CHALMERS

UNIVERSITY OF TECHNOLOGY

Primers or reminders the effects of existing review comments on code
review

Downloaded from: https://research.chalmers.se, 2025-11-10 14:37 UTC

Citation for the original published paper (version of record):

Spadini, D., Calikli, G., Bacchelli, A. (2020). Primers or reminders the effects of existing review
comments on code review. Proceedings - International Conference on Software Engineering:
1171-1182. http://dx.doi.org/10.1145/3377811.3380385

N.B. When citing this work, cite the original published paper.

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained
for all other uses, in any current or future media, including reprinting/republishing this material for

advertising or promotional purposes, or reuse of any copyrighted component of this work in other
works.

(article starts on next page)

N)
)
Check for
updates

2020 IEEE/ACM 42nd International Conference on Software Engineering (ICSE)

Primers or Reminders?
The Effects of Existing Review Comments on Code Review

Davide Spadini
d.spadini@sig.eu
Software Improvement Group &
Delft University of Technology
Amsterdam & Delft, The Netherlands

ABSTRACT

In contemporary code review, the comments put by reviewers on a
specific code change are immediately visible to the other reviewers
involved. Could this visibility prime new reviewers’ attention (due
to the human’s proneness to availability bias), thus biasing the code
review outcome? In this study, we investigate this topic by con-
ducting a controlled experiment with 85 developers who perform
a code review and a psychological experiment. With the psycho-
logical experiment, we find that ~70% of participants are prone to
availability bias. However, when it comes to the code review, our
experiment results show that participants are primed only when
the existing code review comment is about a type of bug that is not
normally considered; when this comment is visible, participants are
more likely to find another occurrence of this type of bug. More-
over, this priming effect does not influence reviewers’ likelihood of
detecting other types of bugs. Our findings suggest that the current
code review practice is effective because existing review comments
about bugs in code changes are not negative primers, rather positive
reminders for bugs that would otherwise be overlooked during code
review. Data and materials: https://doi.org/10.5281/zenodo.3653856

CCS CONCEPTS

« Software and its engineering — Software verification and vali-
dation.

KEYWORDS

Code Review, Priming, Availability Heuristic

ACM Reference Format:

Davide Spadini, Giil Calikli, and Alberto Bacchelli. 2020. Primers or Re-
minders? The Effects of Existing Review Comments on Code Review. In
42nd International Conference on Software Engineering (ICSE °20), May 23—
29, 2020, Seoul, Republic of Korea. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3377811.3380385

1 INTRODUCTION

Peer code review is a well-established practice that aims at main-
taining and promoting source code quality, as well as sustaining

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICSE 20, May 23-29, 2020, Seoul, Republic of Korea

© 2020 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-7121-6/20/05.

https://doi.org/10.1145/3377811.3380385

Giil Calikli
gul.calikli@gu.se
Chalmers & University of Gothenburg
Gothenburg, Sweden

1171

Alberto Bacchelli
bacchelli@ifi.uzh.ch
University of Zurich
Zurich, Switzerland

development teams by means of improved knowledge transfer,
awareness, and solutions to problems [3, 5, 27, 41].

In the code review type that is most common nowadays [7],
the author of a code change sends the change for review to peer
developers (also knowns as reviewers), before the change can be
integrated in production. Previous research on three popular open-
source software projects has found that three to five reviewers are
involved in each review [44]. Using a software review tool, the
reviewers and the author conduct an asynchronous online discus-
sion to collectively judge whether the proposed code change is
of sufficiently high quality and adheres to the guidelines of the
project. In widespread code review tools, reviewers’ comments are
immediately visible as they are written by their authors; could this
visibility bias the other reviewers’ judgment?

If we consider the peer review setting for scientific articles, re-
viewers normally judge (at least initially) the merit of the submitted
work independently from each other. The rationale behind such
preference is to mitigate group members’ influences on each other
that might lead to errors in the individual judgments [34]. It is
reasonable to think that also in code review, the visibility of exist-
ing review comments made by other developers may affect one’s
individual judgment, leading to an erroneous judgment.

An existing comment may prime new reviewers on a specific
type of bug, due to the availability bias [30]. Availability bias is
the tendency to be influenced by information that can be easily
retrieved from memory (i.e,, easy to recall) [21]. This bias is one
of the many cognitive biases identified in psychology, sociology,
and management research [30]. Cognitive biases are systematic
deviations from optimal reasoning [30, 47, 48]. In the cognitive
psychology literature, Kahneman and Tversky showed that humans
are prone to availability bias [51]. For example one may avoid
traveling by plane after having seen recent plane accidents on the
news, or may see conspiracies everywhere as a result of watching
too many spy movies [21]. Therefore, it seems fitting to imagine
that a reviewer may be biased toward a certain bug type, by readily
seeing another reviewer’s comment on such a bug type. This bias
would likely result in a distorted code review outcome.

In this paper, we present a controlled experiment we devised
and conducted to test the current code review setup and review-
ers’ proneness to availability bias. More specifically, we examine
whether priming a reviewer on a bug type (achieved by showing
an existing review comment) biases the outcome of code review.

Our experiment was completed by 85 developers, 73% of which
reported to have at least three years of professional development
experience. We required each developer to conduct a code review in
which an existing comment was either shown (treatment group) or

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3377811.3380385&domain=pdf&date_stamp=2020-10-01

not (control group). We then measured to what extent the reviewers
could find—in the same code change—(1) another bug of the same
type as the primed one and (2) a bug of a different type. We created
a setup with two different code changes to review.

Based on the availability bias literature, we expected the primed
participants (treatment group) to be more likely to find the bug
of the same type (as it is already available in memory), but less
likely to find the other bug type (since distracted by the comment).
Surprisingly, instead, our results show that—for three out of four
bugs—the code review outcome does not change between the treat-
ment and control groups. After testing our results for robustness,
we could find no evidence indicating that, for these three bugs,
the outcome of the review is biased in the presence of an existing
review comment priming them on a bug type. Only for one bug
type, though, we have strong evidence that the behavior of the
reviewers changed: When the previous review comment was about
a type of bug that is normally not considered during developers’
coding/review practices (i.e., checking for Nul1PointerException
on a method’s parameters), the reviewers were more likely to find
the same type of bug with a strong effect.

Overall, we interpret the results of our experiment as an indica-
tion that existing review comments do not act as negative primers,
rather as positive reminders. As such, our experiment provides evi-
dence that the current collaborative code review practice, adopted
by most software projects, could be more beneficial than separate
individual reviews, not only in terms of efficiency and social advan-
tages, but also in terms of its effectiveness in finding bugs.

2 BACKGROUND AND RELATED WORK

In this section, we review the literature on human aspects in con-
temporary code review practices, as well as studies on scientific
peer review. Subsequently, we provide background on cognitive
biases in general and present relevant studies in Software Engi-
neering (SE). We also provide a separate subsection on availability
bias, which consists of some theoretical background and existing
research on availability bias in SE.

2.1 Human aspects in modern code review

Past research has provided evidence that human factors determine
code review performance to a significant degree and that code
review is a collaborative process [3]. Empirical studies conducted
at companies such as Google [41] and Microsoft [3] revealed that,
besides finding defects and ensuring maintainability, motivations
for reviewing code are knowledge transfer (e.g., education of junior
developers) and improving shared code ownership, which is closely
related to team awareness and transparency.

Besides being a collaborative activity, code review is also de-
manding from a cognitive point of view for the individual reviewer.
A large amount of research is focused on improving code review
tools and processes based on the assumption that reducing review-
ers’ cognitive load improves their code review performance [7, 50].
For instance, Baum et al. [9] argue that the reviewer and review
tool can be regarded as a joint cognitive system, also emphasizing
the importance of off-loading cognitive process from the reviewer
to the tool. Ebert et al. [16] conducted a study to understand the
factors that confuse code reviewers through manual analysis of

800 comments from code review of the Android project, and later
they built a series of automatic classifiers (e.g., Multinomial Naive
Bayes, OneR) for identification of confusion in review comments.
Baum et al. [8] conducted experiments to examine the association
of working memory capacity and cognitive load with code review
performance. They found that working memory capacity is associ-
ated with the effectiveness of finding de-localized defects. However,
authors could not find substantial evidence on the influence of
change part ordering on mental load or review performance. Spa-
dini et al. [46] designed and conducted a controlled experiment
to investigate whether examining changed test code before the
changed production code (also known as Test Driven Code Review
or TDR) affects code review effectiveness. According to the findings
of Spadini et al., developers adopting TDR find the same amount of
defects in production code, but more defects in test code and fewer
maintainability issues in the production code.

Significantly related to the work we present in this paper is the
recent empirical observational study by Thongtanunam and Has-
san [49]. They investigated the relationship between the evaluation
decision of a reviewer and the visible information about a patch
under review (e.g., comments and votes by prior co-reviewers) [49].
With an observational study on tens of thousands of patches from
two popular open-source software systems, Thongtanunam and
Hassan found that (1) the amount of feedback and co-working fre-
quency between reviewer and patch author are highly associated
with the likelihood of the reviewer providing a positive vote and that
(2) the proportion of reviewers who provided a vote consistent with
prior reviewers is significantly associated with the defect-proneness
of a patch (even though other factors are stronger). These results
corroborate the hypothesis that there is some sort of influence gen-
erated by the visible information about the change under review on
the behavior of the reviewers [49]. In the work we present in this
paper, we setup a controlled setting to investigate an angle of this in-
fluence further, hoping to shed more light on the causal connection
between comments’ visibility and reviewers’ effectiveness.

2.2 Scientific peer review

Peer review is the main form of group decision making used to
allocate scientific research grants and select manuscripts for publi-
cation. Many studies demonstrated that individual psychological
processes are subject to social influences [15]. Such finding also
points out some issues that might arise during group decision mak-
ing. Experimental results obtained by Deutsch and Gerard [15] show
that when a group situation is created, normative social influences
grossly increase, leading to errors in individual judgment. Based
on the findings of this study, it is emphasized that group consensus
succeeds only if groups encourage their members to express their
own, independent judgments. Therefore, one of the procedures for
peer review of scientific research grant applications is ‘written in-
dividual review’ [34]. With this review procedure, reviewers judge
the merit of a grant application in written form, independently of
one another, before the final decision maker approves or rejects an
application. Written individual review can mitigate the influence of
reviewers on the way to reach a collective judgment. It is also used
in scientific venues to eliminate biases. There is also another form
of review procedure, namely panel peer review where a common

1172

judgment is reached through mutual social exchange [34]. In panel
peer review, a group of reviewers convene to jointly deliberate and
judge the merit of an application before the funding decision is
made. However, as also emphasized by Deutsch and Gerard [15], it
is crucial to encourage individual members to express their own
judgment without feeling under the pressure of normative social
influences for proper functioning of group decision making.

2.3 Cognitive biases in software engineering

Cognitive biases are defined as systematic deviations from optimal
reasoning [30, 47, 48]. In the past six decades, hundreds of empirical
studies have been conducted showing the existence of various
cognitive biases in humans’ thought processes [21, 48]. Although
many theories explain why cognitive biases exist, Baron [6] stated
that there is no evidence so far about the existence of a single
reason or generative mechanism that can explain the existence of
all cognitive bias types. Some theories see cognitive bias as the
by-product of cognitive heuristics that humans developed due to
their cognitive limitations (e.g., information processing power) and
time pressure, whereas some relate them to emotions.

Human cognition is a crucial part of software engineering re-
search since software is developed by people for people. In their
systematic mapping study [30], Mohanini et al. report 37 differ-
ent cognitive biases that have been investigated by software en-
gineering studies so far. According to the results of this system-
atic mapping study, the cognitive biases that are most common
in software engineering studies are anchoring bias, confirmation
bias, and overconfidence bias. Anchoring bias results from forming
initial estimates about a problem under uncertainty and focusing
on these initial estimates without making sufficient modifications
in the light of more recently acquired information [21, 47]. Anchor-
ing bias has so far been studied in software engineering research
within the scope of requirements elicitation [37], pair program-
ming [19], software reuse [35], software project management [2],
and effort estimation [25]. Confirmation bias is the tendency to
search for, interpret, favor, and recall information in a way that
affirms one’s prior beliefs or hypotheses [38]. The manifestations
of confirmation bias during unit testing and how it affects software
defect density have been widely studied in software engineering
literature [11, 12, 24].

Any positive effect of experience on mitigation of confirmation
bias has not been discovered so far [10]. However, in some stud-
ies, participants who have been trained in logical reasoning and
hypothesis testing skills were manifested less tendency towards
confirmatory behavior during software testing [10]. Ko and Myers
identify confirmation bias among the cognitive biases that cause
errors in programming systems [23]. Van Vliet and Tang indicate
that during software architecture design, some organizations assign
devil’s advocate so that one’s proposal is not followed without any
questioning [52]. Overconfidence bias manifests when a person’s
subjective confidence in their judgement is reliably greater than the
objective accuracy of such a judgement [31]. This bias type has been
studied within the context of pair programming [19], requirements
elicitation [13] and project cost estimation [26].

Availability bias. Availability bias is the tendency to be influenced
by information that can be easily retrieved from memory (i.e., easy

to recall) [21]. The definition of availability bias was first formu-
lated by Tversky and Kahneman [51], who conducted a series of
experiments to explore this judgemental bias. However, including
these original experiments, many psychology experiments do not
go beyond comparing two groups (i.e., controlled and test group)
to differ in availability. To the best of our knowledge, in cognitive
psychology literature, the only experiment providing evidence for
the mediating process that manifests availability bias was devised
by Gabrelcik and Fazio, who employed (memory) priming as the
mediating process [18].

Availability bias has also been studied in SE research. De Graaf
et al. [14] examined software professionals’ strategies to search
for documentation by using think-aloud protocols. Authors claim
that using incorrect or incomplete set of keywords, or ignoring
certain locations while looking for documents due to availability
bias might lead to huge losses. Mohan and Jain [29] claim that
while performing changes in design artifacts, developers—due to
availability bias—might focus on their past experiences, since such
info can be easily retrieved from developers’ memory. However,
such information might be inconsistent with the current state of
the software system. Mohan et al. [29] propose traceability among
design artifacts as a solution to mitigate the negative effects of
the availability bias and other cognitive biases (i.e., anchoring and
confirmation bias). Robins and Redmiles [39] propose a software
architecture design environment reporting that it supports design-
ers by addressing their cognitive challenges, including availability
bias. Jorgensen and Sjeberg [20] argue that while learning from
software development experience, learning from the right experi-
ences might be hindered due to availability bias. Authors suggest
retaining post-mortem project reviews to mitigate negative effects
of availability bias.

Overall, existing literature points to the potential risks associ-
ated with availability bias in SE. As our community has provided
evidence that code review is a collaborative and cognitively de-
manding process and that the collaborative nature of code review
also has the potential to affect individual reviewers’ cognition, avail-
ability bias could manifest itself during the code review process.
This bias could hamper code review effectiveness. In our study, we
aim to explore how existing review comments bias the code review
outcome.

3 EXPERIMENTAL DESIGN

In this section, we explain the design of our experiment.

3.1 Research Questions and Hypotheses

The paper is structured along two research questions. By answering
these research questions, we aim to understand to what extent
contemporary code review is robust to reviewers’ availability bias,
depending on the nature of the bug for which a previous comment
exists on the code change. Our first research question and the
corresponding hypotheses follow.

RQ;. What is the effect of priming the reviewer with a bug
type that is not normally considered?

1173

We hypothesize that an existing review comment about a bug
type that reviewers do not usually consider (such as a null value
passed as an argument [4, 7, 40, 42]) might prime the reviewers
towards this bug type, so they find more of these bugs. Also, we
hypothesize that—due to such priming—reviewers overlook bugs
on which they were not primed. Hence, our formal hypotheses are:

HO010: Priming subjects with bugs they usually do not consider
does not affect their performance in finding bugs of the
same type.

Priming subjects with bugs they usually do not consider does
not affect their performance in finding bugs they usually look
for.

HO1q1:

We also explore how priming on a bug that is usually considered
during code reviews affects review performance. Therefore, our
second research question is:

RQy. What is the effect of priming the reviewer with a bug
type that is normally looked for?

We hypothesize that also in the case of an existing review com-
ment about a bug type that reviewers usually consider primes the
reviewers towards this bug type, so that they find more of these
bugs. Also, we expect primed reviewers to only look for the type
of bugs on which they are primed, overlooking others. Hence, our
formal hypotheses are:

HO029: Priming subjects with bugs they usually consider does not
affect their performance in finding bugs of the same type.

HO021: Priming subjects with bugs they usually consider does not
affect their performance in finding bugs they usually do not
look for.

3.2 Experiment Design and Structure

To conduct the code review experiment and to assess participants’
proneness to availability bias, we extend the browser-based tool
CRExperiment [43]. The tool allows us to (i) visualize and perform
a code review, (ii) collect data through questions asking for subjects’
demographics information as well as data consisting of participants’
interactions with the tool, (iii) collect data to measure subjects’
proneness to availability bias, by using a memory priming set-up
to trigger subjects’ use of availability heuristic that is followed by a
survey. Both the priming set-up and the survey are inherited from
a classic experiment in cognitive psychology literature that was
designed by Gabrielcik and Fazio [18].

Code Review Experiment Overview. For the code review experi-
ment, we follow independent measures design [22] augmented with
some additional phases. The following stages in the browser-based
tool correspond to the code review experiment:

(1) Welcome Page: The welcome page provides participants
with information about the experiment. This page also aims
to avoid demand characteristics [33], which are cues and
hints that can make the participants aware of the goals of
this research study leading to change in their behaviour dur-
ing the experiment. For this purpose, we do not inform the
participants about the full purpose of the experiment, rather
they are only told that the experiment aims to compare code
review performance under different circumstances. Before

1174

@

~

starting the experiment, the subjects are also asked for their
informed consent.

Participants’ Demographics: On the next page, subjects
are asked questions to collect demographic information as
well as confounding factors, such as: (i) gender, (ii) age, (iii)
proficiency in the English language, (iv) highest obtained
education degree, (v) main role, (vi) years of experience in
software development, (vii) current frequency in software
development, (viii) years of experience in Java programming,
(ix) years of experience in doing code reviews, (x) current
frequency of doing code reviews, and (xi) the number of
hours subjects worked that day. It is kept mandatory that
subjects answer these questions before proceeding to the
next page where they will receive more information about
the code review experiment they are about to take part in. We
ask these questions to measure subjects’ real, relevant, and
recent experience. Collecting such data helps us to identify
which portion of the developer population is represented by
subjects who take part in our experiment [17].

(3) Actual Experiment: Each participant is then asked to per-

4

G

=

=

form a code review and is randomly assigned to one of the
following two treatments:

o Pr (primed)- The subject is given a code change to review
where there exists a review comment (made by a previous
reviewer) about a bug in the code. The test group of our
experiment comprises the subjects who are assigned to
this treatment.

NPr (not—primed)— The subject is given a code change
to review. In the code change, there are no comments
made by any other reviewers. The control group of our
experiment comprises the subjects who are assigned to
this treatment.

More specifically, the patch to review contains three bugs:
two of the same type (i.e., BuGa) and one of a different type
(i.e., BuGp). In the Pr group, the review starts with a com-
ment made by another reviewer showing that one instance
of Bua, is present. The participant is then asked to continue
the review. In the NPr group, the review starts without com-
ments. The comments shown to the participants in the Pr
group were written by the authors, and the wording was
refined with the feedback from the pilots (Section 3.5). Each
participant is asked to take the task very seriously. More
specifically, we ask them to find as many defects as possible
and, like in real life, spend as little time as possible on the
review. However, unlike in real life, we ask them not to pay
attention to maintainability or design issues, but only in cor-
rectness issues (“bugs”). For example, we discard comments
regarding variable namings or small refactorings.
Interruptions during the Experiment: Immediately af-
ter completing the code review, the participants are asked
whether they were interrupted during the task and for how
long.

Follow-up Questions: In the last page of the code review
experiment, the participants are shown the code change they
just reviewed together with the bugs disclosed: For each bug,
we show it and explain why it is a defect and in what cases

Instructions

For the scientific validity of this experiment, it is vital that the review task is taken very seriously.

make the code not work as intended under all circumstances.

Please assume that the code compiles and that the tests pass.

src/main/java/org/pack/ExerciseSumArray.java

public class ExerciseSumArray {
=

Given 2 representing numbers (e.g., [3,4] = 34, [9,8] = 98),

calculate um of 2 Lists, and return the result in an List.

For example:
(1, 0, 0] +
[6,7] + [0]

14,0] = 1,
(6,71

4,0]

We are now going to show you the code changes to review. The old version of the code is on the left, the new version is on the right.

» Like in real life, you should find as many defects as possible and you should spend as little time as possible on the review.
= Unlike in real life, we are not interested in maintainability or design issues, but only in correctness issues ("bugs").

For example, a remark like the following is beyond the goal of the review: "Create a new class which is implemented by runnable interface that we can access multiple times." Instead, what we are interested in are the defects that

You will see that a previous reviewer already put a comment in line 23. You are now asked to continue with your review.

To add a review remark, click on the corresponding line number. To delete a review mark, click on it again and delete the remark’s text.

src/main/javalorg/pack/ExerciseSumArray.java

public class ExercisesumArray {
I+
Given 2 Lists representing numbers (e.g
1 the sum of 2 Lists, and retur

[3,4] = 34, [9,8] 98).
the result in an List.

[1,4,0]

public ArrayList<Integer> getSum(List<Integer> firstNumber, List<Integer> secondNumber){
ArrayList<Integer> result = new ArrayList<Integer>();

int carry = 0;
Collections.reverse(firstNumber);

Collections.reverse(secondNumber);

for (int i = 0; (i < Math.max(fi:

.size(),
Integer firstValue = i < firstNumber.size() ? firstNumber.get(i)
Integer lue = i < .size() ?

.size())); L ++)1
: null;
.get(i) : null;

int res = firstvalue + secondValue + carry;

carry = 0;
if (res > 10){

@

Pat Smith: This is a bug related to a comer cases. The check should be >=, otherwise it fails in assigning the carry (e.g. 29 + 1).

carry = 1;
res = res & 10;

}

result.add(res);

}

if (carry >= 0)
result.add(carry);

Collections.reverse(result);
return result;

Figure 1: Example of a code review using the tool.

it might fail. Then, for each bug, we ask the participants to

indicate whether they captured it in the review:

o If the participants found the bug and they belonged to the
Pr group, we ask them to what extent the comment of
the previous reviewer influenced the discovery of the bug
(using a 5-point Likert scale).

o If the participants did not find the bug (independently
whether they were in the Pr or NPr group), we ask them
to elaborate on why they think they missed the bug.

Assessment of Proneness to Availability Bias. The code review
experiment is followed by a set-up that primes participants’ mem-
ory to trigger availability bias. This set-up serves as a mediating
process to manipulate availability bias so that we can measure the
extent to which each subject is prone to this type of cognitive bias.
To measure this phenomenon, we inherited the test part of the
controlled experiment of Gabrielcik and Fazio [18]. In the original
experiment, the difference in the results of control and test groups
showed that (memory) priming triggered the participants’ availabil-
ity biases. There are three reasons why we selected this experiment
for assessing the proneness to availability bias: (i) To the best of
our knowledge, it is the only experiment where the underlying

1175

cognition mechanism (i.e., memory priming) that triggers availabil-
ity bias is explicitly devised; (ii) memory priming mechanism is
also employed in code review experiment to trigger participants’
availability bias; and (iii) survey in the original experiment makes
it possible to quantitatively assess participants’ proneness to avail-
ability bias. Therefore, the remaining stages in the browser-based
tool comprise the following:

(1) Welcome Page: We provide a second welcome page in
which, to avoid demand characteristics [33], the participants
are told that they are about to participate in an experiment
that aims to explore software engineers’ attention by testing
a set of visual stimuli, instead of the actual goal.

Warm-up Session: We proceed with a warm-up session in
which participants are asked to focus on a series of 20 words
flashing once each on the screen. The words are randomly
selected from the English dictionary, and none of them con-
tain the letter ‘T’. Each word flashes for 300ms. At the end of
the warm-up, we ask the participants to write three words
they have seen and recall, and to make a guess if they do not
remember them.

Actual Psychology Experiment: After the warm-up, we
proceed with the actual psychology experiment: this time,
we show two series of 20 words, all of them including the

@

3

~

letter ‘T’. This time words flash at a faster rate, i.e., 150ms,
to avoid that the participants consciously recognize that the
words have the letter ‘T’ so often, which would bias their last
task [18]. After each series, we ask the participant to write
three words they have seen and recall, and to make a guess
if they do not remember them.

Measuring Proneness to Availability Bias:The last task
of the participants is to answer 15 questions, which ask to
compare the frequency words for a given pair of letters in the
English dictionary. For example, given the question “Do more
words contain T or S", participants responded on a 9-point
scale, with one end labeled “Many more contain T" and the
other “Many more contain S". Our main goal is to measure
the extent to which each subject is prone to availability bias.
Hence, in 5 of the 15 questions we ask whether in the English
dictionary there are more words containing the letter ‘T’ or
another random letter. As in the experiment of Gabrielcik
and Fazio [18], we expect the participants to indicate that
there are more words containing the letter ‘T’ (even though
this is not the case) since they were primed in step 3. The
other 10 questions are used to prevent the participants from
understanding the actual aim of the study.

“

=

3.3 Objects

The objects of the study are represented by the code changes (or
patch, for brevity) to review, and the bugs that we selected and
injected, which must be discovered by the participants.

Patches. To avoid giving some developers an advantage, the two
patches are not selected from open-source software projects, hence
they are not known to any of the participants. To maintain the diffi-
culty of the code review reasonable (after all, developers are used to
review only the codebase on which they work every day), we screen
many websites that offer Java exercises searching for exercises that
are: (1) neither too trivial nor too complicated (based on our expe-
rience teaching programming to students), (2) self-contained, and
(3) do not rely on special technologies or frameworks/libraries.

After several brain-storming sessions among the authors, only
two exercises satisfied these goals and were selected.

Defects. Code review is a well-established and widely adopted prac-
tice aimed at maintaining and promoting software quality [3, 41].
There are different reasons on why developers adopt this practice,
but one of the main ones is to detect defects [3]. Hence, in our
experiment we manually seed bugs (functional defects) in the code.
More specifically, we seed two different types of bugs: one that
could cause a NullPointerException (BuGy), and one that could
cause the return of a wrong value (Bugg).
The bugs were injected in the code as follows:

e In PaTCH;, we inject two BuGy and one Bucg (the priming
is done on Bug,),

o In PATCH3, we inject two Bucp and one BuGy (the priming
is done on Bucg),

The NullPointerException (Bug,) in the first change was on
the passed parameters. As reported by white [7] and gray litera-
ture [4, 40, 42], developers are not used to check for this kind of
errors in code review, because they expect the caller to make sure
the parameters are not null: hence, we use it as the not normally

considered bug that we investigate in RQ;. Instead, BuG, in the
second change (RQ2) does not regard a parameter, to make sure
that it is bug type that normally developers look for in a review.

3.4 Variables and Measurement Details

We aim to investigate whether participants that are primed on a
specific type of bug are more likely to capture only that type of bug.
To understand whether the subjects did find the bug (i.e., the value
for our dependent variables), we proceed with the following steps:
(1) the first author of this paper manually analyzes all the remarks
added by the participants (each remark is classified as identifying
a bug or being outside of the study’s scope), then (2) the authors
cross-validate the results with the answer given by the participants
(as explained in Section 3.2, after the experiment the participants
had to indicate whether they captured the bugs).

In Table 1, we represent all the variables of our model. The main
independent variable of our experiment is the treatment (Pr or NPr).
We consider the other variables as control variables, which also
include the time spent on the review, the participant’s role, years of
experience in Java and Code Review, and tiredness. Finally, we run
a logistic regression model similar to the one used by McIntoshet
al. [28] and Spadini et al. [46]. To ensure that the selected logistic
regression model is appropriate for the available data, we first (1)
compute the Variance Inflation Factors (VIF) as a standard test for
multicollinearity, finding all the values to be below 3 (values should
be below 10), thus indicating little or no multicollinearity among
the independent variables, (2) run a multilevel regression model to
check whether there is a significant variance among reviewers, but
we found little to none, thus indicating that a single level regression
model is appropriate, and, finally, (4) when building the model we
added the independent variables step-by-step and found that the
coefficients remained stable, thus further indicating little to no
interference among the variables. For convenience, we include the
script to our publicly available replication package [45].

Availability bias score. We calculate availability bias scores as in
the original experiment by Gabrielcik and Fazio [18]. The frequency
comparisons on the 9—point scale were scored by assignments of
a value between +4 and —4. Positive numbers were assigned for
ratings indicating that letter ‘T” was contained in more words than
the other letter, while negative numbers were assigned in favour of
the other letter. We calculated the availability bias score for each
participant as the average (and also median) of values for the 5
relevant questions.

3.5 Pilot Runs

As the first version of the experiment was ready, we started con-
ducting pilot runs to (1) verify the absence of technical errors in the
online platform, (2) check the ratio with which participants were
able to find the injected bugs (regardless of their treatment group),
(3) tune the experiment on the proneness to availability bias (in
terms of flashing speed and number of words to ask), (4) verify the
understandability of the instructions as well as the user interface,
and (5) gather qualitative feedback from the participants. We con-
ducted three different pilot runs, for a total of 20 developers. The
participants were recruited through the professional network of the
study authors to ensure that they would take the task seriously and

1176

Table 1: Variables used in the statistical model.

Metric | Description
Dependent Variables
FoundPrimed The part1c1Pant found the bug
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, that was primed
FoundNotPrimed The partlclpant' found the bug
that was not primed
Independent Variable
Treatment [Type of the treatment (Pr or NPr)
Control Variables
Gender Gender of the participant
Y f i fessional
ProfDevExp ears of experience as professiona
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, developer ..
JavaBxp | YearsofexperienceinJava
ProgramPractice | How often they program
ReviewPractice | How often they perform code review
ReviewExp | Years of experience in code review
WorkedHours Hours tbe part1c1pant. worked before
.| Derforming the experiment
. How tired was the participant at the
Tired . .
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, moment of taking the experiment -
Stressed How stressed was .the part1c1par'1t at
| the moment of taking the experiment
. For how long the participant was
Interruptions . . .
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, interrupted during the experiment -
TotalDuration Total duration of the experiment
| Whether the participant was
PsychoExplIsPrimed [eTher the participant was -
primed in the psychology experiment

(t) see Figure 2 for the scale

provide feedback on their experience. No data gathered from the
20 participants to the pilot was considered in the final experiment.

After each pilot run, we inspected the results and the qualitative
feedback we received and discussed extensively among the authors
to verify whether parts of the experiment should have been changed.
After the third run, the required changes were minimal, and we
considered the experiment ready for its main run.

3.6 Recruiting Participants

The experiment was spread out through practitioners blogs and
web forums (e.g., Reddit) and through direct contacts from the pro-
fessional network of the study authors, as well as the authors’ social
media accounts on Twitter and Facebook. We did not reveal the
aim of the experiment. To provide a small incentive to participate,
we introduced a donation-based incentive of five USD to a charity
per valid respondent.

4 THREATS TO VALIDITY

Construct Validity. Threats to construct validity concern our re-
search instruments. To measure the extent to which subjects are

prone to availability bias, we used the memory priming mecha-
nism and the survey that was employed in an experiment designed
and conducted by Gabrielcik and Fazio, in cognitive psychology
literature [18]. Data obtained from the controlled experiment that
Gabrielcik and Fazio conducted provide direct evidence that mem-
ory priming can be a mediating process to trigger availability bias.
The remaining constructs we use are defined in previous publica-
tions, and we reuse the existing instruments as much as possible.
For instance, the tool employed for the online experiment is based
on similar tools used in earlier works [9, 46].

To avoid problems with experimental materials, we employed a
multi-stage process: After tests among the authors, we conducted
three experiments with ~7 subjects each time (for a total of 20
pilots) with external participants. After each pilot session, we made
corrections to the experiment based on the feedback from the sub-
jects of the pilot, materials were checked by the authors one more
time before we launched the actual experiment.

Regarding defects and code changes, the first author prepared
the code changes and corresponding test codes as well as injecting
the defects into these code changes. These were later checked by
the other authors. Code change and corresponding test code were
on the same page, and subjects had to scroll down to proceed to the
next page of the online experiment. In this way, we aimed to ensure
that subjects saw the test code. Test code were added to make the
experiment closer to a real world scenario.

A major threat is that the artificial experiment created by us
could differ from a real-world scenario. We mitigated this issue
by (1) re-creating as close as possible a real code change (for ex-
ample, submitting test code and documentation together with the
production code), and (2) using an interface that is identical to the
common Code Review tool Gerrit [1] (both our tool and Gerrit use
Mergely [36] to show the diff, also using the same color scheme).

Internal Validity. Threats to internal validity concern factors
that might affect the cause and effect relationship that is inves-
tigated through the experiment. Due to the online nature of the
experiment, we cannot ensure that our subjects conducted the ex-
periments with the same set-up (e.g., noise level and web searches),
however we argue that developers in real world settings also have
a multi-fold of tools and environments. Moreover, to mitigate the
possible threat posed by missing control over subjects, we included
some questions to characterize our sample (e.g., experience, role,
and education).

To prevent duplicate participation, we adjusted the settings of
the online experiment platform so that each subject can take the
experiment only once. To exclude participants who did not take
the experiment seriously, we screened each review and we did
not consider experiments without any comments in the review,
that took less than five minutes to be completed, or that were not
completed at all.

Furthermore, several background factors (e.g., age, gender, ex-
perience, education) may have impact on the results. Hence, we
collected all such information and investigated how these factors
affect the results by conducting statistical tests.

External Validity. Threats to external validity concerns the
generalizability of results. To have a diverse sample of subjects
(representative of the overall population of software developers who

1177

employ contemporary code review), we invited developers from
several countries, organizations, education levels, and background.

Role
80
67%
60
40
57
20 9% 9% 0% 9%
]
8 8 s 8
Programmer Researcher Student Ph.D. Other

Experience ‘D Software Development D Reviewing ‘

0 32% 26%

No experience 1 year
or less

2years 3-5years 6-10years >10 years

Practice ‘ D Programming I:‘ Reviewing ‘
&0 69%
60
40 34% 58| 299%
20 15% 14% 237
8% 8% 19 [2
2 7
Never Once a Once a Once a Once a
year month week day or more

Figure 2: Participants’ characteristics

5 RESULTS

In this section, we report the results of our investigation on whether
and how having a comment from a previous reviewer influences
the outcome of code review.

5.1 Validating The Participants

A total of 243 people accessed our experiment environment fol-
lowing the provided link. From these participants, we exclude all
the instances in which the code change is skipped or skimmed, by
demanding either at least one entered remark or more than five
minutes spent on the review. After applying the exclusion criteria,
a total of 85 participants are selected for the subsequent analyses.

Figure 2 presents the descriptive statistics on what the partici-
pants reported in terms of their role, experience, and practice. The
majority of the participants are programmer (67%) and reported
to have many years of experience in professional software devel-
opment (73% more than 3 years, 47% more than 6); most program
daily (69%) and review code at least weekly (63%).

Table 2 represents how the participants’ are distributed across
the considered treatments and code changes. The automated as-
signment algorithm allowed us to obtain a rather balanced number
of reviews per treatment and code change.

Table 2: Distribution of participants (N = 85) across the vari-
ous treatment groups.

Primed (Pr) Not Primed (NPr) Total

CodeChangel 21 17 38
CodeChange2 22 25 47
Total 43 42

Table 3: Odds ratio for capturing the primed and not primed
bug in the test (Pr) and control (NPr) group.

Primed bug (NPE) = Primed (Pr) Not Primed (NPr) Total
found 13 2 15
not found 8 15 23
Odds Ratio: 12.19 (2.19, 67.94)

P <0.001

Not primed bug Primed (Pr) Not Primed (NPr) Total
found 14 14 28
not found 7 3 13
0Odds Ratio: 0.43 (0.09, 2.00)

p=0275

5.2 RQ;.Priming a not commonly reviewed bug

To investigate our first research question, the participants in our
test group (Pr) are primed on a Nul1lPointerException (NPE) bug
in a method’s parameter. We expect this type of bug to be missed
by most not primed reviewer, because normally reviewers would
assume that parameters are checked from the calling function [4,
40, 42].

Table 3 reports the results of the experiment by treatment group.
From the first part of the table (primed bug), we can notice that
participants in the Pr group found the other NPE bug 62% of the
times, while participants in the NPr group only 11%. Expressed in
odds, this result means that the NPE defect is 12 times more likely
to be found by a participant in the Pr group. The main reasons
reported by the participants in the NPr for missing this bug are that
(1) they were too focused on the logic and not thoroughly enough
when it comes the corner cases, (2) did not put attention to the fact
that Integer could be null, and (3) that they generally do not check
for NPE, but assume to not receive a wrong object as an input.

As expected, even though NullPointerException has been re-
ported to be the most common bug in Java programs [53], develop-
ers stated they rarely sanity check the Object. However, as shown
in Table 3, the result drastically changes when a previous reviewer
points out that an NPE could be raised: in this case, many of the
participants in the Pr group looked for other NPE bugs in the code.

When we look at whether the Pr group was primed by the pre-
vious reviewer comment (hence whether they were able to capture
the bug because of they have been primed), we have that 40% indi-
cated they were ‘Extremely influenced’, 40% were ‘Very influenced’
and 20% instead were ‘Somewhat influenced’. Hence, the reviewers
perceived to have been influenced by the existing comment.

We find a statistically significant relationship (p < 0.001, as-
sessed using y?) of strong positive strength (¢ = 0.5) between the

1178

Table 4: Regressions for primed and not primed bugs.

Primed bug Not primed bug
Estimate ~ S.E. Sig. | Estimate = S.E. Sig.
Intercept 0.704 4.734 -0.893 4.093
IsPrimed 3.627 1320 ** -1.199 1.073
TotalDuration 0.001 0.002 0.003 0.001
ProfDevExp 0.813 0.557 -0.503 0.554
ProgramPractice -0.096 0.828 -0.243 0.736
ReviewExp -0.070 0.630 -0.813 0.651
ReviewPractice -1.152 0.758 1.243 0.643
Tired -0.834 0.832 0.517 0.651
WorkedHours -0.069 0.196 0.305 0.207
Interruptions -1.752 0.758 * -0.715 0.444
o ({i)
significance codes: "***’p <0.001, "**’p <0.01, **’p <0.05, "’p <0.1

(t) Role is not significant and omitted for space reason

presence of the comment and whether the same type of bug was
found. Therefore, we can reject H01p.

Considering the second part of Table 3, we see that the not
primed bug was found by both groups (Pr and NPr) at similar rate.
For the former, participants found it 66% of the times, while in the
NPr they found it 82% of the times. As shown in the table, the
difference is not statistically significant (p = 0.275).

When looking at the participants’ comments on why they missed
this bug, we have that the main reasons are (1) that they forgot to
try the specific corner case, and (2) that they assumed tests were
covering all the corner cases. The reasons for not capturing the
defects were similar in both groups. Given this result, we cannot
reject HO011. Priming the participants on a specific type of bug did
not prevent them from capturing the other type of bug.

In Table 4 we show the result of our statistical model, taking into
account the characteristics of the participants and reviews. The
model confirms the result shown in Table 3: even taking into ac-
count all the variables, the isPrimed variable is statistically signifi-
cant exclusively for the primed bug. The other variable statistically
significant in the model is ‘Interruptions’, that is the number of
times the participant has been interrupted during the experiment:
the estimate has a negative value, which means the higher the num-
ber of ‘Interruptions’, the lower the number of bugs captured, as
one can expect.

For the not primed bug instead, none of the variables are statisti-
cally significant (with “TotalDuration’ and ‘ReviewExp’ are slightly
significant, with p < 0.1)

Finding 1. Reviewers primed on a bug that is not commonly
considered are more likely to find other occurences of this
type of bugs. However, this does not prevent them in finding
also other types of bugs.

5.3 RQ2.Priming on an algorithmic bug

To investigate our second research question, the participants in our
test group (Pr) are primed on an algorithmic bug, more specifically
a corner case (CC) bug. The result of this experiment is shown in

1179

Table 5: Odds ratio for capturing the primed and not primed
bug in the test (Pr) and control (NPr) group.

Primed bug (CC) = Primed (Pr) Not Primed (NPr) Total
found 10 8 18
not found 12 17 29
Odds Ratio: 1.77 (0.54, 5.81)

p=0344

Not primed bug | Primed (Pr) Not Primed (NPr) Total
found 13 16 29
not found 9 9 18
Odds Ratio: 0.81 (0.25, 2.64)

p=073

Table 5. Participants in both groups found the primed bug ~50%.
Indeed, the difference is not statistically significant (p = 0.344). If
we consider whether the test group was primed by the previous
reviewer comment, 50% of the participants reported that they were
‘Extremely influenced’, 10% was ‘Somewhat influenced’ and 40% was
slightly or not influenced; thus suggesting that even the reviewers
noticed a lower influence from this comment, even though it was
of the same type as one of the other two bugs in the same code
change.

Among the main reasons for missing the bug, participants mainly
stated that (1) the tests drove them to not remember that corner case,
and (2) they focused more on the first one. Hence, given this result
we can conclude that the participants who saw the review comment
did not find the similar bug more often than the participants that
did not see the review comment.

In the second part of Table 5, we indicate whether the participants
were able to find the not primed bug. Both the test and control group
are very similar in this case, too. Indeed, in both groups the bug is
found around 50% of the times and the difference is not statistically
significant. When looking at the participants’ comments on why
they missed this bug, the main reasons they state are (1) that they
were too focused on capturing algorithmic bugs without paying
attention to NPE, and (2) that, as in the previous RQ, they did not
put attention to the fact that Integer could be null.

Given these results, we cannot reject H029 nor H0z;.

In Table 6, we show the result when controlling for other vari-
ables. Our dependent variable IsPrimed is not statistically signifi-
cant. However, we see that “TotalDuration’ (i.e., the time required by
the developer to complete the code review) is statistically significant
and in the expected direction. For the NPr group, the only variable
that is significant is ‘ReviewPractice’ (i.e., the average number of
time the participant perform code reviews). Both these results are
in line with what found in previous research [8].

Finding 2. Reviewers primed on an algorithmic bug perceive
an influence, but are as likely as the others to find algorithmic
bugs. Furthermore, primed participants did not capture fewer

bugs of the other type.

Table 6: Regressions for primed and not primed bugs.

Primed bug Not primed bug
Estimate SE. Sig. | Estimate SE. Sig.

Intercept -1.0510159 2.2460623 -3.037e-01 2.568e+00
IsPrimed 0.9260383 0.7223408 -1.670e-01 7.740e-01
TotalDuration 0.0018592 0.0008958 * 9.561e-05 9.976e-04
ProfDevExp -0.6031309 0.3381302 -9.437e-02 3.721e-01
ProgramPractice | 0.0319636 0.5905427 -1.061e+00 7.353e-01
ReviewExp 0.3411589 0.4548836 1.284e-01 4.660e-01
ReviewPractice | 0.1531502 0.3784472 1.211e+00 4.683e-01 **
Tired 0.0835410 0.3706085 2.486e-01 4.539e-01
WorkedHours -0.1619234 0.1184626 2.257e-01 1.542e-01
Interruptions -0.1755182 0.3220796 -1.331e-01 3.630e-01
- (1)

significance codes: ****’p <0.001, "*’p <0.01, "*’p <0.05, ’p <0.1
(t) Role is not significant and omitted for space reason

5.4 Robustness Testing

In the previous sections, we presented the results of our study on
whether and to what extent reviewers can be primed during code
review by showing an existing code review comment. Surprisingly,
the results showed that many of our hypotheses were not satisfied:
in our experiment, only in one case primed reviewers captured more
bugs than the not primed group; in all the other cases, reviewers
from both groups could capture the same bugs.

To further challenge the validity of these findings, in this sec-
tion, we employ robustness testing [32]. For this purpose, we test
whether the results we obtained by our baseline model hold when
we systematically replace the baseline model specification with the
following plausible alternatives.

Bugs were too simple or too complicated to find. Choosing
the right defects to inject in the code change is fundamental to the
validity of our results. If a defect is too easy to find, participants
might find the bugs regardless of any other influencing factor, even
without paying too much attention to the review (on the other hand,
if it is too complicated reviewers might not find any bug and get
discouraged to continue). We measure that ~50% of the participants
found the three types of defects that we expected them to find, thus
ruling out the possibility that these bugs were either too trivial or
too difficult to find.

People were not primed. The entire experiment is based on the
premise that reviewers in the Pr group were correctly primed. Even
though we can not verify this premise (the experiment is online,
hence there is no interaction between the researchers and the par-
ticipants), after the code review experiment the participants had to
indicate whether they were influenced by the comment of the pre-
vious reviewer in capturing the bug. As we stated in Section 5.2 and
Section 5.3, 70% of the participants indicated they were extremely
or very influenced, while only 18% indicated somewhat or slightly
influenced (12% were neutral). This gives an indication that the
participants felt they were indeed primed, but this did not influence
their ability to find other bugs.

Nevertheless, the reported level of being influenced is subjective,
so not fully reliable (participants could think to have been influ-
enced, but were not). To triangulate this result, we test another
possibility: More specifically, one of the possible explanations of
why participants may not have been primed is that our sample of

participants was “immune” to priming or very difficult to prime. In-
deed, there is no study that confirms that developers are as affected
by priming as the general population (on which past experiment
was conducted). To rule out this possibility, we devised the psy-
chological experiment: We tested whether developers can also be
primed as expected using visual stimuli. Our results show that ~70%
of the participants were primed as expected.

Not enough participants. Another possibility of why we do not
find a difference is that we did not have enough participants. Even
though 85 participants is quite large in comparison to many ex-
periments in software engineering [8] and we tried to design an
experiment that would create a strong signal, we cannot rule out
that the significance was missing due to the number of participants.
However, even if the results were statistically significant (assuming
we had the same ratios, but an order of magnitude more of par-
ticipants), the size of the effect (calculated using the ¢ coefficient)
would be ‘none to very negligible’. This suggests that there was no
emerging trend and that, even having more participants, we could
have probably obtained a significant, yet trivial effect.

Some participants did not perform the task seriously. Finally,
one of the reasons why we did not confirm most of our hypotheses
could be that some participants did not take the task seriously,
hence they might have performed poorly and have altered the
results. Having used a random assignment and having a reasonably
large number of participants, we have no reason to think that one
group had more ‘lazy’ participants than the others. Moreover, as
we discussed in Section 3, to exclude participants who did not
take the experiment seriously, we filtered out experiments without
any comments in the review (even if there were comments, the
first author manually validated them to check whether they were
appropriate and they were/not capturing a bug); we also did not
consider reviews that took less than five minutes to be completed,
or that were not completed at all (maybe because the participant
left after few minutes).

Alternatively, it would be possible that participants who were
more serious focused more and found more bugs (regardless of the
priming), while less serious ones would just find one and leave the
experiment. To test also this possibility, we compared the likelihood
of a participant in finding a second bug when a first one was found.
Also in this case, we did not find any statistically significant effect,
thus ruling out this hypothesis as well.

6 DISCUSSIONS

We discuss the main implications and results of our study.

Robustness of code review against availability bias. The cur-
rent code review practice expects reviewers to review and comment
on the code change asynchronously, and reviewers’ comments are
immediately visible to both the author and other reviewers.

One of the main hypotheses we stated in our study is that the
code review outcome is biased because reviewers are primed by
the visibility of existing comment on a bug. Indeed, if reviewers get
primed by previously made comments about some bug(s), then they
could find more bugs of that specific type while overlooking other
types of bugs. This would, in turn, undermine the effectiveness of
the code review process, creating a demand for a different approach.

1180

To create a different approach, one might consider adopting a
review method similar to that of scientific venues where review-
ers do not see the comments of the other reviewers until they
submit their review. Even though this strategy would reduce the
transparency of the code review process undermining knowledge
transfer, team awareness, as well as shared code ownership, and
would probably lead to a loss in review efficiency due to duplicate
bug detection, it would be necessary if the biasing effect of other
reviewers’ comments would be strong.

Our experiment results show that the participants in the test
group were positively influenced by the existing comment on the
code change so that they could capture more bugs of the same
type. However, unexpectedly, they were still able to capture the
bugs of the different type as the control group did. Like any human,
reviewers are also prone to availability bias [21] to various extents.
However, our results did not find evidence of a strong negative
effect of reviewers’ availability bias. Therefore, our data does not
provide any evidence that would justify a change in the current
code review practices.

Existing comments on normally not considered bugs act as
(positive) reminders rather than (negative) primers. Surpris-
ingly, participants in the test group who were primed with the
algorithmic bug type (more specifically, a corner case bug) detected
the same amount of corner case and NullPointerException (NPE)
bugs as the participants in the control group. However, participants
who were primed with a bug that is normally not considered in
review (i.e., NPE) were 12 times more likely to capture this type of
bug, than the participants of the control group.

This result shows that existing reviewer comments on code
change seem to support recalling (i.e., act as a reminder), rather
than distracting the reviewer. As previously mentioned in section
5.2, participants in the test group indicated that they were focused
on to the corner cases in the code change and did not put attention
to the possibility that Integer could be null. Such feedbacks are
in-line with the possible existence of anchoring bias [21, 47].

It is likely that the existence of a reviewer comment on a un-
common bug had a de-biasing effect on the participants in the test
group (i.e., mitigated the participants’ bias). In software engineering
literature, there are empirical studies on practitioners’ anchoring
bias. For instance, Pitts and Brown [37] provide procedural prompts
during requirements elicitation to aid analysts not anchoring on
currently available information. According to the findings by Jain et
al. [19], pair programming novices tend to anchor to their initial
solutions due to their inability to identify such a wider range of so-
lutions. However, to the best of our knowledge, there are no studies
on anchoring bias within the context of code reviews. Therefore,
further research is required to investigate underlying cognition
mechanisms that can explain why existing reviewer comments on
the unexpected bug act as reminders.

7 CONCLUSIONS

In the study presented in this paper, we investigated robustness
of peer code review against reviewers’ proneness to availability
bias. For this purpose, we designed and conducted an online ex-
periment with 85 participants, including a code review task and a
psychological experiment. With the psychological experiment, the

1181

majority of the participants (i.e., #70%) were assessed to be prone
to availability bias (median = 3.8, max = 4). However, when it comes
to the code review, our experiment results show that participants
are primed only when the existing code review comment is about
a type of bug that is not normally considered; when this comment
is visible, participants are more likely to find another occurrence
of this type of bug. Hence, existing comments on this type of bugs
acted as reminders rather than primers. It is our hope that this study
is replicated by other researchers to gain further insights about the
extent of robustness of peer code review.

ACKNOWLEDGMENTS

This project has received funding from the European Union’s Hori-
zon 2020 research and innovation programme under the Marie
Sklodowska-Curie grant agreement No. 642954. Alberto Bacchelli
gratefully acknowledges the support of the Swiss National Science
Foundation through the SNF Project No. PP00P2_170529.

REFERENCES

[1] 2019. Gerrit Code Review. https://www.gerritcodereview.com.

[2] T.K. Abdel-Hamid, K. Sengupta, and D. Ronan. 1993. Software project control:
an experimental investigation of judgment with fallible information. IEEE Trans-
actions on Software Engineering 19, 6 (June 1993), 603-612. https://doi.org/10.
1109/32.232025

Alberto Bacchelli and Christian Bird. 2013. Expectations, outcomes, and chal-
lenges of modern code review. In 2013 35th International Conference on Software
Engineering (ICSE). 712-721. https://doi.org/10.1109/ICSE.2013.6606617
Baeldung. 2018. Avoid Check for Null Statement in Java. https://www.baeldung.
com/java-avoid-null-check.

Richard A Baker Jr. 1997. Code reviews enhance software quality. In Proceedings
of the 19th International Conference on Software Engineering. ACM, 570-571.
Jonathan Baron. 2009. Thinking and Deciding. Cambridge University Press.

[7] Tobias Baum and Kurt Schneider. 2016. On the Need for a New Generation
of Code Review Tools. In Product-Focused Software Process Improvement, Pekka
Abrahamsson, Andreas Jedlitschka, Anh Nguyen Duc, Michael Felderer, Sousuke
Amasaki, and Tommi Mikkonen (Eds.). Springer International Publishing, Cham,
301-308.

Tobias Baum, Kurt Schneider, and Alberto Bacchelli. [n.d.]. Associating working
memory capacity and code change ordering with code review performance.
Empirical Software Engineering ([n. d.]), 1-37.

Tobias Baum, Kurt Schneider, and Alberto Bacchelli. 2017. On the Optimal
Order of Reading Source Code Changes for Review. In 2017 IEEE International
Conference on Software Maintenance and Evolution (ICSME). 329-340. https:
//doi.org/10.1109/ICSME.2017.28

Gul Calikli and Ayse Bener. 2015. Empirical analysis of factors affecting confir-
mation bias levels of software engineers. Software Quality Journal 23, 4 (01 Dec
2015), 695-722. https://doi.org/10.1007/s11219-014-9250-6

G. Calikli, A. Bener, T. Aytac, and O. Bozcan. 2013. Towards a Metric Suite
Proposal to Quantify Confirmation Biases of Developers. In 2013 ACM / IEEE
International Symposium on Empirical Software Engineering and Measurement.
363-372. https://doi.org/10.1109/ESEM.2013.47

Giil Calikli and Ayse Basar Bener. 2013. Influence of confirmation biases of
developers on software quality: an empirical study. Software Quality Journal 21,
2 (01 Jun 2013), 377-416. https://doi.org/10.1007/s11219-012-9180-0

Suranjan Chakraborty, Saonee Sarker, and Suprateek Sarker. 2010. An Exploration
into the Process of Requirements Elicitation: A Grounded Approach. Journal of
the Association for Information Systems 11 (2010), 212-249.

Klaas Andries de Graaf, Peng Liang, Antony Tang, and Hans van Vliet. 2014.
The Impact of Prior Knowledge on Searching in Software Documentation. In
Proceedings of the 2014 ACM Symposium on Document Engineering (DocEng *14).
ACM, New York, NY, USA, 189-198. https://doi.org/10.1145/2644866.2644878
M. Deutsch and H. B. Gerard. 1955. A study of normative and informational
social influences upon individual judgment. The Journal of Abnormal and Social
Psychology 51, 3 (1955), 629-636. https://doi.org/10.1147/sj.153.0182

F. Ebert, F. Castor, N. Novielli, and A. Serebrenik. 2017. Confusion Detection in
Code Reviews. In 2017 IEEE International Conference on Software Maintenance
and Evolution (ICSME). 549-553. https://doi.org/10.1109/ICSME.2017.40
Davide Falessi, Natalia Juristo, Claes Wohlin, Burak Turhan, Jirgen Miinch,
Andreas Jedlitschka, and Markku Oivo. 2018. Empirical software engineering
experts on the use of students and professionals in experiments. Empirical

[10

[11

[12

[13

[14

[17

[18]

[19

[21
[22]

[23]

[24]

[25]

[26

[27]

[29]

[30]

[31]
[32]

[33]

[34

[35]

[36
[37

[38]

[39]

[40]

[41]

[42

[43

[44]

Software Engineering 23, 1 (01 Feb 2018), 452-489. https://doi.org/10.1007/s10664-
017-9523-3

Adele Gabrielcik and Russell H. Fazio. 1984. Priming and Frequency Estimation: A
Strict Test of the Availability Heuristic. Personality and Social Psychology Bulletin
10, 1 (1984), 85-89. https://doi.org/10.1177/0146167284101009

Radhika Jain, Jaime Muro, and Kannan Mohan. 2006. A Cognitive Perspective on
Pair Programming. In AMCIS 2006 Proceedings (AMCIS 2006). 444.

Magne Jorgensen and D. Sjoberg. 2000. The Importance of not Learnig from
Experience. In Proceedings of European Software Process Improvement.

Daniel Kahneman. 2011. Thinking Fast and Slow. Farrar, Strauss, Giroux.

R. E. Kirk. 2013. Experimental Design: Procedures for the Behavioral Sciences. SAGE
Publications.

Andrew Jensen Ko and Brad A. Myers. 2005. A framework and methodology for
studying the causes of software errors in programming systems. J. Vis. Lang.
Comput. 16 (2005), 41-84.

Laura M. Leventhal, Barbee Teasley, Diane S. Rohlman, and Keith Instone. 1993.
Positive Test Bias in Software Testing Among Professionals: A Review. In Selected
Papers from the Third International Conference on Human-Computer Interaction
(EWHCI *93). Springer-Verlag, Berlin, Heidelberg, 210-218. http://dl.acm.org/
citation.cfm?id=646181.682601

Erik Lghre and Magne Jorgensen. 2016. Numerical Anchors and Their Strong
Effects on Software Development Effort Estimates. J. Syst. Softw. 116, C (June
2016), 49-56. https://doi.org/10.1016/].jss.2015.03.015

Carolyn Mair and Martin Shepperd. 2011. Human Judgement and Software
Metrics: Vision for the Future. In Proceedings of the 2Nd International Workshop
on Emerging Trends in Software Metrics (WETSoM ’11). ACM, New York, NY, USA,
81-84. https://doi.org/10.1145/1985374.1985393

Shane Mclntosh, Yasutaka Kamei, Bram Adams, and Ahmed E Hassan. 2014.
The impact of code review coverage and code review participation on software
quality: A case study of the qt, vtk, and itk projects. In Proceedings of the 11th
Working Conference on Mining Software Repositories. ACM, 192-201.

Shane MclIntosh, Yasutaka Kamei, Bram Adams, and Ahmed E. Hassan. 2016.
An empirical study of the impact of modern code review practices on software
quality. 21, 5 (2016), 2146-2189. https://doi.org/10.1007/s10664-015-9381-9
Kannan Mohan and Radhika Jain. 2008. Using Traceability to Mitigate Cognitive
Biases in Software Development. Commun. ACM 51, 9 (Sept. 2008), 110-114.
https://doi.org/10.1145/1378727.1389970

R. Mohanani, I. Salman, B. Turhan, P. Rodriguez, and P. Ralph. 2018. Cognitive
Biases in Software Engineering: A Systematic Mapping Study. IEEE Transactions
on Software Engineering (2018), 1-1. https://doi.org/10.1109/TSE.2018.2877759
Don A. Moore and Paul J. Healy. 2008. The trouble with overconfidence. Psycho-
logical Review 115 (2008), 502-517.

Eric Neumayer and Thomas Pliimper. 2017. Robustness tests for quantitative
research. Cambridge University Press.

A. L. Nichols and]J. K. Maner. 2008. The good subject effect: Investigating
participant demand characteristics. Journal of General Psychology 135, 1 (2008),
151-165.

Meike Olbrecht and Lutz Bornmann. 2010. Panel peer review of grant applications:
what do we know from research in social psychology on judgment and decision-
making in groups? Research Evaluation 19, 4 (10 2010), 293-304. https://doi.
0rg/10.3152/095820210X12809191250762 arXiv:http://oup.prod.sis.lan/rev/article-
pdf/19/4/293/4452351/19-4-293.pdf

J. Parsons and C. Saunders. 2004. Cognitive heuristics in software engineering
applying and extending anchoring and adjustment to artifact reuse. IEEE Trans-
actions on Software Engineering 30, 12 (Dec 2004), 873-888. https://doi.org/10.
1109/TSE.2004.94

Jamie Peabody. [n.d.]. mergely. http://www.mergely.com/.

Mitzi G Pitts and Glenn J Browne. 2007. Improving requirements elicitation: an
empirical investigation of procedural prompts. Information Systems Journal 17, 1
(2007), 89-110. https://doi.org/10.1111/§.1365-2575.2006.00240.x

Scott Plous. 1993. The Psyhology of Judgement and Decision Making. McGraw-Hill,
Inc.

Jason E Robbins and David F Redmiles. 1998. Software architecture critics in
the Argo design environment. Knowledge-Based Systems 11, 1 (1998), 47 - 60.
https://doi.org/10.1016/S0950-7051(98)00055-0

Robert Brautigam. 2018. Why I Never Null-Check Parameters. https://dzone.
com/articles/why-i-never-null-check-parameters.

Caitlin Sadowski, Emma Séderberg, Luke Church, Michal Sipko, and Alberto
Bacchelli. 2018. Modern Code Review: A Case Study at Google. In Proceedings of
the 40th International Conference on Software Engineering: Software Engineering in
Practice (ICSE-SEIP ’'18). ACM, 181-190. https://doi.org/10.1145/3183519.3183525
Scott Shipp. 2019. Better Null-Checking in Java. https://dev.to/scottshipp/better-
null-checking-in-java-ngk.
Davide Spadini. [n.d.].
CRExperiment.

Davide Spadini, Mauricio Aniche, Margaret-Anne Storey, Magiel Bruntink, and
Alberto Bacchelli. 2018. When testing meets code review: Why and how devel-
opers review tests. In 2018 IEEE/ACM 40th International Conference on Software

CRExperiment. https://github.com/ishepard/

1182

[45

[46

[51

[52

[53

]

Engineering (ICSE). IEEE, 677-687.

Davide Spadini, Giil Calikli, and Alberto Bacchelli. [n.d.]. Replication package
for “Primers or Reminders? The Effects of Existing Review Comments on Code
Review”. https://doi.org/10.5281/zenodo.3653856.

Davide Spadini, Fabio Palomba, Tobias Baum, Stefan Hanenberg, Magiel Bruntink,
and Alberto Bacchelli. 2019. Test-Driven Code Review: An Empirical Study. In
Proceedings of the 41st International Conference on Software Engineering (ICSE2019).
Montreal, Canada, 1061-1072.

Webb Stacy and Jean MacMillan. 1995. Cognitive Bias in Software Engineering.
Commun. ACM 38, 6 (June 1995), 57-63. https://doi.org/10.1145/203241.203256
KEITH E. STANOVICH. 2009. What Intelligence Tests Miss: The Psychology of
Rational Thought. Yale University Press. http://www.jstor.org/stable/j.cttinq14j
Patanamon Thongtanunam and Ahmed E Hassan. 2020. Review Dynamics and
Their Impact on Software Quality. IEEE Transactions on Software Engineering
(2020).

P. Thongtanunam, S. McIntosh, A. E. Hassan, and H. Iida. 2015. Investigating
Code Review Practices in Defective Files: An Empirical Study of the Qt System. In
2015 IEEE/ACM 12th Working Conference on Mining Software Repositories. 168—179.
https://doi.org/10.1109/MSR.2015.23

Amos Tversky and Daniel Kahneman. 1973. Availability: A Heuristic for Judging
Frequency and Probability. Cognitive Psychology 5 (1973), 207-232. https:
//doi.org/10.1109/TSE.2018.2877759

Hans van Vliet and Antony Tang. 2016. Decision making in software architecture.
Journal of Systems and Software 117 (2016), 638 — 644. https://doi.org/10.1016/j.
j8s.2016.01.017

Alex Zhitnitsky. 2016. The complete guide to Solving Java Application Errors in
Production. OverOps.

