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a b s t r a c t

Adaptive control has been successfully developed in deriving control law for stochastic systems
with unknown parameters. The generation of reasonable control law depends on accurate parameter
estimation. Recursive least square is widely used to estimate unknown parameters for stochastic
systems; however, this approach only fits systems with Gaussian noises. In this paper, the adaptive
quantile control is first proposed to cover the case where stochastic system noise follows sharp
and thick tail distribution rather than Gaussian distribution. In the proposed approach, the system
noise is modeled by the Asymmetric Laplace Distribution, and the unknown parameter is online
estimated by our developed Bayesian quantile sum estimator, which combines recursive quantile
estimations weighted by Bayesian posterior probabilities. With the real-time estimated parameter,
the adaptive quantile control law is constructed based on the certainty equivalence principle. Our
proposed estimator and controller are not computationally consuming and can be easily conducted in
the Micro Controller Unit to fit practical applications. The comparison with some dominant controllers
for the unknown stochastic system is conducted to verify the effectiveness of the adaptive quantile
control.

© 2021 ISA. Published by Elsevier Ltd. All rights reserved.
1. Introduction

The random noises in some practical stochastic systems, e.g.,
conomic system, social decision-making system, and biological
cosystem, usually have sharp, thick-tailed, and skewed charac-
eristics, making them different from the commonly used white
aussian noise [1,2]. This kind of noise will reduce the accuracy of
he parameter estimation under Gaussian-assumed approaches,
nd consequently degrade the control performance for stochastic
ystems. This challenge impedes verities of control applications
here, e.g., financial investors design a regulator to control fi-
ancial risks better [3]; management of web or service industry
akes more favorable decisions that satisfy most of the cus-

omers as possible rather than on average [4,5]; policymakers
llocate resources according to wealth inequality between the
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urban and the rural [6], etc. The addressing of this challenge
can promote the control of stochastic systems, e.g., economic or
social decision-making systems, with a high capacity for handling
uncertainties. In this paper, we consider the solution of adaptive
control for stochastic systems with uncertainties, which includes
unknown parameters and sharp, thick-tailed, skewed random
noises.

Adaptive control is a potential way to tackle uncertainties in
the control of stochastic systems. This method is concerned with
designing a control law that provides desired system performance
for the system under conditions of uncertainty, by the mean
of tuning its parameters or structure to reduce the influence
of uncertainty and improve the approximation of the desired
system [7]. Generally, adaptive control approaches deal with un-
certainties including unknown parameters and random noise [8,
9]. For example, the model parameter self-tuning control with
Recursive Least Square (RLS) or Kalman Filter (KF) as a recursive
parameter estimator has been successfully applied in industrial
control processes, where random noises are comparatively small,
and model parameters are unknown [10–13]. Such a self-tuning
approach consists of two components: (1) learning the unknown
parameter of the stochastic system; (2) exerting the control signal
on the stochastic system to guarantee that the output track a
desirable trajectory [14,15]. Control strategies based on this ap-
proach are still widely applied for industrial control processes
nowadays for its easy implementation on Micro Computer and
astic system. ISATransactions (2021), https://doi.org/10.1016/j.isatra.2021.05.032.
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icro Controller Unit [16–19]. In recent years, model-free adap-
ive controllers are developed for unknown systems. For example,
iumarsi et al. applied reinforcement learning algorithms for
ptimal tracking control of linear discrete-time systems with
nknown dynamic matrices [20–22]. In Onder Tutsoy’s work, an
daptive estimator was designed to learn the approximate Q-
unction and control policy for the unknown system with output
rror type random noise [23,24]. All of the above strategies as-
ume that random noises in stochastic systems follow Gaussian
istribution.
However, noises in some practical systems, e.g.,

ocial-economic system and biological ecosystem, might not fol-
ow Gaussian distribution. Instead, such systems suffer from
harp and thick-tailed noises [1,2], where the aforementioned
ontrol strategies with Gaussian-noise-assumption might no
onger be efficient. Robust control serves as an alternative so-
ution to tackle system uncertainties [25–27]. For example, Q-
earning approximate dynamic programming, heuristic dynamic
rogramming, and dual-heuristic dynamic programming were
sed to solve the zero-sum game related H-infinity optimal con-
rol problem for discrete-time linear systems with dynamic pa-
ameter matrices unknown [28–31]. Yi Jiang et al. designed an
ff-policy reinforcement learning approach to solve the out-
ut regulation problem for unknown linear discrete-time sys-
ems suffering disturbance [32]. This approach supposed that
he disturbance is observable, which is difficult to satisfy in
ome practical system. Moreover, robust control methods con-
ider the worst-case disturbance in systems, which induce quite
onservative optimal control strategies.
Since the random noise with sharp and thick-tailed charac-

eristics can be described by Asymmetric Laplace Distribution
ALD) [33–37], the single quantile regression is introduced to
stimate model parameters for a system with ALD noise [38–40].
evertheless, it is difficult to choose the quantile in single quan-
ile regression when the distribution of system noise is unknown.
s an extension, researchers investigated approaches of com-
osite quantile regression in model parameter estimation, which
ombines multiple quantile regressions. Zou et al. introduced an
qually weighted composite quantile regression that combines
ultiple quantile regression models [41]. Zhao et al. calculated

he different weights for different quantiles by minimizing the
orresponding asymptotic variance [42]. Huang et al. proposed
ayesian composite quantile regression, where the weight of each
uantile is treated as an open parameter and estimated through
arkov Chain Monte Carlo (MCMC) sampling procedure [43].
ost of the works on quantile regression are based on the MCMC
ethod. However, the MCMC method is not suitable for param-
ter estimation in adaptive control, since it is conducted offline
ather than updating model parameters in real-time.

In this paper, we aim to promote unknown stochastic system
ontrol with adaptive features, and more importantly, with the
apacity to preserve control performance confronted with ALD
oise in systems. To this end, an adaptive quantile control is
resented for tracking control of linear discrete-time systems
ith unknown parameters and ALD noise. The proposed scheme
ontains two parts: (1) Bayesian quantile sum estimator (BQSE);
2) output tracking controller. The developed BQSE is a real-
ime recursive parameter estimator that estimates unknown pa-
ameters of the system suffered from ALD noise. Specifically,
he BQSE combines multiple quantile estimators by summing
ach of the estimated parameters weighted by corresponding
ayesian posterior probabilities for different quantiles. The es-
imated parameters from BQSE are regarded as real parameters
n the derivation of control law, which is based on the princi-
le of certainty equivalence in stochastic systems. To verify our

pproach, we perform numerical experiments and the control

2

Fig. 1. The probability density function of Symmetric Laplace Distribution and
Gaussian Distribution.

performance of the proposed method is compared with minimum
variance control where the parameter is known, the traditional
self-tuning control with RLS estimator [11], Q-leaning based out-
put tracking control [20], reinforcement learning based control
for output error system with an adaptive estimator [23,24], and
adaptive dual model predicted control [19].

The rest of this paper is organized as follows. In Section 2, we
present a stochastic system with ALD noise. The online BQSE and
the adaptive quantile control law based on the certainty equiva-
lence principle for ALD noise are described in Section 3. Section 4
provides numerical experiments to evaluate the performance of
BQSE and the adaptive quantile controller. Conclusions are given
in Section 5.

2. Problem statement

Consider a linear discrete-time, single-input and single-output,
stochastic system [12]

A(z−1)y(k) = B(z−1)u(k − d) + C(z−1)e(k)
k = 0, 1, . . . ,N − 1

(1)

where y(k) is system output, u(k) is control input. A(z−1) =

+
∑n

i=1 aiz
−i, B(z−1) = b0 +

∑m
j=1 bjz

−i, b0 ̸= 0, C(z−1) =

1 +
∑n

i=1 ciz
−i. The parameters in A(z−1), B(z−1), C(z−1) are un-

known. The time delay d and the order n and m are assumed
known. The random noise e(k) follows ALD.

Firstly we show how Gaussian and Laplace noises differ from
each other and the influence brought by this distinction. Suppose
that the random variable x follows ALD and its probability density
function is given by

fpdf (x) =
τ (1 − τ )

σ

{
e−(1−τ ) |x−µ|

σ , x < µ

e−τ
|x−µ|

σ , x ≥ µ
(2)

where τ ∈ (0, 1), µ ∈ (−∞, ∞), and σ > 0 [44]. Fig. 1 shows
the probability density function of Gaussian Distribution(GD, its
mean is 0 and variance is σ ) and Symmetric Laplace Distribu-
tion(SLD, its position parameter is µ = 0, scale parameter is
σ1 = 1, σ2 = 2, asymmetry parameter is τ = 0.5). Compared
with Gaussian Distribution, Laplace Distribution has the character
of sharp peak and thick tail. Fig. 2 shows the probability density
of ALD (its asymmetry parameter τ is not 0.5, τ2 = 0.9, τ3 = 0.2,
τ4 = 0.9), where the curve of probability density function for
ALD is asymmetric. An economic system or biological ecosystem
generally follows the distribution with sharp-peak, thick-tailed
and asymmetric features, like those in the ALD shown in Fig. 2.
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Fig. 2. The probability density function of Asymmetric Laplace Distribution
(τ2 = 0.9, τ3 = 0.2, τ4 = 0.9).

Fig. 3. Asymmetric Laplace Noise e with the asymmetry parameter τ = 0.9 and
he output of y = 1.2x + e.

The Cumulative Distribution Function of ALD is

F (x) =

∫ x

−∞

f (t)dt

=

{
τe

(1−τ )
σ (x−µ), x < µ

1 − (1 − τ )e−
τ
σ (x−µ), x ≥ µ

(3)

he detailed derivation is shown in Appendix A.1.
The ALD noise is derived from the inverse function of ALD

istribution function, and the inverse function is shown as

F−1(x) =

{
µ +

σ
1−τ

ln 1
τ
x, 0 < x < τ

µ −
σ
τ
ln 1

1−τ
(1 − x), τ ≤ x < 1

(4)

The detailed derivation is shown in Appendix A.2.
The upper part of Fig. 3 shows the ALD noise e with the

asymmetry parameter τ is 0.9, the position parameter µ is 0, and
the scale parameter σ is 0.2. It can be observed that most of the
noise data locate under x = 0 while a few above it. y is the output
of a simple linear model with ALD noise e added as y = 1.2x+ e,
as shown in the lower part of Fig. 3. Fig. 4 shows the ALD noise
e with the asymmetry parameter is 0.15 and most of the noise
data distribute above x = 0. Fig. 5 depicts the SLD noise e whose
asymmetry parameter is 0.5. The noise data distribute symmetric
around x = 0. Fig. 6 shows the White Gaussian Noise e with 0
mean, and variance σ is 0.2.
3

Fig. 4. Asymmetric Laplace Noise e with the asymmetry parameter τ = 0.15
and the output of y = 1.2x + e.

Fig. 5. Symmetric Laplace Noise e with the asymmetry parameter τ = 0.5 and
he output of y = 1.2x + e.

Fig. 6. White Gaussian Noise e and the output of y = 1.2x + e.

In the case of ALD, the expectation and variance are defined
s µLap and σLap, respectively, and are calculated as:

µLap =
σ (1 − 2τ )
τ (1 − τ )

σLap =
σ 2(1 − 2τ + 2τ 2)

τ 2(1 − τ )2

(5)

when the position parameter µ is set to 0. The detailed informa-
tion on this calculation is shown in Appendix A.3.
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Fig. 7. Block diagram illustrating the adaptive quantile control with BQSE.
. Controller design

This section details the controller design for adaptive quantile
ontrol with BQSE. The derivation and deformation of the model
re shown in Section 3.1; the recursive quantile estimation (RQE)
or single quantile estimation is described in Section 3.2; the
ayesian quantile sum estimation is explained in Section 3.3; the
ertainty equivalence control law is described in Section 3.4.
The block diagram of the proposed adaptive quantile control

ith BQSE is shown in Fig. 7. The unknown stochastic system
n the figure can be described by the model with unknown
arameters and ALD noises in Eq. (1). The estimator BQSE in
he dashed line box provides real-time estimated parameters
or the controller. The estimated parameters are regards as real
arameters for the model to calculate the control law under the
ertainty-equivalence principle. In the BQSE, l single quantile es-
imators perform simultaneously, and each of them generates an
stimated parameter θ̂i. The desired estimated parameters θ̂ are

the sum of all the θ̂i weighted by Bayesian posterior probability.

3.1. Derivation and deformation of the model

The adaptive quantile controller is based on the classical
self-tuning control proposed by Clarke and Gawthrop [11]. This
control strategy can be applied to minimum phase and non-
minimum phase systems by selecting appropriate parameters in
the auxiliary system. Assume that the auxiliary output of the
system in Eq. (1) is

ya(k) = P(z−1)y(k) + Q (z−1)u(k − d) − R(z−1)yr (k) (6)

where yr (k) is reference signal, P(z−1) = p0+
∑np

i=1 piz
−i, Q (z−1) =

1 +
∑nq

i=1 qiz
−i, R(z−1) = 1 +

∑nr
i=1 riz

−i. Introducing equa-
tion P(z−1)C(z−1) = A(z−1)L(z−1) + z−dG(z−1) and combining
equations (1) and (6) results in

C(z−1)ya(k + d) = F (z−1)u(k) + G(z−1)y(k) + H(z−1)yr (k + d)

+ C(z−1)ē(k + d)

(7)

where F (z−1) = Q (z−1)C(z−1) + B(z−1)L(z−1), H(z−1) = −C(z−1)
(z−1), ē(k) = L(z−1)e(k). The detailed derivation of Eq. (7) is
hown in Appendix A.4. The roots of characteristic polynomial
4

D(z−1) = P(z−1)B(z−1) + Q (z−1)A(z−1) should be located inside
unit circle on z-plane for the stability of system, which can be
provided by selecting the appropriate P(z−1) and Q (z−1). Let θT

=

[f0, f1, . . . , fnf , g0, g1, . . . , gng , h0, h1, . . . , hnh ] be the vector of un-
known parameters, and the system in Eq. (7) can be rewritten as

ya(k + 1) = ΦT (k)θ(k) − yr (k + 1) + ē(k + 1) (8)

where ΦT (k) = [u(k), . . . , u(k− nf ), y(k), . . . , y(k− ng ), yr (k); ...;

yr (k − nh)], ē(k) is ALD noise with asymmetry parameter τ̄ . For
ease of exposition in the following content, time delay d is set to
1 and C(z−1) = 1.

3.2. Recursive quantile estimation

The RLS estimator is an unbiased estimator with minimum
variance and is applicable for the system with white Gaussian
noise; however, its performance is poor in non-Gaussian, es-
pecially in sharp or thick-tail noise scenarios [37]. Extensive
literature indicated that noise distributions with sharp and thick
tail are more common than Gaussian distributions in practice.
Roger Koenker proposed Quantile Regression, which has been
widely leveraged in non-Gaussian noise distribution cases [45].
However, this method is based on MCMC sampling approaches,
e.g., Metropolis–Hastings and Gibbs samplings, which are not
suitable for real-time control processes. Extension on quantile
regression is necessary to gain the adaptive feature that is capa-
ble of estimating model parameters in real-time. To this end, a
recursive quantile estimator, which is the basic component for
the construction of the BQSE, is introduced in this section.

Given random variable Φ , the conditional cumulative distribu-
tion function of Y is FY |Φ (y), and the τ th (0 < τ < 1) conditional
quantile of Y is defined as

Qτ (y|Φ) = inf
y

{y : FY |Φ (y) ⩾ τ } (9)

where inf(·) is infimum function. Consider the linear model in Eq.
(8) with n samples

y(k + 1) = ΦT (k)θ(k) + e(k + 1), k = 1, 2, . . . , n (10)

where (Φ(k), y(k + 1)) is an observation sample, e(k + 1) is
the noise whose τ th quantile is supposed to be zero. The τ th
conditional quantile of y(k + 1) can be specified as Q {y(k +
τ



X. Ma, F. Qian, S. Zhang et al. ISA Transactions xxx (xxxx) xxx

1
r

w

T

T
p

3

r
i
u
b
o
c
B
t

w
d
t
τ

s
p

p
{

a
b

w
f

w

t

w

t

T

3

y
p
w
i
l

m

w
i
i

)|Φ(k)} = ΦT (k)θτ (k). The τ th quantile estimation of θ is
esolved by minimizing the loss function
n∑

k=1

ρτ {y(k + 1) − ΦT (k)θτ (k)} (11)

here

ρτ (u) =

{
τu2, u ⩾ 0

(τ − 1)u2, u < 0 (12)

he minimization of Eq. (11) can be rewritten as

θτ = argmin
n∑

k=1

⎡⎣(1 − τ )
∑

y(k+1)<ΦT (k)θ(k)

(y(k + 1)

− ΦT (k)θ(k))2 + τ
∑

y(k+1)≥ΦT (k)θ(k)

(y(k + 1)

−ΦT (k)θ(k))2

⎤⎦
(13)

Eq. (13) is a piecewise quadratic function, and the solution of Eq.
(13) yields the proposed RQE, which can be calculated iteratively
as:

K (k + 1) = P(k)Φ(k)[λ(k) + ΦT (k)P(k)Φ(k)]−1

θ̂(k + 1) = θ̂(k) + K (k + 1)[y(k + 1) − θ̂
T
(k)Φ(k)]

P(k + 1) = [I − K (k + 1)ΦT (k)]P(k)

(14)

where

λ(k) =

{
1/(1 − τ ), y(k + 1) < θ̂

T
(k)Φ(k)

1/τ , y(k + 1) ≥ θ̂
T
(k)Φ(k)

(15)

he detailed derivation of Eqs. (14) and (15) is shown in Ap-
endix A.5.

.3. Bayesian quantile sum estimation

According to Section 3.2, we will get different estimated pa-
ameters by setting the asymmetry parameter τ . Nevertheless, it
s difficult to find an optimal τ since the distribution of noise is
nknown. In this subsection, we proposed the BQSE that com-
ines information of multiple recursive quantile estimators into
ne robust parameter estimator. In the BQSE, each individual re-
ursive quantile estimator is assigned with a weight calculated by
ayesian posterior probability before being integrated to generate
he final estimator.

The BQSE estimates θ̂ by solving the loss function

θ̂ = argmin
m∑
i=1

n∑
k=1

⎡⎣(1 − τi)
∑

y(k+1)<ΦT (k)θ(k)

(y(k + 1)

− ΦT (k)θ(k))2 + τi
∑

y(k+1)≥ΦT (k)θ(k)

(y(k + 1)

−ΦT (k)θ(k))2

⎤⎦
(16)

here 0 < τ1 < τ2 < · · · < τi < · · · < τm < 1. It is
ifficult to solve the minimum of function (16) directly. According
o Eq. (14), we can firstly get the estimated parameter θ̂i for each
i, and then obtain the integrated estimation of parameter θ̂ as the
um of every quantile estimated parameter θ̂i with conditional
osterior probabilities as their weights.
5

The conditional posterior probability is based on the princi-
le of Bayesian posterior probability. Given observations y =

y1, y2, . . . , yn}, the conditional probability of θ for y is defined
s π (θ|y). According to bayesian posterior probability, π (θ|y) can
e written as

π (θ|y) =
fpdf (y|θ)π (θ)∫

Θ fpdf (y|θ)π (θ)dθ
(17)

here Θ is parameter space, π (θ) is the prior distribution of θ,
pdf (y|θ) is the probability density function of the model.

The discrete posterior distribution can be defined as

π (θi|y) =
fpdf (y|θi)π (θi)∑
i fpdf (y|θi)π (θi)

(18)

here π (θi), i = 1, 2, . . . ,m is prior distribution sequence,
fpdf (y|θi) has the form

fpdf (y|θi)

= τi(1 − τi)

{
e−(1−τi)∥y−ΦT θi∥, (y − ΦT θi) < 0

e−τi∥y−ΦT θi∥, (y − ΦT θi) ≥ 0

(19)

According to Eqs. (14) and (16), the iterative process for es-
imation of parameter θi under the asymmetry parameter τi is

K i(k + 1) = P i(k|k)Φ(k)[λi(k) + ΦT (k)P i(k)Φ(k)]−1

θ̂i(k + 1) = θ̂i(k) + K i(k + 1)[y(k + 1) − θ̂
T
i (k)Φ(k)]

P i(k + 1) = [I − K i(k + 1)ΦT (k)]P i(k)

(20)

here

λi(k) =

{
1/(1 − τi), y(k + 1) < θ̂

T
i (k)Φ(k)

1/τi, y(k + 1) ≥ θ̂
T
i (k)Φ(k)

(21)

The BQSE for θ is

θ̂(k) =

m∑
i=1

π (θ̂i|y)θ̂i(k) (22)

he covariance matrix P(k + 1) is

P(k + 1) =

m∑
i=1

π (θ̂i|y)P i(k) (23)

he structure of BQSE is shown in the dashed lines of Fig. 7.

.4. Certainty equivalence control

The Certainty Equivalence (CE) control is based on the anal-
sis of stochastic systems [46–48]. In CE control, the estimated
arameters in Section 3.3 are regarded as real model parameters
hen calculating the control law. This method’s advantage is that

t can estimate the model parameters and calculate the control
aw simultaneously for the stochastic system.

The control law u∗ at the kth time instant relies on the mini-
ization of the output variance

u∗(k) = argmin
u(k)

E
{
[ya(k + 1)]2|θk, Ik, u(k)

}
(24)

here ya(k + 1) is the auxiliary output signal at the (k + 1)th
nstant, θk is system parameter, Ik is historical information which
s known and measurable

Ik = {u(1), . . . , u(k − 1), y(1), . . . , y(k)}, (25)

The system in Eq. (8) at the (k + 1)th instant is rewritten as
T

¯ (26)
ya(k + 1) = f0(k)u(k) + α (k)ϕ(k) + e(k + 1)
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here parameter vector θ(k) and observation vector Φ(k) are
artitioned as

θT (k) =

[
f0(k)

... αT (k)
]

(27)

ΦT (k) =

[
u(k)

... ϕT (k)
]

(28)

Combine the cost function (24) and the system in Eq. (26)

J(k) =E
{
[ya(k + 1)]2|θk, Ik, u(k)

}
=E

{
[f0(k)u(k) + αT (k)ϕ(k) − yr (k + 1)

+ē(k + 1)]2|θk, Ik, u(k)
} (29)

In CE control principle, the estimated parameters f̂0(k) and α̂
T (k)

are equal to the real parameters. As a result, the real parameter
in cost function is replaced by estimations and shown as

J(k) =E
{
[f̂0(k)u(k) + α̂

T (k)ϕ(k) − yr (k + 1)

+ē(k + 1)]2|Ik, u(k)
} (30)

Calculate the expectation in Eq. (30)

J(k) = E
{
[f̂0(k)u(k) + α̂

T (k)ϕ(k) − yr (k + 1)]2
}

+ E
{
2[f̂0(k)u(k) + α̂

T (k)ϕ(k) − yr (k + 1)]ē(k + 1)
}

+ E
{
ē2(k + 1)

}
= [f̂0(k)u(k) + α̂

T (k)ϕ(k) − yr (k + 1)]2

+ 2[f̂0(k)u(k) + α̂
T (k)ϕ(k) − yr (k + 1)]µLap

+ σLap

(31)

where µLap is the mean of ē(k + 1) and σLap is its variance.
The control law can be obtained from the differential of J(k)

in Eq. (31)
∂ J(k)
∂u(k)

= 2f̂0(k)[f̂0(k)u(k) + α̂
T (k)ϕ(k) − yr (k + 1)]

+ 2f̂0(k)µLap = 0
(32)

nd then we obtain the CE control law u∗(k) as

u∗(k) =
yr (k + 1) − α̂

T (k)ϕ(k) − µLap

f̂0(k)
(33)

here µLap = {σ (1 − 2τ )}/{τ (1 − τ )}, τ =
∑m

i=1 π (θ̂i|y)τ̂i.

4. Experiment implementation

In this section, the proposed adaptive quantile control is im-
plemented and verified in comparison with five stochastic system
controllers. Detailedly, the parameter estimation performance of
BQSE is tested in Section 4.1; the performance of the adap-
tive quantile controller for minimum-phase and nonminimum-
phase systems is tested in Sections 4.2 and 4.3, respectively.
The comparisons of different control strategies are shown in
Section 4.4.

Table 1 summarizes the implementation procedures of the
proposed approach for clarity, and detailed settings of those
procedures are shown in the following contents.

4.1. BayesIan quantile sum estimator

In this subsection, simulations are conducted to compare the
model parameter estimation performance of BQSE (with τ un-
known) with RLS and RQE (with τ known). The tested samples
6

Table 1
The procedure of adaptive quantile control with BQSE.
Initialization: Initialize the parameter vector θi(1), history information I1 ,
covariance Pi(1), Bayesian posterior probability πi(1), and asymmetry
parameter τi ∗

1 .

Computation:
(1) Estimate θ̂i(k + 1) based on Eq. (15) at iteration k + 1 for every
asymmetry parameter τi;
(2) Calculate Bayesian posterior probability π (θi|y) based on Eq. (13) at
iteration k + 1;
(3) Calculate θ̂(k + 1) and P(k + 1) at iteration k + 1 using Eqs. (17) and
(18);
(4) Calculate the control law u∗(k + 1) in Eq. (28) ∗

2;
(5) ∗

3 .

Notice:
∗
1: The initial value of Bayesian posterior probabilities should be summed

up to 1. The value of asymmetry parameter is best to distribute in interval
(0, 1) uniformly.
∗
2: The expectation of asymmetric laplace noise in Eq. (18) is updated in

every iteration. The asymmetry parameter τ in µLap is updated by∑m
i=1 π (θ̂i|y)τ̂i .

∗
3: Apply u∗(k + 1) for the control process and repeat step (1) to step (4)

in every iteration.

are generated by exerting control signal sequence into a system
described in Eq. (1) with parameters

a1 = −1.41, a2 = 0.9, n = 2,
b0 = 0.5, m = 0, d = 1,
σ = 0.02, τ = 0.9, µ = 0.

(34)

The exerted control signal is set by u(k) = [yr (k + 1) − a1y(k) −

a2y(k − 1)]/b0, where yr is a 0.1 Hz square wave filtered by
transfer function 1/(s + 1). The ALD noise e(k) added into this
system is set as

e(k) =

{
µ +

σ
1−τ

ln 1
τ
x(k), 0 < x(k) < τ

µ −
σ
τ
ln 1

1−τ
(1 − x(k)), τ ≤ x(k) < 1

(35)

where x(k) is uniform distribution. We collected 100 samples of
{u(k), y(k)} for the parameter estimation simulation.

The initial parameter is set as θT
i (1) = [0.1, 0.1, 0.1], and

the initial P i is P i(1) = 100I . The initial Bayesian posterior
probabilities for different asymmetry parameters τi are set as
{τ1 = 0.9, π1(1) = 1/9}, {τ2 = 0.8, π2(1) = 1/9}, {τ3 =

0.7, π3(1) = 1/9}, {τ4 = 0.6, π4(1) = 1/9}, {τ5 = 0.5, π5(1) =

1/9}, {τ6 = 0.4, π6(1) = 1/9}, {τ7 = 0.3, π7(1) = 1/9}, {τ8 =

0.2, π8(1) = 1/9}, {τ9 = 0.1, π9(1) = 1/9}, where Bayesian
posterior probabilities are summed up to 1.

Fig. 8 shows the estimation of system output with different pa-
rameter estimation methods. The system output y(k) is predicted
based on real-time estimated parameters θ at the kth iteration.
In the legend of Fig. 8, ‘Samples’ denotes the generated sample,
‘real’ represents the samples from the real model without noises,
‘RLS’ means Recursive Least Squares, ‘RQE’ denotes Recursive
Quantile Estimation with τ = 0.9, and ‘BQSE’ is the proposed
Bayesian Quantile Sum Estimator with τ unknown. Since the
RQE is configured with exactly real asymmetry parameter, RQE is
regarded as the ideal and benchmark estimator in this simulation.
The estimated outputs from RQE and BQSE are closer to real ones
than those from RLS. The curve of BQSE coincides with that of
RQE about 15 iterations after the beginning of the iteration, which
indicates the Bayesian posterior probability of BQSE converged
at the 15th iterations. Fig. 9 shows the convergence of Bayesian
posterior probability for different asymmetry parameters in BQSE.
The posterior probability π1 with τ = 0.9 converged to 1 after 15
iterations, and the other posterior probabilities converged to 0.
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Fig. 8. The estimation of system output for RLS, RQE and BQSE.

Fig. 9. The Bayesian posterior probability for different τ .

able 2
omparison of three estimation methods.
Estimation method Average performance

RLS 0.0620
RQE 0.0242
BQSE 0.0380

Table 2 shows the average of 1000 Monte Carlo simulation re-
ults for estimation performance. The performance for estimation
n one single simulation is evaluated as accumulated error

V =
1
N

N∑
k=1

[yest (k) − yreal(k)]2, (36)

where yest is the estimated output for different methods, N is the
simulation length. The accumulated error V for ith Monte Carlo
simulation is denoted as V (i). The average accumulated error of
M Monte Carlo simulation is computed as

V =
1
M

M∑
i=1

V (i). (37)

he results shown in Table 2 show that the average accumulated
rror of BQSE is lower than RLS and is closer to RQE, which means
QSE converges to the real asymmetry parameter.

.2. Adaptive quantile control for minimum-phase system

The following simulation is carried out for a minimum-phase
ystem. This simulation illustrates how the considered adaptive
7

Fig. 10. The system output for optimal control, RLS and BQSE.

Fig. 11. The control signal of optimal control, RLS and BQSE.

quantile controllers perform. We compare the control perfor-
mance of BQSE based adaptive quantile control with RLS based
self-tuning control and optimal control. Since the optimal control
is configured with exactly real model parameters, it is treated as
the ideal and benchmark controller in this simulation. Consider a
minimum-phase system described in Eq. (1) with parameters as:

a1 = −1.7, a2 = 0.7, n = 2,
b0 = 1, b1 = 0.5, m = 1, d = 1,
σ = 0.01, τ = 0.95, µ = 0.

(38)

The reference signal yr is a 0.1 Hz square wave filtered by trans-
fer function 1/(s + 1). The initial parameter is set as θT

i (1) =

[1, 1, 1, 1], and the initial P is P(1) = 100I . The initial control
signal is set to u(1) = 0.1. The initial Bayesian posterior proba-
bility is set as {τ1 = 0.95, π1(1) = 0.1}, {τ2 = 0.85, π2(1) = 0.1},
{τ3 = 0.75, π3(1) = 0.1}, {τ4 = 0.65, π4(1) = 0.1}, {τ5 =

0.55, π5(1) = 0.1}, {τ6 = 0.45, π6(1) = 0.1}, {τ7 = 0.35, π7(1) =

0.1}, {τ8 = 0.25, π8(1) = 0.1}, {τ9 = 0.15, π9(1) = 0.1},
{τ10 = 0.05, π10(1) = 0.1}.

Fig. 10 shows the system output y for optimal control, RLS,
and BQSE, respectively. The system output for BQSE well tracked
the reference signal yr and converged to the output of optimal
control within 20 iterations. Fig. 11 shows the control signal from
the different control approaches, where the control signal of BQSE
is closer to optimal control than that of RLS. Fig. 12 shows the

convergence of Bayesian posterior probability π for BQSE. The
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Fig. 12. The Bayesian posterior probability.

Fig. 13. The average control tracking performance index of 100 Monte Carlo
simulations.

posterior probability π1with parameter τ1 = 0.95 converged to
, and other posterior probabilities converged to 0 soon after the
ontrol iterations begin.
To quantitatively investigate control tracking performance, we

efine the performance index as following

J =
1
N

N∑
k=1

[y(k) − yr (k)]2. (39)

here y(k) and yr (k) are system output and reference signal at
the kth iteration respectively, and N is the simulation length. The
erformance index J for ith Monte Carlo simulation is denoted as
(i). With M Monte Carlo running, the average performance index
s set as

J =
1
M

M∑
i=1

J(i). (40)

here J̄(k) is the average performance index at the kth iteration.
Fig. 13 shows the average of 100 Monte Carlo simulation re-

ults for BQSE, RLS, and optimal control in every control iteration.
he average control cost for BQSE is closer to optimal control
han that of RLS. Table 3 shows the average tracking performance
ndex at the 100th iteration. The performance index of adaptive
uantile control with BQSE is closer to optimal control than RLS.
8

Fig. 14. The output of optimal control, RLS and BQSE.

Fig. 15. The control signal of optimal control, RLS and BQSE.

Table 3
Comparison of three controller.
Estimation method Average performance index

Optimal 0.0460
RLS 0.9703
BQSE 0.3546

4.3. Adaptive quantile control for nonminimum-phase system

Consider the nonminimum-phase system described in Eq. (1)
with parameters as:

a1 = −2, a2 = 0.7, n = 2,
b0 = 1, b1 = 2, m = 1, d = 1,
σ = 0.02, τ = 0.2, µ = 0.

(41)

The initial value of different quantile and the corresponding initial
Bayesian posterior probability is set as {τ1 = 0.9, π1(1) = 0.2},
{τ2 = 0.7, π2(1) = 0.2}, {τ3 = 0.5, π3(1) = 0.2}, {τ4 =

0.3, π4(1) = 0.2}, {τ5 = 0.1, π5(1) = 0.2}.
Fig. 14 shows the system output y for optimal control, RLS,

and BQSE, respectively. The system output for BQSE tracked the
reference signal yr and converged to the output of optimal con-
trol within about 15 iterations. Fig. 15 shows the control signal.
The control signal of BQSE is closer to that of optimal control
than RLS, indicating a more optimized control sequence gen-
erated from BQSE than RLS. Fig. 16 shows the convergence of
Bayesian posterior probability π for BQSE. The posterior prob-
ability π with asymmetry parameter τ = 0.2 converged to 1,
5 5
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Fig. 16. The Bayesian posterior probability.

Fig. 17. The average control tracking performance index of 100 Monte Carlo
simulations.

and other posterior probabilities converged to 0 within about 15
iterations.

Fig. 17 shows the average of 100 Monte Carlo simulation
results for BQSE, RLS, and optimal control in every iteration,
where the evaluation criterion depicted in Eq. (40) is adopted in
performance evaluation. The average tracking performance index
for BQSE is closer to optimal control than RLS. Table 4 shows the
average performance index for the considered control approached
at the 100th iteration. The result of adaptive quantile control with
BQSE is closer to the ideal strategy of optimal control than RLS,
which produces a higher deviation from it.

4.4. Extensive comparison with adaptive quantile control and other
approaches

In this subsection, Q-Learning based optimal tracking control
(QL) [20], output error model based controller with learning
adaptive estimator (AE) [23,24], and adaptive dual model pre-
dicted control (DMPC) [19] are implemented for an extensive
comparison. We consider the system described in Eq. (1) with
parameters the same as that in Eq. (38). Notice that Eq. (1) is
converted to the state equation shown in Eq. (42) and the output
error model shown in Eq. (43) to fit the calculations of the QL
approach and the approach of AE, respectively.

x(k + 1) =

[
0 1

−0.7 2

]
x(k) +

[
1
4

]
u(k)

(42)

y(k + 1) = [1 0] x(k + 1) + e(k + 1)

9

Fig. 18. The output of system with BQSE, QL, AE and DMPC.

Table 4
Comparison of three controller.
Estimation method Average performance index

Optimal 0.0587
RLS 1.2979
BQSE 0.5032

Table 5
Comparison of four controllers.
Estimation method Average performance index

BQSE 0.0109
QL 0.0185
AE 0.0535
DMPC 0.0174

[ye(k + 1)
ye(k)
u(k)

]
=

[2 −0.7 2
1 0 0
0 0 0

][ ye(k)
ye(k − 1)
u(k − 1)

]
+

[1
0
1

]
u(k)

y(k + 1) = [1 0 0]

[ye(k + 1)
ye(k)
u(k)

]
+ e(k + 1)

(43)

he initial state is set as y(1) = −2.5, u(1) = 0.1 and the
eference output is set as yr = 0.

Fig. 18 shows the trajectories of system output y under dif-
erent control methods. The QL needs long-time exploration dur-
ng the start-up period. The AE needs a previous estimation for
he initial parameter H(1) to guarantee the convergence of the
ontroller. Simulations in Sections 4.2 and 4.3 show that the pro-
osed adaptive quantile control needs less adaptation period even
iven arbitrary initial parameters, and we set the θ (1) with offline
stimation in this simulation. DMPC reduces the overshoots at
he start-up period by adjusting the parameter added with dual
roperties. All of the control methods track the reference signal
ell after about 60 control iterations. To numerically analyze the
xperimental results, we use the performance index presented
n Eq. (40) to evaluate the control performance of these con-
rollers from 101 to 200 iterations. We conducted 100 Monte
arlo simulations and calculated the average value. The result is
hown in Table 5. The BQSE obtained the lowest value, indicating
hat this method obtains more accurate parameter estimation and
esults in lower tracking error under the circumstance of ALD
oise.
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. Conclusion

Our adaptive quantile control with BQSE is distinct from pre-
ious approaches, for it is the first consideration of a stochastic
ystem with ALD noise instead of Gaussian noise as commonly
onsidered in adaptive control. The designed BQSE provides real-
ime estimation of model parameters during the control process
nd has a more accurate estimation in the case where ALD noise is
ontained in system dynamics. The Bayesian posterior probability
or different quantile values can converge within short execution
terations given arbitrary initial model parameters, which ulti-
ately leads to more efficient control law derivation in adaptive
ontrol. Numerical simulations verify the parameter estimation
nd output tracking performances of the proposed method in
tochastic system control. This control strategy can be applied in
ome practical cases where the system suffered from noises with
eak, thick-tail, and skewed characteristics, e.g., the decision-
aking and macro-control for social economic systems, resource
tilization and allocation of medical resources, the regulation of
cosystems.
In the future work, we plan to develop an adaptive quantile

ontrol with dual properties, where we expect to reduce the
vershoots during phases of rapid adaptation, and address the
hallenge of measuring the parameter uncertainties for the sys-
em with ALD noises in dual control. Furthermore, the adaptive
uantile control will be extended to multi-input multi-output
ystems for more practical cases.
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ppendix

.1. Cumulative distribution function for ALD

If x < µ∫ x

−∞

f (t)dt =

∫ x

−∞

τ (1 − τ )
σ

e
1−τ
σ (t−µ)dt

= τe
1−τ
σ (t−µ)

|
x
−∞

= τe
1−τ
σ (x−µ)

(44)

If x ≥ µ∫ x

−∞

f (t)dt =

∫ µ

−∞

f (t)dt +

∫ x

µ

f (t)dt

= τe
1−τ
σ (t−µ)

|
µ
−∞+

∫ x

µ

τ (1 − τ )
σ

e
−τ
σ (t−µ)dt

= τe
1−τ
σ (t−µ)

|
µ
−∞−(1 − τ )e

−τ
σ (t−µ)

|
x
µ

= 1 − (1 − τ )e−
τ
σ (x−µ)

(45)
10
A.2. Inverse function for ALD cumulative distribution function

If x < µ, let y = τe
1−τ
σ (x−µ), then y ∈ (0, τ )

y
τ

= e
1−τ
σ (x−µ)

⇒ ln
y
τ

=
1 − τ

σ
(x − µ)

⇒ x = µ +
σ

1 − τ
ln

y
τ

(46)

If x ≥ µ, let y = 1 − (1 − τ )e−
τ
σ (x−µ), then y ∈ [τ , 1)

1 − y
1 − τ

= e
−τ
σ (x−µ)

⇒ ln
1 − y
1 − τ

=
−τ

σ
(x − µ)

⇒ x = µ −
σ

τ
ln

1
1 − τ

(1 − y)
(47)

A.3. Expectation and variance of ALD

The expectation for ALD is E(x)

E(x) =

∫
+∞

−∞

xf (x)dx

=
τ (1 − τ )

σ

[∫ µ

−∞

xe
1−τ
σ (x−µ)dx +

∫
+∞

µ

xe
−τ
σ (x−µ)dx

]
=

µτ (1 − τ ) + σ − 2τσ

τ (1 − τ )

(48)

hen µ = 0, E(x) =
σ (1−2τ )
τ (1−τ ) .

The variance for ALD is D(x)

E(x2) =

∫
+∞

−∞

x2f (x)dx

=
τ (1 − τ )

σ

[∫ µ

−∞

x2e
1−τ
σ (x−µ)dx +

∫
+∞

µ

x2

e
−τ
σ (x−µ)dx

]
= τµ2

−
2στ

1 − τ
(µ −

σ

1 − τ
) + (1 − τ )µ2

+
2σ (1 − τ )

τ
(µ +

σ

τ
)

(49)

when µ = 0, E(x2) =
2τσ2

(1−τ )2
+

2(1−τ )σ2

τ2
.

D(x) = E(x2) − E2(x)

=
2τσ 2

(1 − τ )2
+

2(1 − τ )σ 2

τ 2 −
σ 2(1 − 2τ )2

τ 2(1 − τ )2

=
σ 2(1 − 2τ + 2τ 2)

τ 2(1 − τ )2

(50)

A.4. Auxiliary output

Combining system (1) and auxiliary output (6) results in

zdya(k) = zdP(z−1)y(k) + Q (z−1)u(k) − zdR(z−1)yr (k)

⇒ zdya(k) = zdP(z−1)
B(z−1)u(k − d) + C(z−1)e(k)

A(z−1)
+ Q (z−1)u(k) − zdR(z−1)yr (k)

⇒ zdC(z−1)ya(k) =

[
B(z−1)P(z−1)C(z−1)

A(z−1)
+ Q (z−1)C(z−1)

]
u(k)

+ zd
C(z−1)P(z−1)C(z−1)

A(z−1)
e(k) − zdR(z−1)C(z−1)yr (k)

(51)
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Submitting P(z−1)C(z−1) = A(z−1)L(z−1)+ z−dG(z−1) into (45)

zdC(z−1)ya(k) =
[
B(z−1)L(z−1) + Q (z−1)C(z−1)

]
u(k) + G(z−1)y(k)

+ zdC(z−1)L(z−1)e(k) − zdR(z−1)C(z−1)yr (k)

(52)

he Eq. (52) can be rewritten as Eq. (7).

.5. Recursive quantile estimation

According to Least Square, the θ̂ at the kth iteration is

θ̂k = (ΦT
kW kΦk)−1ΦT

kW kY k (53)

here

W k−1 =

[
W k−1 · · ·

· · · τk

]
(54)

Φk =

[
Φk−1
ϕ(k)

]
(55)

Y k =

[
Y k−1

y(k + 1)

]
(56)

et

P(k) = [ΦT
kW kΦk]

−1

= [ΦT
k−1W k−1Φk−1 + τϕ(k)ϕT (k)]−1

= [P−1(k − 1) + τϕ(k)ϕT (k)]−1

(57)

hen Eq. (57) can be written as

P−1(k) = P−1(k − 1) + τϕ(k)ϕT (k) (58)

According to Eqs. (53) and (57)

θ̂(k − 1) = (ΦT
k−1W k−1Φk−1)−1ΦT

k−1W k−1Y k−1

= P(k − 1)ΦT
k−1W k−1Y k−1

(59)

According to Eqs. (58) and (59)

ΦT
k−1W k−1Y k−1 = P−1(k − 1)θ̂(k − 1)

= [P−1(k) − τϕ(k)ϕT (k)]θ̂(k − 1)
(60)

The estimated θ̂ at the kth iteration can be written as

θ̂(k) = P(k)ΦT
kW kY k

= P(k)[ΦT
k−1W k−1Y k−1 + τϕ(k)y(k)]

= P(k){[P−1(k) − τϕ(k)ϕT (k)]θ̂(k − 1) + τϕ(k)y(k)}

= θ̂(k − 1) + τP(k)ϕ(k)[y(k) − ϕT (k)θ̂(k − 1)]

= θ̂(k − 1) + K (k)[y(k) − ϕT (k)θ̂(k − 1)]

(61)

here K (k) = τP(k)ϕ(k).
Eq. (57) can be rewritten as

P(k) = P(k − 1) −
τP(k − 1)ϕ(k)ϕT (k)P(k − 1)

I + τϕT (k)P(k − 1)ϕ(k)
(62)

Substituting Eq. (62) into K (k + 1) results in

K (k) =
τP(k − 1)ϕ(k)

I + τϕT (k)P(k − 1)ϕ(k)
(63)

According to Eqs. (62) and (63), it can be obtained that

P(k) = [I − K (k)ϕT (k)]P(k − 1) (64)
11
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