x, y) \in \mathbb{Z}^{n_1}_+ \times \mathbb{R}^{n_2}_+ | Ax + Gy \leq b\}, \)

which can be referred to as a mixed integer set. Generally, MILPs are computationally hard to solve, and thus, continuous relaxations of MILPs are extensively used to (hopefully) get good approximations of an optimal solution. The reason is that linear programs (LPs) are generally easier to solve. The natural continuous relaxation of the set \(S \) is

\[
S_0 := \{(x, y) \in \mathbb{R}^{n_1}_+ \times \mathbb{R}^{n_2}_+ | Ax + Gy \leq b\},
\]

(3.2)

and the corresponding linear program is \(\min \{c^T x + h^T y \mid (x, y) \in S_0\}. \) In Figure 3.1a a set of mixed integer points in a polyhedron corresponding to the following MILP is illustrated:

\[
\begin{align*}
\text{min} & \quad -5x - 2y, \\
\text{s.t.} & \quad -x + y \leq 2, \quad \text{(black-dashed)} \\
& \quad 8x + 2y \leq 17, \quad \text{(red-dashed)} \\
& \quad x, y \geq 0, \\
& \quad x \in \mathbb{Z}_+
\end{align*}
\]

Many real-world combinatorial optimization problems can be modelled as MILPs. Hence, it is worthwhile to investigate the computational difficulty of solving such problems to optimality. For a significant majority of real world problems, the size of the problem instances are large enough to discard the feasibility of using enumeration techniques. For instance, in an assignment problem, there are \(n \) jobs to be performed by \(n \) machines. The cost of performing
3.1. Preliminaries: MILP and MOOP

A job is c_{jk}, where $j \in J$ denotes a job, and $k \in K$ denotes the machine. The optimization problem is to decide the cheapest way to assign all the jobs to machines (the same job cannot be assigned to two or more machines, and the same machine cannot be assigned to two or more jobs). Since the first job can be assigned to any of the n machines, the second job to any one of the $n - 1$ machines, and so on, there is a total of $n!$ possible assignments. It is well-known that $n!$ grows exponentially as a function of n. Hence, enumeration is not possible for an instance with a large value of n. Generally, MILPs and ILPs are \mathcal{NP}-hard (i.e. polynomial-time algorithms are not available) (see [Conforti et al., 2014, Chapter 1.3]). However, there are some combinatorial optimization problems for which polynomial-time algorithms are available. This happens when a perfect formulation is available or can be easily obtained. The linear system of inequalities $Ax + Gy \leq b$ results in a perfect formulation of the set $S \subset \mathbb{Z}_{+}^{n_1} \times \mathbb{R}_{+}^{n_2}$, if $\text{conv}(S) = \{(x, y) \in \mathbb{R}_{+}^{n_1} \times \mathbb{R}_{+}^{n_2} \mid Ax + Gy \leq b\}$. For pure integer sets, if the constraint matrix is totally unimodular (TU) [Conforti et al., 2014, Chapter 4.2], then the perfect formulation is available. Perfect formulations are available for classical combinatorial optimization problems such as assignment, shortest path, maximum flow, bipartite matching. A perfect formulation is also available if the linear system of inequalities have total dual integrality (see, [Conforti et al., 2014, Chapter 4.6]). In general perfect formulations can be made available for all combinatorial optimization problems but for the problems that are \mathcal{NP}-hard the number of constraints in a perfect formulation grows exponentially as a function the number of variables.

Solution methods for MILPs Two common components of most of the exact solution methods for solving MILP problems are the branch-and-bound method and the cutting plane method. In practice, there are many stochastic solution methods, which typically does not provide any (lower/upper) bounds. There are also approximation algorithms which also provide bounds. However, in this section we focus on two of the popular solution approaches, i.e.
3. Related scientific fields

branch-and-bound and cutting plane.

- The branch-and-bound algorithm is a method based on the divide-and-conquer principle. Let us denote an optimal solution to a problem defined in (3.1) by \((x^*, y^*)\) and the optimal objective value by \(z^*\). Let us denote the optimal solution and value of the corresponding LP relaxation with feasible set \(S_0\) by \((x^0, y^0)\) and \(z^0\), respectively. Since \(S \subset S_0\), the inequality \(z^0 \leq z^*\) holds. If \(x^0\) is integral then it is implied that \((x^0, y^0) \in S\), and \(z^* = z^0\). However, usually at least one of the components of the vector \(x^0\) is fractional. The two main building blocks of the branch-and-bound method, as also highlighted in the name are branching and bounding. The former, also called variable branching, is a procedure in which two or more sub-problems are created by restricting the domain of a variable or a group of variables. Bounding of the objective value is done by solving the LP relaxations of the corresponding sub-problems. This is called linear programming bounding. The branch-and-bound algorithm maintains a list of linear programming sub-problems to be solved by relaxing integrality of variables, and also adding constraints on the variables, as \(x_j \leq \lfloor x_j \rfloor\) and \(x_j \geq \lceil x_j \rceil\), in the respective branches. Each linear programming sub-problem is represented as a node in the branch-and-bound tree. For details, we refer to [Conforti et al., 2014, p. 10]. There are various other modern approaches to branching and bounding implemented in commercial solvers.

- The cutting plane method is the second approach which results in better or tighter re-formulations describing the feasible set \(S\). The main idea is to find an inequality (valid inequality) that cuts off feasible solutions in the relaxed problem which are not present in the set \(S\). An inequality \(\alpha^T u \leq \beta\) is valid for a set \(K \subseteq \mathbb{R}^d\), if it is satisfied for every point \(\bar{u} \in K\), where \(\alpha\) and \(\beta\) is a rational vector and number, respectively.

Hence, for the first linear relaxation \(S_0\), look for a valid inequality for the set \(S\), for instance, \(\hat{a}^T x + \hat{g}^T y \leq \hat{b}\) where \(\hat{a} \in \mathbb{Q}^{n}, \hat{g} \in \mathbb{Q}^{n_2}, \hat{b} \in \mathbb{Q}\) such that \(\hat{a}^T x^0 + \hat{g}^T y^0 > \hat{b}\) holds but \(\hat{a}^T x + \hat{g}^T y \leq \hat{b}\) holds for all \(x \in S\) (note that \(x^0\) has fractional components). Hence, the feasible set

\[S_1 := S_0 \cap \{ (x, y) \mid \hat{a}^T x + \hat{g}^T y \leq \hat{b} \} \]

is smaller than \(S_0\). Thus, it is implied that \(S \subset S_1 \subset S_0\), and the formulation corresponding to the LP relaxation of \(S_1\) is stronger than for the set \(S_0\). Consequently, \(z_0 \leq z_1\), where \(z_1 = \min_{(x, y) \in S_1} \{ c^T x + h^T y \}\). Note that for a minimization problem it is important to compute as large a lower bound as possible for faster convergence to an optimal solution. For
3.1. Preliminaries: MILP and MOOP

Detailed steps the reader should refer to [Conforti et al., 2014, p. 10], and for details on cutting plane methods, the introduction section in [Conforti et al., 2014, Chapter 5] is relevant.

Generally, in most of the commercial solvers, both of these methods are combined in a branch-and-cut framework. In this approach, cuts are added to get tighter formulations before applying branching. For instance, in the example in Figure 3.1a, one of the optimal solution for the LP relaxation corresponding to S_0 is $(x, y) = (1.3, 3.3)^T$, and if the constraint $2.5x + y \leq 5.5$ is added, it results in a tighter formulation (see Figure 3.1b). In fact, if the LP relaxation is solved after adding this constraint, a solution $(x, y) = (1, 3)^T$ is obtained, which is a feasible, and optimal solution to the MILP problem in (3.1).

For most of our work, commercial solvers are used that have advanced/mature sub-routines to generate appropriate cuts and selection rules for branching decisions depending on the type of problem instances. Some of the cuts that are applied are knapsack covers (see Crowder et al. [1983]), GUB covers (see Gu et al. [1999]), flow covers (see Gu et al. [1999]), cliques (see Crowder et al. [1983]), implied bounds (see Hoffman and Padberg [1991]) and Gormory mixed-integer cuts (see Cornuéjols [2006]. There are also various lifting procedures (see [Conforti et al., 2014, Chapter 7]) which are used extensively in almost all the modern implementations. For more details on commercial codes of solvers, readers should refer to Bixby et al. [2000].

3.1.2 Multi-Objective Optimization Problems (MOOP)

Most industrial problems have several objectives, which are often in conflict. Our work deals with multi-objective integer (linear) optimization problems, which are defined as

$$\min_{x \in X} z(x) := (z_1(x), \ldots, z_p(x)), \tag{3.4}$$

here $X \subseteq \mathbb{Z}_+^n$ is defined by a set of affine constraints, with integrality constraints on the $x \in \mathbb{Z}_+^n$ variables. The functions z_1, z_2, \ldots, z_p are linear, and the image Y of X under vector valued functions $z : \mathbb{Z}_+^n \to \mathbb{R}_+^p$ represents the feasible set in the criterion space. Some common notation and definitions used to solve multi-objective optimization problems are described next.
3. Related scientific fields

Notation 3.1.1 \cite{Ehrgott2005}.

\[
\begin{align*}
 z \leq w & \iff w_i \in [z_i, \infty) \quad \forall i \in \{1, \ldots, p\}; \\
 z \preceq w & \iff w_i \in [z_i, \infty) \quad \forall i \in \{1, \ldots, p\} \quad \text{and} \quad z \neq w; \\
 z < w & \iff w_i \in (z_i, \infty) \quad \forall i \in \{1, \ldots, p\}.
\end{align*}
\]

Definition 3.1.1 (Weakly efficient solutions). A feasible solution \(x' \in X\) is called the weakly efficient (see \cite{Ehrgott2005} Definition 2.4) if \(\not\exists x \in X\) such that, \(z_k(x) < z_k(x')\), for \(k \in \{1, \ldots, p\}\). Furthermore, \(z(x')\) is called a weakly non-dominated point in the criterion space. The set of all the non-dominated points is called the efficient frontier. The set of efficient solutions is denoted by \(X_{\text{eff}}\).

Definition 3.1.2 (Efficient solutions). A feasible solution \(x' \in X\) is called the efficient solution (see \cite{Ehrgott2005} Definition 2.1) or Pareto optimal solution if \(\not\exists x \in X\) such that \(z(x) \preceq z(x')\). Furthermore, \(z(x')\) is called a non-dominated point in the criterion space.

Definition 3.1.3 (Ideal point). A point \(z_{\text{ideal}} \in \mathbb{R}^p\) is called an ideal point (see \cite{Miettinen1988} Definition 2.4.1) if it minimizes all the objectives separately/individually. Thus, \(z_{k,\text{ideal}} := \min_{x \in X} z_k(x), k \in \{1, \ldots, p\}\).

Notation 3.1.2. The positive orthant is denoted by \(\mathbb{R}^p_\succ := \{y \in \mathbb{R}^p_+ \mid y > 0^p\}\).

Definition 3.1.4 (Supported efficient solution). A feasible solution \(x' \in X_{\text{eff}}\) is called a supported efficient solution (see \cite{Ehrgott2005} Definition 8.7) if \(\exists \lambda \in \mathbb{R}^p_\succ\) such that \(x' \in \arg \min_{x \in X_{\text{eff}}} \lambda^\top z(x)\) and \(z(x')\) is supported non-dominated point.

3.2 Multi-Objective Integer Programming (MOIP)

Algorithms for Multi-Objective Integer Programming (MOIP) can be broadly classified into two main categories: decision space search methods and criterion space search methods.

Popular methods for decision space search include evolutionary multi-objective methods, such as NSGA-II (see \cite{Deb2002}), which has gained interest, although it does not provide any measure on the verified closeness to the Pareto front. Recently, there have been some improvements suggested in branch-and-bound methods for mixed 0-1 linear problems (e.g. \cite{Vincent2013} and \cite{Stidsen2014}).

Our work focuses on criterion space search methods, that provide (approximate) efficient frontiers, and which are also motivated by an improved effi-
ciency of mathematical optimization solvers and relatively inexpensive computing power. Some of the popular methods for criterion space search are the weighted sum method (e.g. [Aneja and Nair 1979]), the perpendicular search method (see Chalmet et al. [1986]), the augmented weighted Tchebycheff (AWT) method (e.g. Bowman [1976] and Steuer and Choo [1983]), and the ϵ-constraint method (see [Miettinen, 1988, p. 85]). Most of the algorithms suggested in the literature have one basic operation common among them, the so called scalarization. The idea is to transform a MOIP into a series of single-objective optimization problems which are solved sequentially.

Definition 3.2.1 (Scalarized problem). A scalarized problem is a single-objective optimization problem related to MOIP with additional variables, and constraints solved repeatedly in order to find some subset of the set of efficient solutions (see Ehrgott [2006]).

The two main aspects while solving a scalarized problem are (a) Is an optimal solution of the scalarized problem a weakly or strictly efficient solution? (b) Can all the efficient solutions be identified (both supported and un-supported efficient solutions)? Following are some of the popular scalarization techniques used to identify efficient solutions:

- **Weighted Sum method**: This is one of the most popular methods for solving multi-objective IPs and MILPs. In this method each objective function is associated with a non-negative coefficient, and hence, transformed into a single-objective optimization problem. The following model is a typical representation of the scalarization used in the weighted sum method:

$$\min_{x \in X} \sum_{k=1}^{p} \lambda_k c_k^T x,$$

where $\lambda_k > 0$ is the weight coefficient for each objective function indexed by $k \in \{1, \ldots, p\}$. The cost coefficient vector for the k^{th} objective function is $c_k \in \mathbb{R}^n_+$. It is a well-known result (see [Ehrgott 2005, Chapter 3]) that any solution to the model (3.5) is an efficient solution, however, it is always a supported efficient solution. Hence, un-supported efficient solutions are not identified by the weighted sum method. One important advantage of the weighted sum method is that it (model (3.5) for a given λ) usually requires the same computational effort as a single-objective version of the MOIP.

- **ϵ-constraint method**: It is a popular type of multi-objective optimization method capable of finding all the efficient solutions (both supported as
well as un-supported). In this method only one of the \(p \) objective functions is considered and the remaining \(p-1 \) are set as constraints (also popularly referred to as \(\epsilon \)-bounds) on the values of the respective objective functions. The values of \(\epsilon \in \mathbb{R}^{p-1} \) are updated after each scalarized problem is solved to optimality. The optimal solution of the model (3.6) is at least weakly efficient, and under certain conditions even strictly efficient (see Chankong and Haimes [1983] for other results). One of the drawbacks of the \(\epsilon \)-constraint method is that the scalarized model (3.6) is generally computationally harder as compared to the single objective version of the MOIP. This is mainly due to the constraints (3.6b), which are actually knapsack constraints, added to the problem. For certain types of problems depending on the structure of set \(X \), these additional constraints may make the problem computationally very hard (see [Ehrgott, 2006, Sec 4.4] for specific examples).

- **Augmented weighted Tchebycheff (AWT) method**: This method first proposed in Steuer and Choo [1983] is quite popular within interactive methods (see [Miettinen, 1998, Chapter 5] for more details) as well. The method adds to the objective function a weighted distance from a reference point (usually an ideal point, \(z_{\text{ideal}} \in \mathbb{R}^p \)) in the criterion space. The following model is a typical scalarization used for this purpose

\[
\min_{x \in X} \left\{ f + \bar{\lambda} \sum_{k=1}^{p} \left(z_k(x) - z_{\text{ideal}}^k \right) \right\},
\]

s.t. \(f \geq \alpha_k \left(z_k(x) - z_{\text{ideal}}^k \right), \quad k \in \{1, \ldots, p\} \) \hspace{1cm} (3.7a)

\[
f \geq 0,
\]

where \(\alpha_k > 0 \) are the respective weights for the \(l_{\infty} \)-norm of the difference between the ideal point \((z_{\text{ideal}}) \) and the objective vector \(z(x) \) corresponding to a point \(x \in X \), and \(\bar{\lambda} \) is the coefficient for the \(l_1 \)-norm of the same distance measure. By choosing appropriate values of \(\bar{\lambda} \) and \(\alpha \), all non-dominated points can be obtained. The inclusion of a min-max inclusion of a min-max objective results in some increased computation time as compared with single-objective MOIPs. Furthermore, identifying \(\bar{\lambda} \) and \(\alpha \) for searching only strictly efficient or at least fewer weakly efficient solutions has made the use of this method elusive.
3.2. Multi-Objective Integer Programming (MOIP)

- **Benson’s method**: First presented in Benson [1978], it is a method that can be used for checking whether a given solution is efficient, and also identifying yet unknown non-dominated points. The scalarized problem can be defined as (note the additional variable vector u)

$$\max \sum_{k=1}^{p} u_k,$$

$$\text{s.t.} \quad c_k^\top \bar{x} - u_k - c_k^\top x = 0, \quad k = 1, \ldots, p,$$

$$u \geq 0,$$

$$x \in X,$$

where $\bar{x} \in X$ is the solution that needs to be checked if it is efficient or not. Let us denote $u_k = c_k^\top \bar{x} - c_k^\top x$, a formulation almost a union of the weighted sum and ϵ-constraint method is obtained as

$$\min_{x \in X} \left\{ \sum_{k=1}^{p} c_k^\top x : c_k^\top x \leq c_k^\top \bar{x}, k \in \{1, \ldots, p\} \right\}.$$

A general framework suggested by Ehrgott [2006], for scalarized problems is:

$$\min_{x \in X} \max_{k \in \{1, \ldots, p\}} \left\{ \alpha_k (c_k^\top x - \rho_k) + \sum_{k=1}^{p} \lambda_k (c_k^\top x - \rho_k) \right\},$$

$$\text{s.t.} \quad c_k^\top x \leq \epsilon_k, \quad k \in \{1, \ldots, p\},$$

where ρ_k, and $\alpha_k, k \in \{1, \ldots, p\}$, are defined in Table 3.1.

Table 3.1: Parameters for the generalized scalarized problem (3.10), where z_{ideal} and \bar{x} denote the ideal objective value, and (pre-defined) reference solution, respectively.

<table>
<thead>
<tr>
<th>Method</th>
<th>ρ_k</th>
<th>α_k</th>
<th>λ</th>
<th>ϵ</th>
</tr>
</thead>
<tbody>
<tr>
<td>weighted sum</td>
<td>0</td>
<td>0</td>
<td>$\lambda \in \mathbb{R}^p_+$</td>
<td>$\epsilon_k = \infty, k \in {1, \ldots, p}$</td>
</tr>
<tr>
<td>ϵ-constraint</td>
<td>0</td>
<td>0</td>
<td>$\lambda_j = 1, \lambda_k = 0, k \neq j$</td>
<td>$\epsilon_j = \infty, \epsilon_k \in \mathbb{R}, k \neq j$</td>
</tr>
<tr>
<td>AWT</td>
<td>$z_{\text{ideal}} > 0$</td>
<td>$[\lambda_k]_{k={1, \ldots, p}} = \bar{\lambda} \geq 0$</td>
<td>$\epsilon_k = \infty, k \in {1, \ldots, p}$</td>
<td></td>
</tr>
<tr>
<td>Benson’s</td>
<td>0</td>
<td>0</td>
<td>$[\lambda_k]_{k={1, \ldots, p}} = 1$</td>
<td>$\epsilon_k = c_k^\top \bar{x}, k \in {1, \ldots, p}$</td>
</tr>
</tbody>
</table>

Another common strategy while looking for efficient solutions is the so-called **two-phase strategy**. Generally, in the first phase all the supported efficient solutions are identified, whereas in the second phase un-supported efficient solutions are identified. This method was used to solve a bi-objective assign-
ment problem in Przybylski et al. [2008]. However, these two-phase approaches have appeared previously as well (see Visée et al. [1998]). Some other methods that have been proposed for multi-objective integer programming problems can be reviewed in [Ehrgott, 2006 Sec. 2].

3. Specialized algorithms for BOIP and TOIP problems

In Paper I, a bi-objective mixed integer programming (BOMIP) problem called Tactical Resource Allocation Problem (TRAP) is solved. An important conclusion drawn from Proposition 3 in Paper I is the following

Proposition 3.3.1 (Efficient frontier of the TRAP model). The efficient frontier of the TRAP contains only isolated non-dominated points, and no (closed, half open, or open) line segments (as is the case in typical BOMIPs), irrespective of the values of the parameters \(\beta_{jk}, k \in N_j, j \in J \).

Hence, without loss of generality, one can use algorithms for bi-objective integer programming (BOIP) problems for solving the TRAP as well. Most of the algorithms mentioned in the previous section are popular while solving BOIPs. However, some algorithms based on decomposing the criterion space also exist. One of the important (recent) ones, called the Balanced Box method, is designed for BOIPs (see Boland et al. [2015] for details). Generally, in these criterion space decomposition methods more scalarized problems are solved as compared to most of the conventional scalarization methods but usually these scalarized problems in decomposition methods are computationally easier to solve. In this section we have also introduced a specialized method for tri-objective integer programming (TOIP) problem which was useful in Paper II while solving TRAP with uncertain qualification cost and two scenarios.

3.3.1 Balanced Box method

Balanced Box method is used to identify efficient frontier of bi-objective integer programming problems. There is an initial search space defined by the two non-dominated points \(z^l \) and \(z^u \), which refer to the non-dominated points defining the minimum value for the first and second objective functions, respectively.
3.3. Specialized algorithms for BOIP and TOIP problems

Formally, the two non-dominated points are defined as

\[
\begin{align*}
 z^T := & \min_{x \in X} \{ z_1(x), z_2(x) \}, \\
 z^B := & \min_{x \in X} \{ z_2(x), z_1(x) \},
\end{align*}
\]

where \(\min \) is the standard lexicographic minimization as defined in [Ehrgott, 2005, Section 5.1].

The rectangular search space is then defined as

\[
R(z^T, z^B) := \left\{ z \in \mathbb{R}^2 \mid z_1^T \leq z_1 \leq z_1^B, \ z_2^B \leq z_2 \leq z_2^B \right\},
\]

where \((z_1^T, z_2^B)\) and \((z_1^B, z_2^T)\) denote the ideal and nadir points, respectively (see [Miettinen, 1988, p. 15–16]). In Figures 3.2 and 3.3, a simple example of this procedure is illustrated. In the first step (see Figure 3.2), there are two initial non-dominated points \((z^T, z^B)\). Furthermore, the rectangle \(R(z^T, z^B)\) is split into two halves along the \(z_2\) axis. Thus, the two new rectangles containing yet-unknown non-dominated points are \(R(z^T, z^t)\) and \(R(z^b, z^B)\), where \(z^b := (z_1^B, z_2^B + \frac{z_2^T - z_2^B}{2})\) and \(z^t := (z_1^T, z_2^T + \frac{z_2^B - z_2^T}{2})\). Firstly, the rectangle \(R(z^b, z^B)\) is searched and the problem \(\min_{x \in X} \{ z_1(x), z_2(x) \mid z \in R(z^b, z^B) \} \) is solved. The non-dominated point obtained is \(z^1\) (see illustration in Figure 3.3). Similarly, a lexicographic minimization problem is solved for the other rectangle \(R(z^T, z^t)\) to find \(z^2\) using \(\min_{x \in X} \{ z_2(x), z_1(x) \mid z \in R(z^T, z^t) \} \). A recursive algorithm is presented in [Boland et al., 2015, Algorithm 2]; this algorithm has shown computational superiority over many existing methods for several benchmarking instances for BOIPs (see [Boland et al., 2015, Section 6]).
3. Related scientific fields

3.3.2 AWT (with adaptive formulae)

The Augmented Weighted Tchebycheff (AWT) method is discussed in the general multi-objective optimization section (see Section 3.2). As already highlighted, one of the issues with the AWT method is, however, that the coefficients for the l_∞- and l_1-norms are not available; hence there is a risk that many weakly efficient solutions are identified. In Dächert et al. [2012] the authors came up with an adaptive formulae for solving bi-objective integer programming problems and summarized in Table 3.2.

Table 3.2: Parameters for the AWT method \((3.7)\) for BOIPs from [Dächert et al., 2012, Table 2]

<table>
<thead>
<tr>
<th>Case</th>
<th>α_1</th>
<th>α_2</th>
<th>$\bar{\lambda}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x > y \geq 2$</td>
<td>$\frac{xy-x-y+u(2-u)}{xy-y-3x+x^2+2u(2-u)}$</td>
<td>$\frac{(x-u)(x+u-2)}{xy-y-3x+x^2+2u(2-u)}$</td>
<td>$\frac{(x-u)(1-u)}{xy-y-3x+x^2+2u(2-u)}$</td>
</tr>
<tr>
<td>$x = y \geq 2$</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{1-u}{2(x+u-2)}$</td>
</tr>
<tr>
<td>$y > x \geq 2$</td>
<td>$\frac{(y-u)(y+u-2)}{xy-x-3y+y^2+2u(2-u)}$</td>
<td>$\frac{xy-x-y+u(2-u)}{xy-x-3y+y^2+2u(2-u)}$</td>
<td>$\frac{(y-u)(1-u)}{xy-x-3y+y^2+2u(2-u)}$</td>
</tr>
</tbody>
</table>

In Table 3.2 for a given reference point in the criterion space z^{ideal}, define $x := z_1^u - z_1^{\text{ideal}}$, $y := z_2^u - z_2^{\text{ideal}}$, and $u \in (0, 1)$. Note that when $x \leq 1$, or $y \leq 1$ (not considered in Table 3.2), since it is a BOIP, there are no interior non-dominated points in $R(z^r, z^b)$, where z^r and z^b are described in (3.11).

3.3.3 Quadrant Shrinking method (for TOIP problem)

There are numerous specialized algorithms described in the literature specifically designed for solving multi-objective integer programming problems (see some popular ones Sylva and Crema [2004], Dächert et al. [2017], Lokman and Köksalan [2012]), and for a detailed review we refer to [Boland et al., 2017, Section 1]. One of the latest additions to algorithms for tri-objective integer programming (TOIP) problems is the Quadrant Shrinking Method (QSM) presented in Boland et al. [2017]. Our interest in TOIP problems is due to Paper II, which requires solving a TOIP problem for identifying robust efficient (RE) solutions (more on that in the later sections).

A TOIP can be described as in (3.4), with $p = 3$. QSM, like many other decomposition based algorithms, works in 2-dimensional projected criterion space. A point $u := (u_1, u_2, u_3)^\top$ in the 3-dimensional criterion space is projected as
$\bar{u} = (u_1, u_2)$ in the criterion space corresponding to z_1 and z_2. Given $\bar{u} \in \mathbb{R}^2$, being a projection of $u \in \mathbb{R}^3$, a quadrant is defined as $Q(\bar{u}) := \{ y \in \mathbb{R}^2 \mid y \leq \bar{u} \}$, hence, \bar{u} is the upper bound of the quadrant $Q(\bar{u})$. As a result of [Boland et al. 2017, Propositions 4 and 5], it is established that a non-dominated point $z(\hat{x})$, with the property that its projection $(z_1(\hat{x}), z_2(\hat{x}))^\top \leq \bar{u}$, can be found by solving the following two IPs

$$
\begin{align*}
 x^* & \in \arg\min_x \{ z_3(x) : x \in X \text{ and } z_k(x) \leq \bar{u}_k, k \in \{1, 2\} \}, \quad (3.12a) \\
 \hat{x} & \in \arg\min_x \left\{ \sum_{k=1}^3 z_k(x) : x \in X \text{ and } z_k(x) \leq z_k(x^*), k \in \{1, 2, 3\} \right\}. \quad (3.12b)
\end{align*}
$$

This sub-routine is called 2-D-NDP search in Boland et al. [2017], however, originally it first appeared as a two-stage scalarization in Kirlik and Sayın [2014]. This is the core step in QSM used to explore all the quadrants that are expected to have yet-unknown non-dominated points. A recursive algorithm is detailed in [Boland et al. 2017, Algorithm 1].

3.4 MOOP under parameter uncertainty of objective functions

The multi-objective optimization problem (3.4) has no uncertainty associated with parameters. Sometimes uncertainty present in parameters may arise due to uncertain future developments of the data defining an instance, and some imprecise calculations or measurements. The outcome of decisions made under uncertainty of some parameters can sometimes be extremely sensitive to the actual data, and hence, extra care should be taken while making decisions under uncertainty due to uncertain parameter values.

For this particular reason, different approaches have been suggested for solving MOOPs, which are based on stochastic programming, fuzzy approaches, and robust optimization. Stochastic programming for MOOP (see Gutjahr and Pichler [2013]) is used when there is enough data available and fuzzy approaches (see Slowinski and Teghem [1990, Chapter 4]) when expert judgements on fuzzy membership are reliable. A drawback of the stochastic approach is that for some problems so-called long-run optimality is not relevant, as the repeatability element of the decisions is missing; the decision maker has to live with the consequences of the decision made once. Since in TRAP, qualification costs are incurred only once, it is evident that combining robust optimization and
multi-objective optimization has certain benefits over other approaches.

Recently, the robust multi-objective optimization approach has been gaining interest in the research community for solving multi-objective problems with uncertain objective functions, deterministic constraints, and for which amount of data available is not sufficient to make any informed probability distribution assumptions of the input parameters. An uncertain MOOP (with deterministic constraints) can be defined as a family of parameterized problems as follows:

$$\mathcal{P}(U) := (\mathcal{P}(\xi), \xi \in U),$$

where $P(\xi)$ is defined as

$$\min_{x \in X} z(x, \xi), \quad \xi \in U \quad (3.14a)$$

$$\text{s.t.} \quad x \in X, \quad (3.14b)$$

where $z : X \times U \to \mathbb{R}^p$, ξ is a vector containing uncertain parameters and U is the set of uncertain scenarios. There are two main types of uncertainty sets considered in the robust optimization literature:

- **Finite uncertainty set.** In this case, it is assumed that the set of scenarios is finite, i.e. $U = \{\xi^1, \ldots, \xi^n\}$.

- **Polyhedral uncertainty.** The uncertainty set is given as the convex hull of a finite set of scenarios, i.e. $U = \text{conv}\{\xi^1, \ldots, \xi^n\}$.

Next, single-objective robust optimization, and its generalization to the multi-objective case is introduced.

3.4.1 Single objective robust optimization

For single objective robust optimization (SO-RO) problems with deterministic constraints, numerous concepts of robustness have been discussed in the literature. Some of the well-known ones are:

- **Minmax robust optimality for SO-RO problems** (see [Ide and Schöbel] 2016, Definition 11)). Given $P(U)$ with $z : X \times U \to \mathbb{R}$ (i.e only one objective function), a solution is called minmax robust optimal if it is an optimal solution to

$$\min_{x \in X} \max_{\xi \in U} \{z(x, \xi)\}.$$
3.4. MOOP under parameter uncertainty of objective functions

- **Minmax regret** is a concept to avoid conservativeness of the minmax approach. Regret is defined as the difference between the resulting benefit (cost) to the decision maker, and the benefit (cost) to the decision maker from the decision if the actual scenario was known (see [Kouvelis and Yu, 1997, Chapter 1] for details). There are many other variants of regret as well, one of them being the relative deviation of the objective value corresponding to the robust decision from the value corresponding to the optimal decision if the actual scenario is known.

- **Light robustness** is introduced for SO-RO in [Fischetti and Monaci, 2009]. The idea is to choose solutions that are considered “good enough” in the nominal (most-likely) scenario and selecting the one that is most reliable in the worst-case scenario. This approach also reduces the over-conservativeness of the minmax approach which is a common criticism of robust optimization as well.

A recent review article on SO-RO is [Goerigk and Schöbel, 2016].

3.4.2 Robust MOOP

The need to develop efficiency concepts for robust MOOP first arose due to requirements in certain application areas of aircraft route guidance and shipping hazardous materials (see, [Kuhn et al., 2016, Section 8] for more details on applications). Defining an analogous concept of efficient solutions (from MOOP) to a comparable concept in robust MOOP is not straightforward. Various concepts of the so-called robust efficiency have been suggested. A detailed overview of various robust efficiency concepts is presented in [Ide and Schöbel, 2016, Section 3]. Following are some of the robust efficiency concepts that are important for Paper II

Definition 3.4.1 (Flimsily robust efficient (FRE)). Given the uncertain MOOP \(P(U) \), a solution \(\bar{x} \in X \) is called flimsily robust efficient (FRE) for \(P(U) \) if it is efficient for \(P(\xi) \) for at least one \(\xi \in U \). The set FRE solutions \(X^f := \bigcup_{\xi \in U} X_{\text{eff}}(\xi) \), where \(X_{\text{eff}}(\xi) \), is the set of efficient solutions to the deterministic MOOP \(P(\xi) \).

Definition 3.4.2 (Highly robust efficient (HRE)). Given the uncertain MOOP \(P(U) \), a solution \(\bar{x} \in X \) is called highly robust efficient (HRE) for \(P(U) \) if it is efficient for \(P(\xi) \) for all \(\xi \in U \). The set of HRE solutions \(X^h := \bigcap_{\xi \in U} X_{\text{eff}}(\xi) \).

Remark 3.4.1. For the two special cases following holds

- For \(|U| = 1 \) (i.e. MOOP), the set of HRE and FRE solutions are equivalent.
For $p = 1$ (one objective function, i.e. robust optimization), a solution is HRE if it is optimal for all the scenarios $\xi \in U$ and FRE if it is optimal to at least one of the scenarios.

HRE is a very restrictive requirement, and existence of such solutions is not guaranteed. However as per Ide and Schöbel [2016] Lemma 9, the existence of such a solution (i.e. HRE) is guaranteed, if one of the objectives does not have any uncertain parameters (i.e. for at least one of the objective function $i \in \{1, \ldots, p\}$, $z_i(x, \xi') = z_i(x, \xi), \xi', \xi \in U$), and also has a unique optimal solution to the problem $\min \{z_i(x, \cdot) \mid x \in X\}$.

For SO-RO problems, minmax robust optimality is well-defined but when there is a vector valued objective function, the definition of the worst-case is not unambiguous. Hence, an extension of minmax robustness to MOOP is not unambiguously defined. There are three extensions of this concept for MOOP. The most common one—from Ehrgott et al. [2014]—is presented next.

Definition 3.4.3 (Set-based minmax robust efficiency, Ehrgott et al. [2014]).

Given the uncertain MOOP $\mathcal{P}(U)$, a feasible solution $\bar{x} \in X$ is called set-based minimax RE solution if $\exists x' \in X \setminus \{\bar{x}\}$, such that

$$z_{\mathcal{U}}(x') \subseteq z_{\mathcal{U}}(\bar{x}) - \mathbb{R}^p_{\leq}, \quad (3.15)$$

where $z_{\mathcal{U}}(x) := \{z(x, \xi) \mid \xi \in U\}$, and $\{z \in \mathbb{R}^p \mid z \geq 0\}$ is denoted by \mathbb{R}^p_{\geq}.

In Figure 3.4 an example is presented with $\mathcal{U} = \{\xi^1, \xi^2\}$, and $X = \{x^1, x^2, x^3\}$.
3.4. MOOP under parameter uncertainty of objective functions

To illustrate set-based minmax RE solutions. The boundaries of the respective sets \(\{ z_U(x^j) \}_{j \in \{1,2,3\}} \) are shown using different line-styles. It is evident that \(x^1 \) is set-based minmax RE, because \(z_U(x^1) - \mathbb{R}_p^p \) does not contain either of the sets \(z_U(x^2) \) and \(z_U(x^3) \). Similarly, \(x^2 \) is also a set-based minmax RE solution. However, the same could not be said about \(x^3 \) since \(z_U(x^2) \subset z_U(x^3) - \mathbb{R}_p^p \). There are other set-based RE concepts such as hull-based minmax RE solutions (Bokrantz and Fredriksson [2017]), point-based minmax RE solutions (see Kuroiwa and Lee [2012]), lower set less ordered efficient, and alternative set less ordered efficient (see, Ide and Köbis [2014]). In Ide and Köbis [2014], relationships between these RE concepts are investigated, and various special cases are also presented where equivalence is established between a few RE concepts.

The concept of light robustness from Fischetti and Monaci [2009] for SO-RO is generalized for uncertain MOOP in Ehrgott et al. [2014]. The pre-requisite to finding light robust solutions is the existence of a nominal (most-likely) scenario. It is quite common to consider a nominal scenario, and it has appeared in many articles such as Ben-Tal and Nemirovski [2002], Ben-Tal et al. [2009]. The motivation behind light robustness is to prevent the overconservativeness of the minmax solutions. For problems with uncertain objective functions and deterministic constraints, the concept of light robustness can be defined as follows.

Definition 3.4.4 (Light robustness for SO-RO problems Schöbel [2014]). Consider a single-objective robust optimization problem \(P(U) \), with \(p = 1 \), and assume that \(\hat{x} \in X \) is an optimal solution to the problem \(P(\hat{\xi}) \), where \(\hat{\xi} \) is a nominal scenario. Then, a solution \(x \in X \) is called lightly robust optimal to \(P(U) \), w.r.t. \(\epsilon \geq 0 \) if it is an optimal solution to min-max problem

\[
\begin{align*}
\min \{ \max_{\xi \in U} z(x, \xi) \}, \\
\text{s.t.} \quad z(x, \hat{\xi}) & \leq z(\hat{x}, \hat{\xi}) + \epsilon, \quad (3.16b) \\
& x \in X. \quad (3.16c)
\end{align*}
\]

Ide and Schöbel [2016] has generalized light robustness for multi-objective robust optimization problems with \(p > 1 \) and \(|U| > 1 \) as follows.

Definition 3.4.5 (Light robustness for robust MOOP). Given a robust MOOP \(P(U) \), with \(p > 1 \), and \(|U| > 1 \), a nominal scenario \(\hat{\xi} \in U \), and an \(\epsilon \in \mathbb{R}_p^p \), a solution \(x^* \in X \) is called \(\epsilon \)-lightly robust efficient solution for \(P(U) \) if it is one of the efficient solutions to the following deterministic MOOP for a given \(\hat{x} \in X_{\text{eff}}(\hat{\xi}) \) (i.e. \(\hat{x} \) is an
efficient solution in the nominal scenario)

\[
\begin{align*}
\min_{\xi \in U} \max_{z(x, \xi)} z(x, \xi), \\
\text{s.t.} \quad z_k(x, \xi) &\leq z_k(\hat{x}, \hat{\xi}) + \epsilon_k, & k \in \{1, \ldots, p\} \\
&\quad x \in X.
\end{align*}
\]

(3.17a)

(3.17b)

(3.17c)

The set of solutions to (3.17) is called \(\epsilon\)-lightly RE solution set.

The main idea behind light robustness for robust MOOP is to find solutions that are good enough in the nominal scenario, and to choose the most robust solutions among them. Authors in [Kuhn et al., 2016, Section 4.7] introduced a new RE concept for bi-objective robust optimization problems with an uncertain objective function and deterministic constraints. It is called \(\epsilon\)-representative lightly RE solutions and is aimed to reduce the number of \(\epsilon\)-lightly robust efficient solutions to be assessed by the decision maker.

For the SO-RO problems, it is a common approach to be indifferent toward non-worst case scenarios. This is sometimes referred as the so-called strict robustness. [Iancu and Trichakis, 2014], formally prove that the traditional concept of strict robustness (as presented in Ben-Tal et al., 2009) for SO-RO, which solely focuses on worst-case scenario, is not reasonable. The main reason is that there might exist alternative solutions that perform much better in other scenarios. Hence, just using the worst-case scenario leaves solutions/decisions un-optimized for other scenarios, which in most problems might be more likely to occur. Hence, [Iancu and Trichakis, 2014] introduced the concept of Pareto robust optimal (PRO) solutions for SO-RO problems. In order to extend the concept of PRO in SO-RO to bi-objective robust optimization problems, [Kuhn et al., 2016, Definition 9] suggest PRO robust efficient (PRO RE) solutions. Hence, it is established that each of the RE solutions must be PRO RE to be non-dominated in all of the scenarios.

Definition 3.4.6 (Pareto robust optimal (PRO) solutions for SO-RO problems). Let \(\mathcal{U}\) be a set of scenarios, and \(z : X \times \mathcal{U} \to \mathbb{R}\) the objective function. Then, a family of functions over the set \(\mathcal{U}\) is defined as \(\phi_{\mathcal{U}}(x) := (z(x, \xi))^T, x \in X\), where the function \(z(\cdot, \xi) : X \to \mathbb{R}\). A solution \(x \in X\) is PRO if \(\exists x' \in X\) such that \(\phi_{\mathcal{U}}(x') \preceq \phi_{\mathcal{U}}(x)\).

For the multi-objective case, an analogous definition is proposed in [Kuhn et al., 2016, Section 5], and referred as PRO robust efficient (PRO RE) solutions.

Definition 3.4.7 (PRO RE solutions for robust MOOP). Let \(\mathcal{U}\) be a set of scenarios and \(z : X \times \mathcal{U} \to \mathbb{R}^p\) a \(p\)-dimensional vector-valued objective function.
Then, a family of vector-valued functions over the set U is defined as $\phi_U(x) := (z_1(x, \xi), \ldots, z_p(x, \xi))^\top, \quad x \in X,$ where $z_k(\cdot, \xi) : X \to \mathbb{R}, \quad k \in \{1, \ldots, p\}$. A solution $x \in X$ is PRO RE if $\nexists x' \in X$ such that $\phi_U(x') \preceq \phi_U(x)$.

Hence, as discussed in [Kuhn et al. 2016], all the RE solutions obtained for a robust MOOP must be PRO RE. This provides a guarantee that no other solution exists that, apart from mitigating the worst-case, it also performs better in all other possible scenarios in U.
3. Related scientific fields
4 Summary of manuscripts

In this chapter, the contributions of the two appended manuscripts are described.

4.1 Paper I: Bi-objective optimization of the tactical allocation of job types to machines

In this manuscript, the deterministic version of the bi-objective tactical resource allocation problem (TRAP) is presented. The constraints of this bi-objective MILP are defined in (2.2), and the two objective functions defined in (2.1). The model is a MILP as the variables n are continuous, the variables s, z are binary, and x is integral. The makespan minimization of the unrelated parallel machine scheduling problem, i.e. $R||C_{\text{max}}$ is polynomially reducible to the TRAP as shown in Proposition 1 of Paper I. The difficulty in solving the optimization problem stems from the linking constraints (2.2e) which connect the time periods. We propose a starting heuristic (see Section 3.4 of Paper I) which is based on decomposing the TRAP w.r.t. the time periods, and solving one (smaller) MILP for each time period. The starting heuristic also makes use of Proposition 2 in Paper I (see Proposition 4.1.1 below), which concludes that for fixed values of s, the variables z can be regarded continuous. For fixed values of the binary variables s, the following polyhedron is defined in the space of the z variables:

$$Z(s, \gamma) := \{ z \mid z_{jkt} \in [0, 1], k \in \mathcal{N}_j, j \in J, t \in T; (2.2e)-(2.2f) \text{ hold} \}.$$ (4.1)

Proposition 2 in Paper I is stated as follows

Proposition 4.1.1 (On the integrality of the variables z). For any $s_{jkt} \in \{0, 1\}$, $k \in \mathcal{N}_j, j \in J, t \in T$, all the extreme points of the polyhedron $Z(s, \gamma)$, defined in (4.1), are integral.
Details of the heuristic are mentioned in Section 3.4 in Paper I. The other main contribution of the manuscript is a modified version of the \textit{bi-directional ϵ-constraint method.} The proposed solution approach combines two well-known criterion space search methods, AWT with adaptive formulae (see [Dächert et al. 2012]), and bi-directional ϵ-constraint method (see [Boland et al., 2015, Section 5.1]). It has shown significant positive computational effects on the 60 numerical industrial test cases investigated.

The proposed modification is based on switching to the AWT method when only a pre-defined fraction ϕ of the total search area (in the criterion space) is left to be explored for yet-unknown non-dominated points. In Figure 4.1, solution times of various state-of-the-art solution approaches is compared using the so-called \textit{performance profiles} (see, Dolan and Moré [2002] for details). In Figures 4.1 and 4.2, the term r_{ps} refers to the performance ratio $r_{ps} := \frac{t_{ps}}{\min_{r \in S} \{t_{pr}\}}$, where $s \in S$ (S being the set of solution methods used), and $p \in P$ (P being the set of problem instances), and t_{ps} is the computing time used for solving problem instance p by solution method s.

For each solution method in Figure 4.1 the two objectives are tackled by either augmentation (Aug) or a lexicographic (Lex) minimization the two. The main criterion space search methods used are the bi-directional ϵ-constraint (BD-ϵ) and the balanced box (BB) method. A switch to the AWT method is denoted by AWT, while \emptyset means that there is no such switch. The solution approaches compared are defined by the 3-tuples (Aug,BD-ϵ,AWT), (Aug,BD-ϵ,\emptyset), (Aug,BB,\emptyset), and (Lex,BD-ϵ,AWT), including two variants of (Aug,BD-ϵ,AWT) for the values $\phi \in \{0.25, 0.35\}$. Hence, in total five variants are tested and presented in Figure 4.1. In Figure 4.2, the performance profiles illustrate the effect of using a starting feasible solution.
4.2 Paper II: Robust optimization of a bi-objective tactical resource allocation problem with uncertain qualification costs

In this manuscript, the qualification cost parameters $\beta_{jk}, j \in \mathcal{J}$ and $k \in \mathcal{N}_j$, the coefficients of the second objective function (g_2, i.e. (2.1b)) are considered uncertain. In (2.4) an uncertain bi-objective optimization problem is presented, with an uncertain objective function and possessing the same feasible set (2.2) as in the deterministic TRAP. We present two main contributions, both of them being limited to bi-objective MILPs with one uncertain objective function (and the other is deterministic), and well-defined nominal and worst-case scenarios corresponding to qualification costs. Firstly, we have presented a new robust efficiency concept called positive robustness ϵ-representative lightly RE solution. This new RE concept is presented as an alternative to ϵ-representative lightly RE solution, as the former captures the positive effect on mitigating risk by replacing an efficient solution in the nominal scenario with a solution that is “good enough” in the nominal scenario and has a net reduction in qualification cost in the worst-case scenario scenario.

The second contribution is a new solution approach called 3-stage approach, involving the solution of two bi-objective optimization problems to find all the desired PRO RE solutions instead of solving a tri-objective optimization problem as suggested in Kuhn et al. [2016] for bi-objective optimization problems with one uncertain objective function and two scenarios. Our proposed approach is computationally superior than the one presented in Kuhn et al. [2016]. We use the quadrant shrinking method (QSM) for the purpose of solving the
Figure 4.3: Ratio of solutions times (black bars correspond to the axis on the left), and the difference between the number of PRO RE solutions identified by the QSM (Y_{QSM}^ψ) and the 3-stage method ($Y_{3\text{-stage}}^\psi$) on the right axis (orange asterisk). For almost all the instances (except instance 11) our proposed approach finds a smaller number of PRO RE solutions but manages to find all the ones that are interesting for the decision makers to analyze. However, as it is evident from Figure 4.3, the solution times of our 3-stage approach are significantly lower than those of QSM method.
5 Conclusion

This section covers some practical implications of our models for the interest of practitioners as well as future directions of our research.

5.1 Practical implications

The two papers, Paper I and Paper II, are mainly focused on solution methods for the respective variants of the TRAP. This section contains some of the practical implications of our research which might be of interest to practitioners for understanding the benefits of using such models. Figures 5.1 and 5.2 highlight the effect of varying the values of the parameters τ, γ, and ζ_k, $k \in K$, (see Table 2.2 for details on these parameters) on the efficient frontier of the TRAP model. Figures 5.3 and 5.4 illustrate the effect of changing the value of τ from 2 to 3 on the loading levels and number of job types processed in each machine and in each time-period.

5.1.1 Key conclusion from our studies

- *Effects of varying τ (2.2c) and γ (2.2f)*: The trade-off between the two objective functions, excess resource loading and qualification cost is represented by the efficient frontier of the bi-objective TRAP. Generally, if one increases the budget for the qualification costs, the resulting excess resource loading reduces to a certain extent. However, the parameter τ (see Section 2.2) that restricts the maximum number of machines a job type can be allocated to in a given time-period may have some impact on the efficient frontier. The extent of the effect of value of τ does not go beyond certain values. For example in Figure 5.1 we use $\tau \in \{3, 4\}$ and $\gamma \in \{4, 5\}$ for one of the instances presented in Paper I. As evident in
Figure 5.1: Criterion space containing non-dominated points of an instance of TRAP with different values of τ and γ. The thresholds are set to $\zeta_k = .7, k \in \mathcal{K}$.

Figure 5.1, above certain values (in the given figure it is $\tau = 3$ and $\gamma = 4$), the parameters τ and γ does not influence the trade-off between the two objective functions (or the same non-dominated points are obtained). For $\tau = 2$ (not shown in the figure as there is only one point at (2.17, 18), i.e. identical to bottom-right non-dominated point in the figure) the qualification cost do not have any significant impact on excess resource loading because there are already two qualified machines for all the job-types (except job-types associated with new products), thus, choosing more alternatives than 2 is not possible. Consequently, qualifications does not influence the excess resource loading levels if the value of $\tau \leq 2$ and the efficient frontier is just one point in the criterion space. Hence, for most of our test cases we have used $\tau = 3$ and $\gamma = 4$.

- **Effect of threshold values (ζ) for the machine loading levels**: The threshold values for the machine loading levels also has an impact on the efficient frontier. For lower values of the thresholds, it is observed that for excess resource loading of zero, the company may have to spend more time or money in qualification costs. For example in Figure 5.2, it is evident that for excess resource loading of zero, the company spends more when $\zeta_k = .6, k \in \mathcal{K}$ as compared to when $\zeta_k = .7, k \in \mathcal{K}$. Hence, the values of the thresholds must be chosen in a sensible way driven by historical data on the process capability measures of the respective machines and their associated processes (see [Kiran, 2017, Chapter 18]), generally tracked by the statistical process control team at GKN.

- **Loading levels and number of job types**: Figures 5.3 and 5.4 illustrate the loading levels and number of job types for $\tau = 2$ and $\tau = 3$, respectively.
5.1. Practical implications

Figure 5.2: Criterion space containing non-dominated points of an instance of TRAP with $\tau = 3$ and $\gamma = 4$. The thresholds are $\zeta_k \in \{.7, .6\}, k \in \mathcal{K}$.

(with $\gamma = 4, \zeta_k = .7, k \in \mathcal{K}$). Each colored bubble in the two plots correspond to a specific machine in a given time-period; hence, each machine is plotted $|T|$ times. Both the figures represent the solution corresponding to a non-dominated point which has minimum excess resource loading, i.e. $g^{\text{top}} := \text{lexmin}_{y \in \mathcal{Y}(\tau, \gamma)} \{g_1(y), g_2(y)\}$. It is evident that for $\tau = 2$, many machines possess a loading level above the threshold of 70%, which is not the case for $\tau = 3$. Furthermore, there is an insignificant difference in the total number of job types processed in each machine after increasing the value of τ. The colors represent the categories of machines, namely multi-task cell (MTC), small-sized milling (SM) machine, large-sized turning (LT) machine, small-sized turning (ST) machine, large-sized milling (LM) machine and turning (T) machine1. The size of the bubbles in the plots are proportional to the capacity of machines. For instance, MTC has a capacity of 25000 hours available annually as compared to 5000 hours available at machines in the category of large turning (LT). The reason is that a multi-task cell is actually a work-center (see [Blackstone Jr., 2013, p. 190]) containing five multi-task machines, each having a capacity of 5000 hours annually. Certain categories of machines, i.e. multi-task cells, are consistently possessing their maximum resource loading, and may act as bottlenecks (see [Blackstone Jr., 2013, p. 17]) in the production system if enough buffer capacity is not maintained.

1The term sized refers to the size of the turning/milling table’s diameter.
Figure 5.3: Loading levels and no. of job types for a solution with $\tau = 2$, $\gamma = 4$ and $\zeta_k = .7, k \in K$ (solution corresponding to g^{TOP}).

Figure 5.4: Loading levels and no. of job types for a solution with $\tau = 3$, $\gamma = 4$ and $\zeta_k = .7, k \in K$ (solution corresponding to g^{TOP}).
5.2 Future research

There are numerous research directions to be explored. Each of these possibilities are distributed between different steps in the decision-making framework presented in Figure 1.2.

a. Uncertainty in demand: Due to some unforeseen circumstances, there can be significant variations in demand in the aerospace industry. Hence, it is important to consider such uncertainty in the model. It is interesting to investigate if holding of a safety stock or an inventory of final products would affect the excess resource loading and/or the qualification costs. The uncertainty may result in a stochastic programming problem or a more general robust optimization problem.

b. Compatibility of machines and jobs: Another interesting research topic (which can be considered as part of Step 1 in the decision-making framework Figure 1.2) is to assess ways to create the set $\mathcal{N}_j, j \in J$, i.e. the set of machines that are feasible but not qualified. It is time-consuming for the process engineers to manually identify this set, and prone to inaccuracies/errors. However, it might be possible to identify a mathematical optimization model which can assist in matching product features with machine capabilities without requiring manual efforts from process engineers. [Kashkoush and ElMaraghy 2015] suggested an association-rule discovery integer programming model for this purpose. However, to implement a similar model one needs to identify a discretized set of product features and machine capabilities. For the purpose of exploring frameworks to discretize machine and product features at GKN, we performed a master thesis project with the Industrial and Material Sciences division recently at Chalmers University of Technology. This work can be continued and developed.

c. Quality loss: Since the output of the TRAP model re-allocates job types to machines, it is important that there is no compromise on quality of the final assembly. Furthermore, it is worthwhile to analyze the effect of new allocations on the quality of the entire assembly. Such a model can be part of Step 5 in the framework presented in Figure 1.2. Similar work has been done for the automotive industry, where a so-called Tolerance allocation problem is defined to assign tolerances to different dimensions of an assembled part, such that the overall quality losses are minimized (see [Etienne et al. 2008], [Lööf et al. 2007]). It is worthwhile to investigate relevance and applicability of such a model for GKN.
Bibliography

Roman Slowinski and Jacques Teghem, editors. *Stochastic Versus Fuzzy Approaches to Multiobjective Mathematical Programming under Uncertainty*. Springer Netherlands, 1990. doi: [fq7dp9](http://dx.doi.org/10.1007/978-94-009-0341-1)

