
Automating nut tightening using Machine Learning

Downloaded from: https://research.chalmers.se, 2024-03-13 10:19 UTC

Citation for the original published paper (version of record):
Wedin, K., Johnsson, C., Åkerman, M. et al (2020). Automating nut tightening using Machine
Learning. IFAC-PapersOnLine. http://dx.doi.org/10.1016/j.ifacol.2020.12.2763

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)

Automating nut tightening using Machine Learning

Kevin Wedin*, Christoffer Johnsson*, Magnus Åkerman*,
Åsa Fast-Berglund*, Viktor Bengtsson* and Per-Anders Alveflo**

*Chalmers University of Technology, SE-412 96
**Volvo Trucks Cooperation

Abstract: At the Volvo Truck assembly plant the repetitive task of nut tightening is not ideal regarding
quality and ergonomic. The solution to both these issues would be to significantly increase the level of
automation. However, automating this specific station requires solutions to two specific problems. The
first problem is to find and identify what nuts that need to be tightened, since they are not always on the
same position for this highly customized product. The second problem is that the automated solution
needs to accommodate the working space which is a moving assembly line with human operators. This
paper investigates how these two problems ban be solved using machine learning and collaborative
robots. A realistic mockup of the assembly station has been created at Stena Industry Innovation
Laboratory (SII-Lab) where all the testing has been done.

The problem to identify the nuts to tighten is further complicated by the fact that some nuts are placed
backwards for future further assembly which must be avoided. Therefore, the selected solution is to use
supervised machine learning for object recognition. This way, the system can be trained to recognize both
nuts that need to be tightened and those mounted backwards, and possible other objects needed. Tests
have been conducted with different types of CNN (Convolutional Neural Network) algorithms. Results
have been very successful, and the test setup has successfully managed to connect the whole task of
identifying the correct nuts and move the collaborative robot to that specific position.

Keywords: Machine learning, assembly, collaborative robot.

INTRODUCTION

In the era of industry 4.0, a lot of technology is available in
order to achieve higher productivity, improve ergonomics
and increase quality. Between 2003 and 2009 forty-nine
different technologies were presented in the Gartner hype
curve of evolving technologies which have built the
foundation towards industry4.0. In 2017, nine developing
technologies were presented (Bortolini et al., 2017). Cohen
et. al (Cohen et al., 2019) divide the technologies further into
software and hardware. Usually there is a mix between these
technologies in order to achieve a good result. This paper
there will bring up examples of machine learning and object
recognition and collaborative robot application.

Machine learning can be described as “a cluster of statistical
and programming techniques that give computers the ability
to ‘learn’ from exposure to data, without being explicitly
programmed” (Sag, 2019). Object detection is a computer
vision technique that tries to solve the problems of both
object classification and object localisation. A successful
approach for these problems has been to utilise a machine
learning approach with Convolutional Neural Networks
(CNN) (Krizhevsky et al., 2012).

Collaborative robot application are industrial robots that are
designed to work along humans in various levels of
interaction (Bauer et al., 2016) i.e. coexistence,
synchronized, cooperation, and collaboration. Coexistence

means that there is no shared workspace at all. In a
synchronized application, the human and robot share the
same workspace but never at the same time. Cooperation
means that they do work in the same workspace at the same
time but not with the same component. A true collaborative
application is when robot and human both do work at the
same time with the same component.

Collaborative robots are an integral part of future intelligent
production systems that allows smaller lot sizes and increased
productivity (Rüßmann et al., 2015).

This paper presents the results of the experiment setup and
discusses the results in terms of feasibility of implementing a
live application.

OBJECT DETECTION USING MACHINE LEARNING

A neural network is a common machine learning approach
where the input is propagated through layers of connected
neurons. How these neurons are connected are decided by
weighted values that are decided though training of the
algorithm. Since using every pixel from the images as direct
input for fully connected neural networks would be too
computational heavy, CNN’s consists of two separate parts:
feature learning and classification. During feature learning a
small part of the image is filtered and simplified and the
result consists of several small feature maps. These feature

maps are then flattened and sent though fully connected
neural network to classify what the features represent.

There are three different strategies when training machine
learning agents: unsupervised learning, reinforcement
learning, and supervised learning. In unsupervised learning
the agents gradually detect patterns in the input data and
forms potentially useful clusters. Reinforcement learning
means that the agent is “rewarded” or “punished” depending
on output value. An agent receiving supervised learning gets
a training set containing input data and corresponding output
values. If the output value is part of a finite set, e.g. is an
image a dog or a cat, it is a solution to a classification
problem. Values that are real numbers, e.g. tomorrows stock
market, are solutions to regression problems. (Russell and
Norvig, 2013). An early viable method is called R-CNN,
which focus on the classification problem by dividing the
image into many sub sections (region proposals) (Girshick et
al., 2014). Since the number of proposals generated for each
image can be very large, this is method is rather
computationally heavy, but improvements in methods Fast R-
CNN (Girshick, 2015) and Faster R-CNN (Ren et al., 2015)
have reduced the computation and training time significantly.
It is also possible to approach the object localisation problem
as a regression problem, which is the case for the Single Shot
Detector (SSD) algorithm (Liu et al., 2016). For a more in-
depth view of the evolution of various approaches see (Zhao
et al., 2019).

To explain a complete background of the machine learning
and computer vision concepts touched upon during this
experiment is beyond the scope. Table 1 constitutes a
description of needed concepts.

Table 1. Computer vision and machine learning concepts.

Concept Description

COCO COCO (http://cocodataset.org/) stands for
Common Objects in Context and is an image
reference database developed by Microsoft
(Lin et al., 2014). It consists of a large set of
labelled images with 1.5 million object
instances and 80 object categories. It IS used to
train and test computer vision applications.

OpenCV OpenCV (https://opencv.org/) is an open
source library for computer vision applications
(Bradski and Kaehler, 2008).

Tensorflow Tensorflow (https://www.tensorflow.org/) is an
open-source machine learning platform. It
support training and execution of machine
learning algorithms in large scale
heterogeneous systems (Abadi et al., 2016).

LabelImg A labelling software that allows the user to put
label bounding boxes around objects in pictures
to be used for supervised training (Tzutalin,
2015).

INDUSTRIAL CASE

At one of the stations at the Volvo Truck’s assembly line the
task is to tighten most of the previously entered nuts along
the length of the truck frame. Each truck frame has two sides
with nuts that need tightening. Some nuts are placed
backwards to accommodate future components, these are not
to be tightened. Each side contains an average of 200 nuts
and around 30 number of inverted nuts. The truck is slowly
moving over the assembly station during the entire tact time
which is 5 minutes. There are two operators on each side
working with tightening tools. They divide the frame into an
upper and a lower level to avoid tightening the same nuts.

This task is done by operators using a power tool and leads to
two separate issues. One issue regards the manual task of
moving and holding on to the tool, which is repetitive and
unergonomic. The other issue regards to quality since it is
possible for an operator to overlook nuts. Increasing the level
of automation can be a solution to both these problems. The
ergonomic issues can be solved if the automation level is
increased to exclude the human operator from the physical
task of moving and holding on to the tool. The quality can be
improved if cognitive automation can identify nuts and
remember what nuts have been tightened.

EXPERIMENT SETUP

During the summer of 2019 an experiment setup was created
at Stena Industry Innovation Lab (SII-Lab) to investigate the
possibility to utilise collaborative robots together with
computer vision to solve above mentioned issues. It was
decided that the computer vision system should be based on
machine learning since previous experience with more
traditional tools was deemed unavailing. The experiment
setup consisted of two parts; 1) Nut detection and 2) Robot
application the concepts are tested separately to start with and
then an interactive process is done at the end in order to
integrate the two concepts, illustrated in (Fig. 1).

Fig. 1. Visualisation of the process of creating the proof of
concept robot application.

4.1 Nut Detection

The nut detection process consisted of three parts; review of
the field, setting up an environment, and training and testing
of machine learning models, the results were the concepts
presented in Table 1. Several Machine learning methods were
evaluated. The machine learning methods that have been

tested are Faster R-CNN (Ren et al., 2015) and SSD (Liu et
al., 2016).

In terms of the environment, the real tightening tool was not
available for the experiment setup so a mockup was created
using additive manufacturing. Fig. 2 shows the mock-up of
the tightening tool that also has the camera integrated. The
camera is a regular web-camera from Logitech.

Fig. 2. Mockup of the tightening tool with camera attached to
it.

Training and testing were an iterative process, but each
iteration is like the other. Supervised training requires
labelled images. Therefore, several images of the Truck
Frame with nuts and inverted nuts was taken and labelled
using LabelImg (Tzutalin, 2015). For Faster R-CNN the
resolution of the images was 800x600 and for SSD it was
300x300. The images were all taken perpendicular to the
Truck Frame, illustrated in Fig. 3.

Fig. 3. Positions of the nuts are calculated using the distance
to the truck frame and the field of view of the camera.

An important part of the robot application is to translate
detected nuts in a two-dimensional image into the
corresponding three-dimensional space. This was calculated
using the known field of view of the camera and the distance
between the camera and the frame. (Fig. 3).

4.2 Robot application

The robot application process is also divided into three parts;
Creating a mock-up of the nut tightening tool,
Implementation of robot programming and then integration of
the detection result. needed to be created. After that, with
valuable input from how the nut detection environment looks
like, a concept of the robot implementation could be created
including software, hardware and scope of the application.

The robot that is used for the implementation is a Sawyer
from Rethink Robotics. the experiment setup (see Fig. 4) has
some differences from the real assembly line. The truck
frame is smaller and contains fewer other components, but
the nuts and bolts are the same. The lighting conditions have
not been measured but the experiences are similar. The frame
is fixed while on the real assembly line the truck frame is
slowly moving on a paced line.

Fig. 4. Robot application with truck frame at SII-Lab.

The ROS platform was used to communicate with the robot.
Since ROS is installed on a Linux platform and Windows
was used for the Tensorflow application, the software part of
the robot application is setup using the client server approach.
All the software is crated using the Python programming
language.

Interactive process

Then an iterative process of integration took place where the
application was improved in parallel to when improved
models was trained. The implementations have been done
using Tensorflow (Abadi et al., 2016). In the TensorFlow
framework, training is setup in configuration files and the
most common approach is to utilise a premade Tensorflow
sample file. The configuration files
“faster_rcnn_inception_v2_pets.config” and
“ssd_mobilenet_v2_coco.config” was used for training the
algorithms, which are originally optimised for parts of the
COCO data set.

Fig. 2 shows the architecture of the robot application. A
client handles the communication with the camera, takes
pictures using the Open CV platform, and runs those pictures
through the object detection algorithm with the help of
Tensorflow. The client calculates the real location of the
detected nuts and sends those to the server application which
tells the robot to move to the position through ROS. The
computer hardware used for the client application, that runs
the Tensorflow platform, is just a normal computer and it
does not utilise the GPU for computer vision tasks.

Fig. 2. Schematic picture of the robot application.

Training of an algorithm prints a result that includes a
prediction of how well it performs. However, since the
different training procedures did not use the same pictures for
training and testing, the results were difficult to compare.
Therefore, a separate hit rate test was done. In this test, 10
images were taken with seven nuts, seven inverted nuts, and
two empty bolts in each image. This gives a total of 140
objects that we sent through each of the created algorithm.
The hit rate is calculated by removing any missed or
misidentified object, meaning that finding six or eight objects
out of the correct seven result in the same hit rate of 85,7%.

When the algorithm detects nuts and inverted nuts correctly.
Fig. 3. Shows the result of a correct executed object detection
Nuts and inverted nuts are identified and boxed in different
colours.

Fig. 3. Result of a correctly executed object detection.

RESULTS

Table 2 shows a summary of the four algorithms that was
trained and tested, two using SSD and two using Faster R-
CNN.

Table 2. Summary of the different algorithms trained and
tested including total number of images and objects.

Test Algorithm #images #Nuts #Inverted Nuts

1 SSD 119 176 174

2 SSD 141 239 210

3 Faster R-CNN 124 353 128

4 Faster R-CNN 322 928 568

Table 3 shows the result from the hit rate test that tests each
algorithm against 140 objects over 10 images. The hit rate
varies between 81,4% and 97,1% for the nuts and 67,1% and
95,7% for the inverted nuts. The time it takes to run the SSD
algorithm is about half compared to Faster R-CNN.

Table 3. Result from the hit rate test.

Test Hit Rate
Nut

Hit Rate
Inverted Nut

Hit Rate
Combined

Detection
Speed

1 97,1% 37,1% 67,1% 2,02 s

2 81,4% 71,4% 76,4% 1,94 s

3 81,4% 81,4% 81,4% 4,45 s

4 95,7% 95,7% 95,7% 4,49 s

DISCUSSION

The purpose of the experiment setup was to investigate the
possibility to automate the nut tightening task using
collaborative robots. The results show, despite reduced
complexity of the setup, that a successful implementation at
the assembly is very attainable. The reasons for that
assessment are based on x, y, and z.

Nut Detection using CNN

As can be seen in Table 3 and Table 2, the hit rate of the
machine learning algorithms are, not surprisingly, highly
dependant on the number of objects that was available during
training. The type of algorithm used does play some factor,
but this experiment lacks the data to be conclusive. Table 3
also shows that SSD is faster than Faster R-CNN, again, this
was something already known. The trade off between speed
and accuracy of machine learning approaches makes
choosing the correct approach rely on the specific
requirements of the application (Huang et al., 2017).

Test 4 reached the highest accuracy with a total hit rate of
95,7%. This is a significantly higher number than the 35,7%
of mean accuracy found in a systematic comparison test

(Huang et al., 2017). That comparison is however based on
the COCO data set and tires to detect many objects of various
sizes and shapes. It is much easier to optimise an algorithm to
only detect specific objects (Jiang and Learned-Miller, 2017).
It is at this stage difficult to say what is possible in terms of
accuracy but initial tests (see Table 3) are promising in terms
of quality.

Speed of the object detection is not very relevant for this
implementation. The results show a very low detection speed
compared to other measures (Huang et al., 2017) and
especially for the regression based methods (Liu et al., 2016).
The difference is mostly because this test did not include
GPU acceleration for any of the heavy calculation that
computer vision is. Either way, the seconds that the image
processing might add is insignificant compared other aspects
such as robot movement and nut tightening tool.

Tensorflow (Abadi et al., 2016) was used for the
implementation. It was not a difficult choice since it is the
most popular open source platform for machine learning
applications. However, it was not problem free. A large
amount of time went into trying to find the correct versions of
the different packages and software needed to create a
functional application. This shows that implementing
machine learning applications today has ha rather steep initial
learning curve. There are also several other frameworks to
look into (Shatnawi et al., 2018, Bahrampour et al., 2015).

Robot Application

The speed of the robot is hard to draw credible conclusions
around because of the missing time for the tightening of the
nuts. When the tool is available for testing the real speed for
the session can be evaluated. But with illustration of the
robot’s movement we can draw the conclusion that the
accuracy was good enough, which implies that the robot
surrounds the nut with the tool without unwanted collision
with the frame or the objects. There is a need to meet 1,5
seconds as average time spent on each nut with one working
robot (to meet the maximum amount of 200 nuts per side).
So, one solution is either having more robots working
alongside, having a faster robot or having collaboration with
humans.

Regarding the camera application, the camera’s position
potentially affected the results. The camera was mounted on
the tool of the robot (Fig. 2), and therefore required the robot
to move to a certain home position for each new image that
needed to be taken by the camera. Thus, potential time losses
in the overall speed per nut may occurred. Instead, if a fix
camera mounted besides the robot was implemented, it
wouldn’t require the robot to move to a certain home position
the for next image to be taken. Further, the camera wouldn’t
be limited to be near the robot; a camera implemented at an
earlier station at the production line could provide the
necessary images for the object detection and coordinates
could further be delivered to the robot. However, a such
system may require extra sensors to locate the frame in
relation to the robot, which this project didn’t investigated.

The communication between the robot and the different
settings could be more efficient. One of the problems is the
hardware without the possibility to utilise a GPU booster.
The system in control of the translation of positions are as
mentioned in as ROS. It is hard to compare between other
systems when no further tests in that regard have been
executed. The good thing is that the environment of the robot
application shows that it’s fully applicable to use ROS in this
regard.

This project was performed in a laboratory environment
which may entail differences with the real implementation.
Additionally, some important aspects will therefore be
discussed. First, the frame in the laboratory is fixed compared
with the real environment where it moves horizontally on a
conveyor. This should be taken into consideration for further
implementation, and moreover the conveyor may not have
consistent speed, due to e.g. minor stops on the production
line, which put certain requirements on the flexibility of the
robot application to handle a likewise situation. As a second
aspect, the frame at the conveyor may be inconsistent in its
placement regarding height and angels in relation to the
robots coordinate system. This potential situation could not
occur in the laboratory, since the frame was fixed in the
laboratory. Therefore, there were no need for calibration of
the robot camera in each new object detection session.
Additionally, the real implementation would require some
sort of sensors to locate the centre of the beam of the frame
and adjust the camera to be orthogonal to the beam in that
height. On the other hand, a different approach on solving
this issue is discussed further down in this chapter.

Finally, a third aspect that needs to be taken into
consideration for a real implementation is the potential
objects located on the frame that might hinder the camera
from partly or entirely capture some nuts, and therefore affect
the object detection accuracy. This is something that will be
considered when using the pilot testing at Volvo Trucks,
since the real environment there have more objects than the
ones seen in Figure 5. As Jiang and Learned-Miller (2017)
mentioned, it’s easier to optimise specific objects and not
different objects with various sizes and design. Additionally,
with the right amount of training and the same objects comes
mounted on the frame, it can be possible to reach acceptable
recognition level for automation. It will be harder to achieve
if different objects occur on the frame that not been included
in the training session.

The project was limited to the use of a camera mounted on
the robot, which further was placed perpendicular in a certain
distance to the frame for each new image. However, this
could have been made differently by using live object
detection via video stream, rather than analysis of a single
image. A such system would entail for opportunities to let the
robot search for nuts on the frame and not be limited to a
perpendicular setting. Instead, the robot could systematically
screen the frame from one end to the other, and
simultaneously tighten the nuts passed by. Further, this could
lead to a more flexible and robust system, since the robot
wouldn’t require calibration and be dependent on the distance
and angles to the frame. Nevertheless, this project used

hardware that limited the testing to object detection on
images rather than video stream in real time. In addition to
that, a real time system as described above should require
hardware capable of video stream detection with at least
several frames analysed per second.

CONCLUSIONS

The first step to achieve higher automation for Volvos’ nut
tightening station is seen as successful. The degree of
recognition for both objects reach up to 95,7% with Faster R-
CNN (see Table 3), which is acceptable if humans acts as
supervisors for the missed nuts. This was achieved with only
322 images, consisting of 928 nuts and 568 inverted nuts
(Table 2). Further work with this project includes more
pictures and better hardware for the training and execution.
Also starting with a pilot tests at Volvo Trucks regarding
pictures from the real environment and tools to be applied for
the tightening of the nuts. As discussed, the environment for
the experiment is not fully comparable to the station at
Volvo. The primary aim with the experiment was to
understand the interactive process between tor robot
application and nut detection which have been showed.

Other aspects such as safety between robot and operator
needs to be further investigated before the implementation
can be tested and implemented in industry. Furthermore,
technical and semantic interoperability needs to be tested.

ACKNOWLEDGEMENT

The authors would like to acknowledge the Swedish agency
VINNOVA for supporting the national testbed project in
which this study has been carried out.

REFERENCES

ABADI, M., BARHAM, P., CHEN, J., CHEN, Z., DAVIS,
A., DEAN, J., DEVIN, M., GHEMAWAT, S.,
IRVING, G., ISARD, M. & KUDLUR, M. 2016.
Tensorflow: A system for large-scale machine
learning. 12th Symposium on Operating Systems
Design and Implementation.

BAHRAMPOUR, S., RAMAKRISHNAN, N., SCHOTT, L.
& SHAH, M. 2015. Comparative study of deep
learning software frameworks. arXiv preprint
arXiv:1511.06435.

BAUER, W., BENDER, M., BRAUN, M., RALLY, P. &
SCHOLTZ, O. 2016. Lightweight robots in manual
assembly - Best to start simply! In: IAO, F.-I. F. A.
U. O. (ed.). Stuttgart.

BORTOLINI, M., FERRARI, E., GAMBERI, M., PILATI,
F. & FACCIO, M. 2017. Assembly system design in
the Industry 4.0 era: a general framework. IFAC-
PapersOnLine, 50, 5700-5705.

BRADSKI, G. & KAEHLER, A. 2008. Learning OpenCV.
COHEN, Y., NASERALDIN, H., CHAUDHURI, A. &

PILATI, F. 2019. Assembly systems in Industry 4.0
era: a road map to understand Assembly 4.0. The
International Journal of Advanced Manufacturing
Technology, 105, 4037-4054.

GIRSHICK, R. 2015. Fast R-CNN. Proceedings of the IEEE
international conference on computer vision, 1440-
1448.

GIRSHICK, R., DONAHUE, J., DARRELL, T. & MALIK,
J. 2014. Rich feature hierarchies for accurate object
detection and semantic segmentation. Proceedings
of the IEEE conference on computer vision and
pattern recognition, 580-587.

HUANG, J., RATHOD, V., SUN, C., ZHU, M.,
KORATTIKARA, A., FATHI, A., FISCHER, I.,
WOJNA, Z., SONG, Y., GUADARRAMA, S. &
MURPHY, K. 2017. Speed/accuracy trade-offs for
modern convolutional object detectors. Proceedings
of the IEEE conference on computer vision and
pattern recognition, 7310-7311.

JIANG, H. & LEARNED-MILLER, E. 2017. Face detection
with the faster R-CNN. 12th IEEE International
Conference on Automatic Face & Gesture
Recognition, 650-657.

KRIZHEVSKY, A., SUTSKEVER, I. & HINTON, G. E.
2012. Imagenet classification with deep
convolutional neural networks. Advances in neural
information processing systems, 1097-1105.

LIN, T. Y., MAIRE, M., BELONGIE, S., HAYS, J.,
PERONA, P., RAMANAN, D., DOLLÁR, P. &
ZITNICK, C. L. 2014. Microsoft coco: Common
objects in context. European conference on
computer vision, 740-755.

LIU, W., ANGUELOV, D., ERHAN, D., SZEGEDY, C.,
REED, S., FU, C.-Y. & BERG, A. C. SSD: Single
Shot Multibox Detector. European conference on
computer vision, 2016. Springer, 21-37.

REN, S., HE, K., GIRSHICK, R. & SUN, J. 2015. Faster R-
CNN: Towards real-time object detection with
region proposal networks. Advances in neural
information processing systems, 91-99.

RUSSELL, S. & NORVIG, P. 2013. Artificial Intelligence:
Pearson New International Edition: A Modern
Approach, Pearson Education M.U.A.

SAG, M. 2019. The New Legal Landscape for Text Mining
and Machine Learning. Available at SSRN.

SHATNAWI, A., AL-BDOUR, G., AL-QURRAN, R. & AL-
AYYOUB, M. 2018. A comparative study of open
source deep learning frameworks. 9th International
Conference on Information and Communication
Systems, 72-77.

TZUTALIN 2015. LabelImg. Git code.
ZHAO, Z. Q., ZHENG, P., XU, S. T. & WU, X. 2019. Object

detection with deep learning: A review. IEEE
transactions on neural networks and learning
systems.

