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Abstract: At the Volvo Truck assembly plant the repetitive task of nut tightening is not ideal regarding 
quality and ergonomic. The solution to both these issues would be to significantly increase the level of 
automation. However, automating this specific station requires solutions to two specific problems. The 
first problem is to find and identify what nuts that need to be tightened, since they are not always on the 
same position for this highly customized product. The second problem is that the automated solution 
needs to accommodate the working space which is a moving assembly line with human operators. This 
paper investigates how these two problems ban be solved using machine learning and collaborative 
robots. A realistic mockup of the assembly station has been created at Stena Industry Innovation 
Laboratory (SII-Lab) where all the testing has been done. 

The problem to identify the nuts to tighten is further complicated by the fact that some nuts are placed 
backwards for future further assembly which must be avoided. Therefore, the selected solution is to use 
supervised machine learning for object recognition. This way, the system can be trained to recognize both 
nuts that need to be tightened and those mounted backwards, and possible other objects needed. Tests 
have been conducted with different types of CNN (Convolutional Neural Network) algorithms. Results 
have been very successful, and the test setup has successfully managed to connect the whole task of 
identifying the correct nuts and move the collaborative robot to that specific position. 

Keywords: Machine learning, assembly, collaborative robot. 



INTRODUCTION 

In the era of industry 4.0, a lot of technology is available in 
order to achieve higher productivity, improve ergonomics 
and increase quality. Between 2003 and 2009 forty-nine 
different technologies were presented in the Gartner hype 
curve of evolving technologies which have built the 
foundation towards industry4.0. In 2017, nine developing 
technologies were presented (Bortolini et al., 2017). Cohen 
et. al (Cohen et al., 2019) divide the technologies further into 
software and hardware. Usually there is a mix between these 
technologies in order to achieve a good result. This paper 
there will bring up examples of machine learning and object 
recognition and collaborative robot application.  

Machine learning can be described as “a cluster of statistical 
and programming techniques that give computers the ability 
to ‘learn’ from exposure to data, without being explicitly 
programmed” (Sag, 2019). Object detection is a computer 
vision technique that tries to solve the problems of both 
object classification and object localisation. A successful 
approach for these problems has been to utilise a machine 
learning approach with Convolutional Neural Networks 
(CNN) (Krizhevsky et al., 2012). 

Collaborative robot application are industrial robots that are 
designed to work along humans in various levels of 
interaction (Bauer et al., 2016) i.e.  coexistence, 
synchronized, cooperation, and collaboration. Coexistence 

means that there is no shared workspace at all. In a 
synchronized application, the human and robot share the 
same workspace but never at the same time. Cooperation 
means that they do work in the same workspace at the same 
time but not with the same component. A true collaborative 
application is when robot and human both do work at the 
same time with the same component. 

Collaborative robots are an integral part of future intelligent 
production systems that allows smaller lot sizes and increased 
productivity (Rüßmann et al., 2015). 

This paper presents the results of the experiment setup and 
discusses the results in terms of feasibility of implementing a 
live application. 

OBJECT DETECTION USING MACHINE LEARNING 

A neural network is a common machine learning approach 
where the input is propagated through layers of connected 
neurons. How these neurons are connected are decided by 
weighted values that are decided though training of the 
algorithm. Since using every pixel from the images as direct 
input for fully connected neural networks would be too 
computational heavy, CNN’s consists of two separate parts: 
feature learning and classification. During feature learning a 
small part of the image is filtered and simplified and the 
result consists of several small feature maps. These feature 



 
 

     

 

maps are then flattened and sent though fully connected 
neural network to classify what the features represent. 

There are three different strategies when training machine 
learning agents: unsupervised learning, reinforcement 
learning, and supervised learning. In unsupervised learning 
the agents gradually detect patterns in the input data and 
forms potentially useful clusters. Reinforcement learning 
means that the agent is “rewarded” or “punished” depending 
on output value. An agent receiving supervised learning gets 
a training set containing input data and corresponding output 
values. If the output value is part of a finite set, e.g. is an 
image a dog or a cat, it is a solution to a classification 
problem. Values that are real numbers, e.g. tomorrows stock 
market, are solutions to regression problems. (Russell and 
Norvig, 2013). An early viable method is called R-CNN, 
which focus on the classification problem by dividing the 
image into many sub sections (region proposals) (Girshick et 
al., 2014). Since the number of proposals generated for each 
image can be very large, this is method is rather 
computationally heavy, but improvements in methods Fast R-
CNN (Girshick, 2015) and Faster R-CNN (Ren et al., 2015) 
have reduced the computation and training time significantly. 
It is also possible to approach the object localisation problem 
as a regression problem, which is the case for the Single Shot 
Detector (SSD) algorithm (Liu et al., 2016). For a more in-
depth view of the evolution of various approaches see (Zhao 
et al., 2019). 

To explain a complete background of the machine learning 
and computer vision concepts touched upon during this 
experiment is beyond the scope. Table 1 constitutes a 
description of needed concepts. 

Table 1. Computer vision and machine learning concepts. 

Concept Description 

COCO COCO (http://cocodataset.org/) stands for 
Common Objects in Context and is an image 
reference database developed by Microsoft 
(Lin et al., 2014). It consists of a large set of 
labelled images with 1.5 million object 
instances and 80 object categories. It IS used to 
train and test computer vision applications. 

OpenCV OpenCV (https://opencv.org/) is an open 
source library for computer vision applications 
(Bradski and Kaehler, 2008). 

Tensorflow Tensorflow (https://www.tensorflow.org/) is an 
open-source machine learning platform. It 
support training and execution of machine 
learning algorithms in large scale 
heterogeneous systems (Abadi et al., 2016). 

LabelImg A labelling software that allows the user to put 
label bounding boxes around objects in pictures 
to be used for supervised training (Tzutalin, 
2015). 

 

INDUSTRIAL CASE 

At one of the stations at the Volvo Truck’s assembly line the 
task is to tighten most of the previously entered nuts along 
the length of the truck frame. Each truck frame has two sides 
with nuts that need tightening. Some nuts are placed 
backwards to accommodate future components, these are not 
to be tightened. Each side contains an average of 200 nuts 
and around 30 number of inverted nuts. The truck is slowly 
moving over the assembly station during the entire tact time 
which is 5 minutes. There are two operators on each side 
working with tightening tools. They divide the frame into an 
upper and a lower level to avoid tightening the same nuts. 

This task is done by operators using a power tool and leads to 
two separate issues. One issue regards the manual task of 
moving and holding on to the tool, which is repetitive and 
unergonomic. The other issue regards to quality since it is 
possible for an operator to overlook nuts. Increasing the level 
of automation can be a solution to both these problems. The 
ergonomic issues can be solved if the automation level is 
increased to exclude the human operator from the physical 
task of moving and holding on to the tool. The quality can be 
improved if cognitive automation can identify nuts and 
remember what nuts have been tightened. 

EXPERIMENT SETUP 

During the summer of 2019 an experiment setup was created 
at Stena Industry Innovation Lab (SII-Lab) to investigate the 
possibility to utilise collaborative robots together with 
computer vision to solve above mentioned issues. It was 
decided that the computer vision system should be based on 
machine learning since previous experience with more 
traditional tools was deemed unavailing. The experiment 
setup consisted of two parts; 1) Nut detection and 2) Robot 
application the concepts are tested separately to start with and 
then an interactive process is done at the end in order to 
integrate the two concepts, illustrated in (Fig. 1). 

 

Fig. 1. Visualisation of the process of creating the proof of 
concept robot application. 

4.1 Nut Detection 

The nut detection process consisted of three parts; review of 
the field, setting up an environment, and training and testing 
of machine learning models, the results were the concepts 
presented in Table 1. Several Machine learning methods were 
evaluated. The machine learning methods that have been 



 
 

     

 

tested are Faster R-CNN (Ren et al., 2015) and SSD (Liu et 
al., 2016).  

In terms of the environment, the real tightening tool was not 
available for the experiment setup so a mockup was created 
using additive manufacturing. Fig. 2 shows the mock-up of 
the tightening tool that also has the camera integrated. The 
camera is a regular web-camera from Logitech. 

 

Fig. 2. Mockup of the tightening tool with camera attached to 
it. 

Training and testing were an iterative process, but each 
iteration is like the other. Supervised training requires 
labelled images. Therefore, several images of the Truck 
Frame with nuts and inverted nuts was taken and labelled 
using LabelImg (Tzutalin, 2015). For Faster R-CNN the 
resolution of the images was 800x600 and for SSD it was 
300x300. The images were all taken perpendicular to the 
Truck Frame, illustrated in Fig. 3. 

 

Fig. 3. Positions of the nuts are calculated using the distance 
to the truck frame and the field of view of the camera. 

An important part of the robot application is to translate 
detected nuts in a two-dimensional image into the 
corresponding three-dimensional space. This was calculated 
using the known field of view of the camera and the distance 
between the camera and the frame. (Fig. 3). 

 

4.2 Robot application 

The robot application process is also divided into three parts; 
Creating a mock-up of the nut tightening tool, 
Implementation of robot programming and then integration of 
the detection result. needed to be created. After that, with 
valuable input from how the nut detection environment looks 
like, a concept of the robot implementation could be created 
including software, hardware and scope of the application. 

The robot that is used for the implementation is a Sawyer 
from Rethink Robotics. the experiment setup (see Fig. 4) has 
some differences from the real assembly line. The truck 
frame is smaller and contains fewer other components, but 
the nuts and bolts are the same. The lighting conditions have 
not been measured but the experiences are similar. The frame 
is fixed while on the real assembly line the truck frame is 
slowly moving on a paced line. 

 

Fig. 4. Robot application with truck frame at SII-Lab. 

The ROS platform was used to communicate with the robot. 
Since ROS is installed on a Linux platform and Windows 
was used for the Tensorflow application, the software part of 
the robot application is setup using the client server approach. 
All the software is crated using the Python programming 
language. 

Interactive process 

Then an iterative process of integration took place where the 
application was improved in parallel to when improved 
models was trained. The implementations have been done 
using Tensorflow (Abadi et al., 2016). In the TensorFlow 
framework, training is setup in configuration files and the 
most common approach is to utilise a premade Tensorflow 
sample file. The configuration files 
“faster_rcnn_inception_v2_pets.config” and 
“ssd_mobilenet_v2_coco.config” was used for training the 
algorithms, which are originally optimised for parts of the 
COCO data set. 



 
 

     

 

Fig. 2 shows the architecture of the robot application. A 
client handles the communication with the camera, takes 
pictures using the Open CV platform, and runs those pictures 
through the object detection algorithm with the help of 
Tensorflow. The client calculates the real location of the 
detected nuts and sends those to the server application which 
tells the robot to move to the position through ROS. The 
computer hardware used for the client application, that runs 
the Tensorflow platform, is just a normal computer and it 
does not utilise the GPU for computer vision tasks. 

  

Fig. 2. Schematic picture of the robot application. 

Training of an algorithm prints a result that includes a 
prediction of how well it performs. However, since the 
different training procedures did not use the same pictures for 
training and testing, the results were difficult to compare. 
Therefore, a separate hit rate test was done. In this test, 10 
images were taken with seven nuts, seven inverted nuts, and 
two empty bolts in each image. This gives a total of 140 
objects that we sent through each of the created algorithm. 
The hit rate is calculated by removing any missed or 
misidentified object, meaning that finding six or eight objects 
out of the correct seven result in the same hit rate of 85,7%. 

When the algorithm detects nuts and inverted nuts correctly. 
Fig. 3. Shows the result of a correct executed object detection 
Nuts and inverted nuts are identified and boxed in different 
colours. 

 

Fig. 3. Result of a correctly executed object detection.  

RESULTS 

Table 2 shows a summary of the four algorithms that was 
trained and tested, two using SSD and two using Faster R-
CNN. 

Table 2. Summary of the different algorithms trained and 
tested including total number of images and objects. 

Test Algorithm #images #Nuts #Inverted Nuts 

1 SSD 119 176 174 

2 SSD 141 239 210 

3 Faster R-CNN 124 353 128 

4 Faster R-CNN 322 928 568 

 

Table 3 shows the result from the hit rate test that tests each 
algorithm against 140 objects over 10 images. The hit rate 
varies between 81,4% and 97,1% for the nuts and 67,1% and 
95,7% for the inverted nuts. The time it takes to run the SSD 
algorithm is about half compared to Faster R-CNN. 

Table 3. Result from the hit rate test. 

Test Hit Rate 
Nut 

Hit Rate 
Inverted Nut 

Hit Rate 
Combined 

Detection 
Speed 

1 97,1% 37,1% 67,1% 2,02 s 

2 81,4% 71,4% 76,4% 1,94 s 

3 81,4% 81,4% 81,4% 4,45 s 

4 95,7% 95,7% 95,7% 4,49 s 

DISCUSSION 

The purpose of the experiment setup was to investigate the 
possibility to automate the nut tightening task using 
collaborative robots. The results show, despite reduced 
complexity of the setup, that a successful implementation at 
the assembly is very attainable. The reasons for that 
assessment are based on x, y, and z. 

Nut Detection using CNN 

As can be seen in Table 3 and Table 2, the hit rate of the 
machine learning algorithms are, not surprisingly, highly 
dependant on the number of objects that was available during 
training. The type of algorithm used does play some factor, 
but this experiment lacks the data to be conclusive. Table 3 
also shows that SSD is faster than Faster R-CNN, again, this 
was something already known. The trade off between speed 
and accuracy of machine learning approaches makes 
choosing the correct approach rely on the specific 
requirements of the application (Huang et al., 2017). 

Test 4 reached the highest accuracy with a total hit rate of 
95,7%. This is a significantly higher number than the 35,7% 
of mean accuracy found in a systematic comparison test 



 
 

     

 

(Huang et al., 2017). That comparison is however based on 
the COCO data set and tires to detect many objects of various 
sizes and shapes. It is much easier to optimise an algorithm to 
only detect specific objects (Jiang and Learned-Miller, 2017). 
It is at this stage difficult to say what is possible in terms of 
accuracy but initial tests (see Table 3) are promising in terms 
of quality. 

Speed of the object detection is not very relevant for this 
implementation. The results show a very low detection speed 
compared to other measures (Huang et al., 2017) and 
especially for the regression based methods (Liu et al., 2016). 
The difference is mostly because this test did not include 
GPU acceleration for any of the heavy calculation that 
computer vision is. Either way, the seconds that the image 
processing might add is insignificant compared other aspects 
such as robot movement and nut tightening tool. 

Tensorflow (Abadi et al., 2016) was used for the 
implementation. It was not a difficult choice since it is the 
most popular open source platform for machine learning 
applications. However, it was not problem free. A large 
amount of time went into trying to find the correct versions of 
the different packages and software needed to create a 
functional application. This shows that implementing 
machine learning applications today has ha rather steep initial 
learning curve. There are also several other frameworks to 
look into (Shatnawi et al., 2018, Bahrampour et al., 2015). 

Robot Application 

The speed of the robot is hard to draw credible conclusions 
around because of the missing time for the tightening of the 
nuts. When the tool is available for testing the real speed for 
the session can be evaluated. But with illustration of the 
robot’s movement we can draw the conclusion that the 
accuracy was good enough, which implies that the robot 
surrounds the nut with the tool without unwanted collision 
with the frame or the objects. There is a need to meet 1,5 
seconds as average time spent on each nut with one working 
robot (to meet the maximum amount of 200 nuts per side). 
So, one solution is either having more robots working 
alongside, having a faster robot or having collaboration with 
humans.  

Regarding the camera application, the camera’s position 
potentially affected the results. The camera was mounted on 
the tool of the robot (Fig. 2), and therefore required the robot 
to move to a certain home position for each new image that 
needed to be taken by the camera. Thus, potential time losses 
in the overall speed per nut may occurred. Instead, if a fix 
camera mounted besides the robot was implemented, it 
wouldn’t require the robot to move to a certain home position 
the for next image to be taken. Further, the camera wouldn’t 
be limited to be near the robot; a camera implemented at an 
earlier station at the production line could provide the 
necessary images for the object detection and coordinates 
could further be delivered to the robot. However, a such 
system may require extra sensors to locate the frame in 
relation to the robot, which this project didn’t investigated. 

The communication between the robot and the different 
settings could be more efficient. One of the problems is the 
hardware without the possibility to utilise a GPU booster. 
The system in control of the translation of positions are as 
mentioned in as ROS. It is hard to compare between other 
systems when no further tests in that regard have been 
executed. The good thing is that the environment of the robot 
application shows that it’s fully applicable to use ROS in this 
regard.  

This project was performed in a laboratory environment 
which may entail differences with the real implementation. 
Additionally, some important aspects will therefore be 
discussed. First, the frame in the laboratory is fixed compared 
with the real environment where it moves horizontally on a 
conveyor. This should be taken into consideration for further 
implementation, and moreover the conveyor may not have 
consistent speed, due to e.g. minor stops on the production 
line, which put certain requirements on the flexibility of the 
robot application to handle a likewise situation. As a second 
aspect, the frame at the conveyor may be inconsistent in its 
placement regarding height and angels in relation to the 
robots coordinate system. This potential situation could not 
occur in the laboratory, since the frame was fixed in the 
laboratory. Therefore, there were no need for calibration of 
the robot camera in each new object detection session. 
Additionally, the real implementation would require some 
sort of sensors to locate the centre of the beam of the frame 
and adjust the camera to be orthogonal to the beam in that 
height. On the other hand, a different approach on solving 
this issue is discussed further down in this chapter. 

Finally, a third aspect that needs to be taken into 
consideration for a real implementation is the potential 
objects located on the frame that might hinder the camera 
from partly or entirely capture some nuts, and therefore affect 
the object detection accuracy. This is something that will be 
considered when using the pilot testing at Volvo Trucks, 
since the real environment there have more objects than the 
ones seen in Figure 5. As Jiang and Learned-Miller (2017) 
mentioned, it’s easier to optimise specific objects and not 
different objects with various sizes and design. Additionally, 
with the right amount of training and the same objects comes 
mounted on the frame, it can be possible to reach acceptable 
recognition level for automation. It will be harder to achieve 
if different objects occur on the frame that not been included 
in the training session.  

The project was limited to the use of a camera mounted on 
the robot, which further was placed perpendicular in a certain 
distance to the frame for each new image. However, this 
could have been made differently by using live object 
detection via video stream, rather than analysis of a single 
image. A such system would entail for opportunities to let the 
robot search for nuts on the frame and not be limited to a 
perpendicular setting. Instead, the robot could systematically 
screen the frame from one end to the other, and 
simultaneously tighten the nuts passed by. Further, this could 
lead to a more flexible and robust system, since the robot 
wouldn’t require calibration and be dependent on the distance 
and angles to the frame. Nevertheless, this project used 



 
 

     

 

hardware that limited the testing to object detection on 
images rather than video stream in real time. In addition to 
that, a real time system as described above should require 
hardware capable of video stream detection with at least 
several frames analysed per second. 

CONCLUSIONS 

The first step to achieve higher automation for Volvos’ nut 
tightening station is seen as successful. The degree of 
recognition for both objects reach up to 95,7% with Faster R-
CNN (see Table 3), which is acceptable if humans acts as 
supervisors for the missed nuts. This was achieved with only 
322 images, consisting of 928 nuts and 568 inverted nuts 
(Table 2). Further work with this project includes more 
pictures and better hardware for the training and execution. 
Also starting with a pilot tests at Volvo Trucks regarding 
pictures from the real environment and tools to be applied for 
the tightening of the nuts. As discussed, the environment for 
the experiment is not fully comparable to the station at 
Volvo. The primary aim with the experiment was to 
understand the interactive process between tor robot 
application and nut detection which have been showed. 

Other aspects such as safety between robot and operator 
needs to be further investigated before the implementation 
can be tested and implemented in industry. Furthermore, 
technical and semantic interoperability needs to be tested. 
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