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Abstract

In the aerospace industry, efficient management of machining capacity is crucial
to meet the required service levels to customers (which includes, measures
of quality and production lead-times) and to maintain control of the tied-
up working capital. In this work, we introduce a new multi-item, multi-level
capacitated planning model with a medium-to-long term planning horizon.
The model can be used by most companies having functional workshops where
costly and/or time- and resource demanding preparations (or qualifications)
are required each time a product needs to be (re)allocated to a machining
resource. Our goal is to identify possible product routings through the factory
which minimizes the maximum excess resource loading above a given loading
threshold, while incurring as low qualification costs as possible.

In Paper 1, we propose a new bi-objective mathematical optimization model
for the Tactical Resource Allocation Problem (TRAP). We highlight some of the
mathematical properties of the TRAP which are utilized to enhance the solu-
tion process. Another contribution is a modified version of the bi-directional
e-constraint method especially tailored for our problem. We perform numer-
ical tests on industrial test cases generated for our class of problem which
indicates computational superiority of our method over conventional solution
approaches.

In Paper 11, we address the uncertainty in the coefficients of one of the objective
functions considered in the bi-objective TRAP. We propose a new bi-objective
robust efficiency concept and highlight its benefits over existing robust effi-
ciency concepts. We also suggest a solution approach for identifying all the
relevant robust efficient (RE) solutions. Our proposed approach is significantly
faster than an existing approach for robust bi-objective optimization problems.

Keywords: Capacity planning, Bi-objective mixed integer programming, Ro-



iv

bust optimization, Robust efficient solutions, Decision-making.
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1 Introduction

The field of Manufacturing, Planning, and Control (MPC) as defined in APICS
dictionary [Blackstone Jr.||2013} p. 99] is described as a closed-loop information
system which includes planning functions of production planning, sales and operations
(S&OP) [Blackstone Jr., 2013, p. 1541, master production scheduling [Blackstone Jr.,
2013, p. 101], material requirements planning [Blackstone [r), 2013| p. 1031, and
capacity requirements planning. Due to increased complexity of businesses and
production methods, most of the medium- and large-sized companies have im-
plemented computerized planning systems in the past few decades. Generally,
these are transactional systems helping to track flows of material. Therefore, it
maintains an updated procurement and manufacturing information on each
planning decision. However, unless these tools are combined with mathematical
optimization, the chances of getting a best possible solution are minimal (and
not guaranteed at all).

Mathematical optimization is a topic/subject in applied mathematics that deals
with finding the best possible solution to a decision problem (although, some-
times only dealing with the feasibility problem is sufficient). The definition
of best can vary depending on the definition of the objective function(s) of the
optimization problem. In 1960s and 1970s, mixed integer programming (MIP)
models became popular among operations research practitioners who tried
to tackle simple planning problems using MIPs. However, as the size of the
problem instance grows solving a MIP to optimality becomes computation-
ally demanding. Many state-of-the-art commercial solvers have made solving
MIPs relatively easier as compared to a few decades ago. The adoption of
mathematical optimization has increased in industrial planning processes. In
this work, a novel mathematical optimization model is proposed for allocating
machining resources to jobs for medium-to-long-range planning horizons for
GKN Aerospace Engine Systems (GKN for short) in Trollhdttan, Sweden. The
model is intended to assist engineers and planners to make decisions regarding
product routings in the factory.
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1.1 Case Company: GKN Aerospace Engine Sys-
tems

GKN is a leading supplier of aircraft engine parts. GKN'’s products are present
in almost all major commercial aircrafts. The products manufactured at the
Trollhdttan factory in Sweden include fans at the front of the jet engines or
gas turbines, rotors, stators, and other turbine structures. Rotation and a
high temperature difference between different parts of the engine put high,
in many cases extreme, quality demands (tight tolerance limits). The capital-
intensive production at a large aerospace tier-1 supplier like GKN is generally
influenced by expensive materials, long supply lead times, a large product mix
and demand variations (see|Lewestam and Makil [2015]).

1.2 Production context

Manufacturing is performed in multiple steps, such as cutting (milling, turn-
ing, drilling, and grinding), welding, assembly, heat/surface treatments, and
control/measurements. For cutting, GKN has a variety of production resources
(machines) with different functions. The factory is organized in several func-
tionally oriented production shops, and most of the production resources are
shared by several products. Each production shop is organized as a job-shop
[Blackstone Jr., [2013| p. 87], where similar types of machines are placed in
proximity to each other. A complication is that it is, in practice, impossible to
physically move machines, as they are bulky and fixed into the ground in 2-5
meters deep pits to avoid mechanical vibrations. Thus, the factory as such can
only to a very limited extent be adapted to changes in the product mix. It is
therefore not possible to maintain perfect flows of parts through the factory
over time. Hence, managing capacity, especially machining capacity (since it
takes up a large share of the total lead times) is crucial for GKN.

1.3 Capacity management

The focus of our research is on capacity management [Blackstone Jr., 2013} p. 22]
which is defined as the function of establishing, measuring, monitoring, and ad-
justing limits or levels of capacity in order to execute all manufacturing activities.
Capacity management is also referred to as a response to variation in demand.
However, demand is generally not the only source of variation; another source
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that is internally generated is due to additional capacity requirements caused by
re-works, which is the reprocessing done to salvage a defective item or part (see
[Blackstone Jr., 2013, p. 152]). Our interest in aspects of capacity management
is because it helps the planners to absorb some of these variations.

In this work, we use a hierarchical approach (see Tan and Alp [2008]) to plan for
the machining capacity, instead of using one big monolithic model; this is both
reasonable (from a practical aspect) and tractable (from a computational aspect).
In a hierarchical approach, the decisions made at the top levels influence (set the
boundary conditions/constraints) the decisions made at lower levels. Within
this hierarchical approach a feedback loop can help to continuously improve
the efficiency of the planning system by appropriately adjusting the control
parameters.

Figure|[1.1|illustrates the decomposition of the capacity management into the
three levels, capacity strategy, capacity planning, and capacity control. The capac-
ity strategy deals with the decision regarding investment in new machines
and identify product structures. This is done between 2—6 years in advance.
Capacity strategy requires input from manufacturing experts to establish the
bill of material (see [Blackstone Jr.,2013| p. 15]), which is simply a list of parts,
sub-assemblies and raw materials required to form a final product, and the op-
erations list, that details the method of manufacture of a part and its sequences.

The output from the capacity strategy level defines the solution space for
capacity planning, also popularly known as rough-cut capacity planning (see
[Blackstone Jr., 2013} p. 153]). Capacity planning deals with tactical alloca-
tion decisions made 1-4 years in advance. This identifies product routings
which includes the operations performed, their sequences, and machines in-
volved to process them (see [Blackstone Jr., 2013} p. 153]. It is also necessary to
prepare/qualify more than one possible routing for each product, rendering
flexibility to the production planners.

The next level is the capacity control [Blackstone Jr.} 2013} p. 22], which is the
process of measuring output from production, and comparing it with the actual
capacity plan. There is usually a difference between the two, and necessary
corrective measures are required to prevent serious delivery issues. The in-
put is all possible qualified (approved) routings. These alternative routings
[Blackstone Jr.|2013| p. 6] provide necessary flexibility to the planners to tackle
any short-term demand variability. Certain performance indices are tracked at
each level, and a feedback loop that goes up one level could be used to adjust
different control parameters. This gradually improves accuracy of models for
capacity planning as some of the control parameters are appropriately adjusted
to produce desirable changes.
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Capacity strategy Constraints ~ Operations list, Bill of Material
T=t-6 Investing in new machines / Product
structure changes
T=t-5
T=t-4 C»a_pac.lty planning Constraints ~ product routings
New qualifications (new product

T=t-3  Performance ~ Loading levels and routes)

number of qualifications

T=t-2
Capacity control
T=t-1 Sub-contracting / Overtime / Re-
Performance ~ capacity utilization, allocations
T=t lead time, queuing

Figure 1.1: Hierarchial planning framework with different capacity sources and respec-
tive feedback loops (time discretization in years)

1.4 The need for a tactical resource allocation mod-
el

The decision regarding where to process products/parts are generally made at
the time of introduction of new products to a factory. The process of introducing
a new product is inevitably linked with resource allocation decisions. These
tactical resource allocations referred to in this text should not be mistaken for
the short-term resource allocations done when choosing between resources
(among several qualified resources) while scheduling. The latter is commonly
addressed in the industry (see an example from GKN, Thornblad et al.|[2015]).
At the time of introduction of new products, manufacturing experts decide the
operations list for a product and where respective operations will be performed.
This process involves qualifying machines for a new job, running simulations
and physical tests to check the quality of features (for example, how accurate
(e.g. roundness) was a certain hole drilled in a job) produced. Thus, once a
product’s operations are assigned to certain machines, changing it is a very
costly, and time-consuming, activity.

A decision-making tool that supports GKN in resource allocations for medium-
to-long term planning horizon is needed. Our proposed model provides the
routings to be used by products, and suggestions of new qualifications to
be performed either for new or old products. A general framework for the
decision-making tool is presented in Figure Although the focus in this
thesis is mainly on the model (i.e. step 2), it is still important to understand
how the results are going to be utilised. All four steps are part of a continuous
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procedure. In the first step, the input regarding constraints are provided by
logisticians and product experts, who are the two types of decision-makers
(DMs) involved. Soft constraints are related to decision makers’ preferences,
and can be modelled either as objective functions or as hard constraints ac-
companied with lexicographic minimization (see Definition 4 routing efficient
solution in Paper I). Hard constraints are related to the feasibility of allocating
a job to a machine, and to capacity limitations of machines. Hard constraints
are modelled as constraints in the optimization model. In the second step, a
bi-objective optimization model is solved. In both Paper I and II, two variants
of a bi-objective optimization model is presented. This step is the main focus
of this thesis. The output from the model is a set of efficient (or robust efficient,
in Paper II) solutions, which are assessed by the decision makers (DMs), and
one of the solutions is selected. Then, this solution is further analyzed by the
product experts to check if the new qualifications are indeed feasible, using
simulations or lab experimentation. If the qualification is not acceptable, then
product experts add new constraints to the model, and a new (or slightly dif-
ferent) set of efficient solutions is identified. The final solution is sent to the
logistics department responsible for utilizing these new routings in its schedul-
ing software. The fourth step is about tracking the effect of new qualifications
on lead times, capacity utilization, and other performance indices. This can be
utilized to further improve the accuracy of parameters used in the model.

1.4.1 Routings

The term routings is sometimes used as an alternative term for instruction sheet
and bill of operations, which detail the method of manufacture of a particular
product. Routings includes a list of operations to be performed, along with
details about the machines in which the operations must be performed. For
example in Figure a product’s/part’s routings are illustrated. It begins
with raw material released from the inventory. Then, all such types of prod-
ucts/parts are sent to machine M; where the first operation is performed for
all the three routings (R1, Rz, R3). The second operation can be performed in
three different machines M (in R;), M3(in R3) and Mg(in R3). Afterwards, the
parts/products are sent to M3 for the third operation, to machine M for the
fourth (the last operation). All the products/parts are sent to the final inventory
of finished goods. The three different routings differ only at one operation, i.e.
the second operation. The two dashed rectangles enclosing several machines
represent two different shop-floors (physical locations in the factory). Note that
the same product/part may visit the same machine multiple times in the pro-
cess of getting transformed into the finished product (for example, in Figure[L.3]
machine M, is visited twice in routing R;). The three routings considered are
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DMs select a solution

Qualifications
acceptable

Figure 1.2: Framework for resource allocation decision-making tool

shown at the bottom of Figure It is generally well-known that having
several alternative routings for a product provides necessary capacity cushion
for managing short-term demand variations, especially, when machines are
shared among products. Thus, it is beneficial to have several routings qualified
for a product.

Each operation has to be qualified for a machine, which requires a significant
one-time cost in the form of man-hours for programming the control systems
and of buying new fixtures or tools. These new qualifications also require
approval from the customers. Thus, it requires time as well as money to
prepare new routings. Hence it should be done well-in-advance, and with
some thought. GKN has 120 machines and thousands of different parts with at
least 5-10 operations, hence, the number of feasible allocations/routings are
simply too many to enumerate and a mathematical analysis of the problem is
therefore necessary.
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Ms

Inventory of
raw materials

Inventory of
finished goods

g @ = e e e s e s e m e = s

Figure 1.3: Routings for a product. The base routing is the routing that is used most
frequently

1.5 Previous work

The research field of production planning is broad. We provide a brief overview
of the field before diving into the specific variant of the production planning
problem studied and solved in this work.

One popular way of classifying production planning models is by acknowledg-
ing the considered time-horizons. This simplifies to some extent the decision
variables and parameters used in the model. Several authors (e.g. Min and
Zhou| [2002], Gupta and Maranas| [1999]) classify production planning prob-
lems as strategic, tactical, or operational. Our focus is on tactical-level models,
since for the problem of our studies it is required to make medium-to-long
term capacity planning decisions. To the best of our knowledge the most re-
cent review of tactical level mathematical production planning models is done
by |Diaz-Madronero et al.|[2014]. The authors have identified the following
categorizations:

(@) Number of products and number of levels of the product structure

The number of products/parts being manufactured; their levels refer to
whether a product has a flat bill of material (BOM) or BOM with multiple
levels consisting of various sub-assemblies.
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(b) Time periods

Deals with the size of the time-buckets used. In a small time-bucket,
the time period is long enough to produce only one part/item, whereas
in long time-buckets, either multiple items can be produced or a final
product consisting of multiple items. In[Transchel et al.|[2011]], the authors
have considered both types.

(c) Nature of the demand

The demand uncertainty is mainly tackled by stochastic approaches, and
less commonly by robust or fuzzy approaches. Some of the research
done in stochastic demand production planning models are Genin et al.
[2008] (added noise to demand patterns), Wei et al.|[2011]] (uses robust
approaches with interval uncertainty) and |Chen and Huang|[2010] (uses
fuzzy approaches).

(d) Capacity constraint classes

Numerous combinations of capacity constraint classes comprehensively
reviewed in [Diaz-Madronero et al., 2014} p. 5176, Table 6]. The classes
include inventory, supply, production resources, and transport services.

(e) Types of objective functions

The most common type of objective function minimizes costs/time (pro-
cessing time, set-up time, and fixture costs ) are minimized (see [Bradley
and Glynn| [2002], Mieghem! [2003]). However, using such a function
has drawbacks since most of the cost measures rely heavily on the used
accounting principles, which are sometimes misleading as highlighted
in Myrelid and Olhager| [2019]]. Some of the other objectives considered
in the literature are minimizing backlogs, maximizing throughput, and
maximizing utilization.

Apart from the above mentioned categorizations, there are numerous other
extensions. One of them is for parallel machine problems. In this categorization
are identical or unrelated parallel machine problems (see|Garey and Johnson
[1979] for theoretical definitions). In unrelated parallel machine problems, the
processing times of jobs (tasks/operations) at machines are not related to each
other and depend on the machine in which it is being processed. On the
contrary, in identical parallel machine problems, the processing times of jobs
are independent of the machine in which they are being processed.
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1.6 Scope

The aim of our project is to create a multi-item, multi-level, big time-bucket capaci-
tated, unrelated parallel machine tactical resource allocation model for machining
resources related to cutting operations, such as milling, drilling, turning , and
grinding at GKN. The focus of our models is long-range resource loading,
i.e. planning the allocation of capacity of machines for a time frame where
reliable weekly or daily demand predictions do not exist. Consequently, short
time-buckets are not relevant for our models. Instead the time discretization
employs long time steps (a quarter of a year) wherein it is reasonable to assume
a constant material flow. For example, a product or a part P1 requires a set of
operations { OP100, OP200, OP300}. A job-type is a combination of part type
and an operation. The orders of job-types, that is, each element of the set of
2-tuples {(Pl, 0P100), (P1,0P200), (P1, OP300)}, must be allocated to ma-
chines in each time period over a long time horizon (14 years) with quarterly
time-buckets.
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2 Problem description

In this chapter, the two variants of the Tactical resource allocation model tackled
in Paper I and Paper II, respectively, are presented.

2.1 Description

In Table 2.T|routings for a dummy production system is illustrated with three
machines and the two operations milling and turning, performed on a single
product (with a single part). In the first time-period, milling is done in machines
1 and 3, in the second time-period the same operation is done in machines 1
and 2, and in the third time-period it is done only in machine 2. For machine 2,
the box around the M indicates that the milling operation is to be qualified and
performed in time-period 2. Similarly, for machine 3 the turning operation is to
be qualified in time-period 2 and performed in time-period 3. This qualification
requires a one-time cost which includes the cost of new fixtures and the cost
for time spent on programming the control systems. The qualification must be
done either before or at the beginning of the time-period when it is to be used.

Table 2.1: Product routings for a single product: M (milling) and T (turning) indicate
time-periods (t) when machines (1, 2, and 3) are used for the respective purposes;[ |
indicates time-periods when machines are qualified for milling and turning, respectively.

Machine Feasible routings
# t=1 t=2 t=3
1 M T M T
2 T T M T
3 M [ ] T

11
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2.2 The Feasible set: a non-mathematical descrip-
tion

Constraints in an optimization model limit the domain of feasible solutions
(decision variables) acceptable to the planner. However, in [Wierzbicki et al.,
2000, Chapter 5], it is argued that in the real-world many constraints are
divided into so-called soft constraints, and hard constraints. The authors suggest
modelling soft constraints as additional objectives for the optimization problem,
and hard constraints as constraints of the mathematical model. In this section,
a non-mathematical description of the hard constraints is presented

(a) Demand

Due to each time-bucket being a quarter of a year, which is significantly
larger than the total lead time of products, no inventory is maintained to
be utilized in the subsequent time-periods. Hence, the demand in each
time-period must be satisfied within the same time-period.

(b) Routing limitations (1)

These types of constraints ensure that it is not allowed to allocate orders
of the same job-type to more than a user-defined number of machines
in each time-period denoted by 7 > 1. These constraint maintains the
product flow less complex for the production planners. For instance,
in Figure we assume a part type P1 (represented by a red-node)
requiring two operations {OP100, OP200}, and the two corresponding
job-types are (P1,0P100) and (P1, OP200) (see the black rectangles at
the top of Figure[2.1). If 7 = 2, then only two machines are allowed to
perform job-types (P1,0P100) and (P1,0P200) during the same time-
period. Hence, there are at most four different feasible routings for
product P1 (in Figure|2.1|these routings are R2, R3, R4, R5 marked with
black-arrows). However, if 7 = 3, the number of possible routings can be
nine (three machines for each job-type). Increasing the value of 7 results
in a greater chance to balance the capacity utilization; however, having
too many routings may result in a complicated product flow. In Figure
it is evident that if the value of 7 is increased to three, the routings R1
and R6 (blue-dashed arrows) are allowed as well. The end-user should
provide a hard limitation on the parameter 7.

(c) Qualification costs (3) and related limitations ()

These types of constraints ensure that a given job-type must be qualified
for a machine before planners can start using them. The qualification cost
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(P1,0P100) (P1,0P200)

Figure 2.1: Routing limitations: P1: a product/part node, { M1, M2, M3} is the set of
machines.

associated with qualifying jobs for machines may be in the form of time
spent by manufacturing experts to program the control systems, or of
buying new fixtures or tools. The exact costs for qualifying a machine
for a job-type is not known a priori, and an accurate prediction requires
detailed simulation work by the engineering team.

In Figures and the two multi-task machines capable of per-
forming both milling and turning operations are illustrated. One of the
significant differences between the two is that the one to the left (Fig-
ure has smaller diameter turning table as compared to the one to
the right (Figure[2.2b). Hence, given that all the other operational condi-
tions are the same, it should be technically possible to move some jobs
from the machine to the left to the machine to the right. However, there
will still be a not too high cost associated with it. Note that apart from
diameter of the parts/products, and the turning tables, there are many
other part/product features and machine capabilities that have to match
for the allocation to be feasible. In this work, it is assumed that such in-
formation is available. The multi-task machines illustrated in Figure
and Figure have the so-called B-axis, that is, they are inclined at
45°. This is the only difference between the machines in Figure and
Figure otherwise they are the same size, both having diameter of the



14

2. Problem description

turning table 1.25 m. The turning table in the machine in Figure is
larger than that of Figure [2.2a}-Figure There are both benefits and
drawbacks of moving a job from the multi-task machine in Figure
or Figure to any of the B-axis machines in Figure or Figure
A benefit is that the productivity is increased due to the use of lower
cutting parameters, such as feed rate or depth of cut, to reach the same level
of quality; hence, the operations are faster. Furthermore, inclined ma-
chines are also more robust w.r.t. the production of more accurate features
on products/parts; hence, less chances of need for re-works. So, both
productivity and robustness are increased in the machine with the 45°
inclined axis. However, the downside is that the inclined spindle head
may reduce the accessibility to certain sections of the part/product, thus,
making it incapable of producing certain types of product features. In
Figure and Figure2.2f] the two vertical lathes are capable of perform-
ing only turning operations. All of this information has to be encoded
appropriately to be used as parameters in the mathematical model.

There is also a limitation on the total number of new qualifications to
perform in each time-period. This is a result of the limited number of
trained technical experts. This upper bound is denoted by v € Z,..
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(a) A multi-task machine performing both (b) A multi-task machine performing both
turning and milling operations with a small- turning and milling operations with a
sized turning table medium-sized turning table

(c) A multi-task machine with inclined spin- (d) A multi-task machine with inclined spin-
dle head performing both turning and milling dle head performing both turning and milling
operations with a small-sized turning table operations with a large-sized turning table

(e) A vertical lathe machine performing turn- (f) A vertical lathe machine performing turn-
ing operations with a large-sized turning ta- ing operation with a medium-sized turning
ble table

Figure 2.2: Different machine alternatives
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2.3 Problem definition: a mathematical description

The deterministic version of the tactical resource allocation problem (TRAP)
addressed in this work is defined in this section. It is called deterministic, as
the values of all the parameters are known. The notation used for the model is
described in Table

Definition 2.3.1 (Tactical Resource Allocation Problem (TRAP)). Given a set J
of job-types (tasks) and a set KC of machines, let pj;, be the average processing time
(including set-up time) of job-type j € J when performed in a compatible machine
k € K; C K. Each machine k € IC has the capacity Cl (time units) in time-period
t € T and a relative loading threshold (;, € [0,1]. The demand aj; of each job-type
J € J intime-period t € T must be met. The number of machines allocated to the same
job-type in each time-period may not exceed the value of the parameter T € Z.. For
assignments (j, k), such that k € N and j € J, so-called qualifications are required,
which generate additional one-time costs. It holds that Nj C K; for all j € J; for
the case of a new job-type (associated with a new product) j, K; = N holds. For a
job-type j € J, the machines in the set KC; \ N do not require any qualifications. The
total number of qualifications performed per time-period t may not exceed the value
of the parameter v € Z.. The objectives considered are to minimize the sum (over
time-periods) of maximum excess resource loading above a given threshold (y, over each
machine k € K and to minimize the sum of qualification costs incurred. O

Excess resource loading (g;) The objective function is defined by gi, to
be minimized, considers the sum over the time-periods ¢ € 7T of the ex-
cess resource loading of the machines (i.e. n; > 0), which is defined as the
maximum (over the machines) ratio between the allocated machining hours
and the available hours (i.e. C%, > jeg PikTjkt) Minus the loading threshold
¢t € [0,1] for the machine. The thresholds ¢ are provided by the users.
Therefore, in a solution y that minimizes the objective ¢, the equality n; =
max {0; maxgex {C%t > eq PikTikt — Cr}} will hold for t € T. In the context
of a bi-objective mixed integer programming (BOMIP) problem, it is defined by

(2.1a), 2.2d), 2-2g), and (2.2j), below.

The practical motivation for employing this objective function is to avoid—
for each machine in each time-period—that the planned loading level (i.e.
> e Dk jkt) exceeds the user-defined threshold (¢x). As a result, this will
help in maintaining some capacity buffers to be used when there is a short-term
demand variation, which in turn implies that the queuing-times are kept at
minimum.
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Table 2.2: Notation for the tactical resource allocation problem (TRAP)

Sets Description

J =A{1,...,J} setofjob-types to be performed on the products
K={1,...,K} setofmachines

K; CK set of machines feasible for job-type j € J

N; CK; set of machines feasible, but not qualified for job-type j € J
T=A{1,...,T} setof time-periods

Variables Description

Tjke € Ly number of orders of job-type j € J performed in machine

k € K; in time-period t € T

sjke € {0,1} equals 1 if job-type j € J is allocated to machine k£ € K; in
time-period ¢t € T; equals 0 otherwise

Zjke € 10,1} equals 1 if machine k& € N is qualified for job-type j € J in
time-period ¢ € T; equals 0 otherwise

ny € Ry maximum resource loading above thresholds (;, £ € K, in
time-period t € T

y := (x,s,n,z) Dbold notations representing vectors of the corresponding in-
dexed variables

Parameters Description

ajy € Ly demand of orders of job-type j € J in time-period t € T

ik € Qy average machining time in machine k € KC; for job-type j € J

Crt € Zy capacity (hours) available in machine £ € K in time-period
teT

Bjk € Z4 nominal qualification cost associated with qualifying machine
k € Nj for job-type j € J

vEZy upper limit on the number of qualifications in a single time-
period

TE Ly upper limit on number of alternative machines for each job-

type in a single time-period
¢k €10,1] loading threshold for machine k € K
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Total qualification cost (g2) The objective function g», to be minimized, is
defined as the sum of the one-time costs incurred by qualifying machines for
job-types, over all the time-periods, i.e. 2.Ib). An increase in the number of
qualifications may enable a reduction of the excess loading of the machines.

2.3.1 Model description [Deterministic-TRAP]

The minimization objectives defined in the previous subsection are mathemati-
cally expressed as

minimize o (x,8,n,2) := E ng, (2.1a)
X,S,n,Z
teT
minimize  ga(x,8,0,2) =Y _ > > Birzjkr, (2.1b)
X,S,n,Z
teT jE€T kEN;

while the feasible set is described by the constraints

s.t. > xje = aj, jeJ, teT, (2.2a)
k)GKj
Tkt < AjtSikt, ke le, jeJg,teT, (2.2b)
ZSWST, jedg, teT, (2.2¢)
keK;
c > ik — Ge < kek,teT, (2.2d)
JGJ
Z Zjkl = Sjkts keN;,jeTJ, teT, (2.2e)
leT 1<t
Z Z Zjkt <, teT, (2.2f)
JET kEN;
ikt € Ly, keK;,jed,teT, (2.2g)
sjke € {0,1}, kekj,jed, teT, (2.2h)
zjke € {0,1}, keN;,jeJ, teT, (2.2i)
1 =Gk =ne 20, teT,kek. (2.2j)

Definini-] y = (x,s,n,z), for any values of 7,7 € Z,, the set of feasible

IThe notations (x, s, n,z) and y will be used interchangeably throughout this section.
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solutions to the model (2.2)) is denoted as

Y (7,7) :={y | the constraints (2:2a)-(2.2)) hold }. (2.3)

We denote the number of orders of job-type j € J, processed in machine k € K;
in time-period t by the decision variables z ;. In our model, the number of
job-types processed should be equal to the demand for each job-type j € J in
each time-period ¢ € T, as expressed in (2.2a). The constraints ensure
that the number of orders z;; of job-type j performed in machine k in time-
period ¢ does not exceed the demand a;;; they also set an auxiliary variable
sjkit = 1 whenever x5 > 0. The constraints set an upper bound for
each job-type and time-period, the number of machines to be used to 7, the
value of which is given as an input by the user. The reason behind the use
of this constraint is to keep the product flow less complex (see Section [2.2).
The constraints make sure to minimize the maximum excess loading
above a given threshold for each machine (referred as ;) by setting an upper
bound on the variables n, for each time-period. Furthermore, a binary variable
zjkt equals one when a job-type j € J is qualified for machine & € N;. The
constraints imply that if a job-type j is performed in a machine k € N; in
time-period ¢, where N is the set of machines that have not been qualified for
job-type j, then a qualification of machine & for job-type j must be done once
within the time-periods {1,...,t}. The constraints limit the number of
qualifications allowed to be scheduled in each time-period to 7.

The constraints (2.2g), 2.2h), 2.21), and (2.2]) define the allowed values of

the variables x ¢, sjkt, and z;ie, nt, respectively. The two objectives
and represent the sum of excess loading above thresholds and the sum
of qualification cost incurred by the planners, respectively. Clearly, this a
bi-objective mixed integer programming (BOMIP) model.

2.3.2 Model description [Robust-TRAP]

In Paper II, the uncertainty in the qualification cost parameter 3 is considered.
It is well-known from the robust optimization literature that when dealing
with robust counterparts of a deterministic optimization problem, the selection
of an uncertainty set is the most crucial part in hedging against unwanted
events (for more details, see [Ben-Tal et al.,[2009, Chapter 3]; Bertsimas and Sim
[2004]). The two types of uncertainty sets that are commonly used are finite
uncertainty sets and polyhedral uncertainty sets (see, [Kuhn et al.,[2016| Section 3.2]
for definitions).
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For the applications considered in this work, the qualification cost of each
allocation (j, k), where, j € J and k € N is a natural number; hence, a finite
uncertainty set is considered. We define two scenarios, the so-called nominal-
case (most likely case) and a worst-case of qualification cost for each job-type j
to be qualified for a machine k£ € ;. It is common in the robust optimization
literature to assume a nominal or most likely scenario (see [Bertsimas and Sim
[2004]). We represent the indices of scenarios by Q := {g, (j}ﬂ where ¢ and §
refer to the nominal and the worst-case scenarios, respectively. It is to be noted
that the qualification cost in the nominal scenario, i.e. ﬁ?k, is always lower than

or equal to that of the worst-case scenario i.e. ng.

Thus, in a robust counterpart to the deterministic TRAP, we can define an
objective function g : Y (7,7) x @ — R2, i.e. the scenarios in Q affect the
objective values. Hence, an uncertain bi-objective TRAP is defined as

P(Q) =={P(g),q € Q}, (2.4a)
where P(q) is defined as
. . g1 (X, s, 1n, Z) )
min X,S,1N,%),q) := min , (24b
(ommeY (r) ( 19 (x,81,2) €Y (7,7) <92((X7 s;n,z),q) (2.40)
where
gg((X, s, 1, Z)7 Q) = Z Z Z ﬂj[‘lk;zjkh qc Qa (24C)
teT jeT kEN;
g1(x,8,n,2) = Z ng. (2.4d)
teT

The conventional concept of efficient solutions (see [Miettinen), 1988, Section 2.7])
from multi-objective optimization is not entirely valid here. Hence, it is nec-
essary to define alternative concepts that result in desirable solutions when
one of the objective functions is uncertain. Paper II deals with the bi-objective
robust optimization problem with an uncertain objective function.

The above mentioned two variants, the Deterministic-TRAP and the Robust-
TRAP are considered in Paper I and Paper II, respectively.

ZMore than two scenarios may exist and the methods presented in Paper II can be applied to
such uncertainty sets as well
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The theoretical background required to solve the two variants of the TRAP
model, i.e. Deterministic-TRAP and Robust-TRAP, is presented. The objec-
tive functions are linear functions w.r.t. the decision variables, and the con-
straints are affine functions of the same variables. The decision variables are
constrained to have one of the following properties: continuous, integer, and
binary. Hence, our problems are bi-objective mixed integer linear programming
(BOMILP) problems. The latter variant (Robust-TRAP) is also a bi-objective
mixed integer linear programming problem (similar to the Deterministic-TRAP)
but with an uncertain objective function. A proof of the N"P-hardness (more
on this in the coming sections) of the TRAP is presented in Paper 1. Hence,
solving the TRAP is computationally hard, especially for the large instances
dealt with in the given industrial problem. Hence it is important that efforts
are made to solve a bi-objective MILP as well as a robust bi-objective MILP in
a reasonable time-frame. Ease of interpretation and reasonable computation
times are generally extremely important for an optimization model which is
part of a decision-making tool. For this purpose, in the coming sections some
of the relevant theory that builds the background for the contributions in Paper
I and Paper II are discussed.

3.1 Preliminaries: MILP and MOOP

In this section, some preliminaries for Mixed Integer Linear Programming
(MILP) problems and Multi-Objective Optimization Problems (MOOP) are
discussed.

21
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3.1.1 Mixed Integer Linear Programming

A mixed integer linear programming problem is of the form

min c'x+h'y, (3.1a)
s.t. Ax+ Gy < b, (3.1b)
x €7, (3.1¢)

y € R}2, (3.1d)

where the data, assumed rational, are denoted asc € Q™' ,h € Q'*, A € R™*™,
and G € R™*"2, The decision variable vector x is non-negative and integral,
and the variable vector y is non-negative and continuous. The feasible set to

(3.1) is denoted
S :={(x,y) € Z}' xR}? | Ax + Gy < b},

which can be referred to as a mixed integer set. Generally, MILPs are com-
putationally hard to solve, and thus, continuous relaxations of MILPs are
extensively used to (hopefully) get good approximations of an optimal solu-
tion. The reason is that linear programs (LPs) are generally easier to solve. The
natural continuous relaxation of the set S is

So = {(x,y) € R}* x R?* | Ax + Gy < b}, (3.2)

and the corresponding linear program is min{c'x + h'y | (x,y) € So}. In
Figure a set of mixed integer points in a polyhedron corresponding to the
following MILP is illustrated:

min —dx — 2y,
s.t. —z4+y <2, (black-dashed)
8x + 2y <17, (red-dashed)
x,y 20,
T €Ly

Many real-world combinatorial optimization problems can be modelled as
MILPs. Hence, it is worthwhile to investigate the computational difficulty of
solving such problems to optimality. For a significant majority of real world
problems, the size of the problem instances are large enough to discard the
feasibility of using enumeration techniques. For instance, in an assignment
problem, there are n jobs to be performed by n machines. The cost of performing
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- y+25x <55 _ -
. N
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(a) A mixed integer set w.r.t. (b) Addition of a cutting plane to the problem

Figure 3.1: Mixed integer set and a cutting plane

ajob is c¢;i, where j € J denotes a job, and k € K denotes the machine. The
optimization problem is to decide the cheapest way to assign all the jobs to
machines (the same job cannot be assigned to two or more machines, and the
same machine cannot be assigned to two or more jobs). Since the first job can
be assigned to any of the n machines, the second job to any one of the n — 1
machines, and so on, there is a total of n! possible assignments. It is well-
known that n! grows exponentially as a function of n. Hence, enumeration is
not possible for an instance with a large value of n. Generally, MILPs and ILPs
are N'P-hard (i.e. polynomial-time algorithms are not available) (see [Conforti
et al.} 2014} Chapter 1.3]). However, there are some combinatorial optimization
problems for which polynomial-time algorithms are available. This happens
when a perfect formulation is available or can be easily obtained. The linear
system of inequalities Ax + Gy < b results in a perfect formulation of the set
S C 2 xR2,if conv(S) = {(x,y) € R}' xR"}? | Ax+Gy < b}. For pure integer
sets, if the constraint matrix is totally unimodular (TU) [Conforti et al 2014,
Chapter 4.2], then the perfect formulation is available. Perfect formulations are
available for classical combinatorial optimization problems such as assignment,
shortest path, maximum flow, bipartite matching. A perfect formulation is
also available if the linear system of inequalities have total dual integrality (see,
[Conforti et al, 2014 Chapter 4.6]). In general perfect formulations can be made
available for all combinatorial optimization problems but for the problems
that are A"P-hard the number of constraints in a perfect formulation grows
exponentially as a function the number of variables.

Solution methods for MILPs Two common components of most of the ex-
act solution methods for solving MILP problems are the branch-and-bound
method and the cutting plane method. In practice, there are many stochastic
solution methods, which typically does not provide any (lower/upper) bounds.
There are also approximation algorithms which also provide bounds. How-
ever, in this section we focus on two of the popular solution approaches, i.e.
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branch-and-bound and cutting plane.

¢ The branch-and-bound algorithm is a method based on the divide-and-
conquer principle. Let us denote an optimal solution to a problem defined
in by (x*,y*) and the optimal objective value by z*. Let us denote
the optimal solution and value of the corresponding LP relaxation with
feasible set Sy by (x°,y°) and 2", respectively. Since S C Sy, the inequal-
ity 2% < 2* holds. If x° is integral then it is implied that (x°,y°) € S, and
z* = 2Y. However, usually at least one of the components of the vector
x¥ is fractional. The two main building blocks of the branch-and-bound
method, as also highlighted in the name are branching and bounding. The
former, also called variable branching, is a procedure in which two or more
sub-problems are created by restricting the domain of a variable or a
group of variables. Bounding of the objective value is done by solving
the LP relaxations of the corresponding sub-problems. This is called
linear programming bounding. The branch-and-bound algorithm maintains
a list of linear programming sub-problems to be solved by relaxing in-
tegrality of variables, and also adding constraints on the variables, as
xj < |z;] and z; > [x;], in the respective branches. Each linear program-
ming sub-problem is represented as a node in the branch-and-bound tree.
For details, we refer to [Conforti et al., 2014, p. 10]. There are various
other modern approaches to branching and bounding implemented in
commercial solvers.

* The cutting plane method is the second approach which results in better
or tighter re-formulations describing the feasible set S. The main idea
is to find an inequality (valid inequality) that cuts off feasible solutions
in the relaxed problem which are not present in the set S. An inequality
au < Bisvalid for a set K C R, if it is satisfied for every point @ € K,
where e and 3 is a rational vector and number, respectively.

Hence, for the first linear relaxation Sy, look for a valid inequality for the
set S, for instance, @ x + gy < b, where a € Qm1, g € Q"2,b € Q such
thata x? + g y" > bholdsbuta'x + gy < bholds for all x € S (note
that x" has fractional components). Hence, the feasible set

Si=Sn{xy)|ax+g"y<b}

is smaller than Sy. Thus, it is implied that S C S; C Sy, and the formula-
tion corresponding to the LP relaxation of S; is stronger than for the set

Sp. Consequently, 2o < 21, where z; = ( m)ins {c"x + hTy}. Note that
x,Yy)ES1

for a minimization problem it is important to compute as large a lower
bound as possible for faster convergence to an optimal solution. For
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detailed steps the reader should refer to [Conforti et al., 2014, p. 10], and
for details on cutting plane methods, the introduction section in [Conforti
et al., 2014, Chapter 5] is relevant.

Generally, in most of the commercial solvers, both of these methods are com-
bined in a branch-and-cut framework. In this approach, cuts are added to get
tighter formulations before applying branching. For instance, in the example in
Figure one of the optimal solution for the LP relaxation corresponding to
Sy is (z,y) = (1.3,3.3) T, and if the constraint 2.5z + y < 5.5 is added, it results
in a tighter formulation (see Figure[3.1b). In fact, if the LP relaxation is solved
after adding this constraint, a solution (z,y) = (1,3)" is obtained, which is a
feasible, and optimal solution to the MILP problem in (3.1).

For most of our work, commercial solvers are used that have advanced /mature
sub-routines to generate appropriate cuts and selection rules for branching
decisions depending on the type of problem instances. Some of the cuts that
are applied are knapsack covers (see|Crowder et al.|[1983]), GUB covers (see
Gu et al|[1999]), flow covers (see|Gu et al.| [1999]), cliques (see|Crowder et al.
[1983]), implied bounds (see|Hoffman and Padberg|[1991]) and Gormory mixed-
integer cuts (see|Cornuéjols| [2006]. There are also various lifting procedures (see
[Conforti et al., 2014, Chapter 7]) which are used extensively in almost all the
modern implementations. For more details on commercial codes of solvers,
readers should refer to|Bixby et al.| [2000].

3.1.2 Multi-Objective Optimization Problems (MOOP)

Most industrial problems have several objectives, which are often in conflict.
Our work deals with multi-objective integer (linear) optimization problems,
which are defined as

min z(x) := (z1(x),. .., zp(x)), (3.4)
xeX
here X C 7} is defined by a set of affine constraints, with integrality constraints
on the x € Z'} variables. The functions z1, 22, .. ., 2, are linear, and the image
Y of X under vector valued functions z : VARESS ]Rﬁ represents the feasible set
in the criterion space. Some common notation and definitions used to solve
multi-objective optimization problems are described next.



26 3. Related scientific fields

Notation 3.1.1 (Ehrgott) [2005]).

zSw <= w;€[z,0) Vie{l,...,p}
Z=3W <= w; €[z,00) Vie{l,...,p} and z#w;
z<w <= w; € (z,0) Vie{l,...,p} O

Definition 3.1.1 (Weakly efficient solutions). A feasible solution x' € X is called
the weakly efficient (see [Ehrgott, 2005, Definition 2.4]) if #x € X such that,
zi(x) < zk(X'), for k € {1,...,p}. Furthermore, z(x') is called a weakly non-
dominated point in the criterion space.

Definition 3.1.2 (Efficient solutions). A feasible solution x' € X is called the
efficient solution (see [Ehrgott, 2005, Definition 2.1]) or Pareto optimal solution if
Bx € X such that z(x) = z(x'). Furthermore, z(x') is called a non-dominated
point in the criterion space. The set of all the non-dominated points is called the
efficient frontier. The set of efficient solutions is denoted by Xcg.

Definition 3.1.3 (Ideal point). A point z'4°2! € R? is called an ideal point (see [Mi1
ettinen, (1988, Definition 2.4.1]) if it minimizes all the objectives separately/individually.
Thus, zdea! .= rréiEzk(x), kEe{l,....p}

Notation 3.1.2. The positive orthant is denoted by RY := {y e R |y > 0P}

Definition 3.1.4 (Supported efficient solution). A feasible solution x" € X.g is
called a supported efficient solution (see [Ehrgott, 2005, Definition 8.71) if IX € RY

such that x' € argmin AT z(x) and z(x') is supported non-dominated point.
x€Xefr

3.2 Multi-Objective Integer Programming (MOIP)

Algorithms for Multi-Objective Integer Programming (MOIP) can be broadly
classified into two main categories: decision space search methods and criterion
space search methods.

Popular methods for decision space search include evolutionary multi-objective
methods, such as NSGA-II (see Deb et al.|[2002]), which has gained interest,
although it does not provide any measure on the verified closeness to the Pareto
front. Recently, there have been some improvements suggested in branch-and-
bound methods for mixed 0-1 linear problems (e.g.|Vincent et al.|[2013] and
Stidsen et al.|[2014]).

Our work focuses on criterion space search methods, that provide (approxi-
mate) efficient frontiers, and which are also motivated by an improved effi-
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ciency of mathematical optimization solvers and relatively inexpensive com-
puting power. Some of the popular methods for criterion space search are the
weighted sum method (e.g./Aneja and Nair|[1979)]), the perpendicular search method
(see|Chalmet et al.|[1986]), the augmented weighted Tchebycheff (AWT) method
(e.g. Bowman|[1976] and |Steuer and Choo|[1983]), and the e-constraint method
(see [Miettinen), 1988, p. 85]). Most of the algorithms suggested in the litera-
ture have one basic operation common among them, the so called scalarization.
The idea is to transform a MOIP into a series of single-objective optimization
problems which are solved sequentially.

Definition 3.2.1 (Scalarized problem). A scalarized problem is a single-objective
optimization problem related to MOIP with additional variables, and constraints solved
repeatedly in order to find some subset of the set of efficient solutions (see \Ehrgott
[2006]]).

The two main aspects while solving a scalarized problem are (a) Is an optimal
solution of the scalarized problem a weakly or strictly efficient solution? (b)
Can all the efficient solutions be identified (both supported and un-supported
efficient solutions)? Following are some of the popular scalarization techniques
used to identify efficient solutions:

* Weighted Sum method: This is one of the most popular methods for solving
multi-objective IPs and MILPs. In this method each objective function is
associated with a non-negative coefficient, and hence, transformed into a
single-objective optimization problem. The following model is a typical
representation of the scalarization used in the weighted sum method:

P

. T
min ]; AkCp X, (3.5)

where )\, > 0 is the weight coefficient for each objective function indexed
by k € {1,...,p}. The cost coefficient vector for the k™ objective function
is ¢, € R}. It is a well-known result (see [Ehrgott, 2005, Chapter 3])
that any solution to the model is an efficient solution, however, it
is always a supported efficient solution. Hence, un-supported efficient
solutions are not identified by the weighted sum method. One important
advantage of the weighted sum method is that it (model for a given
A) usually requires the same computational effort as a single-objective
version of the MOIP.

e e-constraint method: It is a popular type of multi-objective optimization
method capable of finding all the efficient solutions (both supported as
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well as un-supported). In this method only one of the p objective functions
is considered and the remaining p— 1 are set as constraints (also popularly
referred to as e-bounds) on the values of the respective objective functions.
The values of € € RP~! are updated after each scalarized problem

T

)I(Iéi)r(l c; X, (3.6a)
st clx< e, ke{l,....p}\{j}, (3.6b)

is solved to optimality. The optimal solution of the model is at least
weakly efficient, and under certain conditions even strictly efficient (see
Chankong and Haimes|[1983] for other results). One of the drawbacks
of the e-constraint method is that the scalarized model is generally
computationally harder as compared to the single objective version of
the MOIP. This is mainly due to the constraints (3.6b), which are actually
knapsack constraints, added to the problem. For certain types of prob-
lems depending on the structure of set X, these additional constraints
may make the problem computationally very hard (see [Ehrgott, 2006,
Sec 4.4] for specific examples).

Augmented weighted Tchebycheff (AWT) method: This method first proposed
in|Steuer and Choo|[1983] is quite popular within interactive methods (see
[Miettinen,|1988, Chapter 5] for more details) as well. The method adds to
the objective function a weighted distance from a reference point (usually
an ideal point, z'9°?! € RP) in the criterion space. The following model is
a typical scalarization used for this purpose

P
)r(réig {f—i—X}; (zk (x) — z}cdeal) }, (3.7a)
s.t. f>a (zk(x) - z}gdeﬂ) , ke{l,...,p} (3.7b)
f>0, (3.7¢)

where «, > 0 are the respective weights for the [.,-norm of the difference
between the ideal point (z'4°*!) and the objective vector z(x) correspond-
ing to a point x € X, and ) is the coefficient for the /;-norm of the same
distance measure. By choosing appropriate values of A and «, all non-
dominated points can be obtained. The inclusion of a min-max inclusion
of a min-max objective results in some increased computation time as
compared with single-objective MOIPs. Furthermore, identifying A and
a for searching only strictly efficient or at least fewer weakly efficient
solutions has made the use of this method elusive.
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* Benson’s method: First presented in Benson| [1978], it is a method that
can be used for checking whether a given solution is efficient, and also
identifying yet unknown non-dominated points. The scalarized problem
can be defined as (note the additional variable vector )

p
max Z U, (3.8a)

k=1
s.t. ckT)_c—uk —ch:O, k=1,...,p, (3.8b)
u >0, (3.8¢)
x € X, (3.8d)

where x € X is the solution that needs to be checked if it is efficient or
not. Let us denote uy, = ¢} X — ¢/ x, a formulation almost a union of the
weighted sum and e-constraint method is obtained as

P
i Ix :¢clx<clx . .
’I‘Igg{kz_l%x cpx<cpX, kel 7p}} (3.9)

A general framework suggested by [Ehrgott [2006], for scalarized problems is:

p
; T T
- A - , 3.10
i (ot e Sl o
st cix< e, ke{l,...,p}, (3.10b)

where py, and ay, k € {1,..., p}, are defined in Table[3.1}

Table 3.1: Parameters for the generalized scalarized problem (3.10), where z** and z
denote the ideal objective value, and (pre-defined) reference solution, respectively.

Method Pk ay A €

weighted sum 0 0 AeRE ep =00,k e{l,...,p}
e-constraint 0 0 AN=1LA=0k#j €, =00, ERk#J

AWT 238 >0 [Milim(i,. 0 =A>0 e =o00,ke{l,....p}
Benson’s 0 0 Aelo=q1,..pp =1 er=c X, ke{l,...,p}

Another common strategy while looking for efficient solutions is the so-called
two-phase strategy. Generally, in the first phase all the supported efficient so-
lutions are identified, whereas in the second phase un-supported efficient
solutions are identified. This method was used to solve a bi-objective assign-
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ment problem in|Przybylski et al.| [2008]. However, these two-phase approaches
have appeared previously as well (see |Visée et al.|[1998]). Some other methods
that have been proposed for multi-objective integer programming problems
can be reviewed in [Ehrgott, 2006, Sec. 2].

3.3 Specialized algorithms for BOIP and TOIP pr-
oblems

In Paper I, a bi-objective mixed integer programming (BOMIP) problem called
Tactical Resource Allocation Problem (TRAP) is solved. An important conclu-
sion drawn from Proposition 3 in Paper I is the following

Proposition 3.3.1 (Efficient frontier of the TRAP model). The efficient frontier of
the TRAP contains only isolated non-dominated points, and no (closed, half open, or
open) line segments (as is the case in typical BOMIPs), irrespective of the values of the
parameters B, k € Nj, j € J.

Hence, without loss of generality, one can use algorithms for bi-objective
integer programming (BOIP) problems for solving the TRAP as well. Most of
the algorithms mentioned in the previous section are popular while solving
BOIPs. However, some algorithms based on decomposing the criterion space
also exist. One of the important (recent) ones, called the Balanced Box method,
is designed for BOIPs (see Boland et al.|[2015] for details). Generally, in these
criterion space decomposition methods more scalarized problems are solved as
compared to most of the conventional scalarization methods but usually these
scalarized problems in decomposition methods are computationally easier
to solve. In this section we have also introduced a specialized method for
tri-objective integer programming (TOIP) problem which was useful in Paper
II while solving TRAP with uncertaint qualification cost and two scenarios.

3.3.1 Balanced Box method

Balanced Box method is used to identify efficient frontier of bi-objective integer
programming problems. There is an initial search space defined by the two non-
dominated points z" and z°, which refer to the non-dominated points defining
the minimum value for the first and second objective functions, respectively.
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Figure 3.2: First step of the Balanced Box Figure 3.3: Second step of the Balanced
method Box method (legends as Figure[3.2)

Formally, the two non-dominated points are defined as
z' = leXEmXin{zl (x), z2(x)}, (3.11a)

z° = 16})((?1}(111{22()(), z1(x)}, (3.11b)

where lexmin is the standard lexicographic minimization as defined in [Ehrgott,
2005, Section 5.1].

The rectangular search space is then defined as

R(z",z") := {Z c R?

Z{SZ1SZ§,ZSSZ2SZ§},

where (27, 25) and (2}, z3) denote the ideal and nadir points, respectively (see
[Miettinen), 1988 p. 15-16]). In Figures [3.2land a simple example of this
procedure is illustrated. In the first step (see Figure[3.2), there are two initial
non-dominated points (z" and z"). Furthermore, the rectangle R(z", z°) is split
into two halves along the z; axis. Thus, the two new rectangles containing
yet-unknown non-dominated points are R(z",z") and R(z", z*), where z° :=
(21, Zg;rzg) and z' := (2%, Zggzg ). Firstly, the rectangle R(z", z°) is searched and
the problem leicemxin{zl(x), 23(x) | z € R(z",2")} is solved. The non-dominated

point obtained is z* (see illustration in Figure . Similarly, a lexicographic
minimization problem is solved for the other rectangle R(z",z") to find z*
using IeXénXin{zz(x)7 z1(x) | z € R(z",2")}. A recursive algorithm is presented

in [Boland et al.,|2015, Algorithm 2]; this algorithm has shown computational
superiority over many existing methods for several benchmarking instances
for BOIPs (see [Boland et al., 2015, Section 6]).
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3.3.2 AWT (with adaptive formulae)

The Augmented Weighted Tchebycheff (AWT) method is discussed in the
general multi-objective optimization section (see Section[3.2). As already high-
lighted, one of the issues with the AWT method is, however, that the coef-
ficients for the [..- and [;-norms are not available; hence there is a risk that
many weakly efficient solutions are identified. In |Dachert et al|[2012] the
authors came up with an adaptive formulae for solving bi-objective integer
programming problems and summarized in Table

Table 3.2: Parameters for the AWT method (8.7) for BOIPs from [Déchert et al., 2012}
Table 2]

Case a Qs A
> qy> 2 zy—r—y+u(2—u) (x—u)(z+u—2) (x—u)(1—u)
Z y= zy—y—3z+x2+2u(2—u) zy—y—3z+az2+2u(2—u) zy—y—3z+z2+2u(2—u)
— 1 1 1—u
r=y=>2 2 2 2@ +u—2)
Sz >9 (y—u)(y+u—2) vy—z—y+u(2—u) (y—u)(1—u)
Y = zy—x—3y+y2+2u(2—u) zy—x—3y+y>+2u(2—u) ry—x—3y+y2+2u(2—u)

In Table for a given reference point in the criterion space z'4°?!, define
x o= 2h — pideal g = 2T pldeal and 4 € (0,1). Note that when x < 1, or
y < 1 (not considered in Table [3.2), since it is a BOIP, there are no interior
non-dominated points in R(z",z"), where z" and z* are described in (3.11).

3.3.3 Quadrant Shrinking method (for TOIP problem)

There are numerous specialized algorithms described in the literature specifi-
cally designed for solving multi-objective integer programming problems (see
some popular ones Sylva and Crema)[2004]; | Dachert et al.|[2017]); Lokman and
Koksalan! [2012]]), and for a detailed review we refer to [Boland et al., 2017,
Section 1]. One of the latest additions to algorithms for tri-objective integer
programming (TOIP) problems is the Quadrant Shrinking Method (QSM) pre-
sented in[Boland et al.|[2017]. Our interest in TOIP problems is due to Paper
II, which requires solving a TOIP problem for identifying robust efficient (RE)
solutions (more on that in the later sections).

A TOIP can be described as in (3.4), with p = 3. QSM, like many other decom-
position based algorithms, works in 2-dimensional projected criterion space.
A point u := (u1,u2,u3) " in the 3-dimensional criterion space is projected as
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@ = (u1,u2) in the criterion space corresponding to z1 and z». Given @ € R?, be-
ing a projection of u € R3, a quadrant is defined as Q(ii) := {y € R? |y < u},
hence, 1 is the upper bound of the quadrant Q(u). As a result of [Boland
et al., 2017, Propositions 4 and 5], it is established that a non-dominated point
z(X), with the property that its projection (21 (%), 22(%)) " < @, can be found by
solving the following two IPs

x* € argmin{z;3(x) : x € X and z(x) < ax, k € {1,2}}, (3.12a)

3
X € argmin{sz(x) ix € X and z;(x) < z,(x"), k € {1,2,3}}. (3.12b)
* k=1

This sub-routine is called 2-D-NDP search in [Boland et al.| [2017], however,
originally it first appeared as a two-stage scalarization in Kirlik and Saym![2014].
This is the core step in QSM used to explore all the quadrants that are expected
to have yet-unknown non-dominated points. A recursive algorithm is detailed
in [Boland et al} 2017 Algorithm 1].

34 MOOP under parameter uncertainty of objec-
tive functions

The multi-objective optimization problem has no uncertainty associated
with parameters. Sometimes uncertainty present in parameters may arise due
to uncertain future developments of the data defining an instance, and some
imprecise calculations or measurements. The outcome of decisions made under
uncertainty of some parameters can sometimes be extremely sensitive to the
actual data, and hence, extra care should be taken while making decisions
under uncertainty due to uncertain parameter values.

For this particular reason, different approaches have been suggested for solving
MOOQOPs, which are based on stochastic programming, fuzzy approaches, and
robust optimization. Stochastic programming for MOOP (see|Gutjahr and Pich;
ler|[2013]) is used when there is enough data available and fuzzy approaches
(see [Slowinski and Teghem) [1990, Chapter 4]) when expert judgements on
fuzzy membership are reliable. A drawback of the stochastic approach is that
for some problems so-called long-run optimality is not relevant, as the repeata-
bility element of the decisions is missing; the decision maker has to live with
the consequences of the decision made once. Since in TRAP, qualification costs
are incurred only once, it is evident that combining robust optimization and
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multi-objective optimization has certain benefits over other approaches.

Recently, the robust multi-objective optimization approach has been gaining
interest in the research community for solving multi-objective problems with
uncertain objective functions, deterministic constraints, and for which amount
of data available is not sufficient to make any informed probability distribution
assumptions of the input parameters. An uncertain MOOP (with deterministic
constraints) can be defined as a family of paramaterized problems as follows:

PU) = (P(€),€ €l), (3.13a)

where P () is defined as
min  z(x, §), Eclu (3.14a)
st. xe X, (3.14b)

where z : X x U — RP, £ is a vector containing uncertain parameters and U
is the set of uncertain scenarios. There are two main types of uncertainty sets
considered in the robust optimization literature:

* Finite uncertainty set. In this case, it is assumed that the set of scenarios
is finite, i.e. U = {&1,... €&}

* Polyhederal uncertainty. The uncertainty set is given as the convex hull
of a finite set of scenarios, i.e. U = conv{¢!,... £"}.

Next, single-objective robust optimization, and its generalization to the multi-
objective case is introduced.

3.4.1 Single objective robust optimization

For single objective robust optimization (SO-RO) problems with determinis-
tic constraints, numerous concepts of robustness have been discussed in the
literature. Some of the well-known ones are:

* Minmax robust optimality for SO-RO problems (see [Ide and Schobel), 2016,
Definition 11]). Given P(U) with z : X x U — R (i.e only one objective
function), a solution is called minmax robust optimal if it is an optimal
solution to

min max {z(x,£) }
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* Minmax regret is a concept to avoid conservativeness of the minmax
approach. Regret is defined as the difference between the resulting benefit
(cost) to the decision maker, and the benefit (cost) to the decision maker
from the decision if the actual scenario was known (see [Kouvelis and
Yu, 1997, Chapter 1] for details). There are many other variants of regret
as well, one of them being the relative deviation of the objective value
corresponding to the robust decision from the value corresponding to the
optimal decision if the actual scenario is known.

e Light robustness is introduced for SO-RO in [Fischetti and Monaci|[2009].
The idea is to choose solutions that are considered “good enough” in
the nominal (most-likely) scenario and selecting the one that is most
reliable in the worst-case scenario. This approach also reduces the over-
conservativeness of the minmax approach which is a common criticism
of robust optimization as well.

A recent review article on SO-RO is|Goerigk and Schobel| [2016].

3.4.2 Robust MOOP

The need to develop efficiency concepts for robust MOOP first arose due
to requirements in certain application areas of aircraft route guidance and
shipping hazardous materials (see, [Kuhn et al. 2016, Section 8] for more
details on applications). Defining an analogous concept of efficient solutions
(from MOQP) to a comparable concept in robust MOOP is not straightforward.
Various concepts of the so-called robust efficiency have been suggested. A
detailed overview of various robust efficiency concepts is presented in [Ide and
Schobel, 2016, Section 3]. Following are some of the robust efficiency concept
that are important for Paper II

Definition 3.4.1 (Flimsily robust efficient (FRE)). Given the uncertain MOOP P(U),

a solution x € X is called flimsily robust efficient (FRE) for P(U) if it is efficient for

P (&) for at least one & € U. The set FRE solutions X/ := EUuXeg(S), where Xog (€),
(S

is the set of efficient solutions to the deterministic MOOP P(§).

Definition 3.4.2 (Highly robust efficient (HRE)). Given the uncertain MOOP P(U),
a solution x € X is called highly robust efficient (HRE) for P(U) if it is efficient for
P (&) for all € € U. The set of HRE solutions X" := EQMXQH(@.

Remark 3.4.1. For the two special cases following holds

e For |U| =1 (i.e. MOOP), the set of HRE and FRE solutions are equivalent.
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= z(x?, &)

Figure 3.4: z,(x') — R (dash-dotted), z¢/(x*) — RY (solid), z/ (x*) — RE (dashed)

e For p = 1 (one objective function, i.e. robust optimization), a solution is HRE if
it is optimal for all the scenarios & € U and FRE if it is optimal to at least one of
the scenarios.

HRE is a very restrictive requirement, and existence of such solutions is not guaranteed.
However as per [Ide and Schobel, 2016} Lemma 9], the existence of such a solution (i.e.
HRE) is guaranteed, if one of the objectives does not have any uncertain parameters (i.e.
for at least one of the objective functioni € {1,...,p}, zi(x,&') = z(x,€), &, € €U),
and also has a unique optimal solution to the problem min{z;(x,-) | x € X}.

For SO-RO problems, minmax robust optimality is well-defined but when there
is a vector valued objective function, the definition of the worst-case is not
unambiguous. Hence, an extension of minmax robustness to MOOP is not
unambiguously defined. There are three extensions of this concept for MOOP.
The most common one—from Ehrgott et al.|[2014]—is presented next.

Definition 3.4.3 (Set-based minmax robust efficiency, [Ehrgott et al.| [2014]).
Given the uncertain MOOP P(U), a feasible solution & € X is called set-based
minimax RE solution if #ix’ € X \ {x}, such that

7y (x') C 7y (%) — RY, (3.15)

where zy(x) := {z(x,§) | € €U}, and {z € R? | z = 0} is denoted by RY..

In Figure[3.4} an example is presented with ¢/ = {¢', €%}, and X = {x!,x? x%}
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to illustrate set-based minmax RE solutions. The boundaries of the respective
sets {zy((x7)} je(1,2,3) are shown using different line-styles. It is evident that x*
is set-based minmax RE, because z;,(x') —R2 does not contain either of the sets
72¢(x?) and 7z, (x3). Similarly, x? is also a set-based minmax RE solution. How-
ever, the same could not be said about x? since 7y (x?) C zy(x3) —R%. There are
other set-based RE concepts such as hull-based minmax RE solutions (Bokrantz
and Fredriksson|[2017]), point-based minmax RE solutions (see Kuroiwa and Lee
[2012])), lower set less ordered efficient, and alternative set less ordered efficient (see,
Ide and Kobis| [2014])). In[Ide and Kobis| [2014], relationships between these RE
concepts are investigated, and various special cases are also presented where
equivalence is established between a few RE concepts.

The concept of light robustness from [Fischetti and Monaci| [2009] for SO-RO is
generalized for uncertain MOOP in |[Ehrgott et al.|[2014]. The pre-requisite to
finding light robust solutions is the existence of a nominal (most-likely) scenario.
It is quite common to consider a nominal scenario, and it has appeared in many
articles such as |Ben-Tal and Nemirovski| [2002], Ben-Tal et al.| [2009]. The
motivation behind light robustness is to prevent the overconservativeness of
the minmax solutions. For problems with uncertain objective functions and
deterministic constraints, the concept of light robustness can be defined as
follows

Definition 3.4.4 (Light robustness for SO-RO problems |Schobel [2014]]). Con-
sider a single-objective robust optimization problem P(U), with p = 1, and assume
that % € X is an optimal solution to the problem P(€), where £ is a nominal scenario.
Then, a solution x € X is called lightly robust optimal to P(U), w.r.t. € > 0 if it is
an optimal solution to min-max problem

min { rggj){( z(x, E)}, (3.16a)
st z2(x,€) <z2(%8) +e (3.16b)
x € X. (3.16¢)

Ide and Schobel [2016] has generalized light robustness for multi-objective
robust optimization problems with p > 1 and |i/| > 1 as follows.

Definition 3.4.5 (Light robustness for robust MOOP). Given a robust MOOP
PU), with p > 1, and |U| > 1, a nominal scenario Ecl,andan e € RY, a solution
x* € X is called e-lightly robust efficient solution for P (Uf) if it is one of the efficient
solutions to the following deterministic MOOP for a given X € Xoq(€) (i.e. X is an
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efficient solution in the nominal scenario)

min rgea;/)lc 2(x, €), (3.17a)
s.t. 21(x,€) < 21 (%, €) + e, ke{l,....p} (3.17b)
x e X. (3.17¢)

The set of solutions to (3.17) is called e-lightly RE solution set.

The main idea behind light robustness for robust MOOP is to find solutions that
are good enough in the nominal scenario, and to choose the most robust solu-
tions among them. Authors in [Kuhn et al., 2016| Section 4.7] introduced a new
RE concept for bi-objective robust optimization problems with an uncertain
objective function and deterministic constraints. It is called e-representative
lightly RE solutions and is aimed to reduce the number of e-lightly robust
efficient solutions to be assessed by the decision maker.

For the SO-RO problems, it is a common approach to be indifferent toward
non-worst case scenarios. This is sometimes referred as the so-called strict
robustness. [lancu and Trichakis| [2014], formally prove that the traditional
concept of strict robustness (as presented in Ben-Tal et al.|[2009]) for SO-RO,
which solely focuses on worst-case scenario, is not reasonable. The main reason
is that there might exist alternative solutions that perform much better in other
scenarios. Hence, just using the worst-case scenario leaves solutions/decisions
un-optimized for other scenarios, which in most problems might be more likely
to occur. Hence, (lancu and Trichakis|[2014]]) introduced the concept of Pareto
robust optimal (PRO) solutions for SO-RO problems. In order to extend the
concept of PRO in SO-RO to bi-objective robust optimization problems, [Kuhn
et al 2016, Definition 9] suggest PRO robust efficient (PRO RE) solutions.
Hence, it is established that each of the RE solutions must be PRO RE to be
non-dominated in all of the scenarios.

Definition 3.4.6 (Pareto robust optimal (PRO) solutions for SO-RO problems).
Let U be a set of scenarios, and z : X x U — R the objective function. Then, a
family of functions over the set U is defined as ¢y (x) == (2(x, 5))2@1, x € X, where
the function z(-,€) : X — R. A solution x € X is PRO if #x' € X such that

bu(x’) < Pu(x).
For the multi-objective case, an analogous definition is proposed in [Kuhn et al.,
2016| Section 5], and referred as PRO robust efficient (PRO RE) solutions.

Definition 3.4.7 (PRO RE solutions for robust MOOP). Let U be a set of sce-
narios and z : X x U — RP a p-dimensional vector-valued objective function.
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Then, a family of vector-valued functions over the set U is defined as ¢y (x) =
(z1(%,8), -, 2p(%,€))écrr x € X, where 2z,(1,€) - X = R, ke {l,...,p}. A
solution x € X is PRO RE if #x’ € X such that ¢y (x') < ¢pi(x).

Hence, as discussed in [Kuhn et al.|[2016], all the RE solutions obtained for
a robust MOOP must be PRO RE. This provides a guarantee that no other
solution exists that, apart from mitigating the worst-case, it also performs
better in all other possible scenarios in 4.
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4 Summary of manuscripts

In this chapter, the contributions of the two appended manuscripts are de-
scribed.

4.1 Paper I: Bi-objective optimization of the tactical
allocation of job types to machines

In this manuscript, the deterministic version of the bi-objective tactical resource
allocation problem (TRAP) is presented. The constraints of this bi-objective
MILP are defined in 2.2), and the two objective functions defined in (2.1).
The model is a MILP as the variables n are continuous, the variables s, z
are binary, and x is integral. The makespan minimization of the unrelated
parallel machine scheduling problem, i.e. R||Cpax is polynomially reducible to
the TRAP as shown in Proposition 1 of Paper I. The difficulty in solving the
optimization problem stems from the linking constraints which connect
the time periods. We propose a starting heuristic (see Section 3.4 of Paper I)
which is based on decomposing the TRAP w.r.t. the time periods, and solving
one (smaller) MILP for each time period. The starting heuristic also makes
use of Proposition 2 in Paper I (see Proposition [4.1.1|below), which concludes
that for fixed values of s, the variables z can be regarded continuous. For fixed
values of the binary variables s, the following polyhedron is defined in the
space of the z variables:

Z(s,7) ={z|zm €01, keN;, j€T, t€T; @2-@2hHhold }. (4.1)
Proposition 2 in Paper I is stated as follows

Proposition 4.1.1 (On the integrality of the variables z). For any s, € {0,1},
ke N, jeJ, teT,all the extreme points of the polyhedron Z(s,~), defined in

(1), are integral.

41
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Details of the heuristic are mentioned in Section 3.4 in Paper 1. The other
main contribution of the manuscript is a modified version of the bi-directional
e-constraint method. The proposed solution approach combines two well-known
criterion space search methods, AWT with adaptive formulae (see Dachert
et al.|[2012]), and bi-directional e-constraint method (see [Boland et al., 2015,
Section 5.1]). It has shown significant positive computational effects on the 60
numerical industrial test cases investigated.

The proposed modification is based on switching to the AWT method when
only a pre-defined fraction ¢ of the total search area (in the criterion space) is left
to be explored for yet-unknown non-dominated points. In Figure 4.1} solution
times of various state-of-the-art solution approaches is compared using the so-
called performance profiles (see,[Dolan and Moré [2002] for details). In Figures[4.1]
and 4.2} the term r,; refers to the performance ratio 7, := ﬁ;{%}, where
s € § (S being the set of solution methods used), and p € P (P being the set of
problem instances), and ¢, is the computing time used for solving problem
instance p by solution method s.

For each solution method in Figure 4.1} the two objectives are tackled by either
augmentation (Aug) or a lexicographic (Lex) minimization the two. The main
criterion space search methods used are the bi-directional e-constraint (BD-¢)
and the balanced box (BB) method. A switch to the AWT method is denoted by
AWT, while () means that there is no such switch. The solution approaches com-
pared are defined by the 3-tuples (Aug,BD-¢, AWT), (Aug,BD-¢,0), (Aug,BB,0),
and (Lex,BD-¢,AWT), including two variants of (Aug,BD-¢, AWT) for the val-
ues ¢ € {0.25,0.35}. Hence, in total five variants are tested and presented in
Figure In Figure the performance profiles illustrate the effect of using a
starting feasible solution.
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Figure 4.2: Performance profiles when
a starting solution is provided (denoted
as H), and WH, when no solution is pro-
vided

Figure 4.1: Performance profiles of differ-
ent solution methods while identifying
yet-unknown non-dominated points in
the entire search area

4.2 Paper II: Robust optimization of a bi-objective
tactical resource allocation problem with uncer-
tain qualification costs

In this manuscript, the qualification cost parameters 3,;,j € J and k € N,
the coefficients of the second objective function (g, i.e. (2.Ib)) are considered
uncertain. In (2.4) an uncertain bi-objective optimization problem is presented,
with an uncertain objective function and possessing the same feasible set
as in the deterministic TRAP. We present two main contributions, both of them
being limited to bi-objective MILPs with one uncertain objective function (and
the other is deterministic), and well-defined nominal and worst-case scenarios
corresponding to qualification costs. Firstly, we have presented a new robust
efficiency concept called positive robustness e-representative lightly RE solution.
This new RE concept is presented as an alternative to e-representative lightly
RE solution, as the former captures the positive effect on mitigating risk by
replacing an efficient solution in the nominal scenario with a solution that is
“good enough” in the nominal scenario and has a net reduction in qualification
cost in the worst-case scenario scenario.

The second contribution is a new solution approach called 3-stage approach,
involving the solution of two bi-objective optimization problems to find all the
desired PRO RE solutions instead of solving a tri-objective optimization prob-
lem as suggested in Kuhn et al.|[2016] for bi-objective optimization problems
with one uncertain objective function and two scenarios. Our proposed ap-
proach is computationally superior than the one presented in Kuhn et al.|[2016].
We use the quadrant shrinking method (QSM) for the purpose of solving the
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Figure 4.3: Ratio of solutions times (black bars correspond to the axis on the left), and
the difference between the number of PRO RE solutions identified by the QSM (YfSM)

and the 3-stage method (Yﬁfsmge) on the right axis (orange asterisk).

tri-objective IP, hence the name QSM in Figure For almost all the instances
(except instance 11) our proposed approach finds a smaller number of PRO RE
solutions but manages to find all the ones that are interesting for the decision
makers to analyze. However, as it is evident from the solution times of our
3-stage approach are significantly lower than those of QSM method.



5 Conclusion

This section covers some practical implications of our models for the interest of
practitioners as well as future directions of our research.

5.1 Practical implications

The two papers, Paper I and Paper 11, are mainly focused on solution methods
for the respective variants of the TRAP. This section contains some of the
practical implications of our research which might be of interest to practitioners
for understanding the benefits of using such models. Figures and
highlight the effect of varying the values of the parameters 7,v, and (, k € K,
(see Table [2.2| for details on these parameters) on the efficient frontier of the
TRAP model. Figures|5.3|and |5.4|illustrate the effect of changing the value of 7
from 2 to 3 on the loading levels and number of job types processed in each
machine and in each time-period.

5.1.1 Key conclusion from our studies

e Effects of varying T and v 2.2f): The trade-off between the two
objective functions, excess resource loading and qualification cost is rep-
resented by the efficient frontier of the bi-objective TRAP. Generally, if
one increases the budget for the qualification costs, the resulting excess
resource loading reduces to a certain extent. However, the parameter 7
(see Section [2.2) that restricts the maximum number of machines a job
type can be allocated to in a given time-period may have some impact
on the efficient frontier. The extent of the effect of value of 7 does not
go beyond certain values. For example in Figure[5.1|we use 7 € {3,4}
and v € {4,5} for one of the instances presented in Paper I. As evident in
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Figure 5.1: Criterion space containing non-dominated points of an instance of TRAP
with different values of 7 and . The thresholds are set to (x, = .7,k € K

Figure[5.1} above certain values (in the given figure it is 7 = 3 and y = 4),
the parameters 7 and -y does not influence the trade-off between the two
objective functions (or the same non-dominated points are obtained). For
7 = 2 (not shown in the figure as there is only one point at (2.17,18), i.e.
identical to bottom-right non-dominated point in the figure) the qualifi-
cation cost do not have any significant impact on excess resource loading
because there are already two qualified machines for all the job-types
(except job-types associated with new products), thus, choosing more
alternatives than 2 is not possible. Consequently, qualifications does not
influence the excess resource loading levels if the value of 7 < 2 and the
efficient frontier is just one point in the criterion space. Hence, for most
of our test cases we have used 7 = 3 and v = 4.

* Effect of threshold values ({) for the machine loading levels: The threshold
values for the machine loading levels also has an impact on the efficient
frontier. For lower values of the thresholds, it is observed that to have the
same excess loading levels, the company may have to spend more time
or money in qualification costs. For example in Figure it is evident
that for excess resource loading of zero, the company spends more when
Cr = .6,k € K as compared to when ¢, = .7,k € K. Hence, the values of
the thresholds must be chosen in a sensible way driven by historical data
on the process capability measures of the respective machines and their
associated processes (see [Kiran} 2017, Chapter 18]), generally tracked by
the statistical process control team at GKNN.

e Loading levels and number of job types: Figures[5.3|and [5.4]illustrate the
loading levels and number of job types for 7 = 2 and 7 = 3, respectively
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Figure 5.2: Criterion space containing non-dominated points of an instance of TRAP
with 7 = 3 and v = 4. The thresholds are (i € {.7,.6},k € K

(withy =4, = .7,k € K). Each colored bubble in the two plots corre-
spond to a specific machine in a given time-period; hence, each machine
is plotted | 7| times. Both the figures represent the solution corresponding
to a non-dominated point which has minimum excess resource loading,
ie g'" = lexmingcy (- ,){91(y), 92(y)}. Itis evident that for 7 = 2, many
machines possess a loading level above the threshold of 70%, which is
not the case for 7 = 3. Furthermore, there is an insignificant difference in
the total number of job types processed in each machine after increasing
the value of 7. The colors represent the categories of machines, namely
multi-task cell (MTC), small-sized milling (SM) machine, large-sized turn-
ing (LT) machine, small-sized turning (ST) machine, large-sized milling
(LM) machine and turning (T) machineﬂ The size of the bubbles in the
plots are proportional to the capacity of machines. For instance, MTC has
a capacity of 25000 hours available annually as compared to 5000 hours
available at machines in the category of large turning (LT). The reason is
that a multi-task cell is actually a work-center (see [Blackstone Jr., 2013,
p- 190]) containing five multi-task machines, each having a capacity of
5000 hours annually. Certain categories of machines, i.e. multi-task cells,
are consistently possessing their maximum resource loading, and may act
as bottlenecks (see [Blackstone Jr., 2013, p. 17]) in the production system if
enough buffer capacity is not maintained.

IThe term sized refers to the size of the turning/milling table’s diameter.
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Figure 5.4: Loading levels and no. of job types for a solution with 7 = 3, v = 4 and
¢k = .7,k € K (solution corresponding to g"").
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5.2 Future research

There are numerous research directions to be explored. Each of these possibili-
ties are distributed between different steps in the decision-making framework
presented in Figure

a. Uncertainty in demand: Due to some unforeseen circumstances, there can
be significant variations in demand in the aerospace industry. Hence, it is
important to consider such uncertainty in the model. It is interesting to
investigate if holding of a safety stock or an inventory of final products
would affect the excess resource loading and/or the qualification costs.
The uncertainty may result in a stochastic programming problem or a
more general robust optimization problem.

b. Compatibility of machines and jobs: Another interesting research topic
(which can be considered as part of Step 1 in the decision-making frame-
work Figure|[I.2) is to assess ways to create the set V;, j € 7, i.e. the set
of machines that are feasible but not qualified. It is time-consuming for
the process engineers to manually identify this set, and prone to inaccu-
racies/errors. However, it might be possible to identify a mathematical
optimization model which can assist in matching product features with
machine capabilities without requiring manual efforts from process en-
gineers. Kashkoush and ElMaraghy|[2015] suggested an association-rule
discovery integer programming model for this purpose. However, to imple-
ment a similar model one needs to identify a discretized set of product
features and machine capabilities. For the purpose of exploring frame-
works to discretize machine and product features at GKN, we performed
a master thesis project with the Industrial and Material Sciences divi-
sion recently at Chalmers University of Technology. This work can be
continued and developed.

c. Quality loss: Since the output of the TRAP model re-allocates job types
to machines, it is important that there is no compromise on quality of
the final assembly. Furthermore, it is worthwhile to analyze the effect of
new allocations on the quality of the entire assembly. Such a model can
be part of Step 5 in the framework presented in Figure Similar work
has been done for the automotive industry, where a so-called Tolerance
allocation problem is defined to assign tolerances to different dimensions
of an assembled part, such that the overall quality losses are minimized
(see|Etienne et al.| [2008], [Loof et al.|[2007]). It is worthwhile to investigate
relevance and applicability of such a model for GKN.
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