
Undiscounted control policy generation for continuous-valued optimal
control by approximate dynamic programming

Downloaded from: https://research.chalmers.se, 2025-05-17 09:14 UTC

Citation for the original published paper (version of record):
Lock, J., McKelvey, T. (2022). Undiscounted control policy generation for continuous-valued
optimal control by approximate
dynamic programming. International Journal of Control, 95(10): 2854-2864.
http://dx.doi.org/10.1080/00207179.2021.1939892

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology. It
covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004. research.chalmers.se is
administrated and maintained by Chalmers Library

(article starts on next page)

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=tcon20

International Journal of Control

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/tcon20

Undiscounted control policy generation for
continuous-valued optimal control by approximate
dynamic programming

Jonathan Lock & Tomas McKelvey

To cite this article: Jonathan Lock & Tomas McKelvey (2021): Undiscounted control policy
generation for continuous-valued optimal control by approximate dynamic programming,
International Journal of Control, DOI: 10.1080/00207179.2021.1939892

To link to this article: https://doi.org/10.1080/00207179.2021.1939892

© 2021 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group.

Published online: 17 Jun 2021.

Submit your article to this journal

Article views: 7

View related articles

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=tcon20
https://www.tandfonline.com/loi/tcon20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/00207179.2021.1939892
https://doi.org/10.1080/00207179.2021.1939892
https://www.tandfonline.com/action/authorSubmission?journalCode=tcon20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=tcon20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/00207179.2021.1939892
https://www.tandfonline.com/doi/mlt/10.1080/00207179.2021.1939892
http://crossmark.crossref.org/dialog/?doi=10.1080/00207179.2021.1939892&domain=pdf&date_stamp=2021-06-17
http://crossmark.crossref.org/dialog/?doi=10.1080/00207179.2021.1939892&domain=pdf&date_stamp=2021-06-17

INTERNATIONAL JOURNAL OF CONTROL
https://doi.org/10.1080/00207179.2021.1939892

Undiscounted control policy generation for continuous-valued optimal control by
approximate dynamic programming

Jonathan Lock and Tomas McKelvey

Department of Electrical Engineering, Chalmers University of Technology, Gothenburg, Sweden

ABSTRACT
We present a numerical method for generating the state-feedback control policy associated with gen-
eral undiscounted, constant-setpoint, infinite-horizon, nonlinear optimal control problems with con-
tinuous state variables. The method is based on approximate dynamic programming, and is closely
related to approximate policy iteration. Existing methods typically terminate based on the conver-
gence of the control policy and either require a discounted problem formulation or demand the cost
function to lie in a specific subclass of functions. The presented method extends on existing termina-
tion criteria by requiring both the control policy and the resulting system state to converge, allowing
for use with undiscounted cost functions that are bounded and continuous. This paper defines the
numerical method, derives the relevant underlying mathematical properties, and validates the numeri-
cal method with representative examples. A MATLAB implementation with the shown examples is freely
available.

ARTICLE HISTORY
Received 1 July 2020
Accepted 29 May 2021

KEYWORDS
Approximate dynamic
programming; control policy;
undiscounted
infinite-horizon; optimal
control

1. Introduction

Practical methods for generating the optimal control policy
(i.e. the state feedback function) for general non-linear opti-
mal control problems are useful tools for control engineers. If
the optimal control policy is known, a real-time optimal con-
troller can be implemented on very computationally limited
hardware as the optimal control signal can be generated sim-
ply by interpolating the pre-computed optimal control based
on the current system state. However, one practical difficultly
lies in pre-computing the optimal control policy, which can
be very computationally expensive. Although several meth-
ods for solving this class of problem are well-studied, dynamic
programming (DP) variants being one example, they all have
associated limitations or drawbacks. Policy iteration is one
extensively studied variant of DP (e.g. Bertsekas 2017, p. 246;
Puterman 1994, p. 295; Puterman and Brumelle 1979) that has
been used for over 40 years for finding the optimal control pol-
icy for discrete-valued, non-linear, infinite-horizon problems,
i.e. where the state and control variables are taken from discrete
sets.

Approximate dynamic programming (ADP) is another well-
known extension of DP (see for instance Powell (2009) for a
general introduction) that approximates the cost function using
a prescribed set of basis functions. One group of ADP meth-
ods approximate the cost function by interpolating costs and
optimal controls between discrete gridded points (e.g. Munos
& Moore, 2002; Santos & Vigo-Aguiar, 1998). This approach
allows for extending DP to applications with continuous state
variables.

CONTACT Tomas McKelvey tomas.mckelvey@chalmers.se Department of Electrical Engineering, Chalmers University of Technology, 412 96 Gothenburg,
Sweden

Assuming the problem of finding the approximately-optimal
control policy for continuous-valued, non-linear, infinite-
horizon problems, one might attempt to use traditional policy
iteration in concert with ADP. However, this is problematic as
traditional policy iteration requires the set of states and controls
to be discrete (i.e. finite) to terminate, while the interpolation
performedwithADP leads to a continuous (i.e. infinite) number
of possible states and controls. This has led to the development
of several methods that can be broadly classified as approx-
imate policy iteration (API) methods, where the termination
criterion of conventional policy iteration is altered in order to
terminate in finite time and generate an approximately optimal
solution.

There are several excellent papers that consider differ-
ent variants of API. However, the vast majority of these are
limited to the case where the cost function is discounted,
i.e. where future costs are successively weighted less and
less (Bertsekas, 2011; Santos & Rust, 2004; Scherrer, 2014;
Stachurski, 2008). Though a discounted cost function may be
relevant for someproblems and allows formore easily determin-
ing a termination criterion, a sizeable portion of optimal control
problems are better formulated as undiscounted problems (e.g.
minimum fuel/energy/time problems, or yieldmaximisation for
chemical plants and cultivation). Guo et al. (2017) introduce one
API method for the undiscounted case from a reinforcement
learning perspective, but this method is limited both in that the
cost functionmust be a sum of a positive definite function of the
state and a quadratically weighted function of the controls, and
that the state and control cannot be arbitrarily constrained.

© 2021 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
This is anOpenAccess article distributedunder the termsof the Creative CommonsAttribution License (http://creativecommons.org/licenses/by/4.0/), whichpermits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/00207179.2021.1939892&domain=pdf&date_stamp=2021-06-16
http://orcid.org/0000-0003-3677-8132
http://orcid.org/0000-0003-2982-5535
mailto:tomas.mckelvey@chalmers.se
http://creativecommons.org/licenses/by/4.0/

2 J. LOCK AND T. MCKELVEY

In this paper we will introduce a method similar to API
schemes that approximates the solution to the infinite-horizon
problem by instead solving a finite-horizon problem. More
specifically, the method uses conventional interpolating ADP
to approximate the undiscounted, infinite-horizon, non-linear,
optimal control problem where the state is constrained to con-
verge to a unique equilibrium. The primary contribution of this
paper is a termination criterion that terminates at a suitable
horizon without requiring the presence of a discount factor,
while also allowing for (nearly) arbitrary cost, constraints, and
problem dynamics – a combination that is novel to the best
of the authors knowledge. The method’s sole tuning parame-
ter allows for controlling the trade off between memory con-
sumption, computational time, and accuracy. This allows for
the method to be used without in-depth knowledge of the
method. Furthermore, as the method’s output is the optimal
control policy (i.e. the optimal control tabulated by the system
state) subsequent on-line control can be implemented using a
computationally fast interpolation operation.

The structure of this paper follows; in Section 2 we will
define the problem studied in this paper and the structure of the
interpolating ADPmethod we subsequently base our presented
method on.Wewill assume aworking knowledge of ADPmeth-
ods for optimal control. Sundstrom and Guzzella (2009) gives
a straightforward introduction while Bertsekas (2017); Puter-
man (1994) go into more detail. This is followed by Section 3,
where we derive relevant properties of the studied problem.
Though these properties are mostly already known, by deriv-
ing them we can both highlight some important details, as
well as use a language and notation more commonly seen by
control engineers as compared to existing API literature. In
Section 4 we present our method of generating an approxi-
mation of the optimal control policy, as well as highlight how
existing API methods compare with our method. Finally, in
Section 5 we use two representative examples to show the
results generated by our method. For ease of reference, a list
of the symbols and notation used in this paper is shown in
Table 1.

2. Problem formulation

Assume a dynamic system fd : R
n × R

m→ R
n whose associ-

ated state evolution is recursively given by

xk+1 = fd (xk, uk) (1)

for the system state xk ∈ R
n and control input uk ∈ R

m at
samples k ∈ [0, 1, 2, . . .]. Define the infinite sequences

x̄ � [x0, x1, x2, . . .] (2a)

ū � [u0, u1, u2, . . .] (2b)

as the state trajectory and control trajectory, respectively. Sim-
ilarly, define the finite sequences x̄N � [x0, x1, . . . , xN−1] and
ūN � [u0, u1, . . . , uN−1]. In particular, for both x̄ and x̄N we,
respectively, define x0 as the initial condition.

Table 1. List of used notation, symbols, and first definition.

DP Dynamic programming
ADP Approximate dynamic programming
API Approximate policy iteration
dx (8a) Distance between neighbouring points inX
du (8b) Distance between neighbouring points inU
fc (3a) Cost function
fc,R (17) Relaxed cost function
fd (1) System dynamics function
fα (3f) Average constraint function
F (5) Set of initial conditions with feasible initial condition
F ′k (29) Set of feasible gridded initial conditions after k samples
g (3e) Inequality constraint function
J (3a) Cost
J∗ (3b) Optimal cost
J∗eq (11a) Optimal equilibrium cost
JR (18a) Relaxed cost
J∗R (18b) Optimal relaxed cost
J∗NR (25a) Optimal relaxed N-horizon cost
NM (32a) Finite minimum horizon
N′M (33b) Finite UCPADP horizon
S (3e) Set of trajectories with feasible dynamics and inequality

constraints
uk (1) Control signal at sample k
ū (2b) Control trajectory
ū∗ (3c) Optimal control trajectory
ueq, u∗eq (7) Optimal equilibrium control (identical by Theorem 3.1)
ūR (18a) Relaxed control trajectory
ū∗R (18c) Optimal relaxed control trajectory
ū∗NR (25b) Optimal relaxed N-horizon control trajectory
U (9b) Cartesian grid of sampled controls for ADP routine
Vα (3f) Set of trajectories satisfying average equality constraint
xk (1) System state at sample k
x̄ (2a) State trajectory
x̄∗ (3c) Optimal state trajectory
xeq,x∗eq (7) Optimal equilibrium state (identical by Theorem 3.1)
x̄R (18a) Relaxed state trajectory
x̄∗R (18c) Optimal relaxed state trajectory
x̄∗NR (25b) Optimal relaxed N-horizon state trajectory
xk,CL (27) Closed-loop state after applying a control policy k times
X (9a) Cartesian grid of sampled states for ADP routine
α (3f) Average constraint
�k

μ (30) Control policy deviation at sample k
�k

x (31) State deviation at sample k
εx (32c) State tolerance
εμ (32b) Control policy tolerance
λ (17) Relaxation parameter
μ∗ (6) Optimal stationary control law
μ̄∗NR (26) Optimal relaxed N-horizon control policies

2.1 The infinite-horizon problem

Given x0, introduce

J (x̄, ū) = lim
N→∞

1
N

N−1∑
k=0

fc (xk, uk) (3a)

J∗ = min
x̄,ū

J (x̄, ū) (3b)
(
x̄∗, ū∗

) = argmin
x̄,ū

J (x̄, ū) (3c)

subject to

(x̄, ū) ∈ S ∩ Vα (3d)

for

S =
{
(x̄, ū) : lim

N→∞
g (xk, uk) ≤ 0

xk+1 = fd (xk, uk)
, ∀ k ∈ [0,N − 1]

}
(3e)

INTERNATIONAL JOURNAL OF CONTROL 3

Vα =
{

(x̄, ū) : lim
N→∞

1
N

N−1∑
k=0

fa (xk, uk) = α

}
(3f)

as the problemwe study in this paper. Here, we denote fc : R
n ×

R
m→ R the cost function, g : R

n × R
m→ R

l the inequality
constraint(s), a scalar parameter α ∈ R the average constraint,
and fa : R

n × R
m→ R the average constraint function. We

define a feasible trajectory as any trajectory (x̄, ū) that satis-
fies (3d). The set S gives a convenient notation for demanding
that the ‘textbook’ problem dynamics and inequality constraints
hold, while the set Vα denotes an additional average constraint.

Crucially, as none of the functions in (3) are explicitly depen-
dent on k, its solution satisfies the principle of optimality (Bert-
sekas 2017, p. 20; Bellman 1954). Bertsekas (2017, p. 15) shows
that this in turn implies that the optimal control trajectory
ū∗ can equivalently be formulated as the control policy (i.e.
state-feedback)

ū∗ = [
μ∗0 (x0) ,μ∗1 (x1) , . . .

]
, (4)

where μ∗k : R
n→ R

m are functions that are independent of
the initial condition x0. Note that while x̄ and ū (with various
sub- and super-scripts) are sequences of vectors of scalars, μ̄

(with various sub- and super-scripts) are instead sequences of
functions. We will refer to μ̄∗ as the optimal control policy.

Definition 2.1: Define F ⊆ R
n as the set of initial conditions

with feasible solutions, i.e.

F � {x0 : ∃ (x̄, ū) ∈ S ∩ Vα} . (5)

Assumption 2.1: For the remainder this paper we assume:

(A.1) fc, fd, g, and fa are continuous and bounded.
(A.2) The optimal solution (x̄∗, ū∗) associated with x0 is unique.
(A.3) The optimal control policy associated with (3) exists, and

can be expressed as

ū∗ = [
μ∗ (x0) ,μ∗ (x1) , . . .

]
, (6)

i.e. it is not only independent of the initial condition x0, but
also independent of the sample index k.Wewill refer to this
as a stationary control policy (Bertsekas & Shreve, 1979).

(A.4) F is nonempty, limk→∞(x∗k) exists and is independent of
x0 for all x0 ∈ F , and x∗k is asymptotically stable in the
sense of Lyapunov for x0 near limk→∞(x∗k).

Note that (A.1) implies that J(x̄, ū) is finite for any feasi-
ble trajectory, and by (A.4) we can furthermore view J∗ as the
average (mean) cost.

Definition 2.2: Assuming (A.4) holds, define(
xeq, ueq

)
� lim

k→∞
(
x∗k , u

∗
k
)

(7)

as the problem’s equilibrium point.

Note that (A.2), (A.3), and (A.4) may be difficult to deter-
mine a priori for a given problem. We will briefly discuss the
possible effects of them not holding in Section 4.

2.2 Interpolating ADP

The method we introduce in this paper uses a conventional
interpolating ADP scheme, and we will here use the standard
method of gridding x and u into finite Cartesian sets. We define

dx ∈ R
n (8a)

du ∈ R
m (8b)

as the distance between neighbouring grid points for each
dimension of the states and controls, respectively.We also define

X ⊂ R
n (9a)

U ⊂ R
m (9b)

as the discrete set of state and control grid points resolved by
ADP, respectively, separated by dx and du, respectively, and
bounded by the region(s) where g(x, u) ≤ 0. We then use con-
ventional multilinear interpolation to approximate the cost J
and optimal control policy μ for the real-valued states that do
not lie in the discrete setX . For example, assuming x ∈ R

2, u ∈
R
1, and g(x, u) = |x|1 ≤ 1 ∧ |u| ≤ 1, choosing the very coarse

(but illustrative) dx = [2, 2]T and du = 0.5 gives the sets

X =
{[−1
−1

]
,
[−1

1

] [
1
−1

]
,
[

1
1

]}
(10a)

U = {−1,−0.5, 0, 0.5, 1} . (10b)

3. Infinite-horizon, average-constrained problem
properties

In this section we introduce properties of the undiscounted,
infinite-horizon, average-constrained problem that will later be
utilised by the method we introduce in Section 4.

3.1 Solution convergence

Definition 3.1: For x ∈ R
n, u ∈ R

m, using the same functions
as in (3a), define

J∗eq = min
x,u

fc (x, u) (11a)(
x∗eq, u

∗
eq

)
= argmin

x,u
fc (x, u) (11b)

subject to

x = fd (x, u) (11c)

g (x, u) ≤ 0 (11d)

fa (x, u) = α (11e)

∀ x0 ∈ F , ∃ (x̄, ū) s.t. lim
k→∞

(xk, uk) = (x, u) (11f)

as the optimal reachable equilibrium operating point (x∗eq, u∗eq).
(Note that we have identical states on both the left- and right-
hand side of (11c), i.e. an equilibrium state.)We can view this as
the unique stationary point of the system with lowest cost that
we can reach for any initial condition in the feasible set F .

4 J. LOCK AND T. MCKELVEY

Theorem 3.1: Given (A.1) and (A.4),

J∗ = J∗eq (12)(
xeq, ueq

) = (
x∗eq, u

∗
eq

)
, (13)

i.e. the equilibrium we reach will be optimal in the sense of (11).

Proof: For 0 ≤ i < j, define

Ji→j (x̄, ū) �
j∑

k=i
fc (xk, uk) . (14)

We can then formulate (3b) as

J∗ = min
x̄,ū

lim
N→∞

1
N
J0→i−1 (x̄, ū)+ 1

N
Ji→N−1 (x̄, ū) . (15)

As N →∞, we are guaranteed that 1
N J0→i−1 = 0 for any fixed

i> 0 per our assumption that fc is bounded. This implies that
J∗ is only dependent on Ji→N−1. By (A.4), we can make (x∗i , u∗i)
arbitrarily close to (xeq, ueq) for sufficiently large i.

Suppose that (
xeq, ueq

) �= (
x∗eq, u

∗
eq

)
. (16)

By (A.4) (xeq, ueq) is unique, implying that J∗ > J∗eq. How-
ever, by (11f) there exists trajectories x̄′ and ū′ such that
limk→∞(x′k, u

′
k) = (x∗eq, u∗eq), with corresponding cost J′ < J∗,

contradicting (16).
For an alternate view of the same proof, see Bertsekas (2012,

p. 298). �

By Theorem 3.1 we can intuitively view the infinite-horizon
problem’s solution as ignoring any (finite) costs during the tran-
sient phase and driving the state to the reachable stationary
point with lowest cost. This is a special case of the turnpike prop-
erty (Trélat & Zuazua, 2015; Zaslavski, 2014), which states that
the solution to problems with a sufficiently long (finite) horizon
tends to display transient dynamic initial and terminal phases,
with a middle stationary phase that is independent of the initial
and terminal conditions. Of course, the infinite-horizon prob-
lem does not have a terminal phase, and we can thus view the
solution to our problem (3a) as consisting of an initial tran-
sient followed by stationary operation at the optimal reachable
equilibrium point.

From a notation perspective, by Theorem 3.1 we do not need
tomake the distinction between xeq and x∗eq. For consistency, we
will use x∗eq from here on out.

3.2 Average-constraint relaxation

Definition 3.2: For a fixed, bounded, scalar relaxation param-
eter λ ∈ R, define the relaxed cost as

fc,R (x, u) � fc (x, u)+ λfa (x, u) . (17)

Now we can introduce the relaxed problem as

JR (x̄R, ūR) = lim
N→∞

1
N

N−1∑
k=0

fc,R (xk, uk) (18a)

J∗R = min
x̄R,ūR

JR (x̄R, ūR) (18b)
(
x̄∗R, ū

∗
R
) = argmin

x̄R,ūR
JR (x̄R, ūR) (18c)

subject to

(x̄R, ūR) ∈ S , (18d)

where we view JR(x̄R, ūR) as the relaxed representation of J(x̄, ū),
and J∗R and (x̄∗R, ū∗R) as the optimal relaxed cost and optimal
relaxed trajectories, respectively. Note that (x̄R, ūR), and there-
fore also (x̄∗R, ū∗R), are not formally constrained to lie in Vα .

For clarity, we will use the notation x̄R and ūR when referring
to trajectories associated with the relaxed problem. We will for
ease of notation assume that (x̄∗R, ū∗R) is unique (much as (3c)),
though we can in principle use DP (and in turn the method to
be presented) to solve problems with non-unique solutions.

Lemma3.1: For a givenα, assume for someλwe have (x̄∗R, ū∗R) ∈
Vα . Then (x̄∗R, ū∗R) = (x̄∗, ū∗).

Proof: For convenience, introduce ζ ∗� (x̄∗, ū∗), ζ ∗R � (x̄∗R, ū∗R),
ζ � (x̄, ū), ζR � (x̄R, ūR), and

h (ζ) � lim
N→∞

1
N

N−1∑
k=0

fa (xk, uk)− α. (19)

Note that h(ζ) = 0⇔ ζ ∈ Vα .
The weak duality theorem (Andréasson et al., 2016) ensures

that

J
(
ζ ∗

) ≥ J
(
ζ ∗R

)+ λh
(
ζ ∗R

) = JR
(
ζ ∗R

)− λα. (20)

In (20), by our assumption ζ ∗R ∈ Vα we are ensured that h(ζ ∗R) =
0, giving

J
(
ζ ∗

) ≥ J
(
ζ ∗R

) = JR
(
ζ ∗R

)− λα. (21)

As ζ ∗R ∈ S ∩ Vα , ζ ∗R also minimises (3a), allowing us to replace
the inequality in (21) with strict equality. By (A.2) ζ ∗ and ζ ∗R are
unique, ensuring that that ζ ∗ = ζ ∗R . Finally, as ζ

∗
R is independent

of constant terms we have that

ζ ∗ = ζ ∗R = argmin
ζ

JR (ζ) . (22)

�

Theorem 3.2: Given (3c) and its relaxed counterpart (18c),

(R.1) If (18c) is infeasible (i.e. a solution does not exist), then (3c)
is also infeasible (i.e. (A.4) is violated).

(R.2) For a given λ and feasible (18c), there exists an α where

(
x̄∗R, ū

∗
R
) = (

x̄∗, ū∗
)
. (23)

Proof: (R.1): Trivial, as S ⊇ S ∩ Vα . �

INTERNATIONAL JOURNAL OF CONTROL 5

Proof: (R.2): As λ is given and (18c) is feasible, we can thus find
(x̄∗R, ū∗R). Let us now define

α′ � lim
N→∞

1
N

N−1∑
k=0

fa
(
x̄∗R,kū

∗
R,k

)
. (24)

For α = α′ we (by construction) have (x̄∗R, ū∗R) ∈ S ∩ Vα , triv-
ially satisfying the requirements of Lemma 3.1. �

In essence, for a given λ (R.2) ensures us that (x̄∗R, ū∗R) = (x̄∗, ū∗)
for some value ofα.We can intuitively viewλ as a tuning param-
eter, where different values of λ are associated with different
solutions, each of which (trivially) have an associated average
that we can compute by means of (24).

Using the relaxed problem formulation allows us to avoid the
explicit average constraint (3f), which is primarily of use in the
sense that the problem becomes more numerically tractable. At
its core, the method we will introduce in this paper approxi-
mates the solution to (3a) by instead solving a finite-horizon
problem of sufficient length. One naive method of satisfying
the average constraint would then be to introduce an addi-
tional state variable that stores the accumulated average, i.e.
zN =

∑N−1
k=0 fα(xk, uk). We could then add an equality con-

straint demanding zn/N = α. However, this is computationally
demanding (as we need to introduce an additional state vari-
able, which DP schemes scale poorly with) and introduces a
bias in the achieved average (as the average zn/N is taken over
both the initial transient and the stationary phase, we therefore
only achieve the desired average as N →∞). Using the relaxed
formulation thus avoids these issues entirely.

3.3 Convergence of finite-horizon problem

We will in this section introduce notation for the finite-horizon
problem, which will then be used for constructing the method
presented in this paper.

Definition 3.3: For a given finite horizon N, bounded λ, and
initial condition x0, define

J∗NR = min
x̄NR ,ū

N
R

1
N

N−1∑
k=0

fc,R (xk, uk) (25a)

(
x̄∗NR , ū∗NR

) = argmin
x̄NR ,ū

N
R

1
N

N−1∑
k=0

fc,R (xk, uk) (25b)

subject to (
x̄NR , ū

N
R
) ∈ S (25c)

as theN-horizon relaxed problemwith average cost J∗NR and asso-
ciated (finite-length) state and control trajectories (x̄∗NR , ū∗NR).
Furthermore, define

μ̄∗NR =
[
μ∗NR,0,μ

∗N
R,1, . . . ,μ

∗N
R,N−1

]
, (26)

where μ∗NR,k : R
n→ R

m is the k’th state-feedback control pol-
icy, as the N-horizon sequence of control policies associated
with (25a).

Definition 3.4: Define

xk,CL (μ, x0) (27)

as the (not necessarily optimal) k’th closed-loop state given by
repeatedly applying a (sample-independent) control policy μ k
times from an initial state x0, e.g.

x0,CL (μ, x0) � x0

x1,CL (μ, x0) � fd (x0,μ (x0))

x2,CL (μ, x0) � fd
(
x1,CL (μ, x0) ,μ

(
x1,CL (μ, x0)

))
.

Note that the method of generating xk,CL is very similar to the
forward-calculation stage of ADP, and differs only in that the
control policy is kept constant.

Definition 3.5: For a given control policy μ, define

F ′k(μ) �
{
x0 ∈ X : g(xk′,CL,μ(xk′,CL)) ≤ 0 ∀ k′ ∈ [0, k]

}
.
(29)

We can thus view F ′k(μ) as the set of initial conditions in X
that satisfies the problem constraints and dynamics (the latter
trivially, as we use μ to apply a control and give the next state)
after applying the control policy μ k times.

Definition 3.6: For k> 0, introduce themaximum control pol-
icy deviation �k

μ ∈ R
m as[

�k
μ

]
i
� max

x ∈ F ′�k/2�(μ∗kR,0)
k′ ∈ [0, �k/2�]

∣∣∣[μ∗kR,0 (x)− μ∗kR,k′ (x)
]
i

∣∣∣ , (30)

where the notation [a]i refers to the i’th element of a vector a and
�. . . � refers to the ceiling function. We can view �k

μ as indicat-
ing the convergence ofμ∗kR,0 toμ∗, evaluated at the gridded state
pointsX whose associated state evolution remains feasible after
k/2 iterations.

Definition 3.7: Introduce the maximum state deviation �k
x ∈

R
n as

[
�k

x

]
i
� max

x∈F ′k�k/2�(μ∗kR,0)

∣∣∣∣∣∣∣
⎡
⎢⎣x�k/2�,CL

(
μ∗kR,0, x

)
−

∑
x′∈F ′�k/2�(μ∗kR,0)

x�k/2�,CL
(
μ∗kR,0, x

′
) 1
|F ′�k/2�|

⎤
⎥⎦
i

∣∣∣∣∣∣∣ . (31)

Note that the notationally heavy second line of (31) is equiva-
lent to the mean feasible state after �k/2� iterations. Similarly
to Definition 3.6, we can thus view�k

x as indicating the conver-
gence of [x0,CL, x1,CL, . . . , x�k/2�,CL] to x̄∗, evaluated at the points
where x�k/2�,CL remains feasible.

Trivially, using Definitions 3.6 and 3.7 gives:

Proposition 3.1: By (A.3) limk→∞�k
μ = 0, and by (A.4)

limk→∞�k
x = 0.

6 J. LOCK AND T. MCKELVEY

Definition 3.8: Given a control policy tolerance εμ ∈ R
m and

state convergence tolerance εx ∈ R
n, define

NM � min
k

k (32a)

such that [
�k

μ

]
i
<

[
εμ

]
i ∀i ∈ [1,m] (32b)[

�k
x

]
i
< [εx]i ∀i ∈ [1, n] , (32c)

as the minimum horizon. Proposition 3.1 ensures us that that
for any εμ and εx there exists an associated finite horizon NM ,
which we view as the shortest finite-horizon approximation of
the infinite-horizon problem.

4. The UCPADPmethod

In this section we introduce the primary contribution of this
paper: Undiscounted Control Policy generation by Approximate
Dynamic Programming (UCPADP), a method that generates
an approximation of μ∗. At its core, in UCPADP we generate
an approximation of the optimal control policy by iteratively
testing successively larger horizons until the termination crite-
ria (32a) are satisfied. For computational efficiency reasons we
will return to, UCPADP will approximate the control policy as

μ∗ ≈ μ
∗N′M
R,0 (33a)

where NM ≤ N′M ≤ 2NM , (33b)

i.e. the generated horizon will lie in a range between NM and
2NM .

We can at this stage highlight one of the more significant dif-
ferences between UCPADP and conventional API: the choice of
termination conditions. Conventional API generates improved
control policies analogous to μ∗1R,1,μ

∗2
R,2,μ

∗3
R,3, . . . with an asso-

ciated cost J∗1R , J∗2R , J∗3R , . . . , and eventually terminates when the
difference between either successive policies or cost is below a
given threshold, for instance as in Stachurski (2008) and Santos
andRust (2004, CPI, PSDP). This is similar to the test performed
in (32b), which requires the control policy to be near-stationary.
However, in conventional API the termination tolerance (analo-
gous to εμ) is sized based on the discount factor, and depending
on the specific method chosen the tolerance is either undefined
or tends towards zero when the discount factor tends towards
one (i.e. becomes the undiscounted case we study here). Scher-
rer (2014) and Bertsekas (2011) review other methods that do
not terminate based on the change in the control policy, but
instead use some other termination criterion. However, these
methods also assume a discounted problem formulation. Guo
et al. (2017) is one example of amethod that considers the undis-
counted case, however their method imposes fairly significant
limits on the class of cost and constraint functions (as discussed
previously).

The state convergence condition (32c) is to the best of
our knowledge novel, and serves a crucial purpose in that it
demands the horizon be long enough for all gridded feasible ini-
tial conditions to converge to a region near the equilibrium. Recall

that by (A.4) x∗k (the true optimal state trajectory) is stable in
the sense of Lyapunov for initial conditions near the equilib-
rium, and in concert with Theorem 3.1 we are thus ensured
that an initial condition near the equilibrium will also remain
in its vicinity. As we apply test (32c) to all feasible elements
in X , at least one initial condition x0 ∈ X will therefore start
and then remain in the nearby vicinity of the equilibrium. Ulti-
mately, by combining (32b) and (32c) we are ensured thatμ∗N

′
M

R,0
is nearly constant during the interval needed for all feasible
gridded points in X to reach the vicinity of the equilibrium.

In UCPADP, we determine μ
∗N′M
R,0 numerically efficiently in a

manner similar toAPI implementedwithADP.We do this using
a nested scheme that repeatedly switches between backward-
calculation phases (successively generating control policies with
longer associated horizons) and forward-calculation phases
(applying tests (32b) and (32c), and eventually terminating
when both tests pass). A description of the phases in UCPADP
follows, see Figure 1 for an illustration. For now, assume εμ and
εx are given (fixed) vectors.

First, we arbitrarily choose a small initial horizonN and per-
formN backward-calculation iterations, giving us (among other
data) μ∗NR . We can then perform test (32b) and, by perform-
ing N/2 forward-calculation steps, test (32c). If both tests pass
we terminate and returnμ∗NR,0 as our approximation ofμ∗. Con-
versely, if either of these tests fail by (A.4) we are ensured that
increasing the horizon sufficiently will give a control policy that
satisfies the tests. InUCPADPwe chose to proceed by increasing
the horizon to 3N. Fortunately, in our DP scheme we can com-
pute μ∗3NR using only 2N additional backward-calculation iter-
ations by resuming the backward-calculation from μ∗NR . This is
possible as each successive backward-calculation step is inde-
pendent of the total horizon. After generating μ∗3NR we can
now again test (32b) and (32c). Should both tests pass we can
return μ∗3NR,0 as our approximation of μ∗, and otherwise recur-
sively repeat this procedure of doubling the number of back-
calculation steps until the tests pass (i.e. generating and testing
horizons N, 3N, 9N, 27N, . . .). A pseudocode implementation
of the UCPADP method is listed in Algorithm 1.

Up to this point we have assumed that the problem solution
is unique (A.2), converges to a stationary control policy (A.3),
and all states converge to a unique equilibrium (A.4). Let us
now briefly consider the case where we do not know if these
assumptions hold beforehand. Beginning with (A.2), recall that
we can determine whether or not this assumption holds dur-
ing the backward-calculation phase by checking if theminimum
cost is unique, and in the case of a non-unique cost we can
resolve this by simply returning one arbitrarily selected optimal

Figure 1. UCPADP steps, successively switching between generating more accu-
rate control policies (backward calculation, steps 1, 3, . . .), and evaluating whether
the control policy is constant over the time needed for the state evolution to
converge (forward calculation, steps 2, 4, . . .).

INTERNATIONAL JOURNAL OF CONTROL 7

solution. Let us now focus on the case where (A.3) and (A.4)
are unverified. Applying the UCPADPmethod gives one of two
possible outcomes: UCPADP either never terminates (i.e. (32b)
and (32c) never pass), or it terminates after a finite number of
back-calculation iterations. If UCPADP never terminates, then
one possible cause is that (A.3) and/or (A.4) do not hold (i.e. the
termination criteria (32b) and (32c) correctly detected a non-
stationary control policy and/or detected that the system states
do not converge to a single equilibrium). Alternatively, it is pos-
sible that the problem’s discretisation and/or tolerances were
poorly chosen. Regardless, should UCPADP never terminate it
is clear that no valid solution could be generated. If UCPADP
does terminate, we are assured that either: (i) (A.3) and (A.4)
do hold and a near-optimal control policy is generated, or (ii)
the problem is maliciously nonlinear and (A.3) and/or (A.4) do
not hold (whichwent undetected by (32b) and (32c)), ultimately
giving a control policy without any clear optimality guaran-
tees. As the class of problems we can attempt to solve with
UCPADP covers general non-linear systems it is not surprising
that there exist pathological problems that lead UCPADP (and
ADP in general) to generate erroneous solutions. Ultimately it
is up to the user of UCPADP to determine whether or not the
studied problem is of a class that satisfies the (arguably mild)
assumptions (A.3) and (A.4).

In Algorithm 1, we extend the notion of termination used
thus far by adding a parameter Nmax that allows for configur-
ing amaximumhorizon that terminates UCPADP ifN > Nmax.
This acts as a safety and guarantees that UCPADP terminates
after a finite number of iterations. In the event that this limit
triggers UCPADP to terminate we can conclude that either the
minimum horizon is larger than Nmax, that (A.3) and/or (A.4)
do not hold, or the discretisation and/or tolerances were poorly
chosen. Of course, should this happen then we can not say
anything about the stability (let alone the optimality) of the
returned control policy.

Tests (32b) and (32c) are straightforward to compute exhaus-
tively, as the initial conditions x0 come from the discrete set

X . Furthermore, in UCPADP we have chosen to double the
number of additional back-calculation steps to performbetween
each test evaluation. This attempts to balance the time spent
on backward-calculation iterations and the horizon length suf-
ficiency tests, though wemay ultimately solve for problem hori-
zons up to 2NM , as indicated by (33b). Ultimately this choice
is arbitrary, and it is possible for some problems to use another
scheme for selecting a new length.

From a practical perspective, we have found that setting
εμ ≈ 2du and εx ≈ 2dx (the distance between points in U
and X , respectively) is a good design choice for well-behaved
problems. Smaller values raise the risk of never terminating,
e.g. due to residual state trajectory jitter caused by approxi-
mation inherent to interpolation, while larger values give an
unnecessarily large approximation of the true control pol-
icy μ∗R,0. Ultimately, this implies that UCPADP has to some
degree only one tuning parameter: the ADP discretisation,
which trades off accuracywith computational time andmemory
demands.

As UCPADP is based on interpolating ADP (and in turnDP)
it is subject to the inherent limitations of DPmethods, in partic-
ular its poor scaling with problem dimensionality (colloquially
referred to as the ‘curse of dimensionality’) (Bellman, 1954;
Bertsekas, 2017). This limits UCPADP to low- to moderate-
dimensional problems. The examples shown in the following
section (with two state variables and one control variable, giv-
ing a total of three independent variables) are easily solved
using an ordinary desktop computer on the order of oneminute
to one hour (depending on the demanded solution accuracy).
In practice, we expect UCPADP to be viable for up to 4–6
continuous-variable problems, depending on the discretisation
of the state and control variables, the nature of the problem, and
the available computational power.

A general implementation of the UCPADP method in the
MATLAB language, including the numerical examples in the
following section, is available at https://gitlab.com/
lerneaen_hydra/ucpadp.

Algorithm 1 Pseudocode UCPADP algorithm. Here, DP1−back and DP1−fw are the one-step backward and forward ADP opera-
tions. X is the set of initial conditions tested in the ADP method. Ninit is the initial problem horizon. CN is the cost-to-go after N
iterations. Note here that a reverse notation is used for the calculated control policy; μ1 corresponds to the state-feedback control
policy from the first back-calculation step (i.e. μ∗NN−1) while μN corresponds to the last (i.e. μ∗N0). We can view the index k as
counting the number of back-calculation steps performed. Note the abuse of notation on line 14 that indicates the �N

x and �N
μ

tests, respectively.
1: function UCPADP(X , Nmax, Ninit)
2: Nb ← Ninit � Batch back-calculation steps
3: N ← 0 � Cumulative back-calculation steps
4: C0 ← 0 � Set initial cumulative cost to zero
5: repeat
6: for N ← N,N + Nb do
7: μN+1,CN+1 ← DP1−back(CN)

8: end for
9: XCL ← X
10: for i← 1, �N/2� do
11: XCL ← DP1−fw(XCL,μN)

12: end for
13: Nb ← 2 · Nb � Raise Nb by doubling
14: until N > Nmax or (|XCL −mean(XCL)| < εx and|μN − μk| < εu ∀k ∈ [�N/2�,N])
15: return μN , XCL, N
16: end function

https://gitlab.com/lerneaen_hydra/ucpadp

8 J. LOCK AND T. MCKELVEY

5. Representative examples

We illustrate the UCPADP method, introduced in Section 4,
by solving two simple problems. Though ‘toy’ problems in
some sense, recall that Assumption 2.1 allows for significantly
more difficult (and practically relevant) problems. First we con-
sider the classical minimum-time inverted pendulum problem,
where we highlight the stopping criterion of UCPADP. After-
wards, we consider the problem of maintaining an average
pendulum angle with minimum control power, illustrating the
average-constraint properties shown in Section 3.2.

We will consider the dynamical system given by a simple
pendulum (Figure 2) for both problems. For a pendulum with
length l, point massm, gravitational force g, damping coefficient
d, angle θ , and applied torque u, the dynamic equation for the
system can be derived as

θ̈ + d
m

θ̇ + g
l
sin (θ) = 1

ml2
u. (34)

In both the following examples we will assume a discrete-time
control system with sample rate ts, i.e. the control input u is
piecewise constant over intervals of uniform time ts. If the prob-
lem is reformulated as a set of coupled first-order ordinary
differential equations with a state variable vector

x �
[

θ

θ̇

]
(35)

then we can express the state at the next sample as

xk+1 = fp (xk, uk) , (36)

where fp is given by solving (34) over a time ts with initial
condition xk and constant control input uk.

5.1 The inverted pendulum

To illustrate the mechanics of UCPADP’s termination criterion,
consider the traditional minimum-time inverted pendulum

Figure 2. A simple pendulum.

problem (formulated here as an infinite-horizon problem)

J∗ = min
x̄,ū

lim
N→∞

1
N

N−1∑
k=0

fc (xk) (37a)

fc (x) =
{
0 if |θk − π | < 2dx, |θ̇k| < 2dx
1 else

(37b)

subject to

xk+1 = fp (xk, uk) (37c)

|uk| ≤ 1 (37d)

− 2 ≤ θk ≤ 3.5 (37e)

− 1.5 ≤ θ̇k ≤ 2. (37f)

All the following results are shown for a sample time of ts = 0.2,
pendulum parameters set to give the system dynamics equation
θ̈ + sin(θ) = u, state variables discretised by a Cartesian grid
with separation dx = [0.05, 0.05]T in the range allowed by (37e)
and (37f), and the control variable discretised with even spacing
du = 0.01 in the range allowed by (37d). Setting εx and εμ to the
suggested value of twice the discretisation gives εx = [0.1, 0.1]T
and εμ = 0.02.

Note that the cost function (37b) equally penalises all pendu-
lum configurations other than the single vertical zero-velocity
state combination, and with an infinite horizon (and small
enough dx) gives a solution arbitrarily close to the traditional
minimum-time formulation. The state bounds (37e) and (37f)
have been chosen to give a reasonable range for the specific
initial value we will study shortly.

For the above problem, UCPADP terminates after testing
a horizon of N′M = 135, indicating that 45 < NM ≤ 135. An
illustration of termination criterion (32b) is shown in Figure 3,
where we can verify the condition is satisfied as all values
are above �N/2� = 68. Furthermore, �k

μ will by construc-
tion take values from U = {0,±0.01,±0.02, . . . ,±1}. For εμ =
0.02 (32b) will thus only be satisfied for values −0.01, 0, 0.01.
We can see this in Figure 3, where �135

μ = 0. Similarly, crite-
rion (32c) is illustrated in Figure 4, where we can verify that
representative trajectories all converge to a region bounded by
εx (shown by the yellow box). An illustration of the control
policy ultimately generated by UCPADP is shown in Figure 5.
Solving this specific problem took approximately 10 minutes
using a standard desktop PC.

Figure 6 shows a comparison of the solution generated by
UCPADP and a reference solution, generated by formulating
a problem with an explicit horizon of N = 10N ′M = 1350 (i.e.
one order of magnitude longer the UCPADP horizon), for x0 =
[0, 0]T . Here the reference solution is generated using a tra-
ditional ADP scheme, configured with the same sample time
and state/control grid discretisation. Note that we intentionally
compare the UCPADP solution to a traditional ADP solution
(in contrast to, for instance, an analytical solution) as we wish to
highlight the accuracy of the automatically sized horizon, rather
than the accuracy of an interpolating ADP scheme.

The average cost over the time interval shown in Figure 6
is 0.09664 for the UCPADP solution, while the cost associ-
ated with the reference solution is 0.09689, i.e. a deviation1 of

INTERNATIONAL JOURNAL OF CONTROL 9

Figure 3. Visualisation of εμ = 0.02 test for N′M = 135. The shaded regions indi-
cate the number of samples that the control policy varies less than εμ , while white
regions indicate a feasible solution could not be found, i.e. white regions lie out-
side of F ′135. Note that as U is discrete then �135

μ is also, i.e. we here have �135
μ

identically equal to zero.

Figure 4. Visualisation of εx = [0.1, 0.1]T test for N′M = 135. Arrows indicate the
motion of the system through its phase space. Representative closed-loop trajec-
tories are shown with solid lines. The closed-loop state at N = 135 is shown by
(overlapping) small red circles near θ = π , θ̇ = 0. The box near θ = π , θ̇ = 0 indi-
cates the �135

x termination criterion, which is satisfied as all states at N = 135 lie
inside the box.

0.25%. We can conclude (for this specific problem) that the
cost associated with the UCPADP solution is virtually identical
to a conventional ADP solution, indicating that the identified
horizon N′M = 135 was sufficient.

5.2 The constant-angle pendulum

Let us now consider a problem that illustrates the properties
of the average constraint introduced in Section 3.2. Assume we
wish to solve

J∗ = min
x̄,ū

lim
N→∞

1
N

N−1∑
k=0

u2k (38a)

Figure 5. Control policy associated with (37a) for horizon N = 135. The shaded
region shows the optimal control to apply for any given state, while white regions
indicate infeasible states, i.e. outside ofF ′135.

Figure 6. Comparison of the solutions given by UCPADP and an open-loop ADP
reference method for x0 = [0, 0]T .

subject to

xk+1 = fp (xk, uk) (38b)

lim
N→∞

1
N

N−1∑
k=0

θk = θref (38c)

|uk| ≤ 1, |θk| ≤ 1, |θ̇k| ≤ 1, (38d)

i.e. the problem of keeping the average pendulum angle at a
setpoint θref while minimising the quadratic control input u2k.

By Theorem 3.2 we can avoid including the average con-
straint (38c) by augmenting the cost functional (38a) as

J∗R = min
x̄R,ūR

lim
N→∞

1
N

N−1∑
k=0

u2k + λθk (39)

for a constant scalar λ. Assuming the problem reaches an equi-
librium with control ueq and states θ = θref , θ̇ = 0, by (34) we
have ueq = mgl sin(θref). We can thus express the equilibrium
cost as

ceq = (mgl sin(θref))
2 + λθref (40)

which is a function of one variable. Equation (40) has one
unique stationary point (a minimum) in the permissible range
|θ | < 1, and we can thus find the specific value λ that gives

10 J. LOCK AND T. MCKELVEY

the lowest equilibrium cost at the desired setpoint by setting
dceq
dθref
= 0 and solving for λ, giving

λ0 = −2m2g2l2 sin (θref) cos (θref) . (41)

We can now reformulate (38a) as the equivalent problem

J∗R = min
x̄R,ūR

lim
N→∞

1
N

N−1∑
k=0

u2k − θkλ0 (42a)

subject to

xk+1 = fp (xk, uk) , |uk| ≤ 1, |θk| ≤ 1, |θ̇k| ≤ 1. (42b)

As in the previous example, we discretise the state and control
variables evenly in the permissible space, here with separation
dx = [0.02, 0.02]T and du = 0.01, respectively. Solving (42a) for
pendulum parameters resulting in a system dynamics equation
θ̈ + θ̇ + sin(θ) = u and θref = 0.5 gives the results shown in
Figure 7 (again compared with a reference solution given by
explicitly choosing a large horizon, one order of magnitude
larger than the horizon given by UCPADP).

For this problem, we find that the UCPADP solution gener-
ates a solution with control cost (i.e.

∑
u2k) of 0.2321 over the

horizon shown in Figure 7, while the control cost associated
with the reference solution is 0.2323 (i.e. a deviation of 0.09%),
again showing that the accuracy of the UCPADP solution is
virtually identical to that of a reference ADP solution.

For comparison, in Figure 8we also show the solution quality
parameterised by different finite horizons. More specifically, we
solve the finite-horizon counterpart of (42a), i.e. using the nota-
tion introduced in (25a), for varying finite horizonsN (denoted
the problem horizon), resulting in the associated control poli-
cies μ∗NR,0. We then apply the control policy to the set of initial
conditions feasible with a long horizon N = 1350 (denoted the
trajectory horizon). The plot shows the augmented cost of the
trajectory horizons, i.e. J∗R, parameterised by different problem
horizons. We can identify that the average cost is higher for
short problem horizons than for long problem horizons, and
that the cost associated with problem horizons � 40 is con-
stant, indicating that for this problem a problem horizon � 40
is sufficient. It may therefore seem like UCPADP is inefficient
in its choice of problem horizon (135 samples). However, com-
puting the average cost of any given problem horizon shown
in Figure 8 is time consuming, with each individual problem

Figure 7. Comparison of the solutions given by UCPADP and an open-loop ADP
referencemethod for x0 = [0, 0]T . The state trajectories are nearly identical and the
control trajectory displays only very small differences.

Figure 8. Cost of theapplying control policy associatedwith varyingproblemhori-
zon lengths. The cost is shown for all feasible initial conditions, resulting in a range
of costs for any given horizon (e.g. [−0.037,−0.039] for horizons ≥ 40). Problem
horizons tested by UCPADP are shown with dashed lines.

horizon taking approximately the same time to compute as the
entire UCPADP solution, as well as requiring problem-specific
knowledge of the initial conditions and trajectory horizon to
average over. The trade-off between spending time computing
additional back-calculation steps and checking whether a given
horizon is sufficiently large thus motivates a scheme like our
proposed horizon-doubling method.

6. Conclusions

In this paper we have introducedUCPADP, a numericalmethod
inspired by API. UCPADP can be used to generate a near-
optimal control policy for general undiscounted continuous-
valued infinite-horizon nonlinear optimal control problems.
The problem can also optionally be constrained to converge to
a given equilibrium. The primary contribution of UCPADP is
the introduction of a termination criterion that is amenable to
the undiscounted case, while still allowing for general costs and
constraints. We have evaluated the method by solving two sim-
ple, but representative, problems. For both examples we showed
that the generated control policy was on par with the accuracy
of a reference ADP solution (whose accuracy is determined by
the chosen discretisation of the problem).

UCPADPhas several properties that render it useful as as one
part of the process of constructing an on-line controller. Firstly,
it shares a property with other API methods in that it does
not require any a-priori information about a suitable horizon,
instead performing an indefinite number of iterations and ter-
minating when a suitable problem horizon is found. Secondly,
the tuning parameters are simple to grasp, as they trade off solu-
tion accuracy with computational time and memory demands.
Finally, the output from UCPADP, as with other API methods,
is a control policy (i.e. a state feedback table). After this con-
trol policy is computed in an off-line phase it can in turn be
used to construct a subsequent on-line controller with very low
computational demand, only requiring a simple interpolation
operation to determine the control signal.

Full source code of the implementation as well as the specific
problems studied is available at https://gitlab.com/
lerneaen_hydra/ucpadp.

https://gitlab.com/lerneaen_hydra/ucpadp

INTERNATIONAL JOURNAL OF CONTROL 11

Note

1. The fact that the UCPADP solution has a lower associated cost is likely
due to the inherent approximation of interpolating ADP.

Disclosure statement
No potential conflict of interest was reported by the author(s).

Funding
This work was performed within the Combustion Engine Research Cen-
ter at Chalmers (CERC) with financial support from the Swedish Energy
Agency.

ORCID
Jonathan Lock http://orcid.org/0000-0003-3677-8132
Tomas McKelvey http://orcid.org/0000-0003-2982-5535

References
Andréasson, N., Evgrafov, A., Patriksson, M., Gustavsson, E., Nedelkova,

Z., Sou, K. C., & Önnheim, M. (2016). An introduction to continuous
optimization (3rd ed.). Studentlitteratur.

Bellman, R. (1954). The theory of dynamic programming. Bulletin of
the American Mathematical Society, 60(6), 503–515. https://doi.org/10.
1090/S0002-9904-1954-09848-8

Bertsekas, D. P. (2011, August). Approximate policy iteration: A survey and
some new methods. Journal of Control Theory and Applications, 9(3),
310–335. https://doi.org/10.1007/s11768-011-1005-3

Bertsekas, D. P. (2012).Dynamic programming and optimal control (4th ed.,
Vol. 2). Athena Scientific.

Bertsekas, D. P. (2017).Dynamic programming and optimal control (4th ed.,
Vol. 1). Athena Scientific.

Bertsekas, D. P., & Shreve, S. E. (1979). Existence of optimal stationary poli-
cies in deterministic optimal control. Journal of Mathematical Analysis

and Applications, 69(2), 607–620. https://doi.org/10.1016/0022-247X
(79)90171-9

Guo,W., Si, J., Liu, F., &Mei, S. (2017). Policy approximation in policy iter-
ation approximate dynamic programming for discrete-time nonlinear
systems. IEEE Transactions on Neural Networks and Learning Systems,
29(7), 2794–2807. https://doi.org/10.1109/TNNLS.2017.2702566

Munos, R., & Moore, A. (2002). Variable resolution discretization in opti-
mal control. Machine Learning, 49(2/3), 291–323. https://doi.org/10.
1023/A:1017992615625

Powell, W. B. (2009, April). What you should know about approximate
dynamic programming: Approximate dynamic programming. Naval
Research Logistics (NRL), 56(3), 239–249. https://doi.org/10.1002/nav.
20347

Puterman, M. L. (1994). Markov decision processes: Discrete stochastic
dynamic programming. John Wiley & Sons.

Puterman, M. L., & Brumelle, S. L. (1979, February). On the convergence
of policy iteration in stationary dynamic programming.Mathematics of
Operations Research, 4(1), 60–69. https://doi.org/10.1287/moor.4.1.60

Santos, M. S., & Rust, J. (2004, January). Convergence properties of policy
iteration. SIAM Journal on Control and Optimization, 42(6), 2094–2115.
https://doi.org/10.1137/S0363012902399824

Santos, M. S., & Vigo-Aguiar, J. (1998, March). Analysis of a numerical
dynamic programming algorithm applied to economic models. Econo-
metrica, 66(2), 409. https://doi.org/10.2307/2998564

Scherrer, B. (2014,May). Approximate policy iteration schemes: A compar-
ison. arXiv:1405.2878 [cs, stat]. http://arxiv.org/abs/1405.2878.

Stachurski, J. (2008, March). Continuous state dynamic programming
via nonexpansive approximation. Computational Economics, 31(2),
141–160. https://doi.org/10.1007/s10614-007-9111-5

Sundstrom, O., & Guzzella, L. (2009, July). A generic dynamic program-
ming Matlab function. 2009 IEEE Control Applications, (CCA) Intelli-
gent Control, (ISIC) (pp. 1625–1630). IEEE. https://ieeexplore.ieee.org/
document/5281131

Trélat, E., & Zuazua, E. (2015). The turnpike property in finite-dimensional
nonlinear optimal control. Journal of Differential Equations, 258(1),
81–114. https://doi.org/10.1016/j.jde.2014.09.005

Zaslavski, A. J. (2014). Turnpike phenomenon and infinite horizon optimal
control. Springer International Publishing.

http://orcid.org/0000-0003-3677-8132
http://orcid.org/0000-0003-2982-5535
https://doi.org/10.1090/S0002-9904-1954-09848-8
https://doi.org/10.1007/s11768-011-1005-3
https://doi.org/10.1016/0022-247X(79)90171-9
https://doi.org/10.1109/TNNLS.2017.2702566
https://doi.org/10.1023/A:1017992615625
https://doi.org/10.1002/nav.20347
https://doi.org/10.1287/moor.4.1.60
https://doi.org/10.1137/S0363012902399824
https://doi.org/10.2307/2998564
http://arxiv.org/abs/1405.2878
https://doi.org/10.1007/s10614-007-9111-5
https://ieeexplore.ieee.org/document/5281131
https://doi.org/10.1016/j.jde.2014.09.005

	1. Introduction
	2. Problem formulation
	2.1. The infinite-horizon problem
	2.2. Interpolating ADP

	3. Infinite-horizon, average-constrained problem properties
	3.1. Solution convergence
	3.2. Average-constraint relaxation
	3.3. Convergence of finite-horizon problem

	4. The UCPADP method
	5. Representative examples
	5.1. The inverted pendulum
	5.2. The constant-angle pendulum

	6. Conclusions
	Note
	Disclosure statement
	Funding
	ORCID
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile ()
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings false
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.90
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.90
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [609.704 794.013]
>> setpagedevice

