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Abstract
The paper considers a time-adaptive finite element method for determination of drug effi-
cacy in a parameter identification problem (PIP) for a system of ordinary differential equa-
tions (ODE) that describes dynamics of the primary human immunodeficiency virus (HIV) 
infection with drug therapy. Tikhonov’s regularization method, optimization approach and 
finite element method to solve this problem are presented. A posteriori error estimates in 
the Tikhonov’s functional and reconstructed parameter are derived. Based on these esti-
mates a time adaptive algorithm is formulated and numerically tested for different scenar-
ios of noisy observations of virus population function. Numerical results show a significant 
improvement of reconstruction of drug efficacy parameter using the local time-adaptive 
mesh refinement method compared to the gradient method applied on a uniform time mesh.

Introduction

Mathematical modeling of the immune processes is an essential part of the research in 
immunology [15, 16, 22]. Despite the emergence of a great amount of new high-per-
formance methods for experimental analysis of the immunity, the results of mathemati-
cal modeling are relevant, in particular, in clinical practice in order to work out optimal, 
individually customized strategies for treatment of the pathological process (bacterial/viral 
infections or tumor growth).

It is well known that physiological parameters vary between individual patients and 
thus, personalized treatment approaches require the development of robust and efficient 
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parameter estimation methods to assimilate individual data with mathematical models [6]. 
The problems of parameter identification in mathematical models are often non-linear and 
ill-posed, and thus challenging to solve numerically [45, 46]. The computational algorithms 
for parameter identification that we work on, are based on an adaptive time-mesh refine-
ment [13] for coefficient inverse problems (CIPs). The main idea of our work is adoptation 
of results for space mesh refinement developed in [13] for solution of hyperbolic CIPs, to 
the parameter identification problem (PIP) for reconstruction of parameters on the time 
mesh. More precisely, first, we determine candidate parameter at known initial (coarse) 
time partition. Then we refine time-mesh locally only at a such time intervals where a pos-
teriori error indicator is large and compute new time-dependent control functions on a new 
time mesh until the error in the computed residual is reduced to the desired accuracy. The 
adaptive finite element method has shown that it significantly improves reconstruction of 
parameters when solving the coefficient inverse problems for hyperbolic PDE [5, 7, 8, 12, 
13].

We note that the main goal of our work is to present mathematical framework of a pos-
teriori error estimation for solution of PIP’s and to show usefulness of the time-adaptive 
error control for determination of parameters in PIP which we demonstrate on the example 
of the model of HIV infection. More than 35 years have passed since the discovery of the 
etiological agent of AIDS—human immunodeficiency virus (HIV), nevertheless, the prob-
lem of the spread of HIV infection, treatment and quality of life for people living with HIV 
still remains relevant: the number of newly infected does not decrease. Appearing of highly 
active antiretroviral therapy (HAART) in 1996-1997 has led to a significant improvement 
in the quality of life of patients, has caused a clear decrease in AIDS-related diseases and 
mortality. HAART provides treatment protocols with using combinations (two or more) of 
antiviral drugs which affect both the different stages of viral replication and prevent HIV 
from entering the host cell.

We took the simplified model of HIV infection proposed in [42] as an illustrative exam-
ple to show effectiveness and robustness of identification time-dependent parameter drug 
efficacy using a local time-mesh refinement algorithm. This work is a continuation of the 
works by authors [9, 10] where was introduced the time-adaptive finite element method 
for parameter identification problems. Compared to other optimal control algorithms for 
solution of PIP, see, for example, works [1, 2, 26] and references therein, our time-adap-
tive algorithms are based on rigorous finite element a posteriori error analysis for the error 
in the Tikhonov’s functional or for the error in the reconstructed parameter. The same 
approach can be applied to the solution of any other PIP and particularly, for more compli-
cated models of HIV infection which involve more unknown functions and parameters [3, 
27, 34–36, 40, 41, 48]. However, these models are much complicated compared with stud-
ied here model of [42], and can be considered as topic for a future research.

As was mentioned above, in [10] was studied the optimal control problem of reconstruc-
tion of drug efficacy in the model of HIV infection when measurements of all functions in 
time of the model ODE system were used what, actually, is not realistic problem. Moreo-
ver, numerical simulations were not presented in [10]. In the current work we fill this gap 
and study a more realistic case when instead of measuring all four functions in ODE sys-
tem, we take measurements only of the virus population function. New a posteriori error 
estimate between regularized and computed drug efficacy is derived. Based on this esti-
mate, a time adaptive algorithm is formulated and numerically tested on the optimal deter-
mination of drug efficacy in time domain from noisy measurements of virus population 
function. Extended numerical studies for different noise levels in the virus population func-
tion and for different values of time for initial observation of this function are presented in 
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the preprint version of this work [11]. We note that compared to the current work proofs of 
Theorems 1, 2, and 3 are not presented in [11], as well as study on stability of solution of 
the forward problem and study of ill-posedness of the PIP problem.

The time-adaptive method proposed in this paper can eventually be used by clinicians 
to determine the drug-response for each treated individual. The exact knowledge of the 
personal drug efficacy can aid in the determination of the most suitable drug as well as the 
most optimal dose to an individual, in the long run resulting in a personalized treatment 
with maximum efficacy and minimum adverse drug reactions.

The outline of the paper is as follows. The biological description of the mathematical 
model is given in “The Mathematical Model and Its Biological Description”. “Inverse 
Problems and Ill-Posedness” is based on material of the Master’s thesis [25] and discusses 
ill-posedness of parameter identification problems and Tikhonov’s regularization method 
for their solutions. In “The Parameter Identification Problem” the parameter identification 
problem is formulated. The optimization method to solve the parameter identification prob-
lem is presented in “Optimization Method”. The finite element method is formulated in 
“Finite Element Discretization” and a posteriori error estimates are derived in “A Posteriori 
Error Estimates”. An adaptive algorithm for solution of PIP is presented in “Algorithms for 
Solution of PIP”. Finally, in “Numerical Results” numerical examples illustrate effective-
ness of the proposed time-adaptive algorithm.

The Mathematical Model and Its Biological Description

The main cellular targets of HIV are the immune system cells that have CD4 receptors 
at their surface, called CD4+ T-cells. HIV differs from other viruses by a high mutation 
level, the mutation rate is 10−5–10−4 per nucleotide during one replication cycle [30]. High 
genetic variability allows HIV to skillfully avoid humoral and cellular defense factors and 
the effects of drugs. The constant presence of large reservoirs of latently infected cells is 
one of the important feature of the pathogenesis of HIV infection. Another paradoxical fea-
ture of HIV is that activation of the immune system does not lead to a suppression of virus 
multiplication, but rather to activation of latently infected cells, which start to produce new 
viral particles. These factors are the major obstacles for antiviral therapy and the develop-
ment of efficient vaccines [18, 19]. According to the latest data on HIV (UNAIDS, 2020) 
[47], there are currently 38 million people living with HIV globally and 1.7 million people 
became newly infected with HIV in 2019.

The HIV life cycle starts with attachment of the viral envelope protein gp120 to the 
cell surface via interaction with CD4 receptor. In general case for living organisms the 
genetic information goes from the storage in DNA through messenger RNA (mRNA) 
to protein synthesis in the ribosomes. The process of converting the genetic informa-
tion from DNA to mRNA is called transcription [25]. In the case of retroviruses, such 
as HIV, HIV’s genetic information is encoded in form of RNA. Having fused with the 
cell membrane, HIV releases its genetic material (viral RNA) and enzymes into the 
CD4+ T-cell. Here viral RNA is reversely transcribed into HIV DNA, which is com-
patible with genetic material of the host cell [reverse transcription (RT)]. To perform 
the reverse transcription of RNA into DNA, HIV carries its own enzyme called reverse 
transcriptase. Viral DNA is transported to the cell’s nucleus and incorporated into the 
DNA of the host cell (integration). This process is made possible by the enzyme inte-
grase. The individual components of HIV are then produced within the CD4+ T-cell. 
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The individual components of HIV are then assembled together to make new HIV 
viruses. This process depends on the enzyme protease. The newly matured HIV parti-
cles are released from the CD4+ T-cell. These are ready to infect other CD4+ T-cells 
and begin the replication process all over again. The process of HIV life cycle described 
above is illustrated in Fig.  1. Antiretroviral drugs blocking the enzyme reverse tran-
scriptase (called Reverse Transcriptase Inhibitors) will be able to prevent the production 
of new viruses [18, 37].

Our basic mathematical model in this work is the model proposed in [42] which 
describes the effect of Reverse Transcriptase Inhibitor (RTI) on the dynamics of HIV 
infection. In this model the infected class of CD4+ T-cells is subdivided into two sub-
classes: pre-RT class and post-RT class. Pre-RT class consists of the infected CD4+ 
T-cells in which reverse transcription is not completed, and post-RT class consists of 
those infected CD4+ T-cells where the reverse transcription is completed such that they 
are capable to produce virus.

Throughout the paper we denote by ΩT = [0,T] the time domain for T > 0 , where T is 
the final observation time. The mathematical model which we use in this note, is:

with initial conditions

(1)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

du1

dt
= f1(u(t), �(t)) = s − ku1(t)u4(t) − �u1(t) + (�(t)� + b)u2(t),

du2

dt
= f2(u(t), �(t)) = ku1(t)u4(t) − (�1 + � + b)u2(t),

du3

dt
= f3(u(t), �(t)) = (1 − �(t))�u2(t) − �u3(t),

du4

dt
= f4(u(t), �(t)) = N�u3(t) − cu4(t),

Fig. 1   The HIV life cycle
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In system (1) the functions are defined as follows:

•	 u1(t) – uninfected target cells population
•	 u2(t) – infected target cells before Reverse Transcription (pre-RT class)
•	 u3(t) – infected target cells in which Reverse Transcription is completed and they are 

capable of producing virus (post-RT class)
•	 u4(t) is the virus population function.

The parameters which are used in system (1) are described in Table  1 and are taken 
from the specialized literature [32, 33]. The initial data (2) is chosen such that they sat-
isfy two steady states which we discuss in “Existence and Lyapunov Stability of Steady 
State”. Figure  2 illustrates the effect of Reverse Transcriptase Inhibitor (RTI) on the 
dynamics of HIV infection for the mathematical model (1).

The system (1) can be presented in the following compact form:

where we have denoted all involved functions as

(2)
u1(0) = u0

1
= 300 mm−3, u2(0) = u0

2
= 10 mm−3,

u3(0) = u0
3
= 10 mm−3, u4(0) = u0

4
= 10 mm−3.

(3)
{

du

dt
= f (u(t), �(t)) t ∈ [0, T],

u(0) = u0,

Fig. 2   The effect of reverse transcriptase inhibitor (RTI) on the dynamics of HIV infection described by the 
model problem (1)
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Here, (⋅)T denotes transposition operator.
In the model (1) we assume that f ∈ C1(ΩT ) is Lipschitz continuous and the function 

�(t) ∈ C(ΩT ) represents the unknown drug efficacy which belongs to the set of admis-
sible functions M�:

The control parameter � is dosage of the reverse transcriptase inhibitor. This parameter 
protects the cells and prevents infection. In this work we assume that all parameters in 
system (1) are constants except the control parameter � which depends on time, e.,e., 
� = �(t), t ∈ [0, T] . This means that the control parameter � = �(t) tells us which dosage 
of the reverse transcriptase inhibitor should be given to the concrete patient at any time 
moment t for t ∈ [0, T] . Thus, personalized determination of this parameter for every indi-
vidual is of vital importance for treatment of HIV.

Existence and Lyapunov Stability of Steady State

Let us now assume that the parameter � in system (1) is constant. That is, 
�(t) ≡ c ∈ (0, 1) . Setting du

dt
 in (1) to zero and solving for u1 , u2 , u3 and u4 we can see that 

there are two possible steady states: an infected and an uninfected one [42].
The uninfected steady state is given by

(4)

u = u(t) = (u1(t), u2(t), u3(t), u4(t))
T ,

u0 = (u1(0), u2(0), u3(0), u4(0))
T ,

du

dt
=

(
�u1

�t
,
�u2

�t
,
�u3

�t
,
�u4

�t

)T

,

f (u(t), �(t)) = (f1, f2, f3, f4)
T (u(t), �(t))

= (f1(u1,… , u4, �(t)),… , f4(u1,… , u4, �(t)))
T .

(5)M� = {�(t) ∶ �(t) ∈ [0, 1] inΩT , �(t) = 0 outside of ΩT}.

Table 1   Parameters dataset

Parameter Value Units Description

s 10 mm−3 day−1 Inflow rate of T cells
� 0.01 day−1 Natural death rate of T cells
k 2.4E−5 mm3day−1 Interaction-infection rate of T cells
�1 0.015 day−1 Death rate of infected cells
� 0.4 day−1 Transition rate from pre-RT infected T cells class to post-RT class
b 0.05 day−1 Reverting rate of infected cells return to uninfected class
� 0.26 day−1 Death rate of actively infected cells
c 2.4 day−1 Clearance rate of virus
N 1000 vir/cell Total number of viral particles produced by an infected cell
� [0, 1] NA Control, dosage of the reverse transcriptase inhibitor (drug efficacy)
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and the infected steady state is achieved when

In [42] was shown that the infected steady state can exist only when � is less than the fol-
lowing critical value

For our system of parameters, presented in Table 1, this critical value is �crit ≈ 0.88375 . 
Whenever � ≥ �crit only the uninfected steady state can exist.

Plugging in the values of Table 1 into (7) for 𝜂 < 𝜂crit , or (6) if � ≥ �crit , we obtain the 
numerical values for solutions (u1, u2, u3, u4)T of (1) presented in the Table 2.

Stability of Solutions

Let us define

(6)

⎧⎪⎨⎪⎩

u1 =
s

�
,

u2 = 0,

u3 = 0,

u4 = 0,

(7)

⎧⎪⎪⎨⎪⎪⎩

u1 =
(�1+�+b)c

N�k(1−�)
,

u2 =
s−�u1

�1+�(1−�)
,

u3 =
�(1−�)u2

�
,

u4 =
N�u3

c
.

(8)�crit = 1 −
�c(�1 + � + b)

N�ks
.

(9)

⎧⎪⎪⎨⎪⎪⎩

�m = min{�,�1},

Ξ =
s

�m

,

Φ ∶= Φ(�) =
�s(1−�)

�m�
,

Ψ ∶= Ψ(�) =
N�s(1−�)

�mc
,

Table 2   Stable steady states 
for different values of � , while 
keeping the other parameters 
fixed

� u
1

u
2

u
3

u
4

0.0 116 21 33 3549
0.1 129 23 32 3483
0.2 145 26 31 3402
0.3 166 28 30 3298
0.4 194 32 29 3162
0.5 233 36 27 2975
0.6 291 41 25 2702
0.7 388 45 21 2269
0.8 581 44 14 1469
0.9 1000 0 0 0
1.0 1000 0 0 0
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where �,�1, s etc. are the parameters of (1). Consider the set

It can be proven [42] that if u(0) ∈ Γ(�) , then the solution trajectories of (1) will stay inside 
Γ(�) for all t ∈ ΩT.

Remark 1  It is not required that � is constant. As long as � ∈ M� , we may allow �(t) to vary 
with time.

For our parameters presented in Table 1, these bounds are quantitatively defined as

(Table 3) shows upper limits for u3 and u4 for different values of �.
It can furthermore be proven that if and only if � ≥ �crit the uninfected state is glob-

ally asymptotically Lyapunov stable. On the other hand, if the steady state exists, then it is 
locally asymptotically Lyapunov stable whenever the following condition is satisfied [42]

where

We can calculate that, when � is constant and the other parameter values are chosen as in 
Table 1, then the infected steady state is locally asymptotically stable for all values of � 
such that � is less than the critical value, �crit ≈ 0.88 . Figure 3 illustrates this statement.

Thus, if � is constant, and less than the critical value �crit ≈ 0.88 , it suffices to know the 
solution of (1) at steady state to deduce �.

Although it is often a reasonable assumption that the drug efficacy is constant for a 
given individual, viruses mutate readily, which can alter the efficacy of a RT-inhibitor. 
Thus, it is interesting to know how to determine �(t) when it is not constant. So let us for 
the remainder of this note consider the case when �(t) is not necessarily constant.

Well‑Posedness of the Forward Problem

Let D = ΩT × Γ(�) be the bounded domain. Let functions u(t),  f(t, u(t)) are defined as in 
(4). Further, let f(t,  u(t)) be a continuous function for t in ΩT and Lipschitz continuous 
function for u(t) in D. Then f(t, u(t)) is clearly Lipschitz continuous on the compact set 
Γ(�) × ΩT . In other words, ∃L = const. ∶ ∀t ∈ ΩT ,∀u

1(t), u2(t) ∈ D,

(10)
Γ(�) = {(u1, u2, u3, u4) ∈ ℝ

4 ∶ 0 ≤ u1 ≤ Ξ, 0 ≤ u2 ≤ Ξ, 0 ≤ u3 ≤ Φ, 0 ≤ u4 ≤ Ψ}.

(11)

⎧⎪⎨⎪⎩

0 ≤ u1 ≤ 1000,

0 ≤ u2 ≤ 1000,

0 ≤ u3 ≤ 1538.5(1 − �),

0 ≤ u4 ≤ 166667(1 − �).

(12)ΔC − A2D > 0,

(13)

A = � + ku4 + �1 + � + b + � + c,

B = (c + �)(� + �1 + � + ku4 + b) + c� + �(�1 + � + b) + ku4(�1 + (1 − �)�),

C = c�(� + ku4) + (c + �)(��1 + �� + �b + �1ku4 + (1 − �)�ku4),

D = c�ku4(�1 + �(1 − �)),

Δ = AB − C.
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Thus, using the Picard–Lindelöf theorem (Theorem  2.2 in [43]) one can prove that, for 
given initial condition u(0), the model problem (1) has a unique solution. Furthermore, the 
solution depends continuously on data of the problem (1) in the following sense (Theo-
rem 2.8 in [43]):

Proposition 2  Let u1(t), u2(t) be two solutions of the problems

with perturbated initial conditions

and perturbated right hand sides

Then

(14)‖f (t, u1) − f (t, u2)‖ ≤ L‖u1(t) − u2(t)‖.

dui

dt
= f i(t, ui(t)), ui(t0) = ui

0
, i = 1, 2

‖u1(0) − u2(0)‖ ≤ �

‖f 1(t, u1(t)) − f 2(t, u2(t))‖ ≤ �, ∀t ∈ ΩT .

(15)||u1(t) − u2(t)|| ≤ ||u1(0) − u2(0)||eLt + ||f 1(t, u1(t)) − f 2(t, u2(t))||
L

(
eLt − 1

)
,

0 0.2 0.4 0.6 0.8 1
Value of 

-1

-0.5

0

0.5

1

2
D

2 D as a function of 

2D
Critical value of 

Fig. 3   ΔC − A
2
D plotted as a function of � . Note that ΔC − A

2
D > 0 ∀𝜂 < 0.88

Table 3   Upper limit for the positive invariant set Γ(�) . The integer parts of fractional numbers is always 
reported as the upper bound

� 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

u3 1538 1384 1230 1076 923 769 615 461 307 153
u4 166666 150000 133333 116666 100000 83333 66666 50000 33333 16666
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where L is the Lipschitz constant. If the initial values are equal then on ΩT = [0,T] we have

And since f is clearly continuous with respect to � it follows that the solution to (1) must 
be continuous with respect to �.

Inverse Problems and Ill‑Posedness

Since the parameter identification problem can be considered as an inverse ill-posed prob-
lem it is clear that this problem is difficult to solve properly. In this section we show how 
parameter identification problem can be solved accurately via construction of proper Tik-
honov regularization functional.

Let us consider the following problem: Let B1 and B2 be Banach spaces. Let G ⊆ B1 be 
an open set in B1 and F ∶ G → B2 an operator. Let y ∈ B2 be given, and suppose we want 
to find x ∈ G such that

Problems of this sort, when you want to identify x in (17), given observations, y, are called 
inverse problems. A special class of inverse problems are called parameter identification 
problems (PIP), i.e. x is some parameter of a differential equation, and F(x) is the solution 
of the differential equation, with this parameter.

Definition 1  Problem (17) is said to be well-posed by Hadamard if it satisfies the follow-
ing conditions [45, 46]: 

1.	 Existence: For each y ∈ B2 there is an x = x(y) such that F(x) = y.
2.	 Uniqueness: For each y ∈ B2 there is not more than one x = x(y) such that F(x) = y.
3.	 Stability: For each y such that a unique solution of (17) exists, the solution x = x(y) is 

a continuous function of y.1

Definition 2  Problem (17) is said to be ill-posed if it is not well-posed.

PIP and other inverse problems are often ill-posed. Ill-posedness means that it is dif-
ficult to solve (17) numerically, since measurement errors, or even errors induced by finite-
precision computer arithmetic, can have disastrous consequences. Let y∗ denote noiseless 
observations, 𝛿 > 0 be the noise level, and B�[y

∗] = {y ∶ ||y − y∗||B2
≤ �} . The solution 

to the slightly perturbed equation F(x) = y� (with y� ∈ B�[y
∗] ) could be entirely different 

from the solution to F(x) = y∗ . Perhaps a solution to F(x) = y� does not even exist. No mat-
ter how small � is. A generally ill-posed problem (17) can be well-posed if we consider the 
restriction of F in (17) to certain subsets of its domain. In this case is introduced the fol-
lowing definition.

(16)||u1(t) − u2(t)|| ≤ ||f 1(t, u1(t)) − f 2(t, u2(t))||
L

(
eLt − 1

)
.

(17)F(x) = y.

1  We will call a problem well-conditioned if it is well-posed and such that a small change in data results in 
a small change in the solution: even if x(y) is continuous it might still be very sensitive to changes in y.
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Conditional well-posedness
Let B1 and B2 be Banach spaces. Suppose G ⊂ B1 is the closure of an open subset in B1 . 

Let F ∶ G → B2 be a continuous operator. Assume that y∗ ∈ F(G) is our ideal noiseless 
data, and pick a noise level 𝛿 > 0 . Suppose we want to solve

where y� ∈ B�[y
∗] . This problem is called conditionally well-posed on G if it satisfies the 

following conditions [45, 46]: 

1.	 Existence: It is a priori known2 that there exists an ideal solution x∗ = x∗(y∗) ∈ G for 
an ideal noiseless data y∗.

2.	 Uniqueness: The operator F ∶ G → B2 is one-to-one.
3.	 Stability: The inverse operator F−1 is continuous on F(G).

Definition 3  The set G in Definition 3 is called the correctness set of the problem (18).

Continuity of the inverse operator F−1 can be guaranteed if the domain of F is compact. 
Hence, any compact set with nonempty interior such that F is one-to-one is a correctness 
set. This suggests a method to solve (18) by choosing a suitable correctness set, G, and 
then finding a x ∈ G such that ||F(x) − y�|| is as small as possible. The Tikhonov’s theorem 
offers a such method.

Theorem 3  (Tikhonov [44]) Let B1 and B2 be Banach spaces, and U ⊂ B1 a compact set. 
Let F ∶ U → B2 be a continuous one-to-one operator and V = F(U) . Then F−1 ∶ V → B1 is 
a continuous operator.

For a proof of this fundamental theorem see, for example [13, 44].

Quasi‑Solution

Let H1 and H2 be Hilbert spaces,3 and assume that F ∶ G → H2 is a continuous mapping 
defined on a compact correctness set, G ⊂ H1 . Let 𝛿 > 0 and assume, as before, that we 
want to solve

with y� defined as before. We know that a solution exists for perfect data y∗ , but in general 
(19) has no solution, since y� ∉ F(G) (implying that we are dealing with an ill-posed prob-
lem). Our goal in this, and the following subsection is to sketch how to construct a family 
of approximate solutions {x�} in G that converges to x∗ as � → 0 . Let us define

(18)F(x) = y� ,

(19)F(x) = y� ,

2  The rationale behind this is the assumption that the problem to be solved is a model of some natural 
phenomenon. And since the phenomenon apparently exists, a solution of the equation describing it must 
also exist. At least if we assume that the natural phenomenon in question is exactly represented by the math-
ematical model.
3  We require that the spaces are Hilbert spaces, rather than arbitrary Banach spaces in order for the closest 
point property to hold. However, it suffices that they are so-called reflexive Banach spaces, see [20].
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Since F is continuous, it takes compact sets to compact sets, thus F(G) is compact in B2 . 
And since F(G) is a compact subset of a Hilbert space, and therefore closed, a minimum of 
(20) exists (and if F(G) also happens to be convex, this minimum is unique). Any x ∈ G , 
unique or not, that minimizes Jy� in (20) is called a quasi-solution to (19).

Since the inverse mapping, F−1 , is continuous by the Theorem 3, and is defined on a 
compact metric space, it admits a modulus of continuity, �F−1.4 From Theorem 1.5 in [13] 
it follows that, given y� ∈ B2 , then for any quasi-solution x� ∈ minx∈G Jy� (x) the following 
error estimate holds:

where �F−1 (z) is the modulus of continuity of the inverse operator F−1 . Thus x� → x∗ as 
� → 0 . Hence, we can take a sequence of quasi-solutions to be our desired family.

However, sometimes the set of all plausible solutions to (19) does not form a compact 
set, and in these cases, F need not be continuous on the set of all plausible solutions—such 
problems are called essentially ill-posed. Thus, it is not obvious how to choose a suitable 
correctness set. And even if all the plausible solutions form a compact correctness set, the 
minimum of (20) may not be unique: there may be local minima or regions where the gra-
dient of the functional is very small, where a minimization algorithm could get trapped. In 
the next subsection, we will discuss how a stable solution to essentially ill-posed problems 
could be obtained in practice.

The Tikhonov Functional

The Tikhonov functional makes sure that when minimizing (20), we will stay in the neigh-
borhood of some point, x0 , which is a priori known to be close to the true solution, x∗ . A 
general Tikhonov functional is given below

The first term is essentially the same as in (20), the second term is the regularization term 
and � ∶= �(�) is the regularization parameter. The regularization parameter can be chosen 
as, for instance,

where � ∈ (0, 1) , see details in [4].
In general, the Tikhonov functional (23) might not actually attain its infimum; we can 

only guarantee the existence of the minimizing sequence, {xk} . However, without loss of 
generality, we can assume that G is the closure of an open and bounded set containing 
the initial guess, x0 , the (bounded) minimizing sequence, {xk} , and the exact solution, x∗ . 

(20)Jy� (x) = ||F(x) − y�||2B2

.

(22)||x� − x∗||B1
≤ �F−1 (2�),

(23)J� (x) =
1

2
||F(x) − y||2

B2

+
�

2
||x − x0||2B1

.

(24)�(�) = �2�,

4  A modulus of continuity is a function � ∶ [0,∞] → [0,∞] such that

The function f admits � as a modulus of continuity if and only if ||f (x) − f (y)|| ≤ �(||x − y||) . In particular, 
f has a modulus of continuity if and only if it is uniformly continuous.

(21)lim
x→0+

�(x) = �(0) = 0. (21)
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Hence, if we consider finite dimensional Hilbert spaces, the Tikhonov functional, defined 
on G, would have a minimum, since closed and bounded sets on finite dimensional Hilbert 
spaces are compact, and functionals defined on compact sets attain their infimum accord-
ing to the Weierstrass’ extreme value theorem. Suppose now that G is convex and that (23) 
is Fréchet differentiable,5 with a Fréchet derivative that is uniformly bounded and Lipschitz 
continuous. Then one can prove, see [13, 14], that for given noise level and regularization 
parameter (23) is locally strongly convex in a neighborhood of its minimum and that x∗ is 
also contained in this neighborhood if ||x∗ − x0|| is small enough.

Assume that we have a single noise � and our goal is to minimize (23). Let �(�) is cho-
sen as in (24), then it can be proven, see [28], that there exists a �0 such that

in particular it follows that if (23) attains a minimum, any xk ∈ minx∈G J(x) would be a bet-
ter approximation to x∗ than x0 , if the noise level is small enough.

Thus, to sum up, under reasonable assumptions discussed above, a minimum of (23) 
exists and is a better approximation than the starting guess, x0 . And under reasonable 
assumptions, and if the initial guess is good enough, there is only one unique point that is 
the global minimum, and we do not need to worry about local minima. These facts explain 
why Tikhonov regularization is so useful for solving ill-posed problems. To find the zero 
of the Fréchet derivative, one can use common minimization techniques, such as the con-
jugate gradient method (CGM) or the method of steepest descent. Obviously, the minimum 
of the Tikhonov functional will not be exactly the same as the quasi-solution if the noise 
level and regularization parameter are constants. On the other hand, by letting the regulari-
zation parameter � decrease for each iteration of the minimization algorithm we will have a 
minimum of the Tikhonov functional that approaches the quasi-solution. In [4] it was sug-
gested that � can be updated as

where p ∈ (0, 1] and k = 0, 1, 2,….
From what have been discussed, it is clear that a good first guess is essential for success-

ful identification of the desired parameter. Of course, we do not in general have any idea 
at all what the solution to (17) might be, and therefore, in general, we need to devise some 
kind of globally convergent algorithm to solve ill-posed PIP.

The Parameter Identification Problem

To formulate the parameter identification problem we assume that all parameters in system 
(1) are known except the control parameter �(t) which describes efficacy of the drug. The 
typical values of parameters {s,�, k,�1, �, b, �, c,N} in (1) are taken from [42] and they are 
described in Table 1.

(26)� ∈ (0, �0) ⟹ ||xk − x∗|| ≤ �||x0 − x∗||,

(27)�k =
�0

(k + 1)p
,

5  A continuous linear operator between Banach spaces A ∶ B1 → B2 is called the Fréchet derivative of the 
operator T ∶ B1 → B2 at x ∈ B1 if

(25)lim||h||→0

||T(x + h) − T(x) − Ah||
||h|| = 0. (25)



	 Differential Equations and Dynamical Systems

1 3

Parameter Identification Problem (PIP). Assume that conditions (5) hold and param-
eters {s , � , k, �1 , � , b, � , c, N} in system (1) are known. Assume further that the function 
�(t) ∈ M� is unknown inside the domain ΩT . The PIP is: determine �(t) for t ∈ ΩT , under 
the condition that the virus population function g(t) is known

Here, the function g(t) presents observations of the function u4(t) inside the observation 
interval [T1, T2].

Note, that we solve the PIP on the time interval [0, T] and assume that observations of 
g(t) can even be on the more narrow interval [T1, T2] ⊂ [0, T] . “Numerical Results” section 
show that reconstruction of the parameter �(t) is not very good on the time interval where 
observations are not available and thus, observations of the virus population function u4(t) 
should be taken as early as possible from the date when the virus started to be reproduced 
in the body of the host.

Optimization Method

Let H be a Hilbert space of functions defined in ΩT . To determine �(t) , t ∈ [0, T] in PIP we 
construct the Tikhonov functional (23) in the following form:

Here, the solution u4(t) of the system (1) with parameter �(t) , g(t) is the observed virus 
population function, �0 is the initial guess for the parameter �(t) and � ∈ (0, 1) is the regu-
larization parameter, z� (t), � ∈ (0, 1) is smoothness function which can be defined similarly 
to [10]. Our goal now is to minimize the Tikhonov functional (29) with respect to the func-
tion �(t) ∈ H.

To find the function �(t) ∈ H which minimizes the Tikhonov functional (29) we seek for 
a stationary point of (29) with respect to � which satisfies

To find minimum of (29) we use constrained optimization with the standard Lagrangian 
approach [1, 38] and introduce the following Lagrangian

where u(t) = (u1(t), u2(t), u3(t), u4(t)) is the solution of the system (1), �(t) is the vector of 
Lagrange multipliers �(t) = (�1(t), �2(t), �3(t), �4(t)) and v = (�, u, �).

Let us introduce following spaces needed for further analysis

(28)u4(t) = g(t), t ∈ [T1, T2], 0 ≤ T1 < T2 ≤ T .

(29)J(�) =
1

2

T2

∫
T1

(u4(t) − g(t))2z� (t) dt +
1

2
�

T

∫
0

(� − �0)2dt.

(30)J�(𝜂)(𝜂̄) = 0, ∀𝜂̄ ∈ H.

(31)L(v) = J(�) +

4∑
i=1

T

∫
0

�i

(
dui

dt
− fi

)
dt,
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where all functions are real valued.
To derive the Fréchet derivative of the Lagrangian (31) we assume that functions 

v = (�, u, �) can be varied independently of each other in the sense that

Thus, we consider L(v + v̄) − L(v) , single out the linear part with respect to v of the 
obtained expression and neglect all nonlinear terms. The optimality condition (33) means 
that for all v̄ ∈ U we have

i.e., every component of (34) should be zero out. Thus, the optimality conditions (33) 
yields

(32)

H1

u
(ΩT ) = {f ∈ H1(ΩT ) ∶ f (0) = 0},

H1

�
(ΩT ) = {f ∈ H1(ΩT ) ∶ f (0) = 0, f (T) = 0},

U = H1

u
(ΩT ) × H1

�
(ΩT ) × C(ΩT ),

(33)L�(v)(v̄) = 0, ∀v̄ = (𝜆̄, ū, 𝜂̄) ∈ U.

(34)L�(v;v̄) =
𝜕L

𝜕𝜆
(v)(𝜆̄) +

𝜕L

𝜕u
(v)(ū) +

𝜕L

𝜕𝜂
(v)(𝜂̄) = 0,

(35)

0 =
𝜕L

𝜕𝜆
(v)(𝜆̄) = −𝛼

T

∫
0

u2(𝜆1 − 𝜆3)𝜂̄dt

+

T

∫
0

(u̇1 − s + ku1u4 + 𝜇u1 − (𝜂𝛼 + b)u2)𝜆̄1dt

+

T

∫
0

(u̇2 − ku1u4 + (𝜇1 + 𝛼 + b)u2)𝜆̄2dt

+

T

∫
0

(u̇3 − (1 − 𝜂)𝛼u2 + 𝛿u3)𝜆̄3dt

+

T

∫
0

(u̇4 − N𝛿u3 + cu4)𝜆̄4dt ∀𝜆̄ ∈ H1

u
(ΩT ),
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The equation (35) corresponds to the forward problem (1)–(2), the equation (36) — to the 
following adjoint problem

which can be rewritten in the compact form as

with

The adjoint system should be solved backwards in time with already known solution u(t) to 
the forward problem (1)–(2) and a given measurement function g(t).

For the case when u and � are exact solutions of the forward (1)–(2) and adjoint (39) 
problems, respectively, to the known function � , we get from (31) that

(36)

0 =
𝜕L

𝜕u
(v)(ū) = −

T

∫
0

(𝜆̇1 − 𝜆1ku4 − 𝜆1𝜇 + 𝜆2ku4)ū1dt

−

T

∫
0

(𝜆̇2 − 𝜆2(𝜇1 + 𝛼 + b) + 𝜆1(𝜂𝛼 + b) + (1 − 𝜂)𝛼𝜆3)ū2dt

−

T

∫
0

(𝜆̇3 − 𝜆3𝛿 + 𝜆4N𝛿)ū3dt

−

T

∫
0

(𝜆̇4 − 𝜆4c − 𝜆1ku1 + 𝜆2ku1)ū4dt +

T2

∫
T1

(u4 − g)z𝜁 ū4dt ∀ū ∈ H1

𝜆
(ΩT ),

(37)0 =
𝜕L

𝜕𝜂
(v)(𝜂̄) = 𝛾

T

∫
0

(𝜂 − 𝜂0)𝜂̄dt + 𝛼 ∫
T

0

u2(𝜆3 − 𝜆1)𝜂̄dt ∀𝜂̄ ∈ C
(
ΩT

)
.

(38)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝜕𝜆1

𝜕t
= f̃1(𝜆(t), 𝜂(t)) = 𝜆1(t)ku4(t) + 𝜆1(t)𝜇 − 𝜆2(t)ku4(t),

𝜕𝜆2

𝜕t
= f̃2(𝜆(t), 𝜂(t)) = 𝜆2(t)(𝜇1 + 𝛼 + b) − 𝜆1(t)(𝜂(t)𝛼 + b) − (1 − 𝜂(t))𝛼𝜆3(t),

𝜕𝜆3

𝜕t
= f̃3(𝜆(t), 𝜂(t)) = 𝜆3(t)𝛿 − 𝜆4(t)N𝛿,

𝜕𝜆4

𝜕t
= f̃4(𝜆(t), 𝜂(t)) = 𝜆4(t)c + 𝜆1(t)ku1(t) − 𝜆2(t)ku1(t) + (u4(t) − g)z𝜁 ,

𝜆i(T) = 0, i = 1,… , 4,

(39)
{

𝜕𝜆

𝜕t
= f̃ (𝜆(t), 𝜂(t)),

𝜆i(T) = 0, i = 1,… , 4,

(40)

𝜆 = 𝜆(t) = (𝜆1(t), 𝜆2(t), 𝜆3(t), 𝜆4(t))
T ,

0 = (𝜆1(T), 𝜆2(T), 𝜆3(T), 𝜆4(T))
T ,

d𝜆

dt
=

(
𝜕𝜆1

𝜕t
,
𝜕𝜆2

𝜕t
,
𝜕𝜆3

𝜕t
,
𝜕𝜆4

𝜕t

)T

,

f̃ (𝜆(t)) = (f̃1, f̃2, f̃3, f̃4)(𝜆(t), 𝜂(t))
T .
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and thus the Fréchet derivative of the Tikhonov functional can be written as

Using (37) in (42), we get the following expression for the Fréchet derivative of the Tik-
honov functional

Thus, to find the unknown parameter � which minimizes the Tikhonov functional (29) we 
can use the following expression

Finite Element Discretization

For solution of (33) we will use the finite element discretization and consider a partition 
J� = {J} of the time domain ΩT = [0,T] into time subintervals J = (tk−1, tk] of the time 
step �k = tk − tk−1 . We define also the piecewise-constant time-mesh function � such that

For discretization of the state and adjoint problems we define the finite element spaces 
Wu

𝜏
⊂ H1

u

(
ΩT

)
 and W�

�
 ⊂ H1

𝜆

(
ΩT

)
 for u and � , respectively, as

For the function �(t) we also introduce the finite element space W𝜂
𝜏 ⊂ L2

(
ΩT

)
 consisting of 

piecewise constant functions

We use different finite element spaces since we are working in a finite dimensional 
space and all norms in finite dimensional spaces are equivalent. Next we denote 
U� = Wu

�
×W�

�
×W

�
�  such that U𝜏 ⊂ U.

Now the finite element method for (33) is: find v� ∈ U� such that

Since the forward (1)–(2) and adjoint (36) problems are nonlinear their solutions can be 
found by Newton’s method. For the discretization

the variational formulation of the forward problem (1)–(2) for all ū ∈ H1
u
(ΩT ) is:

(41)L(v(�)) = J(�),

(42)J�(�) ∶= J�(u(�), �) =
�J

��
(u(�), �) =

�L

��
(v(�)).

(43)J�(�)(t) = �(� − �0)(t) + �u2(�3 − �1)(t) = 0,

(44)� =
1

�
�u2(�1 − �3) + �0.

(45)�(t) = �k, ∀J ∈ J� .

(46)
Wu

�
= {f ∈ H1

u
∶ f |J ∈ P1(J) ∀J ∈ J�},

W�

�
= {f ∈ H1

�
∶ f |J ∈ P1(J) ∀J ∈ J�}.

(47)W�

�
= {f ∈ L2

(
ΩT

)
∶ f |J ∈ P0(J) ∀J ∈ J�}.

(48)L�
(
v𝜏 ;v̄

)
= 0, ∀v ∈ U𝜏 .

�u

�t
=

uk+1 − uk

�k
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The finite element method for (1)–(2) will be: find uk+1
�

∈ H1
u
(ΩT ) such that for all 

ū ∈ H1
u
(ΩT )

Denoting

we can rewrite (50) as

For solution V(ũ) = 0 the Newton’s method can be used for the iterations n = 1, 2,… [17]

Here, we can compute the Jacobian V �(ũn) via definition of V(ũ) in (51) as

where I is the identity matrix, f �(ũn) is the Jacobian of f (the right hand side of the forward 
problem (1)) at ũn and n is the iteration number in Newton’s method. The explicit entries in 
the Jacobian f �(ũn) for system (1) are computed as

We note that the finite element method (48) will work even in this case, see details in [24].
In a similar way the Newtons’s method can be derived for the solution the adjoint problem 

(39). Since we solve the adjoint problem backwards in time starting from the known �(T) = 0 , 
we discretize time derivative as

for the already known �k+1 , and write the variational formulation of the adjoint problem for 
all 𝜆̄ ∈ H1

𝜆
(ΩT ) as

The finite element method for (39) will be: find �k
�
∈ H1

�
(ΩT ) such that for all 𝜆̄ ∈ H1

𝜆
(ΩT )

(49)(uk+1, ū) − (uk, ū) − (𝜏kf (u
k+1), ū) = 0.

(50)(uk+1
𝜏

, ū) − (uk
𝜏
, ū) − (𝜏kf (u

k+1
𝜏

), ū) = 0.

(51)
ũ = uk+1

𝜏
,

V(ũ) = ũ − 𝜏kf (ũ) − uk
𝜏

(52)(V(ũ), ū) = 0.

(53)ũn+1 = ũn − [V �(ũn)]−1 ⋅ V(ũn).

V �(ũn) = I − 𝜏kf
�(ũn),

f �(ũn) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜕f1

𝜕u1

𝜕f1

𝜕u2

𝜕f1

𝜕u3

𝜕f1

𝜕u4
𝜕f2

𝜕u1

𝜕f2

𝜕u2

𝜕f2

𝜕u3

𝜕f2

𝜕u4
𝜕f3

𝜕u1

𝜕f3

𝜕u2

𝜕f3

𝜕u3

𝜕f3

𝜕u4
𝜕f4

𝜕u1

𝜕f4

𝜕u2

𝜕f4

𝜕u3

𝜕f4

𝜕u4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

(ũn) =

⎡⎢⎢⎢⎣

−ku𝜏
n
4
− 𝜇 (𝜂𝛼 + b) 0 − ku𝜏

n
1

ku𝜏
n
4

− (𝜇1 + 𝛼 + b) 0 ku𝜏
n
1

0 (1 − 𝜂)𝛼 − 𝛿 0

0 0 N𝛿 − c

⎤⎥⎥⎥⎦
.

(54)
��

�t
=

�k+1 − �k

�k

(55)−(−𝜆k+1 + 𝜆k + 𝜏kf̃ (𝜆
k), 𝜆̄) = 0.

(56)(𝜆k
𝜏
− 𝜆k+1

𝜏
+ 𝜏kf̃ (𝜆

k
𝜏
), 𝜆̄) = 0.
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Denoting

we can rewrite (56) for all 𝜆̄ ∈ H1

𝜆
(ΩT ) as

For solution Ṽ(𝜆̃) = 0 we use again Newton’s method for iterations n = 1, 2,…

We compute Ṽ �(𝜆̃n) using the definition of Ṽ(𝜆̃) in (57) as

where I is the identity matrix, f̃ �(𝜆̃n) is the Jacobian of f̃  (the right hand side of the adjoint 
problem (39)) at 𝜆̃n , and n is the iteration number in Newton’s method. The explicit entries 
in the Jacobian f̃ �(𝜆̃n) for the adjoint system (39) are given by

Taking into account values of parameters given in Table 1, we observe that det f̃ �(𝜆̃n) ≠ 0 
as well as det f̃ �(𝜆̃n) ≠ 0 . Thus, schemes (53), (59) will converge given the appropriate 
starting values ũ1 and 𝜆̃1 , correspondingly. For study of convergence of iterative methods 
we refer to [4].

A Posteriori Error Estimates

We consider the function � ∈ C(ΩT ) as a minimizer of the Lagrangian (31), and �� ∈ W
�
�  

its finite element approximation. Let us assume that we know good approximation to the 
exact solution �∗ ∈ C(ΩT ) . Let g∗(t) be the exact data and the function g�(t) represents the 
error level in these data. We assume that measurements g(t) in (28) are given with some 
noise level (small) � such that

Accordingly [14] we assume that

and

(57)
𝜆̃ = 𝜆k

𝜏
,

Ṽ(𝜆̃) = 𝜆̃ + 𝜏kf̃ (𝜆̃) − 𝜆k+1
𝜏

,

(58)(Ṽ(𝜆̃), 𝜆̄) = 0.

(59)𝜆̃n+1 = 𝜆̃n − [Ṽ �(𝜆̃n)]−1 ⋅ Ṽ(𝜆̃n).

Ṽ �(𝜆̃n) = I + 𝜏kf̃
�(𝜆̃n),

f̃ �(𝜆̃n) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜕f̃1

𝜕𝜆1

𝜕f̃1

𝜕𝜆2

𝜕f̃1

𝜕𝜆3

𝜕f̃1

𝜕𝜆4
𝜕f̃2

𝜕𝜆1

𝜕f̃2

𝜕𝜆2

𝜕f̃2

𝜕𝜆3

𝜕f̃2

𝜕𝜆4
𝜕f̃3

𝜕𝜆1

𝜕f̃3

𝜕𝜆2

𝜕f̃3

𝜕𝜆3

𝜕f̃3

𝜕𝜆4
𝜕f̃4

𝜕𝜆1

𝜕f̃4

𝜕𝜆2

𝜕f̃4

𝜕𝜆3

𝜕f̃4

𝜕𝜆4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(𝜆̃n) =

⎡⎢⎢⎢⎣

ku𝜏
n
4
+ 𝜇 − ku𝜏

n
4

0 0

−(𝜂𝛼 + b) 𝜇1 + 𝛼 + b (𝜂 − 1)𝛼 0

0 0 𝛿 − N𝛿

ku𝜏
n
1

− ku𝜏
n
1

0 c

⎤⎥⎥⎥⎦
.

(60)g(t) = g∗(t) + g�(t); g
∗, g� ∈ L2

(
ΩT

)
, ‖‖g�‖‖L2(ΩT)

≤ �.

(61)� = �(�) = �2�, � ∈ (0, 1∕4), � ∈ (0, 1)
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where �∗ is the exact solution of PIP with the exact data g∗(t) . Let

Assume that for all � ∈ V1(�
∗) the operator

has the Fréchet derivative F�(�) which is bounded and Lipschitz continuous in V1(�
∗) for 

D1,D2 = const. > 0

An A Posteriori Error Estimate for the Tikhonov Functional

In the Theorem 1 we derive an a posteriori error estimate for the error in the Tikhonov 
functional (29) on the finite element time partition J�.

Theorem 1  We assume that there exists minimizer � ∈ C(ΩT ) of the functional J(�) defined 
by (29). We assume also that there exists finite element approximation of a minimizer 
�� ∈ W

�
�  of J(�) . Then the following approximate a posteriori error estimate for the error 

e = ||J(�) − J(�� )||L2(ΩT )
 in the Tikhonov functional (29) holds true

with positive constants CI ,C > 0 and where

Proof  We use the definition of the Frechét derivative to get

where R(�, �� ) = O((� − �� )
2), (� − �� ) → 0 ∀�, �� ∈ W

�
�  . The term R(�, �� ) is small 

because of assumption (62): we assume that �� is the minimizer of the Tikhonov functional 
on the mesh J� and this minimizer is located in a small neighborhood of the regularized 
solution � . Because of that we neglect R in (68). Next, we use the splitting

for � − �� in (68) together with Galerkin orthogonality

to get

(62)‖�0 − �∗‖ ≤ �3�

3
,

(63)V𝜀(𝜂) = {x ∈ C(ΩT ) ∶ ‖𝜂 − x‖ < 𝜀 ∀𝜂 ∈ C(ΩT )}.

(64)F(�) =
1

2

T2

∫
T1

(u4(�, t) − g(t))2z� (t) dt

(65)
‖F�(�)‖ ≤ D1 ∀� ∈ V1(�

∗),

‖F�(�1) − F�(�2)‖ ≤ D2‖�1 − �2‖ ∀�1, �2 ∈ V1(�
∗).

(66)e = ||J(�) − J(�� )||L2(ΩT )
≤ CIC

‖‖J�(�� )‖‖L2(ΩT )
||��� ||L2(ΩT )

(67)J�(�� ) = �(�� − �0) − �u2� (�1� − �3� ).

(68)J(�) − J(�� ) = J�(�� )(� − �� ) + R(�, �� ),

(69)� − �� = � − �I
�
+ �I

�
− ��

(70)J�(�� )(�
I
�
− �� ) = 0, ∀�I

�
, �� ∈ W�

�
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Here, �I
�
 is a standard interpolant of � on the mesh J� [23]. Taking norms in (71), we obtain

where the term ||� − �I
�
||L2(ΩT )

 can be estimated via the interpolation estimate with the con-
stant CI

We can estimate ||� �||H1(ΩT )
 in (73) as

Here, [�� ] denote the jump of the function �� over the time intervals [tk−1, tk] and [tk, tk+1] 
defined as

with functions �−
�
, �+

�
 computed on [tk−1, tk] and [tk, tk+1] , respectively.

Now we substitute above estimate into (72) to get

In the case when �� ∈ W
�
�  terms with jumps in time disappear and we have a posteriori 

error estimate

	�  ◻

A Posteriori Error Estimate of the Minimizer on Refined Meshes

Theorems 2 and 3 present two a posteriori error estimates for a minimizer � of the func-
tional (29). Proof of the next theorem follows from the proof of Theorem 5.1 of [29].

Theorem 2  Let �� ∈ W
�
�  be a finite element approximation on the finite element mesh J� 

of the minimizer � ∈ L2(ΩT ) of the functional (29) with the mesh function �(t) . Then there 
exists a Lipschitz constant D = const. > 0 defined by

(71)J(�) − J(��) ≤ J�(�� )(� − �I
�
).

(72)||J(�) − J(�� )||L2(ΩT )
≤ ||J�(�� )||L2(ΩT )

||� − �I
�
||L2(ΩT )

,

(73)��� − �I
�
��L2(ΩT )

≤ CI‖��‖H1(ΩT )
.

(74)

||� �||H1(ΩT )
≤ ∑

J

||�k�||H1(J) =
∑
J

‖‖‖‖‖

(
� +

��

�t

)
�k

‖‖‖‖‖L2(J)
≤ ∑

J

(
||���k||L2(J) +

‖‖‖‖
[�� ]

�k
�k
‖‖‖‖L2(J)

)

≤ ||��� ||L2(ΩT )
+
∑
J

‖‖[�� ]‖‖L2(J).

[�� ] = �+
�
− �−

�

(75)

||J(�) − J(�� )||L2(ΩT )
≤ CI

‖‖J�(�� )‖‖L2(ΩT )

(
||��� ||L2(ΩT )

+
∑
J

‖‖[�� ]‖‖L2(J)
)

∀�� ∈ W�

�
.

(76)||J(�) − J(�� )||L2(ΩT )
≤ CI

‖‖J�(�� )‖‖L2(ΩT )
||��� ||L2(ΩT )

∀�� ∈ W�

�
.



	 Differential Equations and Dynamical Systems

1 3

and interpolation constant CI independent on � such that the following a posteriori error 
estimate for the minimizer � holds true

Proof  Let �� be the minimizer of the Tikhonov functional (29). The existence and unique-
ness of this minimizer is guaranteed by conditions (62) and follows from Theorem 1.9.1.2 
of [13]. By this theorem, the functional (29) is strongly convex on the space L2(ΩT ) with 
the strong convexity constant � . This implies that

Here, J�(�� ), J�(�) are the Fréchet derivatives of the functional (29) given by (43) for 
respective �.

Since � is the minimizer of the Tikhonov functional (29) then

Using the splitting

where �I
�
 is an interpolant of � , together with the Galerkin orthogonality principle for all 

�� , �
I
�
∈ W

�
�

in (79) we obtain

We can estimate the right hand side of (82) using (77) as

Substituting above equation into (82) we obtain

Using the interpolation property

we obtain a posteriori error estimate for the regularized solution with the interpolation con-
stant CI:

.

(77)‖‖J�(�1) − J�(�2)
‖‖ ≤ D‖‖�1 − �2

‖‖,∀�1, �2 ∈ L2(ΩT ),

(78)||�� − �||L2(ΩT )
≤ D

�
CI||��� ||L2(ΩT )

∀�� ∈ W�

�
.

(79)�‖‖�� − �‖‖2L2(ΩT )
≤ |(J�(��

)
− J�(�), �� − �

)|.

(
J�(�), �

)
= 0, ∀� ∈ L2(ΩT ).

(80)�� − � =
(
�� − �I

�

)
+
(
�I
�
− �

)
,

(81)
(
J�
(
��
)
− J�(�), �� − �I

�

)
= 0

(82)�‖‖�� − �‖‖2L2(ΩT )
≤ |(J�(��

)
− J�(�), �I

�
− �

)|.

|(J�(��
)
− J�(�), �I

�
− �

)| ≤ D||�� − �||L2(ΩT )
||�I

�
− �||L2(ΩT )

.

(83)||�� − �||L2(ΩT )
≤ D

�
||�I

�
− �||L2(ΩT )

.

(84)||�I
�
− �||L2(ΩT )

≤ CI||� �||H1(ΩT )

(85)||�� − �||L2(ΩT )
≤ D

�
||�I

�
− �||L2(ΩT )

≤ D

�
CI||� �||H1(ΩT )

.
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We can estimate ||� �||H1(ΩT )
 in (85) similar to (74). Substituting this estimate into the 

right hand side of (85) we get

In the case when �� ∈ W
�
�  terms with jumps in time [�� ] disappear and we have a posteriori 

error estimate

	�  ◻

Theorem 3  Let �� ∈ W
�
�  be a finite element approximation on the finite element mesh J� 

of the minimizer � ∈ L2(ΩT ) of the functional (29) with the mesh function �(t) . Then there 
exists an interpolation constant CI independent on � such that the following a posteriori 
error estimate for the minimizer � and the regularization parameter � ≠ 0 holds

where R(�� ) is the residual defined as

Proof  Let again �� be the minimizer of the Tikhonov functional (29). Strong convexity of 
the functional (29) on the space L2(ΩT ) implies that

Applying splitting (80) to (88) we obtain (82) where the term J�(�� ) can be estimated via 
(43). More precisely, when u(t), �(t) are exact functions, we have for ��:

and thus, for exact functions u(t), �(t) one can write

From (88) and (89) (noting that J�(�) = 0 ) we get

where R(�� ) is the residual defined as in (87).
Using the interpolation property (84) and further the estimate (74) we obtain following 

a posteriori error estimate for the regularized solution with the interpolation constant CI:

||�� − �||L2(ΩT )
≤ D

�
CI

(
||��� ||L2(ΩT )

+ ‖‖[�� ]‖‖L2(ΩT )

)
∀�� ∈ W�

�
.

||�� − �||L2(ΩT )
≤ D

�
CI||��� ||L2(ΩT )

.

(86)���� − ���L2(ΩT )
≤
�

‖R(�� )‖
�

CI����� ��L2(ΩT )
∀�� ∈ W�

�
,

(87)R(�� )(t) = �(�� − �0)(t) + �u2� ((�3� − �1� )(t).

(88)�‖‖�� − �‖‖2L2(ΩT )
≤ |(J�(��

)
− J�(�), �� − �

)|.

L(v(�� )) = J(�� ),

(89)J�(�� ) = L�(�� ) = �(�� − �0)(t) + �u2� ((�3� − �1� )(t).

(90)���� − ���L2(ΩT )
≤
�

‖R(�� )‖
�

���I
�
− ���L2(ΩT )

,

���� − ���L2(ΩT )
≤
�

‖R(�� )‖
�

CI

�
����� ��L2(ΩT )

+ ��[�� ]��L2(ΩT )

�
∀�� ∈ W�

�
.
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and since �� ∈ W
�
�  the above estimate reduces to

	�  ◻

Algorithms for Solution of PIP

Here we present two algorithms for solution of PIP:

•	 CGA—usual conjugate gradient algorithm on a coarse time partition,
•	 ACGA—time-adaptive conjugate gradient algorithm which minimized the Tikhonov 

functional (29) on a locally refined meshes in time.

We denote the nodal value of the gradient at the observation points {ti} by Gm(ti) and 
compute it accordingly to (43) as

The approximate computed solutions u2m�  and �1,3m�  are obtained computationally by New-
ton’s method with � ∶= �m

�
 . A sequence {��m}m=1,…,M of approximations to � is computed 

as follows

with

and

where d0(ti) = −G0(ti) and Gm(ti) is the gradient vector which is computed by (91) in time 
moments ti . In (92) the parameter rm is the step-size in the gradient update at the iteration m 
which is computed as

 

���� − ���L2(ΩT )
≤
�

‖R(�� )‖
�

CI����� ��L2(ΩT )
∀�� ∈ W�

�
.

(91)Gm(ti) = �(�m
�
(ti) − �0

�
(ti)) + �u2

m
�
(ti)(�3

m
�
(ti) − �1

m
�
(ti)).

(92)�m+1
�

(ti) = �m
�
(ti) + rmdm(ti),

dm(ti) = −Gm(ti) + �mdm−1(ti),

�m =
||Gm(ti)||2
||Gm−1(ti)||2

,

(93)rm = −
(Gm, dm)

�‖dm‖2 .
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In the adaptive algorithm ACGA we have used Theorem  3 for the error 
e = ‖�� − �‖L2(ΩT )

 on locally refined meshes. More precisely, first we choose tolerance 
0 < 𝜃 < 1 and run adaptive algorithm until

For the time-mesh refinements we propose following refinement procedure based on the 
Theorem 3.

The Time Mesh Refinements Criterion
Refine the time-mesh J� in neighborhoods of those time-mesh points t ∈ ΩT where the 

residual |||R
(
��
)
(t)
||| defined in (87) attains its maximal values. More precisely, let �1 ∈ (0, 1) 

be the tolerance number. Refine the time-mesh in such subdomains of ΩT where

Using the above mesh refinement recommendation we propose the following time-adaptive 
algorithm in computations:

e = ‖�� − �‖L2(ΩT )
≤ �.

||R(�� )(t)|| ≥ �1 max
ΩT

||R(�� )(t)||.
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Numerical Results

In this section we present several numerical results which show performance and effective-
ness of the time-adaptive reconstruction of unknown parameter �(t), t ∈ [0, T] in PIP using 
ACGA algorithm. Numerical tests are performed in Matlab R2019b using the developed code 
for solution of the studied problem available for download at [31]. Numerical results of recon-
struction of function �(t) using usual conjugate gradient Algorithm 1 on the nonrefined time-
meshes are presented in [25]. We note that observations of all ui, i = 1, 2, 3, 4 functions in 
system (1) were used in [25].

The goal of numerical tests of this note is to determine the unknown func-
tion �(t) from observation of the virus population function u4(t) in (1) on the interval 
[T1, T2] ⊂ [0, T], 0 ≤ T1 < T2 ≤ T . In all numerical tests assumed that parameter �(t) satisfy 
conditions (5) and is unknown in the system (1), but all other parameters {s , � , k, �1 , � , b, � , 
c, N} of this system are known and their values are chosen as in the Table 1. The observation 
interval [T1, T2] is such that T2 = T = 300 , but T1 is taken differently in different tests since 
observations of the virus population function u4(t) can be taken after the first 3 − 9 weeks 
since the virus started to be reproduced in the body of host.

For generation of data u4(t) = g(t) the problem (1)–(2) was solved numerically with exact 
values of the test model function �(t) . For solution of problem (1)–(2) was used Newton’s 
method presented in “The Parameter Identification Problem”. Next, the random noise was 
added to the observed solution u4(t) as

where � ∈ [0, 1] is nose level and � ∈ [−1, 1] is random number.
In Algorithms 1, 2 it is of vital importance to take initial guess �0 such that it satisfy condi-

tion (62) which means that �0 is located in the close neighborhood of the exact solution. This 
condition is fulfilled in our PIP since we can compute explicitly values of the parameter �(t) 
on the initial non-refined time mesh using, for example, the third equation of system (1) as

We used following discretised version of this equation to get initial guess �0
�

(95)u4�(t) = u4�(t)(1 + ��),

(96)�(t) = 1 −

�u3(t)

�t
+ �u3(t)

�u2(t)
.
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Here, u3k+1�
, u3

k
�
, u2

k
�
 are known computed approximations of functions u3, u2 at time itera-

tions k + 1 and k, respectively. In our computations we take values of u3k+1�
, u3

k
�
, u2

k
�
 using 

solution of the problem (1)–(2) with exact values of the test model function �(t) and then 
adding the noise � as

where � ∈ [0, 1] is nose level and � ∈ [−1, 1] is random number. We note that denominator 
in (97) is not approaching zero because � = 0.4 and u2𝜏 (t) > 0 ∀t ∈ [0, T] . To get reasona-
ble approximation �0

�
 for the initial guess �0 in Algorithm 2 we assume that noisy functions 

u3� , u2� are known on the initial non-refined mesh, apply (97) and then use polynomial fit-
ting to obtained noisy data �0

�
 in order smooth them. Finally, the condition (5) was applied 

for the computed �0
�
 in order to ensure that �0(t) belongs to the set of admissible parameters 

M� . Second order discretization of the first time derivative in (97) is also possible. We note 
that numerical differentiation of noisy data is an ill-posed problem and it is discussed in 
detail in Section 4 of [25].

All tests are performed with tolerance Θ = 10−7 in ACGA algorithm and �1 = 0.1 in 
(8.94). The value of �1 is chosen such that it allows local refinements and avoids refine-
ment of the very large time region in the time mesh. All tests are performed for different 
T1 = 25, 50, 100 for the time interval [T1, T2] = [T1, 300] which corresponds to the fact that 
HIV virus can be detected in the first 3-9 weeks after infection.

Relative errors in the reconstructed parameters �(t) presented in the Tables are measured 
in L2-norm and are computed as

(97)�0
�
(t) ≈ 1 −

u3
k+1
�

−u3
k
�

�k
+ �u3

k
�

�u2
k
�

.

(98)ui�(t) = ui�(t)(1 + ��), i = 2, 3,

Table 4   Test 1. Relative 
errors e� computed for 
reconstruction of the function 
�(t) = 0.7e

−t + 0.05, t ∈ [0, 300] 
for T

1
= 25, 50, 100 on different 

locally adaptively refined time-
meshes

� nr. of ref. 5 % 10% 20% 40%

T1 = 25

  0 0.1893 0.2022 0.2129 0.2203
  1 0.1151 0.1223 0.1279 0.2008
  2 0.0470 0.0391
  3 0.0354
  4 0.0242
T1 = 50

  0 0.1917 0.1933 0.1639 0.3498
  1 0.1194 0.1267 0.1027 0.2990
  2 0.0684 0.0550 0.1002 0.1755
  3 0.0337 0.0394 0.0657 0.1677
  4 0.0217
T1 = 100

  0 0.1560 0.1851 0.2494 0.3229
  1 0.1106 0.1275 0.1442 0.2035
  2 0.0775 0.0810 0.1132 0.1038
  3 0.0354 0.0403
  4 0.0193
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Complete description of all numerical tests with reconstruction results are presented in the 
recent work [11].

(99)e� =
‖� − ��‖L2(ΩT )

‖�‖L2(ΩT )

.

Fig. 4   Test 1. Left figures: simulated u
4� vs. noisy u

4� �
 on the different adaptively refined time meshes. 

Here, noisy observed data are presented by circles. Middle figures: least squares fitting for the noisy �� . 
Right figures: results of ACGA on adaptively refined meshes. Computations are done for noise level 
� = 10% in u

4
 and for T

1
= 50



Differential Equations and Dynamical Systems	

1 3

Test 1

See Table 4.
In this test we present the reconstruction results of the smooth model function

for different starting time points T1 = 25, 50, 100 and for the number of discretization 
points k = 15 on the initial time partition J0

�
 which is generated with equidistant time 

step � = 300∕(k − 1) . More precisely, in this test we model the control parameter �(t) as a 
smooth function given by the equation (100), and we want to recover this function on the 
whole time interval [0, T] using measurements of the noisy virus population function u4�� 
for different values of the initial measurement of this function, or for different times T1.

Left figures of Figs. 4 and 5 show simulated u4� versus noisy u4�� on the different adap-
tively refined in time meshes. On these figures noisy observed data is presented by blue 

(100)�(t) = 0.7e−t + 0.05, t ∈ [0, 300]

Fig. 5   Test 1. Left figures: simulated u
4� vs. noisy u

4� �
 on the different adaptively refined time meshes. 

Here, noisy observed data are presented by circles. Middle figures: least squares fitting for the noisy data 
�� . Right figures: results of ACGA on adaptively refined meshes. Computations are done for noise level 
� = 40% in u

4
 and for T

1
= 100
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circles and simulated data without noise is shown by the solid blue line. Middle figures of 
Figs. 4 and 5 present least squares fitting for the noisy �� . We recall that initial guess for 
noisy �� is computed via applying (97) and is represented by the red circles on the middle 
figures of Figs. 4 and 5. The least squares fitting to the noisy �� is shown by the solid blue 
line on these figures.

Results of reconstruction of the model function (100) for noise levels 
� = 5%, 10%, 20%, 40% in virus population function u4(t) are presented Table  1. Right 
figures of Fig.  4 show the reconstruction results of the function (100) for a noise level 
� = 10% in the data u4(t) for starting observed time T1 = 50 . Right figures of Fig. 5 shows 
the reconstruction results of this function for a noise level � = 40% in the data u4(t) and for 
T1 = 100.

Table 1 and Figs. 4 and 5 confirm that with local time-mesh refinements the reconstruc-
tion of the drug efficacy function �� is significantly improved compared to the reconstruc-
tion of �� obtained on the initial non-refined time-mesh.

Test 2

See Table 5.

Table 5   Test 2. Relative 
errors e� computed for 
reconstruction of the function 
�(t) = 0.7, t ∈ [0, 300] for 
T
1
= 25, 50, 100 on different 

locally adaptively refined time-
meshes

� nr.of ref. 5 % 10% 20% 40%

T1 = 25

  0 0.0718 0.0802 0.0834 0.0617
  1 0.0592 0.0315 0.0290 0.0493
  2 0.0403 0.0091 0.0301
  3 0.0272 0.0050 0.0240
  4 0.0191 0.0064
  5 0.0170
  6 0.0117
T1 = 50

  0 0.0725 0.0758 0.0720 0.1026
  1 0.0656 0.0572 0.0694 0.0730
  2 0.0459 0.0414 0.0505 0.0571
  3 0.0273 0.0239 0.0179 0.0236
  4 0.0111 0.0183
  5 0.0066 0.0099
T1 = 100

  0 0.0801 0.0676 0.0535 0.0852
  1 0.0568 0.0547 0.0487
  2 0.0351 0.0481 0.0208
  3 0.0265 0.0265
  4 0.0212 0.0130
  5 0.0095 0.0090
  6 0.0084
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In this test we present numerical reconstruction results of the constant model function 
�(t) = 0.7 from noisy observations of the virus population function u4(t)� at the observation 
interval [T1, T2] . We again took T1 = 25, 50, 100 , but number of observation points were 20 
at the time interval [T1, T2] = [T1, 300] . We generate initial time partition J� with equidis-
tant time step � = 300∕19 . The reconstruction results of the model function �(t) = 0.7 for 
noise levels � = 5%, 10%, 20%, 40% in data u4(t) are presented in Table 2. Right figures of 

Fig. 6   Test 2. Left figures: simulated u
4� vs. noisy u

4� �
 on the different adaptively refined time meshes. 

Here, noisy observed data are presented by circles. Middle figures: least squares fitting for the noisy �� . 
Right figures: results of ACGA on adaptively refined meshes. Computations are done for noise level 
� = 40% in u

4
 and for T

1
= 50
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Figs. 6, 7 show the reconstruction results of the function �(t) = 0.7 for noise level � = 40% 
in the data u4(t) for T1 = 50 and T1 = 100 , respectively.

We again observe from the results of Table 2 and Figs. 6 and 7 that with local time-
mesh refinements the reconstruction of the drug efficacy �� is significantly improved 
compared to the reconstruction of �� obtained on the initial non-refined time-mesh 
even if we add large noise � = 40% to the observed data u4(t).

Conclusion

The finite element time-adaptive optimization method for determination of the drug effi-
cacy in a mathematical model of HIV infection with drug therapy is presented. Time-
adaptive optimization means that first the time-dependent drug efficacy is determined at 
a known coarse time partition using several known values of observed function (usually, 
we used 15–20 observations). Then the time-mesh is locally refined at points where the 
computed residual |R(�� )| attains its maximal values and the drug efficacy is computed 

Fig. 7   Test 2. Left figures: simulated u
4� vs. noisy u

4� �
 on different adaptively refined time meshes. Here, 

noisy observed data are presented by circles. Middle figures: least squares fitting to noisy data for �� . Right 
figures: results of ACGA on adaptively refined meshes. Computations are done for noise level � = 40% in 
u
4
 and for T

1
= 100
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on a new refined time-mesh until the relative error in the reconstructed parameter � is 
reduced to the desired accuracy. Numerical experiments show efficiency and reliabil-
ity of proposed adaptive method on reconstruction of different model functions � from 
noisy observed virus population function.

The proposed new time-adaptive method can eventually be used by clinicians to 
determine the drug-response for each treated individual. The exact knowledge of the 
personal drug efficacy can aid in the determination of the most suitable drug as well as 
the most optimal dose for each person, in the long run resulting in a personalized treat-
ment with maximum efficacy and minimum adverse drug reactions.

The proposed time-adaptive method can be adopted to solve multi- parameter identifica-
tion problems for a bread class of problems stated by the system of ODE.
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