
Primers or reminders the effects of existing review comments on code
review

Downloaded from: https://research.chalmers.se, 2025-11-10 14:37 UTC

Citation for the original published paper (version of record):
Spadini, D., Calikli, G., Bacchelli, A. (2020). Primers or reminders the effects of existing review
comments on code review. Proceedings - International Conference on Software Engineering:
1171-1182. http://dx.doi.org/10.1145/3377811.3380385

N.B. When citing this work, cite the original published paper.

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained
for all other uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, or reuse of any copyrighted component of this work in other
works.

(article starts on next page)

Primers or Reminders?
The Effects of Existing Review Comments on Code Review

Davide Spadini

d.spadini@sig.eu

Software Improvement Group &

Delft University of Technology

Amsterdam & Delft, The Netherlands

Gül Çalikli

gul.calikli@gu.se

Chalmers & University of Gothenburg

Gothenburg, Sweden

Alberto Bacchelli

bacchelli@ifi.uzh.ch

University of Zurich

Zurich, Switzerland

ABSTRACT
In contemporary code review, the comments put by reviewers on a

specific code change are immediately visible to the other reviewers

involved. Could this visibility prime new reviewers’ attention (due

to the human’s proneness to availability bias), thus biasing the code

review outcome? In this study, we investigate this topic by con-

ducting a controlled experiment with 85 developers who perform

a code review and a psychological experiment. With the psycho-

logical experiment, we find that ≈70% of participants are prone to

availability bias. However, when it comes to the code review, our

experiment results show that participants are primed only when

the existing code review comment is about a type of bug that is not

normally considered; when this comment is visible, participants are

more likely to find another occurrence of this type of bug. More-

over, this priming effect does not influence reviewers’ likelihood of

detecting other types of bugs. Our findings suggest that the current

code review practice is effective because existing review comments

about bugs in code changes are not negative primers, rather positive
reminders for bugs that would otherwise be overlooked during code
review. Data and materials: https://doi.org/10.5281/zenodo.3653856

CCS CONCEPTS
• Software and its engineering→ Software verification and vali-
dation.

KEYWORDS
Code Review, Priming, Availability Heuristic

ACM Reference Format:
Davide Spadini, Gül Çalikli, and Alberto Bacchelli. 2020. Primers or Re-

minders? The Effects of Existing Review Comments on Code Review. In

42nd International Conference on Software Engineering (ICSE ’20), May 23–
29, 2020, Seoul, Republic of Korea. ACM, New York, NY, USA, 12 pages.

https://doi.org/10.1145/3377811.3380385

1 INTRODUCTION
Peer code review is a well-established practice that aims at main-

taining and promoting source code quality, as well as sustaining

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea
© 2020 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-7121-6/20/05.

https://doi.org/10.1145/3377811.3380385

development teams by means of improved knowledge transfer,

awareness, and solutions to problems [3, 5, 27, 41].

In the code review type that is most common nowadays [7],

the author of a code change sends the change for review to peer

developers (also knowns as reviewers), before the change can be

integrated in production. Previous research on three popular open-

source software projects has found that three to five reviewers are

involved in each review [44]. Using a software review tool, the

reviewers and the author conduct an asynchronous online discus-

sion to collectively judge whether the proposed code change is

of sufficiently high quality and adheres to the guidelines of the

project. In widespread code review tools, reviewers’ comments are

immediately visible as they are written by their authors; could this

visibility bias the other reviewers’ judgment?

If we consider the peer review setting for scientific articles, re-

viewers normally judge (at least initially) the merit of the submitted

work independently from each other. The rationale behind such

preference is to mitigate group members’ influences on each other

that might lead to errors in the individual judgments [34]. It is

reasonable to think that also in code review, the visibility of exist-

ing review comments made by other developers may affect one’s

individual judgment, leading to an erroneous judgment.

An existing comment may prime new reviewers on a specific

type of bug, due to the availability bias [30]. Availability bias is

the tendency to be influenced by information that can be easily

retrieved from memory (i.e., easy to recall) [21]. This bias is one

of the many cognitive biases identified in psychology, sociology,

and management research [30]. Cognitive biases are systematic

deviations from optimal reasoning [30, 47, 48]. In the cognitive

psychology literature, Kahneman and Tversky showed that humans

are prone to availability bias [51]. For example one may avoid

traveling by plane after having seen recent plane accidents on the

news, or may see conspiracies everywhere as a result of watching

too many spy movies [21]. Therefore, it seems fitting to imagine

that a reviewer may be biased toward a certain bug type, by readily

seeing another reviewer’s comment on such a bug type. This bias

would likely result in a distorted code review outcome.

In this paper, we present a controlled experiment we devised

and conducted to test the current code review setup and review-

ers’ proneness to availability bias. More specifically, we examine

whether priming a reviewer on a bug type (achieved by showing

an existing review comment) biases the outcome of code review.

Our experiment was completed by 85 developers, 73% of which

reported to have at least three years of professional development

experience. We required each developer to conduct a code review in

which an existing comment was either shown (treatment group) or

1171

2020 IEEE/ACM 42nd International Conference on Software Engineering (ICSE)

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3377811.3380385&domain=pdf&date_stamp=2020-10-01

not (control group). We then measured to what extent the reviewers

could find—in the same code change—(1) another bug of the same

type as the primed one and (2) a bug of a different type. We created

a setup with two different code changes to review.

Based on the availability bias literature, we expected the primed

participants (treatment group) to be more likely to find the bug

of the same type (as it is already available in memory), but less

likely to find the other bug type (since distracted by the comment).

Surprisingly, instead, our results show that—for three out of four

bugs—the code review outcome does not change between the treat-

ment and control groups. After testing our results for robustness,

we could find no evidence indicating that, for these three bugs,

the outcome of the review is biased in the presence of an existing

review comment priming them on a bug type. Only for one bug

type, though, we have strong evidence that the behavior of the

reviewers changed: When the previous review comment was about

a type of bug that is normally not considered during developers’

coding/review practices (i.e., checking for NullPointerException
on a method’s parameters), the reviewers were more likely to find

the same type of bug with a strong effect.

Overall, we interpret the results of our experiment as an indica-

tion that existing review comments do not act as negative primers,
rather as positive reminders. As such, our experiment provides evi-

dence that the current collaborative code review practice, adopted

by most software projects, could be more beneficial than separate

individual reviews, not only in terms of efficiency and social advan-

tages, but also in terms of its effectiveness in finding bugs.

2 BACKGROUND AND RELATED WORK
In this section, we review the literature on human aspects in con-

temporary code review practices, as well as studies on scientific

peer review. Subsequently, we provide background on cognitive

biases in general and present relevant studies in Software Engi-

neering (SE). We also provide a separate subsection on availability

bias, which consists of some theoretical background and existing

research on availability bias in SE.

2.1 Human aspects in modern code review
Past research has provided evidence that human factors determine

code review performance to a significant degree and that code

review is a collaborative process [3]. Empirical studies conducted

at companies such as Google [41] and Microsoft [3] revealed that,

besides finding defects and ensuring maintainability, motivations

for reviewing code are knowledge transfer (e.g., education of junior

developers) and improving shared code ownership, which is closely

related to team awareness and transparency.

Besides being a collaborative activity, code review is also de-

manding from a cognitive point of view for the individual reviewer.

A large amount of research is focused on improving code review

tools and processes based on the assumption that reducing review-

ers’ cognitive load improves their code review performance [7, 50].

For instance, Baum et al. [9] argue that the reviewer and review

tool can be regarded as a joint cognitive system, also emphasizing

the importance of off-loading cognitive process from the reviewer

to the tool. Ebert et al. [16] conducted a study to understand the

factors that confuse code reviewers through manual analysis of

800 comments from code review of the Android project, and later

they built a series of automatic classifiers (e.g., Multinomial Naive

Bayes, OneR) for identification of confusion in review comments.

Baum et al. [8] conducted experiments to examine the association

of working memory capacity and cognitive load with code review

performance. They found that working memory capacity is associ-

ated with the effectiveness of finding de-localized defects. However,

authors could not find substantial evidence on the influence of

change part ordering on mental load or review performance. Spa-

dini et al. [46] designed and conducted a controlled experiment

to investigate whether examining changed test code before the

changed production code (also known as Test Driven Code Review
or TDR) affects code review effectiveness. According to the findings

of Spadini et al., developers adopting TDR find the same amount of

defects in production code, but more defects in test code and fewer

maintainability issues in the production code.

Significantly related to the work we present in this paper is the

recent empirical observational study by Thongtanunam and Has-

san [49]. They investigated the relationship between the evaluation

decision of a reviewer and the visible information about a patch

under review (e.g., comments and votes by prior co-reviewers) [49].

With an observational study on tens of thousands of patches from

two popular open-source software systems, Thongtanunam and

Hassan found that (1) the amount of feedback and co-working fre-

quency between reviewer and patch author are highly associated

with the likelihood of the reviewer providing a positive vote and that

(2) the proportion of reviewers who provided a vote consistent with

prior reviewers is significantly associated with the defect-proneness

of a patch (even though other factors are stronger). These results

corroborate the hypothesis that there is some sort of influence gen-

erated by the visible information about the change under review on

the behavior of the reviewers [49]. In the work we present in this

paper, we setup a controlled setting to investigate an angle of this in-

fluence further, hoping to shed more light on the causal connection

between comments’ visibility and reviewers’ effectiveness.

2.2 Scientific peer review
Peer review is the main form of group decision making used to

allocate scientific research grants and select manuscripts for publi-

cation. Many studies demonstrated that individual psychological

processes are subject to social influences [15]. Such finding also

points out some issues that might arise during group decision mak-

ing. Experimental results obtained byDeutsch andGerard [15] show

that when a group situation is created, normative social influences

grossly increase, leading to errors in individual judgment. Based

on the findings of this study, it is emphasized that group consensus

succeeds only if groups encourage their members to express their

own, independent judgments. Therefore, one of the procedures for

peer review of scientific research grant applications is ‘written in-

dividual review’ [34]. With this review procedure, reviewers judge

the merit of a grant application in written form, independently of

one another, before the final decision maker approves or rejects an

application. Written individual review can mitigate the influence of

reviewers on the way to reach a collective judgment. It is also used

in scientific venues to eliminate biases. There is also another form

of review procedure, namely panel peer review where a common

1172

judgment is reached through mutual social exchange [34]. In panel

peer review, a group of reviewers convene to jointly deliberate and

judge the merit of an application before the funding decision is

made. However, as also emphasized by Deutsch and Gerard [15], it

is crucial to encourage individual members to express their own

judgment without feeling under the pressure of normative social

influences for proper functioning of group decision making.

2.3 Cognitive biases in software engineering
Cognitive biases are defined as systematic deviations from optimal

reasoning [30, 47, 48]. In the past six decades, hundreds of empirical

studies have been conducted showing the existence of various

cognitive biases in humans’ thought processes [21, 48]. Although

many theories explain why cognitive biases exist, Baron [6] stated

that there is no evidence so far about the existence of a single

reason or generative mechanism that can explain the existence of

all cognitive bias types. Some theories see cognitive bias as the

by-product of cognitive heuristics that humans developed due to

their cognitive limitations (e.g., information processing power) and

time pressure, whereas some relate them to emotions.

Human cognition is a crucial part of software engineering re-

search since software is developed by people for people. In their

systematic mapping study [30], Mohanini et al. report 37 differ-

ent cognitive biases that have been investigated by software en-

gineering studies so far. According to the results of this system-

atic mapping study, the cognitive biases that are most common

in software engineering studies are anchoring bias, confirmation
bias, and overconfidence bias. Anchoring bias results from forming

initial estimates about a problem under uncertainty and focusing

on these initial estimates without making sufficient modifications

in the light of more recently acquired information [21, 47]. Anchor-

ing bias has so far been studied in software engineering research

within the scope of requirements elicitation [37], pair program-

ming [19], software reuse [35], software project management [2],

and effort estimation [25]. Confirmation bias is the tendency to

search for, interpret, favor, and recall information in a way that

affirms one’s prior beliefs or hypotheses [38]. The manifestations

of confirmation bias during unit testing and how it affects software

defect density have been widely studied in software engineering

literature [11, 12, 24].

Any positive effect of experience on mitigation of confirmation

bias has not been discovered so far [10]. However, in some stud-

ies, participants who have been trained in logical reasoning and

hypothesis testing skills were manifested less tendency towards

confirmatory behavior during software testing [10]. Ko and Myers

identify confirmation bias among the cognitive biases that cause

errors in programming systems [23]. Van Vliet and Tang indicate

that during software architecture design, some organizations assign

devil’s advocate so that one’s proposal is not followed without any

questioning [52]. Overconfidence bias manifests when a person’s

subjective confidence in their judgement is reliably greater than the

objective accuracy of such a judgement [31]. This bias type has been

studied within the context of pair programming [19], requirements

elicitation [13] and project cost estimation [26].

Availability bias.Availability bias is the tendency to be influenced
by information that can be easily retrieved from memory (i.e., easy

to recall) [21]. The definition of availability bias was first formu-

lated by Tversky and Kahneman [51], who conducted a series of

experiments to explore this judgemental bias. However, including

these original experiments, many psychology experiments do not

go beyond comparing two groups (i.e., controlled and test group)

to differ in availability. To the best of our knowledge, in cognitive

psychology literature, the only experiment providing evidence for

the mediating process that manifests availability bias was devised

by Gabrelcik and Fazio, who employed (memory) priming as the

mediating process [18].

Availability bias has also been studied in SE research. De Graaf

et al. [14] examined software professionals’ strategies to search

for documentation by using think-aloud protocols. Authors claim

that using incorrect or incomplete set of keywords, or ignoring

certain locations while looking for documents due to availability

bias might lead to huge losses. Mohan and Jain [29] claim that

while performing changes in design artifacts, developers—due to

availability bias—might focus on their past experiences, since such

info can be easily retrieved from developers’ memory. However,

such information might be inconsistent with the current state of

the software system. Mohan et al. [29] propose traceability among

design artifacts as a solution to mitigate the negative effects of

the availability bias and other cognitive biases (i.e., anchoring and

confirmation bias). Robins and Redmiles [39] propose a software

architecture design environment reporting that it supports design-

ers by addressing their cognitive challenges, including availability

bias. Jørgensen and Sjøberg [20] argue that while learning from

software development experience, learning from the right experi-

ences might be hindered due to availability bias. Authors suggest

retaining post-mortem project reviews to mitigate negative effects

of availability bias.

Overall, existing literature points to the potential risks associ-

ated with availability bias in SE. As our community has provided

evidence that code review is a collaborative and cognitively de-

manding process and that the collaborative nature of code review

also has the potential to affect individual reviewers’ cognition, avail-

ability bias could manifest itself during the code review process.

This bias could hamper code review effectiveness. In our study, we

aim to explore how existing review comments bias the code review

outcome.

3 EXPERIMENTAL DESIGN
In this section, we explain the design of our experiment.

3.1 Research Questions and Hypotheses
The paper is structured along two research questions. By answering

these research questions, we aim to understand to what extent

contemporary code review is robust to reviewers’ availability bias,

depending on the nature of the bug for which a previous comment

exists on the code change. Our first research question and the

corresponding hypotheses follow.

RQ1. What is the effect of priming the reviewer with a bug
type that is not normally considered?

1173

We hypothesize that an existing review comment about a bug

type that reviewers do not usually consider (such as a null value
passed as an argument [4, 7, 40, 42]) might prime the reviewers

towards this bug type, so they find more of these bugs. Also, we

hypothesize that—due to such priming—reviewers overlook bugs

on which they were not primed. Hence, our formal hypotheses are:

𝐻010: Priming subjects with bugs they usually do not consider
does not affect their performance in finding bugs of the

same type.

𝐻011: Priming subjects with bugs they usually donot consider does
not affect their performance in finding bugs they usually look

for.

We also explore how priming on a bug that is usually considered

during code reviews affects review performance. Therefore, our

second research question is:

RQ2. What is the effect of priming the reviewer with a bug
type that is normally looked for?

We hypothesize that also in the case of an existing review com-

ment about a bug type that reviewers usually consider primes the

reviewers towards this bug type, so that they find more of these

bugs. Also, we expect primed reviewers to only look for the type

of bugs on which they are primed, overlooking others. Hence, our

formal hypotheses are:

𝐻020: Priming subjects with bugs they usually consider does not

affect their performance in finding bugs of the same type.

𝐻021: Priming subjects with bugs they usually consider does not

affect their performance in finding bugs they usually do not
look for.

3.2 Experiment Design and Structure
To conduct the code review experiment and to assess participants’

proneness to availability bias, we extend the browser-based tool

CRExperiment [43]. The tool allows us to (i) visualize and perform

a code review, (ii) collect data through questions asking for subjects’

demographics information as well as data consisting of participants’

interactions with the tool, (iii) collect data to measure subjects’

proneness to availability bias, by using a memory priming set-up

to trigger subjects’ use of availability heuristic that is followed by a

survey. Both the priming set-up and the survey are inherited from

a classic experiment in cognitive psychology literature that was

designed by Gabrielcik and Fazio [18].

CodeReview Experiment Overview. For the code review experi-

ment, we follow independent measures design [22] augmented with

some additional phases. The following stages in the browser-based

tool correspond to the code review experiment:

(1) Welcome Page: The welcome page provides participants

with information about the experiment. This page also aims

to avoid demand characteristics [33], which are cues and

hints that can make the participants aware of the goals of

this research study leading to change in their behaviour dur-

ing the experiment. For this purpose, we do not inform the

participants about the full purpose of the experiment, rather

they are only told that the experiment aims to compare code

review performance under different circumstances. Before

starting the experiment, the subjects are also asked for their

informed consent.

(2) Participants’ Demographics: On the next page, subjects

are asked questions to collect demographic information as

well as confounding factors, such as: (i) gender, (ii) age, (iii)

proficiency in the English language, (iv) highest obtained

education degree, (v) main role, (vi) years of experience in

software development, (vii) current frequency in software

development, (viii) years of experience in Java programming,

(ix) years of experience in doing code reviews, (x) current

frequency of doing code reviews, and (xi) the number of

hours subjects worked that day. It is kept mandatory that

subjects answer these questions before proceeding to the

next page where they will receive more information about

the code review experiment they are about to take part in.We

ask these questions to measure subjects’ real, relevant, and

recent experience. Collecting such data helps us to identify

which portion of the developer population is represented by

subjects who take part in our experiment [17].

(3) Actual Experiment: Each participant is then asked to per-

form a code review and is randomly assigned to one of the

following two treatments:

• Pr (primed)– The subject is given a code change to review

where there exists a review comment (made by a previous

reviewer) about a bug in the code. The test group of our

experiment comprises the subjects who are assigned to

this treatment.

• NPr (not–primed)– The subject is given a code change

to review. In the code change, there are no comments

made by any other reviewers. The control group of our

experiment comprises the subjects who are assigned to

this treatment.

More specifically, the patch to review contains three bugs:

two of the same type (i.e., BugA) and one of a different type

(i.e., BugB). In the Pr group, the review starts with a com-

ment made by another reviewer showing that one instance

of BugA is present. The participant is then asked to continue

the review. In the NPr group, the review starts without com-

ments. The comments shown to the participants in the Pr
group were written by the authors, and the wording was

refined with the feedback from the pilots (Section 3.5). Each

participant is asked to take the task very seriously. More

specifically, we ask them to find as many defects as possible

and, like in real life, spend as little time as possible on the

review. However, unlike in real life, we ask them not to pay

attention to maintainability or design issues, but only in cor-

rectness issues (“bugs”). For example, we discard comments

regarding variable namings or small refactorings.

(4) Interruptions during the Experiment: Immediately af-

ter completing the code review, the participants are asked

whether they were interrupted during the task and for how

long.

(5) Follow-up Questions: In the last page of the code review

experiment, the participants are shown the code change they

just reviewed together with the bugs disclosed: For each bug,

we show it and explain why it is a defect and in what cases

1174

Figure 1: Example of a code review using the tool.

it might fail. Then, for each bug, we ask the participants to

indicate whether they captured it in the review:

• If the participants found the bug and they belonged to the

Pr group, we ask them to what extent the comment of

the previous reviewer influenced the discovery of the bug

(using a 5-point Likert scale).

• If the participants did not find the bug (independently

whether they were in the Pr or NPr group), we ask them

to elaborate on why they think they missed the bug.

Assessment of Proneness to Availability Bias. The code review
experiment is followed by a set-up that primes participants’ mem-

ory to trigger availability bias. This set-up serves as a mediating

process to manipulate availability bias so that we can measure the

extent to which each subject is prone to this type of cognitive bias.

To measure this phenomenon, we inherited the test part of the

controlled experiment of Gabrielcik and Fazio [18]. In the original

experiment, the difference in the results of control and test groups

showed that (memory) priming triggered the participants’ availabil-

ity biases. There are three reasons why we selected this experiment

for assessing the proneness to availability bias: (i) To the best of

our knowledge, it is the only experiment where the underlying

cognition mechanism (i.e., memory priming) that triggers availabil-

ity bias is explicitly devised; (ii) memory priming mechanism is

also employed in code review experiment to trigger participants’

availability bias; and (iii) survey in the original experiment makes

it possible to quantitatively assess participants’ proneness to avail-

ability bias. Therefore, the remaining stages in the browser-based

tool comprise the following:

(1) Welcome Page: We provide a second welcome page in

which, to avoid demand characteristics [33], the participants

are told that they are about to participate in an experiment

that aims to explore software engineers’ attention by testing

a set of visual stimuli, instead of the actual goal.

(2) Warm-up Session: We proceed with a warm-up session in

which participants are asked to focus on a series of 20 words

flashing once each on the screen. The words are randomly

selected from the English dictionary, and none of them con-

tain the letter ‘T’. Each word flashes for 300𝑚𝑠 . At the end of

the warm-up, we ask the participants to write three words

they have seen and recall, and to make a guess if they do not

remember them.

(3) Actual Psychology Experiment: After the warm-up, we

proceed with the actual psychology experiment: this time,

we show two series of 20 words, all of them including the

1175

letter ‘T’. This time words flash at a faster rate, i.e., 150𝑚𝑠 ,

to avoid that the participants consciously recognize that the

words have the letter ‘T’ so often, which would bias their last

task [18]. After each series, we ask the participant to write

three words they have seen and recall, and to make a guess

if they do not remember them.

(4) Measuring Proneness to Availability Bias:The last task
of the participants is to answer 15 questions, which ask to

compare the frequency words for a given pair of letters in the

English dictionary. For example, given the question “Domore

words contain T or S", participants responded on a 9-point

scale, with one end labeled “Many more contain T" and the

other “Many more contain S". Our main goal is to measure

the extent to which each subject is prone to availability bias.

Hence, in 5 of the 15 questions we ask whether in the English

dictionary there are more words containing the letter ‘T’ or
another random letter. As in the experiment of Gabrielcik

and Fazio [18], we expect the participants to indicate that

there are more words containing the letter ‘T’ (even though

this is not the case) since they were primed in step 3. The

other 10 questions are used to prevent the participants from

understanding the actual aim of the study.

3.3 Objects
The objects of the study are represented by the code changes (or

patch, for brevity) to review, and the bugs that we selected and

injected, which must be discovered by the participants.

Patches. To avoid giving some developers an advantage, the two

patches are not selected from open-source software projects, hence

they are not known to any of the participants. To maintain the diffi-

culty of the code review reasonable (after all, developers are used to

review only the codebase on which they work every day), we screen

many websites that offer Java exercises searching for exercises that

are: (1) neither too trivial nor too complicated (based on our expe-

rience teaching programming to students), (2) self-contained, and

(3) do not rely on special technologies or frameworks/libraries.

After several brain-storming sessions among the authors, only

two exercises satisfied these goals and were selected.

Defects.Code review is a well-established andwidely adopted prac-

tice aimed at maintaining and promoting software quality [3, 41].

There are different reasons on why developers adopt this practice,

but one of the main ones is to detect defects [3]. Hence, in our

experiment we manually seed bugs (functional defects) in the code.

More specifically, we seed two different types of bugs: one that

could cause a NullPointerException (BugA), and one that could

cause the return of a wrong value (BugB).

The bugs were injected in the code as follows:

• In Patch1, we inject two BugA and one BugB (the priming

is done on BugA),

• In Patch2, we inject two BugB and one BugA (the priming

is done on BugB),

The NullPointerException (BugA) in the first change was on

the passed parameters. As reported by white [7] and gray litera-

ture [4, 40, 42], developers are not used to check for this kind of

errors in code review, because they expect the caller to make sure

the parameters are not null: hence, we use it as the not normally

considered bug that we investigate in RQ1. Instead, BugA in the

second change (RQ2) does not regard a parameter, to make sure

that it is bug type that normally developers look for in a review.

3.4 Variables and Measurement Details
We aim to investigate whether participants that are primed on a

specific type of bug are more likely to capture only that type of bug.

To understand whether the subjects did find the bug (i.e., the value
for our dependent variables), we proceed with the following steps:

(1) the first author of this paper manually analyzes all the remarks

added by the participants (each remark is classified as identifying

a bug or being outside of the study’s scope), then (2) the authors

cross-validate the results with the answer given by the participants

(as explained in Section 3.2, after the experiment the participants

had to indicate whether they captured the bugs).

In Table 1, we represent all the variables of our model. The main

independent variable of our experiment is the treatment (Pr orNPr).
We consider the other variables as control variables, which also

include the time spent on the review, the participant’s role, years of

experience in Java and Code Review, and tiredness. Finally, we run

a logistic regression model similar to the one used by McIntoshet
al. [28] and Spadini et al. [46]. To ensure that the selected logistic

regression model is appropriate for the available data, we first (1)

compute the Variance Inflation Factors (VIF) as a standard test for

multicollinearity, finding all the values to be below 3 (values should

be below 10), thus indicating little or no multicollinearity among

the independent variables, (2) run a multilevel regression model to

check whether there is a significant variance among reviewers, but

we found little to none, thus indicating that a single level regression

model is appropriate, and, finally, (4) when building the model we

added the independent variables step-by-step and found that the

coefficients remained stable, thus further indicating little to no

interference among the variables. For convenience, we include the

script to our publicly available replication package [45].

Availability bias score. We calculate availability bias scores as in

the original experiment by Gabrielcik and Fazio [18]. The frequency

comparisons on the 9–point scale were scored by assignments of

a value between +4 and −4. Positive numbers were assigned for

ratings indicating that letter ‘T’ was contained in more words than

the other letter, while negative numbers were assigned in favour of

the other letter. We calculated the availability bias score for each

participant as the average (and also median) of values for the 5

relevant questions.

3.5 Pilot Runs
As the first version of the experiment was ready, we started con-

ducting pilot runs to (1) verify the absence of technical errors in the

online platform, (2) check the ratio with which participants were

able to find the injected bugs (regardless of their treatment group),

(3) tune the experiment on the proneness to availability bias (in

terms of flashing speed and number of words to ask), (4) verify the

understandability of the instructions as well as the user interface,

and (5) gather qualitative feedback from the participants. We con-

ducted three different pilot runs, for a total of 20 developers. The

participants were recruited through the professional network of the

study authors to ensure that they would take the task seriously and

1176

Table 1: Variables used in the statistical model.

Metric Description
Dependent Variables

FoundPrimed

The participant found the bug

that was primed

FoundNotPrimed

The participant found the bug

that was not primed

Independent Variable
Treatment Type of the treatment (Pr or NPr)

Control Variables
Gender Gender of the participant

EnglishLevel English Level

Age Age of the participant

LevelOfEducation Highest achieved level of education

Role Role of the participant

ProfDevExp

Years of experience as professional

developer

JavaExp Years of experience in Java

ProgramPractice How often they program

ReviewPractice How often they perform code review

ReviewExp Years of experience in code review

WorkedHours

Hours the participant worked before

performing the experiment

Tired

How tired was the participant at the

moment of taking the experiment

Stressed

How stressed was the participant at

the moment of taking the experiment

Interruptions

For how long the participant was

interrupted during the experiment

TotalDuration Total duration of the experiment

PsychoExpIsPrimed

Whether the participant was

primed in the psychology experiment

(†) see Figure 2 for the scale

provide feedback on their experience. No data gathered from the

20 participants to the pilot was considered in the final experiment.

After each pilot run, we inspected the results and the qualitative

feedback we received and discussed extensively among the authors

to verify whether parts of the experiment should have been changed.

After the third run, the required changes were minimal, and we

considered the experiment ready for its main run.

3.6 Recruiting Participants
The experiment was spread out through practitioners blogs and

web forums (e.g., Reddit) and through direct contacts from the pro-

fessional network of the study authors, as well as the authors’ social

media accounts on Twitter and Facebook. We did not reveal the

aim of the experiment. To provide a small incentive to participate,

we introduced a donation-based incentive of five USD to a charity

per valid respondent.

4 THREATS TO VALIDITY
Construct Validity. Threats to construct validity concern our re-

search instruments. To measure the extent to which subjects are

prone to availability bias, we used the memory priming mecha-

nism and the survey that was employed in an experiment designed

and conducted by Gabrielcik and Fazio, in cognitive psychology

literature [18]. Data obtained from the controlled experiment that

Gabrielcik and Fazio conducted provide direct evidence that mem-

ory priming can be a mediating process to trigger availability bias.

The remaining constructs we use are defined in previous publica-

tions, and we reuse the existing instruments as much as possible.

For instance, the tool employed for the online experiment is based

on similar tools used in earlier works [9, 46].

To avoid problems with experimental materials, we employed a

multi-stage process: After tests among the authors, we conducted

three experiments with ≈7 subjects each time (for a total of 20

pilots) with external participants. After each pilot session, we made

corrections to the experiment based on the feedback from the sub-

jects of the pilot, materials were checked by the authors one more

time before we launched the actual experiment.

Regarding defects and code changes, the first author prepared

the code changes and corresponding test codes as well as injecting

the defects into these code changes. These were later checked by

the other authors. Code change and corresponding test code were

on the same page, and subjects had to scroll down to proceed to the

next page of the online experiment. In this way, we aimed to ensure

that subjects saw the test code. Test code were added to make the

experiment closer to a real world scenario.

A major threat is that the artificial experiment created by us

could differ from a real-world scenario. We mitigated this issue

by (1) re-creating as close as possible a real code change (for ex-

ample, submitting test code and documentation together with the

production code), and (2) using an interface that is identical to the

common Code Review tool Gerrit [1] (both our tool and Gerrit use

Mergely [36] to show the diff, also using the same color scheme).

Internal Validity. Threats to internal validity concern factors

that might affect the cause and effect relationship that is inves-

tigated through the experiment. Due to the online nature of the

experiment, we cannot ensure that our subjects conducted the ex-

periments with the same set-up (e.g., noise level and web searches),

however we argue that developers in real world settings also have

a multi-fold of tools and environments. Moreover, to mitigate the

possible threat posed by missing control over subjects, we included

some questions to characterize our sample (e.g., experience, role,
and education).

To prevent duplicate participation, we adjusted the settings of

the online experiment platform so that each subject can take the

experiment only once. To exclude participants who did not take

the experiment seriously, we screened each review and we did

not consider experiments without any comments in the review,

that took less than five minutes to be completed, or that were not

completed at all.

Furthermore, several background factors (e.g., age, gender, ex-
perience, education) may have impact on the results. Hence, we

collected all such information and investigated how these factors

affect the results by conducting statistical tests.

External Validity. Threats to external validity concerns the

generalizability of results. To have a diverse sample of subjects

(representative of the overall population of software developers who

1177

employ contemporary code review), we invited developers from

several countries, organizations, education levels, and background.

Never Once a
year

Once a
month

Once a
week

Once a
day or more

Practice

7
19

58

0% 0%
8%

23%

69%

13
7

12
28 25

15%
8%

14%

34% 29%

Programming Reviewing

20

40

60

80

20

40

60

80

20

40

60

80

Software Development Reviewing

No experience 1 year
or less

2 years 3-5 years 6-10 years >10 years

Experience

8 4 11
22 18 229% 5%

13%

26% 21%
26%

11 12
20

27
13

2

13% 14%
23%

32%

15%
3%

Programmer Researcher Student Ph.D.

Role

57

8 8 5

67%

9% 9%
6%

Other

8

9%

Figure 2: Participants’ characteristics

5 RESULTS
In this section, we report the results of our investigation on whether

and how having a comment from a previous reviewer influences

the outcome of code review.

5.1 Validating The Participants
A total of 243 people accessed our experiment environment fol-

lowing the provided link. From these participants, we exclude all

the instances in which the code change is skipped or skimmed, by

demanding either at least one entered remark or more than five

minutes spent on the review. After applying the exclusion criteria,

a total of 85 participants are selected for the subsequent analyses.

Figure 2 presents the descriptive statistics on what the partici-

pants reported in terms of their role, experience, and practice. The

majority of the participants are programmer (67%) and reported

to have many years of experience in professional software devel-

opment (73% more than 3 years, 47% more than 6); most program

daily (69%) and review code at least weekly (63%).

Table 2 represents how the participants’ are distributed across

the considered treatments and code changes. The automated as-

signment algorithm allowed us to obtain a rather balanced number

of reviews per treatment and code change.

Table 2: Distribution of participants (𝑁 = 85) across the vari-
ous treatment groups.

Primed (Pr) Not Primed (NPr) Total
CodeChange1 21 17 38

CodeChange2 22 25 47

Total 43 42

Table 3: Odds ratio for capturing the primed and not primed
bug in the test (Pr) and control (NPr) group.

Primed bug (NPE) Primed (Pr) Not Primed (NPr) Total
found 13 2 15

not found 8 15 23

Odds Ratio: 12.19 (2.19, 67.94)

p < 0.001

Not primed bug Primed (Pr) Not Primed (NPr) Total
found 14 14 28

not found 7 3 13

Odds Ratio: 0.43 (0.09, 2.00)

p = 0.275

5.2 RQ1. Priming a not commonly reviewed bug
To investigate our first research question, the participants in our

test group (Pr) are primed on a NullPointerException (NPE) bug
in a method’s parameter. We expect this type of bug to be missed

by most not primed reviewer, because normally reviewers would

assume that parameters are checked from the calling function [4,

40, 42].

Table 3 reports the results of the experiment by treatment group.

From the first part of the table (primed bug), we can notice that

participants in the Pr group found the other NPE bug 62% of the

times, while participants in the NPr group only 11%. Expressed in

odds, this result means that the NPE defect is 12 times more likely

to be found by a participant in the Pr group. The main reasons

reported by the participants in theNPr for missing this bug are that

(1) they were too focused on the logic and not thoroughly enough

when it comes the corner cases, (2) did not put attention to the fact

that Integer could be null, and (3) that they generally do not check

for NPE, but assume to not receive a wrong object as an input.

As expected, even though NullPointerException has been re-

ported to be the most common bug in Java programs [53], develop-

ers stated they rarely sanity check the Object. However, as shown

in Table 3, the result drastically changes when a previous reviewer

points out that an NPE could be raised: in this case, many of the

participants in the Pr group looked for other NPE bugs in the code.

When we look at whether the Pr group was primed by the pre-

vious reviewer comment (hence whether they were able to capture

the bug because of they have been primed), we have that 40% indi-

cated they were ‘Extremely influenced’, 40% were ‘Very influenced’

and 20% instead were ‘Somewhat influenced’. Hence, the reviewers

perceived to have been influenced by the existing comment.

We find a statistically significant relationship (𝑝 < 0.001, as-

sessed using 𝜒2) of strong positive strength (𝜙 = 0.5) between the

1178

Table 4: Regressions for primed and not primed bugs.

Primed bug Not primed bug
Estimate S.E. Sig. Estimate S.E. Sig.

Intercept 0.704 4.734 -0.893 4.093

IsPrimed 3.627 1.320 ** -1.199 1.073

TotalDuration 0.001 0.002 0.003 0.001 .

ProfDevExp 0.813 0.557 -0.503 0.554

ProgramPractice -0.096 0.828 -0.243 0.736

ReviewExp -0.070 0.630 -0.813 0.651

ReviewPractice -1.152 0.758 1.243 0.643 .

Tired -0.834 0.832 0.517 0.651

WorkedHours -0.069 0.196 0.305 0.207

Interruptions -1.752 0.758 * -0.715 0.444

... (†)
significance codes: ’***’𝑝 <0.001, ’**’𝑝 <0.01, ’*’𝑝 <0.05, ’.’𝑝 <0.1

(†) Role is not significant and omitted for space reason

presence of the comment and whether the same type of bug was

found. Therefore, we can reject 𝐻010.

Considering the second part of Table 3, we see that the not

primed bug was found by both groups (Pr and NPr) at similar rate.

For the former, participants found it 66% of the times, while in the

NPr they found it 82% of the times. As shown in the table, the

difference is not statistically significant (𝑝 = 0.275).

When looking at the participants’ comments on why they missed

this bug, we have that the main reasons are (1) that they forgot to

try the specific corner case, and (2) that they assumed tests were

covering all the corner cases. The reasons for not capturing the

defects were similar in both groups. Given this result, we cannot

reject 𝐻011. Priming the participants on a specific type of bug did

not prevent them from capturing the other type of bug.

In Table 4 we show the result of our statistical model, taking into

account the characteristics of the participants and reviews. The

model confirms the result shown in Table 3: even taking into ac-

count all the variables, the isPrimed variable is statistically signifi-

cant exclusively for the primed bug. The other variable statistically

significant in the model is ‘Interruptions’, that is the number of

times the participant has been interrupted during the experiment:

the estimate has a negative value, which means the higher the num-

ber of ‘Interruptions’, the lower the number of bugs captured, as

one can expect.

For the not primed bug instead, none of the variables are statisti-

cally significant (with ‘TotalDuration’ and ‘ReviewExp’ are slightly

significant, with 𝑝 < 0.1)

Finding 1. Reviewers primed on a bug that is not commonly
considered are more likely to find other occurences of this
type of bugs. However, this does not prevent them in finding
also other types of bugs.

5.3 RQ2. Priming on an algorithmic bug
To investigate our second research question, the participants in our

test group (Pr) are primed on an algorithmic bug, more specifically

a corner case (CC) bug. The result of this experiment is shown in

Table 5: Odds ratio for capturing the primed and not primed
bug in the test (Pr) and control (NPr) group.

Primed bug (CC) Primed (Pr) Not Primed (NPr) Total
found 10 8 18

not found 12 17 29

Odds Ratio: 1.77 (0.54, 5.81)

p = 0.344

Not primed bug Primed (Pr) Not Primed (NPr) Total
found 13 16 29

not found 9 9 18

Odds Ratio: 0.81 (0.25, 2.64)

p = 0.73

Table 5. Participants in both groups found the primed bug ~50%.

Indeed, the difference is not statistically significant (𝑝 = 0.344). If

we consider whether the test group was primed by the previous

reviewer comment, 50% of the participants reported that they were

‘Extremely influenced’, 10%was ‘Somewhat influenced’ and 40%was

slightly or not influenced; thus suggesting that even the reviewers

noticed a lower influence from this comment, even though it was

of the same type as one of the other two bugs in the same code

change.

Among themain reasons for missing the bug, participants mainly

stated that (1) the tests drove them to not remember that corner case,

and (2) they focused more on the first one. Hence, given this result

we can conclude that the participants who saw the review comment

did not find the similar bug more often than the participants that

did not see the review comment.

In the second part of Table 5, we indicatewhether the participants

were able to find the not primed bug. Both the test and control group

are very similar in this case, too. Indeed, in both groups the bug is

found around 50% of the times and the difference is not statistically

significant. When looking at the participants’ comments on why

they missed this bug, the main reasons they state are (1) that they

were too focused on capturing algorithmic bugs without paying

attention to NPE, and (2) that, as in the previous RQ, they did not

put attention to the fact that Integer could be null.
Given these results, we cannot reject 𝐻020 nor 𝐻021.

In Table 6, we show the result when controlling for other vari-

ables. Our dependent variable IsPrimed is not statistically signifi-

cant. However, we see that ‘TotalDuration’ (i.e., the time required by

the developer to complete the code review) is statistically significant

and in the expected direction. For the NPr group, the only variable

that is significant is ‘ReviewPractice’ (i.e., the average number of

time the participant perform code reviews). Both these results are

in line with what found in previous research [8].

Finding 2. Reviewers primed on an algorithmic bug perceive
an influence, but are as likely as the others to find algorithmic
bugs. Furthermore, primed participants did not capture fewer
bugs of the other type.

1179

Table 6: Regressions for primed and not primed bugs.

Primed bug Not primed bug
Estimate S.E. Sig. Estimate S.E. Sig.

Intercept -1.0510159 2.2460623 -3.037e-01 2.568e+00

IsPrimed 0.9260383 0.7223408 -1.670e-01 7.740e-01

TotalDuration 0.0018592 0.0008958 * 9.561e-05 9.976e-04

ProfDevExp -0.6031309 0.3381302 . -9.437e-02 3.721e-01

ProgramPractice 0.0319636 0.5905427 -1.061e+00 7.353e-01

ReviewExp 0.3411589 0.4548836 1.284e-01 4.660e-01

ReviewPractice 0.1531502 0.3784472 1.211e+00 4.683e-01 **

Tired 0.0835410 0.3706085 2.486e-01 4.539e-01

WorkedHours -0.1619234 0.1184626 2.257e-01 1.542e-01

Interruptions -0.1755182 0.3220796 -1.331e-01 3.630e-01

... (†)
significance codes: ’***’𝑝 <0.001, ’**’𝑝 <0.01, ’*’𝑝 <0.05, ’.’𝑝 <0.1

(†) Role is not significant and omitted for space reason

5.4 Robustness Testing
In the previous sections, we presented the results of our study on

whether and to what extent reviewers can be primed during code

review by showing an existing code review comment. Surprisingly,

the results showed that many of our hypotheses were not satisfied:

in our experiment, only in one case primed reviewers capturedmore

bugs than the not primed group; in all the other cases, reviewers

from both groups could capture the same bugs.

To further challenge the validity of these findings, in this sec-

tion, we employ robustness testing [32]. For this purpose, we test

whether the results we obtained by our baseline model hold when

we systematically replace the baseline model specification with the

following plausible alternatives.

Bugs were too simple or too complicated to find. Choosing
the right defects to inject in the code change is fundamental to the

validity of our results. If a defect is too easy to find, participants

might find the bugs regardless of any other influencing factor, even

without paying too much attention to the review (on the other hand,

if it is too complicated reviewers might not find any bug and get

discouraged to continue). We measure that ~50% of the participants

found the three types of defects that we expected them to find, thus

ruling out the possibility that these bugs were either too trivial or

too difficult to find.

People were not primed. The entire experiment is based on the

premise that reviewers in the Pr group were correctly primed. Even

though we can not verify this premise (the experiment is online,

hence there is no interaction between the researchers and the par-

ticipants), after the code review experiment the participants had to

indicate whether they were influenced by the comment of the pre-

vious reviewer in capturing the bug. As we stated in Section 5.2 and

Section 5.3, 70% of the participants indicated they were extremely

or very influenced, while only 18% indicated somewhat or slightly

influenced (12% were neutral). This gives an indication that the

participants felt they were indeed primed, but this did not influence

their ability to find other bugs.

Nevertheless, the reported level of being influenced is subjective,

so not fully reliable (participants could think to have been influ-

enced, but were not). To triangulate this result, we test another

possibility: More specifically, one of the possible explanations of

why participants may not have been primed is that our sample of

participants was “immune” to priming or very difficult to prime. In-

deed, there is no study that confirms that developers are as affected

by priming as the general population (on which past experiment

was conducted). To rule out this possibility, we devised the psy-

chological experiment: We tested whether developers can also be

primed as expected using visual stimuli. Our results show that ~70%

of the participants were primed as expected.

Not enough participants. Another possibility of why we do not

find a difference is that we did not have enough participants. Even

though 85 participants is quite large in comparison to many ex-

periments in software engineering [8] and we tried to design an

experiment that would create a strong signal, we cannot rule out

that the significance was missing due to the number of participants.

However, even if the results were statistically significant (assuming

we had the same ratios, but an order of magnitude more of par-

ticipants), the size of the effect (calculated using the 𝜙 coefficient)

would be ‘none to very negligible’. This suggests that there was no

emerging trend and that, even having more participants, we could

have probably obtained a significant, yet trivial effect.

Some participants did not perform the task seriously. Finally,
one of the reasons why we did not confirm most of our hypotheses

could be that some participants did not take the task seriously,

hence they might have performed poorly and have altered the

results. Having used a random assignment and having a reasonably

large number of participants, we have no reason to think that one

group had more ‘lazy’ participants than the others. Moreover, as

we discussed in Section 3, to exclude participants who did not

take the experiment seriously, we filtered out experiments without

any comments in the review (even if there were comments, the

first author manually validated them to check whether they were

appropriate and they were/not capturing a bug); we also did not

consider reviews that took less than five minutes to be completed,

or that were not completed at all (maybe because the participant

left after few minutes).

Alternatively, it would be possible that participants who were

more serious focused more and found more bugs (regardless of the

priming), while less serious ones would just find one and leave the

experiment. To test also this possibility, we compared the likelihood

of a participant in finding a second bug when a first one was found.

Also in this case, we did not find any statistically significant effect,

thus ruling out this hypothesis as well.

6 DISCUSSIONS
We discuss the main implications and results of our study.

Robustness of code review against availability bias. The cur-
rent code review practice expects reviewers to review and comment

on the code change asynchronously, and reviewers’ comments are

immediately visible to both the author and other reviewers.

One of the main hypotheses we stated in our study is that the

code review outcome is biased because reviewers are primed by

the visibility of existing comment on a bug. Indeed, if reviewers get

primed by previously made comments about some bug(s), then they

could find more bugs of that specific type while overlooking other

types of bugs. This would, in turn, undermine the effectiveness of

the code review process, creating a demand for a different approach.

1180

To create a different approach, one might consider adopting a

review method similar to that of scientific venues where review-

ers do not see the comments of the other reviewers until they

submit their review. Even though this strategy would reduce the

transparency of the code review process undermining knowledge

transfer, team awareness, as well as shared code ownership, and

would probably lead to a loss in review efficiency due to duplicate

bug detection, it would be necessary if the biasing effect of other

reviewers’ comments would be strong.

Our experiment results show that the participants in the test

group were positively influenced by the existing comment on the

code change so that they could capture more bugs of the same

type. However, unexpectedly, they were still able to capture the

bugs of the different type as the control group did. Like any human,

reviewers are also prone to availability bias [21] to various extents.

However, our results did not find evidence of a strong negative

effect of reviewers’ availability bias. Therefore, our data does not

provide any evidence that would justify a change in the current

code review practices.

Existing comments on normally not considered bugs act as
(positive) reminders rather than (negative) primers. Surpris-
ingly, participants in the test group who were primed with the

algorithmic bug type (more specifically, a corner case bug) detected

the same amount of corner case and NullPointerException (NPE)
bugs as the participants in the control group. However, participants

who were primed with a bug that is normally not considered in

review (i.e., NPE) were 12 times more likely to capture this type of

bug, than the participants of the control group.

This result shows that existing reviewer comments on code

change seem to support recalling (i.e., act as a reminder), rather

than distracting the reviewer. As previously mentioned in section

5.2, participants in the test group indicated that they were focused

on to the corner cases in the code change and did not put attention

to the possibility that Integer could be null. Such feedbacks are

in-line with the possible existence of anchoring bias [21, 47].
It is likely that the existence of a reviewer comment on a un-

common bug had a de-biasing effect on the participants in the test

group (i.e., mitigated the participants’ bias). In software engineering

literature, there are empirical studies on practitioners’ anchoring

bias. For instance, Pitts and Brown [37] provide procedural prompts

during requirements elicitation to aid analysts not anchoring on

currently available information. According to the findings by Jain et
al. [19], pair programming novices tend to anchor to their initial

solutions due to their inability to identify such a wider range of so-

lutions. However, to the best of our knowledge, there are no studies

on anchoring bias within the context of code reviews. Therefore,

further research is required to investigate underlying cognition

mechanisms that can explain why existing reviewer comments on

the unexpected bug act as reminders.

7 CONCLUSIONS
In the study presented in this paper, we investigated robustness

of peer code review against reviewers’ proneness to availability

bias. For this purpose, we designed and conducted an online ex-

periment with 85 participants, including a code review task and a

psychological experiment. With the psychological experiment, the

majority of the participants (i.e., ≈70%) were assessed to be prone

to availability bias (median = 3.8, max = 4). However, when it comes

to the code review, our experiment results show that participants

are primed only when the existing code review comment is about

a type of bug that is not normally considered; when this comment

is visible, participants are more likely to find another occurrence

of this type of bug. Hence, existing comments on this type of bugs

acted as reminders rather than primers. It is our hope that this study
is replicated by other researchers to gain further insights about the

extent of robustness of peer code review.

ACKNOWLEDGMENTS
This project has received funding from the European Union’s Hori-

zon 2020 research and innovation programme under the Marie

Sklodowska-Curie grant agreement No. 642954. Alberto Bacchelli

gratefully acknowledges the support of the Swiss National Science

Foundation through the SNF Project No. PP00P2_170529.

REFERENCES
[1] 2019. Gerrit Code Review. https://www.gerritcodereview.com.

[2] T. K. Abdel-Hamid, K. Sengupta, and D. Ronan. 1993. Software project control:

an experimental investigation of judgment with fallible information. IEEE Trans-
actions on Software Engineering 19, 6 (June 1993), 603–612. https://doi.org/10.

1109/32.232025

[3] Alberto Bacchelli and Christian Bird. 2013. Expectations, outcomes, and chal-

lenges of modern code review. In 2013 35th International Conference on Software
Engineering (ICSE). 712–721. https://doi.org/10.1109/ICSE.2013.6606617

[4] Baeldung. 2018. Avoid Check for Null Statement in Java. https://www.baeldung.

com/java-avoid-null-check.

[5] Richard A Baker Jr. 1997. Code reviews enhance software quality. In Proceedings
of the 19th International Conference on Software Engineering. ACM, 570–571.

[6] Jonathan Baron. 2009. Thinking and Deciding. Cambridge University Press.

[7] Tobias Baum and Kurt Schneider. 2016. On the Need for a New Generation

of Code Review Tools. In Product-Focused Software Process Improvement, Pekka
Abrahamsson, Andreas Jedlitschka, Anh Nguyen Duc, Michael Felderer, Sousuke

Amasaki, and Tommi Mikkonen (Eds.). Springer International Publishing, Cham,

301–308.

[8] Tobias Baum, Kurt Schneider, and Alberto Bacchelli. [n.d.]. Associating working

memory capacity and code change ordering with code review performance.

Empirical Software Engineering ([n. d.]), 1–37.

[9] Tobias Baum, Kurt Schneider, and Alberto Bacchelli. 2017. On the Optimal

Order of Reading Source Code Changes for Review. In 2017 IEEE International
Conference on Software Maintenance and Evolution (ICSME). 329–340. https:

//doi.org/10.1109/ICSME.2017.28

[10] Gul Calikli and Ayse Bener. 2015. Empirical analysis of factors affecting confir-

mation bias levels of software engineers. Software Quality Journal 23, 4 (01 Dec
2015), 695–722. https://doi.org/10.1007/s11219-014-9250-6

[11] G. Calikli, A. Bener, T. Aytac, and O. Bozcan. 2013. Towards a Metric Suite

Proposal to Quantify Confirmation Biases of Developers. In 2013 ACM / IEEE
International Symposium on Empirical Software Engineering and Measurement.
363–372. https://doi.org/10.1109/ESEM.2013.47

[12] Gül Çalıklı and Ayşe Başar Bener. 2013. Influence of confirmation biases of

developers on software quality: an empirical study. Software Quality Journal 21,
2 (01 Jun 2013), 377–416. https://doi.org/10.1007/s11219-012-9180-0

[13] Suranjan Chakraborty, Saonee Sarker, and Suprateek Sarker. 2010. An Exploration

into the Process of Requirements Elicitation: A Grounded Approach. Journal of
the Association for Information Systems 11 (2010), 212–249.

[14] Klaas Andries de Graaf, Peng Liang, Antony Tang, and Hans van Vliet. 2014.

The Impact of Prior Knowledge on Searching in Software Documentation. In

Proceedings of the 2014 ACM Symposium on Document Engineering (DocEng ’14).
ACM, New York, NY, USA, 189–198. https://doi.org/10.1145/2644866.2644878

[15] M. Deutsch and H. B. Gerard. 1955. A study of normative and informational

social influences upon individual judgment. The Journal of Abnormal and Social
Psychology 51, 3 (1955), 629–636. https://doi.org/10.1147/sj.153.0182

[16] F. Ebert, F. Castor, N. Novielli, and A. Serebrenik. 2017. Confusion Detection in

Code Reviews. In 2017 IEEE International Conference on Software Maintenance
and Evolution (ICSME). 549–553. https://doi.org/10.1109/ICSME.2017.40

[17] Davide Falessi, Natalia Juristo, Claes Wohlin, Burak Turhan, Jürgen Münch,

Andreas Jedlitschka, and Markku Oivo. 2018. Empirical software engineering

experts on the use of students and professionals in experiments. Empirical

1181

Software Engineering 23, 1 (01 Feb 2018), 452–489. https://doi.org/10.1007/s10664-
017-9523-3

[18] Adele Gabrielcik and Russell H. Fazio. 1984. Priming and Frequency Estimation: A

Strict Test of the Availability Heuristic. Personality and Social Psychology Bulletin
10, 1 (1984), 85–89. https://doi.org/10.1177/0146167284101009

[19] Radhika Jain, Jaime Muro, and Kannan Mohan. 2006. A Cognitive Perspective on

Pair Programming. In AMCIS 2006 Proceedings (AMCIS 2006). 444.
[20] Magne Jorgensen and D. Sjoberg. 2000. The Importance of not Learnig from

Experience. In Proceedings of European Software Process Improvement.
[21] Daniel Kahneman. 2011. Thinking Fast and Slow. Farrar, Strauss, Giroux.
[22] R. E. Kirk. 2013. Experimental Design: Procedures for the Behavioral Sciences. SAGE

Publications.

[23] Andrew Jensen Ko and Brad A. Myers. 2005. A framework and methodology for

studying the causes of software errors in programming systems. J. Vis. Lang.
Comput. 16 (2005), 41–84.

[24] Laura M. Leventhal, Barbee Teasley, Diane S. Rohlman, and Keith Instone. 1993.

Positive Test Bias in Software Testing Among Professionals: A Review. In Selected
Papers from the Third International Conference on Human-Computer Interaction
(EWHCI ’93). Springer-Verlag, Berlin, Heidelberg, 210–218. http://dl.acm.org/

citation.cfm?id=646181.682601

[25] Erik Løhre and Magne Jørgensen. 2016. Numerical Anchors and Their Strong

Effects on Software Development Effort Estimates. J. Syst. Softw. 116, C (June

2016), 49–56. https://doi.org/10.1016/j.jss.2015.03.015

[26] Carolyn Mair and Martin Shepperd. 2011. Human Judgement and Software

Metrics: Vision for the Future. In Proceedings of the 2Nd International Workshop
on Emerging Trends in Software Metrics (WETSoM ’11). ACM, New York, NY, USA,

81–84. https://doi.org/10.1145/1985374.1985393

[27] Shane McIntosh, Yasutaka Kamei, Bram Adams, and Ahmed E Hassan. 2014.

The impact of code review coverage and code review participation on software

quality: A case study of the qt, vtk, and itk projects. In Proceedings of the 11th
Working Conference on Mining Software Repositories. ACM, 192–201.

[28] Shane McIntosh, Yasutaka Kamei, Bram Adams, and Ahmed E. Hassan. 2016.

An empirical study of the impact of modern code review practices on software

quality. 21, 5 (2016), 2146–2189. https://doi.org/10.1007/s10664-015-9381-9

[29] Kannan Mohan and Radhika Jain. 2008. Using Traceability to Mitigate Cognitive

Biases in Software Development. Commun. ACM 51, 9 (Sept. 2008), 110–114.

https://doi.org/10.1145/1378727.1389970

[30] R. Mohanani, I. Salman, B. Turhan, P. Rodríguez, and P. Ralph. 2018. Cognitive

Biases in Software Engineering: A Systematic Mapping Study. IEEE Transactions
on Software Engineering (2018), 1–1. https://doi.org/10.1109/TSE.2018.2877759

[31] Don A. Moore and Paul J. Healy. 2008. The trouble with overconfidence. Psycho-
logical Review 115 (2008), 502–517.

[32] Eric Neumayer and Thomas Plümper. 2017. Robustness tests for quantitative
research. Cambridge University Press.

[33] A. L. Nichols and J. K. Maner. 2008. The good subject effect: Investigating

participant demand characteristics. Journal of General Psychology 135, 1 (2008),

151–165.

[34] Meike Olbrecht and Lutz Bornmann. 2010. Panel peer review of grant applications:

what do we know from research in social psychology on judgment and decision-

making in groups? Research Evaluation 19, 4 (10 2010), 293–304. https://doi.

org/10.3152/095820210X12809191250762 arXiv:http://oup.prod.sis.lan/rev/article-

pdf/19/4/293/4452351/19-4-293.pdf

[35] J. Parsons and C. Saunders. 2004. Cognitive heuristics in software engineering

applying and extending anchoring and adjustment to artifact reuse. IEEE Trans-
actions on Software Engineering 30, 12 (Dec 2004), 873–888. https://doi.org/10.

1109/TSE.2004.94

[36] Jamie Peabody. [n.d.]. mergely. http://www.mergely.com/.

[37] Mitzi G Pitts and Glenn J Browne. 2007. Improving requirements elicitation: an

empirical investigation of procedural prompts. Information Systems Journal 17, 1
(2007), 89–110. https://doi.org/10.1111/j.1365-2575.2006.00240.x

[38] Scott Plous. 1993. The Psyhology of Judgement and Decision Making. McGraw-Hill,

Inc.

[39] Jason E Robbins and David F Redmiles. 1998. Software architecture critics in

the Argo design environment. Knowledge-Based Systems 11, 1 (1998), 47 – 60.

https://doi.org/10.1016/S0950-7051(98)00055-0

[40] Robert Brautigam. 2018. Why I Never Null-Check Parameters. https://dzone.

com/articles/why-i-never-null-check-parameters.

[41] Caitlin Sadowski, Emma Söderberg, Luke Church, Michal Sipko, and Alberto

Bacchelli. 2018. Modern Code Review: A Case Study at Google. In Proceedings of
the 40th International Conference on Software Engineering: Software Engineering in
Practice (ICSE-SEIP ’18). ACM, 181–190. https://doi.org/10.1145/3183519.3183525

[42] Scott Shipp. 2019. Better Null-Checking in Java. https://dev.to/scottshipp/better-

null-checking-in-java-ngk.

[43] Davide Spadini. [n.d.]. CRExperiment. https://github.com/ishepard/

CRExperiment.

[44] Davide Spadini, Maurício Aniche, Margaret-Anne Storey, Magiel Bruntink, and

Alberto Bacchelli. 2018. When testing meets code review: Why and how devel-

opers review tests. In 2018 IEEE/ACM 40th International Conference on Software

Engineering (ICSE). IEEE, 677–687.
[45] Davide Spadini, Gül Çalikli, and Alberto Bacchelli. [n.d.]. Replication package

for “Primers or Reminders? The Effects of Existing Review Comments on Code

Review”. https://doi.org/10.5281/zenodo.3653856.

[46] Davide Spadini, Fabio Palomba, Tobias Baum, Stefan Hanenberg, Magiel Bruntink,

and Alberto Bacchelli. 2019. Test-Driven Code Review: An Empirical Study. In

Proceedings of the 41st International Conference on Software Engineering (ICSE2019).
Montreal, Canada, 1061–1072.

[47] Webb Stacy and Jean MacMillan. 1995. Cognitive Bias in Software Engineering.

Commun. ACM 38, 6 (June 1995), 57–63. https://doi.org/10.1145/203241.203256

[48] KEITH E. STANOVICH. 2009. What Intelligence Tests Miss: The Psychology of
Rational Thought. Yale University Press. http://www.jstor.org/stable/j.ctt1nq14j

[49] Patanamon Thongtanunam and Ahmed E Hassan. 2020. Review Dynamics and

Their Impact on Software Quality. IEEE Transactions on Software Engineering
(2020).

[50] P. Thongtanunam, S. McIntosh, A. E. Hassan, and H. Iida. 2015. Investigating

Code Review Practices in Defective Files: An Empirical Study of the Qt System. In

2015 IEEE/ACM 12th Working Conference on Mining Software Repositories. 168–179.
https://doi.org/10.1109/MSR.2015.23

[51] Amos Tversky and Daniel Kahneman. 1973. Availability: A Heuristic for Judging

Frequency and Probability. Cognitive Psychology 5 (1973), 207–232. https:

//doi.org/10.1109/TSE.2018.2877759

[52] Hans van Vliet and Antony Tang. 2016. Decision making in software architecture.

Journal of Systems and Software 117 (2016), 638 – 644. https://doi.org/10.1016/j.

jss.2016.01.017

[53] Alex Zhitnitsky. 2016. The complete guide to Solving Java Application Errors in
Production. OverOps.

1182

