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ABSTRACT
Performance problems in applications should ideally be detected as soon as they
occur, i.e., directly when the causing code modification is added to the code
repository. To this end, complex and cost-intensive application benchmarks or
lightweight but less relevant microbenchmarks can be added to existing build
pipelines to ensure performance goals. In this paper, we show how the practical
relevance of microbenchmark suites can be improved and verified based on the
application flow during an application benchmark run. We propose an approach to
determine the overlap of common function calls between application and
microbenchmarks, describe a method which identifies redundant microbenchmarks,
and present a recommendation algorithm which reveals relevant functions that are
not covered by microbenchmarks yet. A microbenchmark suite optimized in this way
can easily test all functions determined to be relevant by application benchmarks
after every code change, thus, significantly reducing the risk of undetected
performance problems. Our evaluation using two time series databases shows that,
depending on the specific application scenario, application benchmarks cover
different functions of the system under test. Their respective microbenchmark suites
cover between 35.62% and 66.29% of the functions called during the application
benchmark, offering substantial room for improvement. Through two use cases—
removing redundancies in the microbenchmark suite and recommendation of yet
uncovered functions—we decrease the total number of microbenchmarks and
increase the practical relevance of both suites. Removing redundancies can
significantly reduce the number of microbenchmarks (and thus the execution time as
well) to ~10% and ~23% of the original microbenchmark suites, whereas
recommendation identifies up to 26 and 14 newly, uncovered functions to
benchmark to improve the relevance.
By utilizing the differences and synergies of application benchmarks and
microbenchmarks, our approach potentially enables effective software performance
assurance with performance tests of multiple granularities.
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INTRODUCTION
With the continuously increasing complexity of software systems, the interest in reliable
and easy-to-use test and evaluation mechanisms has grown as well. While a variety of
techniques, such as unit and integration testing, already exists for the validation of
functional requirements of an application, mechanisms for ensuring non-functional
requirements, e.g., performance, are used more sparingly in practice (Ameller et al., 2012;
Caracciolo, Lungu & Nierstrasz, 2014). Besides live testing techniques such as canary
releases (Schermann, Cito & Leitner, 2018), developers and researchers usually resort to
benchmarking, i.e., the execution of an artificially generated workload against the system
under test (SUT), to study and analyze non-functional requirements in artificial
production(-near) conditions.

While application benchmarks are the gold standard and very powerful as they
benchmark complete systems, they are hardly suitable for regular use in continuous
integration pipelines due to their long execution time and high costs (Bermbach et al.,
2017; Bermbach & Tai, 2014). Alternatively, less complex and therefore less costly
microbenchmarks could be used, which are also easier to integrate into build pipelines due
to their simpler setup (Laaber & Leitner, 2018). However, a simple substitution can be
dangerous: on the one hand, it is not clear to what extent a microbenchmark suite covers
the functions used in production; on the other hand, often only a complex application
benchmark is suitable for evaluating complex aspects of a system. To link both benchmark
types, we introduce the term practical relevance which refers to the extent to which a
microbenchmark suite targets code segments that are also invoked by application
benchmarks.

In this paper, we aim to determine, quantify, and improve the practical relevance of a
microbenchmark suite by using application benchmarks as a baseline. In real setups,
developers often do not have access to a (representative) live system, e.g., generally-
available software such as database systems are used by many companies which install and
deploy their own instances and, consequently, the software’s developers usually do not
have access to the custom installations and their production traces and logs. In addition,
software is used differently by each customer which results in different load profiles as well
as varying configurations. Thus, it is often reasonable to use one or more application
benchmarks as the next accurate proxy to simulate and evaluate a representative artificial
production system. The execution of these benchmarks for each code change is very
expensive and time-consuming, but a light-weight microbenchmark suite that has proven
to be practically relevant could replace them to some degree.

To this end, we analyze the called functions of a reference run, which can be (an excerpt
from) a production system or an application benchmark, and compare them with the
functions invoked by microbenchmarks to determine and quantify a microbenchmark
suite’s practical relevance. If every called function of the reference run is also invoked by at
least one microbenchmark, we consider the respective microbenchmark suite as 100%
practically relevant as the suite covers all functions used in the baseline execution. Based on
this information, we devise two optimization strategies to improve the practical relevance
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of microbenchmark suites according to a reference run: (i) a heuristic for removing
redundancies in an existing microbenchmark suite and (ii) a recommendation algorithm
which identifies uncovered but relevant functions.

In this regard, we formulate the following research questions:
RQ1How to determine and quantify the practical relevance of microbenchmark suites?
Software source code in an object-oriented system is organized in classes and

functions. At runtime, executed functions call other classes and functions, which leads to a
program flow that can be depicted as a call graph. This graph represents which functions
call which other functions and adds additional meta information such as the duration
of the executed function. If these graphs are available for a reference run and the respective
microbenchmark suite, it is possible to compare the flow of both graphs and quantify to
which degree the current microbenchmark suite reflects the use in the reference run, or
rather the real usage in production. Our evaluation with two well-known time series
databases shows that their microbenchmark suites cover about 40% of the functions called
during application benchmarks. The majority of the functionality used by an application
benchmark, our proxy for a production application, is therefore uncovered by the
microbenchmark suites of our study objects.

RQ2 How to reduce the execution runtime of microbenchmark suites without affecting
their practical relevance?

If there are many microbenchmarks in a suite, they are likely to have redundancies and
some functions will be benchmarked by multiple microbenchmarks. By creating a new
subset of the respective microbenchmark suite without these redundancies, it is possible
to achieve the same coverage level with fewer microbenchmarks, which significantly
reduces the overall runtime of the microbenchmark suite. Applying this optimization as
part of our evaluation shows that this can reduce the number of microbenchmarks by 77%
to 90%, depending on the application and benchmark scenario.

RQ3 How to increase the practical relevance within cost efficiency constraints?
If the microbenchmark suite’s coverage is not sufficient, the uncovered graph of the

application benchmark can be used to locate functions which are highly relevant for
practical usage. We present a recommendation algorithm which provides a fast and
automated way to identify these functions that should be covered by microbenchmarks.
Our evaluation shows that an increase in coverage from the original 40% to up to 90% with
only three additional microbenchmarks is theoretically possible. An optimized
microbenchmark suite could, e.g., serve as initial and fast performance smoke test in
continuous integration or deployment (CI/CD) pipelines or for developers who need a
quick performance feedback for their recent changes.

After applying both optimizations, it is possible to cover a maximum portion of an
application benchmark with a minimum suite of microbenchmarks which has several
advantages. First of all, this helps to identify important functions that are relevant in
practice and ensures that their performance is regularly evaluated via microbenchmarks.
Instead of a suite that checks rarely used functions, code sections that are relevant for
practical use are evaluated frequently. Second, microbenchmarks evaluating functions that
are already implicitly covered by other microbenchmarks are selectively removed,
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achieving the same practical relevance with as few microbenchmarks as possible while
reducing the runtime of the total suite. Furthermore, the effort for the creation of
microbenchmarks is minimized because the microbenchmarks of the proposed
functions will cover a large part of the application benchmark call graph and fewer
microbenchmarks are necessary. Developers will still have to design and implement
performance tests, but the identification of highly relevant functions for actual operation is
facilitated and functions that implicitly benchmark many further relevant functions are
pointed out, thus covering a broad call graph. Ultimately, the optimized microbenchmark
suite can be used in CI/CD pipelines more effectively: It is possible to establish a CI/CD
pipeline which, e.g., executes the comparatively simple and short but representative
microbenchmark suite after each change in the code. The complex and cost-intensive
application benchmark can then be executed more sparsely, e.g., for each major release. In
this sense, the application benchmark remains as the gold standard revealing all
performance problems, while the optimized microbenchmark suite is an easy-to-use and
fast heuristic which offers a quick insight into performance yet with obviously lower
accuracy.

It is our hope that this study contributes to the problem of performance testing as part
of CI/CD pipelines and enables a more frequent validation of performance metrics to
detect regressions sooner. Our approach can give targeted advice to developers to improve
the effectiveness and relevance of their microbenchmark suite. Throughout the rest of the
paper, we will always use an application benchmark as the reference run but our approach
can, of course, also use other sources as a baseline.

Contributions:

� An approach to determine and quantify the practical relevance of a microbenchmark
suite.

� An adaptation of the Greedy-based algorithm proposed by Chen & Lau (1998) to
remove redundancies in a microbenchmark suite.

� A recommendation strategy inspired by Rothermel et al. (1999) for new
microbenchmarks which aims to cover large parts of the application benchmark’s
function call graph.

� An empirical evaluation which analyzes and applies the two optimizations to the
microbenchmark suites of two large open-source time series databases.

Paper Structure: After summarizing relevant background information in
“Background”, we present our approach to determine, quantify, and improve
microbenchmark suites in “Approach”. Next, we evaluate our approach by applying the
proposed algorithms to two open-source time series databases in “Empirical Evaluation”
and discuss its strength and limitations in “Discussion”. Finally, we outline related work
in “Related Work” and conclude in “Conclusion”.

BACKGROUND
This section introduces related background information, in particular this comprises
benchmarking and time series databases.
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Benchmarking
Benchmarking aims to determine quality of service (QoS) by stressing a system under test
(SUT) in a standardized way while observing its reactions, usually in a test or staging
environment (Bermbach et al., 2017; Bermbach, Wittern & Tai, 2017). To provide relevant
results, benchmarks must meet certain requirements such as fairness, portability, or
repeatability (Huppler, 2009; Bermbach et al., 2017; Bermbach, Wittern & Tai, 2017;
Folkerts et al., 2013). In this paper, we deal with two different kinds of benchmarks:
application benchmarks, which evaluate a complete application system, and
microbenchmarks, which evaluate individual functions or methods. Functional testing
as well as monitoring are not a focus of this work, but are of course closely related
(Bermbach, Wittern & Tai, 2017).

Application benchmark
In a so-called application benchmark, the SUT is first set up and brought into a defined
initial state, e.g., using warmup requests or by inserting initial data. Next, an evaluation
workload is sent to the SUT and the relevant metrics are collected. This method is on
the one hand very powerful, because many relevant aspects and conditions can be
simulated in a defined testbed, but it is very expensive and time-consuming on
the other hand; not only in the preparation but also in the periodic execution.

The evaluation of an entire system involves several crucial tasks to finally come up
with a relevant comparison and conclusion, especially in dynamic cloud environments
(Bermbach et al., 2017; Bermbach, Wittern & Tai, 2017; Grambow, Lehmann & Bermbach,
2019). During the design phase, it is necessary to think in detail about the specific
requirements of the benchmark and its objectives. While defining (and generating) the
workload, many aspects must be taken into account to ensure that the requirements of the
benchmark are not violated and to guarantee a relevant result later on (Huppler, 2009;
Bermbach et al., 2017; Bermbach, Wittern & Tai, 2017; Folkerts et al., 2013). This is
especially difficult in dynamic cloud environments, because it is hard to reproduce results
due to performance variations inherent in cloud systems, random fluctuations, and
other cloud-specific characteristics (Lenk et al., 2011; Difallah et al., 2013; Folkerts et al.,
2013; Rabl et al., 2010). To set up an SUT, all components have to be defined and initialized
first. This can be done with the assistance of automation tools (e.g., Hasenburg et al., 2019;
Hasenburg, Grambow & Bermbach, 2020). However, automation tools still have to be
configured first, which further complicates the setup of application benchmarks. During
the benchmark run, all components have to be monitored to ensure that there is no
bottleneck inside the benchmarking system, e.g., to avoid quantifying the resources of
the benchmarking client’s machine instead of the maximum throughput of the SUT.
Finally, the collected data needs to be transformed into relevant insights, usually in a
subsequent offline analysis (Bermbach, Wittern & Tai, 2017). Together, these factors
imply that a really continuous application benchmarking, e.g., applied to every code
change, will usually be prohibitively expensive in terms of time but also in monetary cost.
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Microbenchmarks
Instead of benchmarking the entire SUT at once, microbenchmarks focus on
benchmarking small code fragments, e.g., single functions. Here, only individual critical or
often used functions are benchmarked on a smaller scale (hundreds of invocations) to
ensure that there is no performance drop introduced with a code change or to estimate
rough function-level metrics, e.g., average execution duration or throughput. They are
usually defined in only a few lines of code; while they are also executed repeatedly, running
microbenchmarks takes considerably less time than the execution of an application
benchmark. Moreover, they are usually easier to set up and to execute as there is no
complex SUT which needs to be initialized first. They are therefore more suitable for
frequent use in CI/CD pipelines but also have to cope with variability in cloud
environments (Leitner & Bezemer, 2017; Laaber & Leitner, 2018; Laaber, Scheuner &
Leitner, 2019; Bezemer et al., 2019). Finally, they cannot cover all aspects of an application
benchmark and are, depending on the concrete use-case, usually considered less relevant
individually.

Time series database systems
In this paper, we use time series database systems (TSDBs) as study objects. TSDBs are
designed and optimized to receive, store, manage, and analyze time series data (Dunning
et al., 2014). Time series data usually comprises sequences of timestamped data—often
numeric values—such as measurement values. As these values tend to arrive in-order,
TSDB storage layers are optimized for append-only writes because only a few straggler
values arrive late, e.g., due to network delays. Moreover, the stored values are rarely
updated as the main purpose of TSDBs is to identify trends or anomalies in incoming data,
e.g., for identifying failure situations. Due to this, TSDBs are optimized for fast aggregation
queries over variable-length time frames. Furthermore, most TSDBs support tagging
which is needed for grouping values by dimension in queries. Taken together, these
features and performance-critical operations make TSDBs a suitable study object
for the evaluation of our approach. Examples of TSDBs include InfluxDB
(https://www.influxdata.com), VictoriaMetrics (https://victoriametrics.com), Prometheus
(https://prometheus.io), and OpenTSDB (http://opentsdb.net).

APPROACH
We aim to determine and quantify the practical relevance of microbenchmark suites,
i.e., to what extent the functions invoked by application benchmarks are also covered
by microbenchmarks. Moreover, we want to improve microbenchmark suites by
identifying and removing redundancies as well as recommending important functions
which are not covered yet.

Our basic idea is based on the intuition that, regardless of whether software is evaluated
by an application benchmark or microbenchmark, both types evaluate the same source
code and algorithms. Since an application benchmark is designed to simulate realistic
operations in a production-near environment, it can reasonably be assumed that it can
serve as a baseline or reference execution to quantify relevance in the absence of a real

Grambow et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.548 6/32

https://www.influxdata.com
https://victoriametrics.com
https://prometheus.io
http://opentsdb.net
http://dx.doi.org/10.7717/peerj-cs.548
https://peerj.com/computer-science/


production trace. On the other hand, microbenchmarks are written to check the
performance of individual functions and multiple microbenchmarks are bundled as a
microbenchmark suite to analyze the performance of a software system. Both benchmark
types run against the same source code and generate a program flow (call graph) with
functions1 as nodes and function calls as edges. We propose to analyze these graphs to (i)
determine the coverage of both types to quantify the practical relevance of a
microbenchmark suite, (ii) remove redundancies by identifying functions (call graph
nodes) which are covered by multiple microbenchmarks, and (iii) recommend functions
which should be covered by microbenchmarks because of their usage in the application
benchmark. In a perfectly benchmarked software project, the ideal situation in terms of our
approach would be that all practically relevant functions are covered by exactly one
microbenchmark. To check and quantify this fact for a given project and to improve it
subsequently, we propose the approach illustrated in Fig. 1.

To use our approach, we assume that the software project complies with best practices
for both benchmarking domains, e.g., Bermbach, Wittern & Tai (2017), Damasceno Costa
et al. (2019). It is necessary that there is both a suite of microbenchmarks and at least
one application benchmark for the respective SUT. The application benchmark must rely
on realistic scenarios to generate a relevant program flow and must run against an
instrumented SUT which can create a call graph during the benchmark execution.
During that tracing run, actual measurements of the application benchmark do not matter.
The same applies for the execution of the microbenchmarks, where it also must be possible
to reliably create the call graphs for the duration of the benchmark run. These call
graphs can subsequently be analyzed structurally to quantify and improve the
microbenchmark suite’s relevance. We will discuss this in more detail in “Determining and
Quantifying Relevance”.

We propose two concrete methods for optimizing a microbenchmark suite: (1) An
algorithm to remove redundancies in the suite by creating a minimal sub-set of
microbenchmarks which structurally covers the application benchmark graph to the same
extent (see “Determining and Quantifying Relevance”). (2) A recommendation strategy to
suggest individual functions which are currently not covered by microbenchmarks but

Application Benchmark

Running
Extracting Call Graph from 

SUT

Microbenchmarks

Running
Extracting Call Graphs from 

Microbenchmarks

Coverage Analysis

Determining and Quantifying 
Practical Relevance

Optimizations

Removing Redundancies

Recommending Additional 
Microbenchmark Targets

Figure 1 A study subject (system) is evaluated via application benchmark and its microbenchmark
suite, the generated call graphs during the benchmark runs are compared to determine and quantify
the practical relevance, and two use cases to optimize the microbenchmark suite are proposed.

Full-size DOI: 10.7717/peerj-cs.548/fig-1

1 In the following, we exclusively refer to
functions but our approach can similarly
be used for methods and procedures
depending on the SUT’s programming
language.
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which are relevant for the application benchmark and will cover a large part of its call
graph (see “Recommending Additional Microbenchmark Targets”).

Determining and quantifying relevance
After executing an application benchmark and the microbenchmark suite on an
instrumented SUT, we retrieve one (potentially large) call graph from the application
benchmark run and many (potentially small) graphs from the microbenchmark runs, one
for each microbenchmark. In these graphs, each function represents a node and each
edge represents a function call. Furthermore, we differentiate in the graphs between so-
called project nodes, which refer directly to functions of the SUT, and non-project nodes,
which represent functions from libraries or the operating system. After all graphs have
been generated, the next step is to determine the function coverage, i.e., which functions
are called by both the application benchmark and at least one microbenchmark.

Figure 2 shows an example: The application benchmark graph covers all nodes from
node 1 to node 19 and has two entry points, node 1 and node 8. These entry points, when
invoked, call other functions, which again call other functions (cycles are possible, e.g., in
the case of recursion). Nodes in the graph can be both project functions of the SUT or
functions of external libraries. There are also two microbenchmarks in this simple
example, benchmark 1 and benchmark 2. While benchmark 1 only covers two nodes,
benchmark 2 covers four nodes and seems to be more practically relevant (we will discuss
this later in more detail).

To determine the function coverage, we iterate through all application benchmark
nodes and identify all microbenchmarks which cover this function. As a result, we get a list
of coverage sets, one for each microbenchmark, where each entry describes the overlap of
nodes (functions) between the application benchmark call graph and the respective
microbenchmark graph. Next, we count (i) all project-only functions and (ii) all functions
which are called during the application benchmark and in at least one microbenchmark.
Finally, we calculate two different coverage metrics: First, the project-only coverage of all

1

2 3

4 5 6

7

10 11

8

9

12

13 14 15 16

17 18 19

Legend

project node

non-project node

benchmark 1

benchmark 2

Figure 2 The practical relevance of a microbenchmark suite can be quantified by by relating the
number of covered functions and the total number of called functions during an application
benchmark to each other. Full-size DOI: 10.7717/peerj-cs.548/fig-2
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executed functions in comparison to the total number of project functions in the
application benchmark. Second, the overall coverage, including external functions.

For our example application benchmark call graph in Fig. 2: coverageproject�only ¼ 5
10 ¼

0:5 and coverageoverall ¼ 6
19 � 0:316. Note that these metrics would not change if there

would be a third microbenchmark covering a subset of already covered nodes, e.g., node 14
and node 17.

Removing redundancies
Our first proposed optimization removes redundancies in the microbenchmark suite and
achieves the same coverage level with fewer microbenchmarks. For example, the imaginary
third benchmark mentioned above (covering nodes 14 and 17 in Fig. 2) would be
redundant, as all nodes are already covered by other microbenchmarks. To identify a
minimal set of microbenchmarks, we adapt the Greedy algorithm proposed by Chen & Lau
(1998) and rank the microbenchmarks based on the number of reachable function nodes
that overlap with the application benchmark (instead of all reachable nodes as proposed in
Chen & Lau (1998)), as defined in Algorithm 1.

After analyzing the graphs, we get coverage sets of overlaps between the application
benchmark and the microbenchmark call graphs (input C). First, we sort them based on
the number of covered nodes in descending order, i.e., microbenchmarks which cover
many functions of the application benchmark are moved to the top (line 3). Next, we pick
the first coverage set as it covers the most functions and add the respective
microbenchmark to the minimal set (lines 4 to 8). Afterwards, we have to remove the
covered set of the selected microbenchmark from all coverage sets (lines 9 to 11) and sort
the coverage set again to pick the next microbenchmark. We repeat this until there are no
more microbenchmarks to add (i.e., all microbenchmarks are part of the minimal set and

Algorithm 1 Removing redundancies in the microbenchmark suite.

Input: C- Coverage sets

Result: minimalSet - Minimal set of microbenchmarks

1 minimalSet ← ø

2 while |C| > 0 do

3 C ← Sortsets (C)

4 largestCoverage ← RemoveFirst (C)

5 if |largestCoverage| == 0 then

6 return minimalSet

7 end

8 minimalSet ← minimalSet ∪ largestCoverage

9 foreach set ∈ C do

10 set ← set \ largestCoverage

11 end

12 end

Grambow et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.548 9/32

http://dx.doi.org/10.7717/peerj-cs.548
https://peerj.com/computer-science/


there is no redundancy) or until the picked coverage set would not add any covered
functions to the minimal set (line 6).

In this work, we sort the coverage sets by their number of covered nodes and do
not include any additional criteria to break ties. This could, however, result in an undefined
outcome if there are multiple coverage sets with the same number of covered additional
functions, but this case is a rare event and did not occur in our study. Still, including
other secondary sorting criteria such as the distance to the graph’s root node or the total
number of nodes in the coverage set might improve this optimization further.

Recommending additional microbenchmark targets
A well-designed application benchmark will trigger the same function calls in an SUT as a
production use would. A well-designed microbenchmark for an individual function will
also implicitly call the same functions as in production or during the application
benchmark. In this second optimization of the microbenchmark suite, we rely on
these assumptions to selectively recommend uncovered functions for further
microbenchmarking. This allows developers to directly implement new microbenchmarks
that will cover a large part of the uncovered application benchmark call graph and thus
increase the coverage levels (see “Determining and Quantifying Relevance”).

Similar to the removal of redundancies, we build on the idea of a well-known, greedy
test case prioritization algorithm proposed by Rothermel et al. (1999) to recommend
functions for benchmarking that are not covered yet. In particular, we adapt Rothermel’s
additional algorithm, which iteratively prioritizes tests whose coverage of new parts of
the program (that have not been covered by previously prioritized tests) is maximal.
Instead of using the set of all covered methods by a microbenchmark suite, our adaptation
uses the function nodes from the application benchmark that are not covered yet as greedy
criteria to optimize for.

Algorithm 2 defines the recommendation algorithm. The algorithm requires as input
the call graph from the application benchmark, the graphs from the microbenchmark
suite, and the coverage sets determined in “Determining and Quantifying Relevance”, as
well as the upper limit n of recommended functions.

First, we determine the set of nodes (functions) in the application benchmark call
graph which are not covered by any microbenchmark (line 2). Next, we determine the
reachable nodes for each function in this set, only considering project nodes, and store the
results in another set N (lines 5 to 7). To link back to our example graph in Fig. 2, the
resulting set for function 3 (neither covered by benchmark 1 nor 2) would be nodes 3, 5,
and 6 (node 12 is not a project node and not part of the reachable nodes). Third, we sort
the set N by the number of nodes in each element, starting with the set with the most
nodes in it (line 8). If two functions cover the same number of project nodes, we determine
the distance to the closest root node and select functions that have a shorter distance. If the
functions are still equivalent, we include the number of covered non-project nodes as a
third factor and favor the function with higher coverage. Finally, we pick the first
element and add the respective function to the recommendation set R (lines 9 to 13),
update the not covered functions (line 15), and run the algorithm again to find the next
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function which adds the most additional nodes to the covered set. Our algorithm ends
if there are n functions in R (i.e., upper limit for recommendations reached) or if the
function which would be added to the recommendation set R does not add additional
functions to the covered set (line 11).

EMPIRICAL EVALUATION
We empirically evaluate our approach on two open-source TSDBs written in Go, namely
InfluxDB and VictoriaMetrics, which both have extensive developer-written
microbenchmark suites. As application benchmark and, therefore, baseline, we encode
three application scenarios in YCSB-TS (https://github.com/TSDBBench/YCSB-TS). On
the other side, we run the custom microbenchmark suites of the respective systems.

We start by giving an overview of YCSB-TS and both evaluated systems in
“Study Objects”. Next, we describe how we run the application benchmark using
three different scenarios in “Application Benchmark” and the microbenchmark suite in
“Microbenchmarks” to collect the respective set of call graphs. Finally, we use the call
graphs to determine the coverage for each application scenario and quantify the practical
relevance in “Determining and Quantifying Relevance” before removing redundancies in

Algorithm 2 Recommending functions which are not covered by microbenchmarks yet.

Input: hA;M;Ci - Application benchmark CG, microbenchmark CGs, coverage sets

Output: n - Number of microbenchmarks to recommend

Result: R - Set of recommended functions to microbenchmark

1 R ← ø

2 notCovered ←{a|a ∈ A ∧ IsProjectNode(a)} \Ctotal

3 N ← ø

4 while n > 0 do

5 foreach function fa ∈ notCovered do

6 additionalNodes ← DetermineReachableNodes(fa) ∩ notCovered

N ←N ∪{additionalNodes}

7 end

8 SortByNumberOfNodes(N)

9 largestAdditionalSet ← RemoveFirst(N)

10 if |largestAdditionalSet| == 0 then

11 return R

12 end

13 R ← R ∪ largestAdditionalSet[0]

14 n = n – 1

15 notCovered ← notCovered \ largestAdditionalSet

16 end
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the benchmark suites in “Removing Redundancies” and recommending functions which
should be covered by microbenchmarks for every investigated project in “Recommending
Additional Microbenchmark Targets”.

Study objects
To evaluate our approach, we need an SUT which comes with a developer-written
microbenchmark suite and which is compatible with an application benchmark. For this,
we particularly looked at TSDBs written in Go as they are compatible with the YCSB-TS
application benchmark, and since Go contains a microbenchmark framework as part of its
standard library. Furthermore, Go provides a tool called pprof (https://golang.org/pkg/
runtime/pprof) which allows us to extract the call graphs of an application using
instrumentation. Based on these considerations, we decided to evaluate our approach
with the TSDBs InfluxDB (https://www.influxdata.com) and VictoriaMetrics
(https://victoriametrics.com) (see Table 1).

YCSB-TS (https://github.com/TSDBBench/YCSB-TS) is a specialized fork of YCSB
(Cooper et al., 2010), which is an extensible benchmarking framework for data serving
systems, for time series databases. Usually every experiment with YCSB is divided into a
load phase which preloads the SUT with initial data, and a run phase which executes the
actual experiment queries.

InfluxDB is a popular TSDB with more than 400 contributors and more than 19,000
stars on GitHub. VictoriaMetrics is an emerging TSDB (the first version was released in
2018) which has already collected more than 2,000 stars on GitHub. Both systems are
written in Go, offer a microbenchmark suite, and can be benchmarked using the
YCSB-TS tool. However, there was no suitable connector for VictoriaMetrics in the official
YCSB-TS repository; we therefore implemented one based on the existing connectors for
InfluxDB and Prometheus. Moreover, we also fixed some small issues in the YCSB-TS
implementation. A fork with all necessary changes, including the new connector and all
fixes, is available on GitHub (https://github.com/martingrambow/YCSB-TS).

Table 1 Our evaluation uses two open-source TSDBs written in Go as study objects.

Project InfluxDB VictoriaMetrics

GitHub URL influxdata/influxdb VictoriaMetrics/VictoriaMetrics

Branch/Release 1.7 v1.29.4

Commit ff383cd 2ab4cea

Go Files 646 1,284

Lines Of Code (Go) 193,225 462,232

Contributers 407 32

Stars ca. 19,100 2,500

Forks ca. 2,700 185

Microbenchmarks in Project 347 65

Extracted Call Graphs 288 62
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Application benchmark
Systems such as our studied TSDBs are used in different domains and contexts, resulting in
different load profiles depending on the specific use case. We evaluated each TSDB in three
different scenarios which are motivated in “Scenarios”. The actual benchmark experiment
is described in “Experiments”.

Scenarios
Depending on the workload, the call graphs within an SUT may vary. To consider this
effect in our evaluation, we generate three different workloads based on the following
three scenarios for TSDBs, see Table 2. All workload files are available on GitHub
(https://github.com/martingrambow/YCSB-TS/tree/master/workloads).

Medical Monitoring: An intensive care unit monitors its patients through several
sensors which forward the tagged and timestamped measurements to the TSDB. These
values are requested and processed by an analyzer, which averages relevant values for each
patient once per minute and scans for irregularities once per hour. In our workload
configuration, we assume a new data item for every patient every two seconds and deal
with 10 patients.

We convert this abstract scenario description into the following YCSB-TS workload:
With an evaluation period of seven days, there are approximately three million values in
the range of 0 to 300 that are inserted into the database in total. Half of them, about
1.5 million, are initially inserted during the load phase. Next, in the run phase, the
remaining records are inserted and the queries are made. In this scenario, there are about
100,000 queries which contain mostly AVG as well as 1,680 SCAN operations.
Furthermore, the workload uses ten different tags to simulate different patients.

Smart Factory: In this scenario, a smart factory produces several goods with multiple
machines. Whenever an item is finished, the machine controller submits the idle time
during the manufacturing process as a timestamped entry to the TSDB tagged with the
kind of produced item. Furthermore, a monitoring tool queries the average and the total

Table 2 We configured an application benchmark to use three different workload profiles.

Scenario Medical monitoring Smart factory Wind parks

Load

Records 1,512,000 1,339,200 2,190,000

Run

Insert 1,512,000 1,339,200 2,190,000

Scan 1,680 1,860 35,040

Avg 100,800 744 35,040

Count 0 744 0

Sum 0 2,976 8,760

Total 1,614,480 1,345,524 2,268,840

Other

Duration 7 days 31 days 365 days

Tags 10 10 5
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amount of produced items once per hour and the accumulated idle time at each quarter of
an hour. Finally, there are several manual SCAN queries for produced items over a
given period. Our evaluation scenario deals with five different products and ten machines
which on average each assemble a new item every ten seconds. Moreover, there are 60
SCAN queries on average per day.

The corresponding YCSB-TS workload covers a 31-day evaluation period during which
approximately 2.6 million data records are inserted. Again, we split the records in half and
insert the first part in the load phase and insert the second part in parallel to all other
queries in the run phase. In this scenario, we execute about 6,000 queries in the run phase
which include SUM, SCAN, AVG, and COUNT operations (frequency in descending
order). Furthermore, the workload uses five predefined tags to simulate the different
products.

Wind Parks: Wind wheels in a wind park send information about their generated
energy as timestamped and tagged items to the TSDB once per hour. At each quarter of an
hour, a control center scans and counts the incoming data from 500 wind wheels in five
different geographic regions. Moreover, it totals the produced energy for every hour.

Translated into a YCSB-TS workload with 365 days evaluation time, this means about
4.4 million records to be inserted and five predefined tags for the respective regions. Again,
we have also split the records equally between the load and run phase. In addition, we run
about 80,000 queries, split between SCAN, AVG, and SUM (frequency in descending
order).

Experiments
Similar to Bermbach et al. (2017), each experiment is divided into three phases:
initialize, load, and run (see Fig. 3). During the initialization phase, we create two AWS
t2.medium EC2 instances (2 vCPUs, 4 GiB RAM), one for the SUT and one for the
benchmarking client in the eu-west-1 region. The setup of the client is identical for all
experiments: YCSB-TS is installed and configured on the benchmarking client instance.
The initialization of the SUT starts with the installation of required software, e.g., Git, Go,
and Docker. Next, we clone the SUT, revert to a fixed Git commit (see Table 1) and
instrument the source code to start the CPU profiling when running. Finally, we build the
SUT and create an executable file.

During the load phase, we start the SUT and execute the load workload of the respective
scenario using the benchmarking client and preload the database. Then, we stop the

Initialize Application Benchmark

Start 
Instances

Clone SUT

Inject CPU 
Build SUT

Load SUT

Start SUT
Shutdown 

SUT

Populate 
SUT with 

initial Data

Run Workload

Start SUT
Execute 

YCSB-TS 
Workload

Shutdown 
SUT

Extract CPU 

Figure 3 After initialization, the SUT is filled with initial data and restarted for the actual
experiment run to clearly separate the program flow. Full-size DOI: 10.7717/peerj-cs.548/fig-3
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SUT and keep the inserted data. This way we can clearly separate the call graphs of the
following run phase from the rest of the experiment.

Afterwards, we restart the SUT for the run phase. Since the source code has been
instrumented, a CPU profile is now created and function calls are recorded in it by
sampling while the SUT runs. Next, we run the actual workload against the SUT using
the benchmarking client and subsequently stop the SUT. This run phase of the
experiments took between 40 minutes and 18 hours, depending on the workload and
TSDB. Note that the actual benchmark runtime is in this case irrelevant (as long as it is
sufficiently long) since we are only interested in the call graph. Finally, we export the
generated CPU profile which we use to build the call graphs.

After running the application benchmark for all scenarios and TSDBs, we have six
application benchmark call graphs, one for each combination of scenario and TSDB.

Microbenchmarks
To generate the call graphs for all microbenchmarks, we execute all microbenchmarks in
both projects one after the other and extract the CPU profile for each microbenchmark
separately. Moreover, we set the benchmark execution time to ten seconds to reduce the
likelihood that the profiler misses nodes (functions), due to statistical sampling of stack
frames. This means that each microbenchmark is executed multiple times until the total
runtime for this microbenchmark reaches ten seconds and that the runtime is usually
slightly higher than ten seconds (the last execution starts before the ten seconds deadline
and ends afterwards). Finally, we transform the profile files of each microbenchmark into
call graphs, which we use in our further analysis.

Determining and quantifying relevance
Based on the call graphs for all scenario workloads and microbenchmarks, we analyze the
coverage of both to determine and quantify the practical relevance following “Determining
and Quantifying Relevance”. Figure 4 shows the microbenchmark suite’s coverage for each
study object and scenario. For InfluxDB, the overall coverage ranges from 62.90% to
66.29% and the project-only coverage ranges from 40.43% to 41.25%, depending on the
application scenario. For VictoriaMetrics, the overall coverage ranges from 43.5% to
46.74% and the project-only coverage from 35.62% to 40.43%. Table 3 shows the detailed
coverage levels.

As a next step, we also analyze the coverage sets of all application benchmark call graphs
to evaluate to which degree the scenarios vary and generate different call graphs.
Figures 5A and 5B show the application scenario coverage as Venn diagrams for
InfluxDB and VictoriaMetrics using project nodes only. Both diagrams show the same
characteristics in general. All scenarios trigger unique functions which are not covered by
other scenarios, see Table 2. For both SUTs, the Smart Factory scenario generates the
smallest unique set of project-only nodes (29 unique functions for InfluxDB and 4 unique
ones for VictoriaMetrics ) and the Wind Parks scenario the largest one (134 functions for
InfluxDB and 77 for VictoriaMetrics ). Furthermore, all scenarios also generate a set of
common functions which are invoked in every scenario. For InfluxDB, there are 464
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functions of 920 in total (50.43%) and for VictoriaMetrics there are 341 functions of 603 in
total (56.55%) which are called in every application scenario. Table 4 shows the overlap
details.

Removing redundancies
Our first optimization, as defined in Algorithm 1, analyzes the existing coverage sets and
removes redundancy from both microbenchmark suites by greedily adding
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Figure 4 The project-only coverage is about 40% for both microbenchmark suites, leaving a lot
potential room for improvement. Full-size DOI: 10.7717/peerj-cs.548/fig-4

Table 3 All microbenchmarks together form a significantly larger call graph than the application
benchmark (number of nodes); however, these by far do not cover all functions called during the
application benchmarks (coverage).

Project Scenario Node type Number of nodes Coverage

App Micro Abs. Rel. (%)

InfluxDB Medical monitoring Overall 1,838 3,069 1,180 64.20

Project-only 737 1,621 304 41.25

Smart factory Overall 1,504 3,069 997 66.29

Project-only 517 1,621 209 40.43

Wind parks Overall 1,895 3,069 1,192 62.90

Project-only 778 1,621 318 40.87

VictoriaMetrics Medical monitoring Overall 1,573 1,125 691 43.93

Project-only 511 454 182 35.62

Smart factory Overall 1,238 1,125 591 47.74

Project-only 371 454 150 40.43

Wind parks Overall 1,600 1,125 696 43.50

Project-only 542 454 207 38.19
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microbenchmarks to a minimal suite which fulfills the same coverage criteria. Figure 6
shows the step-by-step construction of this minimal set of microbenchmarks up to the
maximum possible coverage.

For InfluxDB (Fig. 6A), the first selected microbenchmark already covers more than
12% of each application benchmark scenario graph. Furthermore, the first four selected
microbenchmarks are identical in all scenarios. Depending on the scenario, these already
cover a total of 28% to 31% (with a maximum coverage of about 40% when using all
microbenchmarks, see Table 3). These four microbenchmarks are therefore very important
when covering a large practically relevant area in the source code. However, even if all
microbenchmarks selected during minimization are chosen and the maximum possible
coverage is achieved, the removal of redundancies remains very effective. Depending on
the application scenario, the initial suite with 288 microbenchmarks from which we
extracted call graphs were reduced to a suite with either 19, 25, or 27 microbenchmarks.

Medical
Monitoring

Smart
Factory

Wind
Parks

(a) InfluxDB

Medical
Monitoring

Smart
Factory

Wind
Parks

(b) VictoriaMetrics

Figure 5 All scenarios generate individual call graphs for both SUTs InfluxDB (A) and
VictoriaMetrics (B). Some functions are exclusively called in one scenario, many are called in two
or all three scenarios. Full-size DOI: 10.7717/peerj-cs.548/fig-5

Table 4 Pair-wise overlap between different scenarios.

Project Node type Scenario Medical monitoring Smart factory Wind parks

InfluxDB Overall Medical monitoring same 1,411 (76.77%) 1,662 (90.42%)

Smart factory 1,411 (93.82%) same 1,445 (96.08%)

Wind parks 1,662 (87.70%) 1,445 (76.25%) same

Project-only Medical monitoring same 468 (63.50%) 624 (84.67%)

Smart factory 468 (90.52%) same 484 (93.62%)

Wind parks 624 (80.21%) 484 (62.21%) same

VictoriaMetrics Overall Medical monitoring same 1,171 (74.4%) 1,391 (88.43%)

Smart factory 1,171 (94.59%) same 1,158 (93.54%)

Wind parks 1,391 (86.94%) 1,158 (72.37%) same

Project-only Medical monitoring same 356 (69.67%) 454 (88.84%)

Smart factory 356 (95.96%) same 352 (94.88%)

Wind parks 454 (83.76%) 352 (64.94%) same
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In general, we find similar results for VictoriaMetrics (Fig. 6B). Already the first
microbenchmark selected by our algorithm covers at least 17% of the application
benchmark call graph in each scenario. For VictoriaMetrics, the first four selected
microbenchmarks also have similar coverage sets, there is only a small difference in the
parametrization of one chosen microbenchmark. In total, these first four
microbenchmarks cover 29% to 34% of the application benchmark call graph, depending
on the scenario, and there is a maximum possible coverage between 35% and 40%
when using the full existing microbenchmark suite. Again, the first four microbenchmarks
are therefore particularly effective and already cover a large part of the application
benchmark call graph. Moreover, even with the complete minimization and the maximum
possible coverage, our algorithm significantly reduces the number of microbenchmarks:
from 62 microbenchmarks down to 13 or 14 microbenchmarks, depending on the concrete
application scenario.

Since each microbenchmark takes on average about the same amount of time (see
“Microbenchmarks”), our minimal suite results in a significant time saving when running
the microbenchmark suite. For InfluxDB it would take only about 10% of the original time
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Figure 6 Already the first four microbenchmarks selecting by Algorithm 1 cover 28% to 31% for
InfluxDB (A) and 29% to 34% for VictoriaMetrics (B) of the respective application benchmark’s
call graph. Full-size DOI: 10.7717/peerj-cs.548/fig-6
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and for VictoriaMetrics about 23% respectively. On the other hand, these drastic
reductions also mean that many microbenchmarks in both projects evaluate the same
functions. This can be useful under certain circumstances, e.g., if there is a performance
degradation detected using the minimal benchmark suite and developers need to find
the exact cause. However, given our goal of finding a minimal set of microbenchmarks to
use as smoke test in a CI/CD pipeline, these redundant microbenchmarks present an
opportunity to drastically reduce the execution time without much loss of information.

Recommending additional microbenchmark targets
Our second optimization, the recommendation, starts with the minimal microbenchmark
suite from above and subsequently recommends functions to increase the coverage of
the microbenchmark suite and application benchmark following Algorithm 2. Figure 7
shows this step-by-step recommendation of functions starting with the current coverage
up to a 100% relevant microbenchmark suite.

For InfluxDB (Fig. 7A), a microbenchmark for the first recommended function would
increase the coverage by 28% to 31% depending on the application scenario and the first
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Figure 7 Already microbenchmarks of the first three recommended functions could increase
the project-only coverage up to 90% to 94% for InfluxDB (A) and 94% to 95% for
VictoriaMetrics (B). Full-size DOI: 10.7717/peerj-cs.548/fig-7
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three recommended functions are identical for all scenarios: (i) executeQuery runs a query
against the database and returns the results, (ii) ServeHTTP responds to HTTP requests,
and (iii) storeStatistics writes statistics into the database. If each of these functions were
evaluated by a microbenchmark in the same way as the application benchmark, i.e.,
resulting in the same calls of downstream functions and the same call graph, there would
already be a total coverage of 90% to 94%. To achieve a 100% match, additional 10 to
26 functions must be microbenchmarked, depending on the application scenario and
always under the assumption that the microbenchmark will call the function in the same
way as the application benchmark does.

In general, we find similar results for VictoriaMetrics (Fig. 7B). Already a
microbenchmark for the first recommended function would increase the coverage by 39%
to 51% and microbenchmarking the first three recommended functions would increase
the coverage up to a total of 94% to 95%. Again, these three functions are recommended
in all scenarios, only the ordering is different. All first recommended functions are
anonymous functions, respectively (i) an HTTP handler function, (ii) a merging function,
and (iii) a result-related function. To achieve 100% project-only coverage, 10 to 14
additional functions would have to be microbenchmarked depending on the application
scenario.

In summary, our results show that the microbenchmark suite can be made much
more relevant to actual practice and usage with only a few additional microbenchmarks
for key functions. In most cases, however, it will not be possible to convert the
recommendations directly into suitable microbenchmarks (we discuss this point in the
next section). Nevertheless, we see these recommendations as a valid starting point for
more thorough analysis.

DISCUSSION
We propose an automated approach to analyze and improve microbenchmark suites. It
can be applied to all application systems that allow the profiling of function calls and the
subsequent creation of a call graph. This is particularly easy for projects written in the
Go programming language as this functionality is part of the Go environment.
Furthermore, our approach is beneficial for projects with a large code base where
manual analysis would be too complex and costly. In total, we propose three methods for
analyzing and optimizing existing microbenchmark suites but can also provide guidance
for creating new ones. Nevertheless, every method has its limits and should not be applied
blindly.

Assuming that the application benchmark reflects a real production system or simulates
a realistic situation, the resulting call graphs will reflect this perfectly. Unfortunately, this is
not always the case, because the design and implementation of a sound and relevant
application benchmark has its own challenges and obstacles which we will not address here
(Bermbach, Wittern & Tai, 2017). Nevertheless, a well-designed application benchmark is
capable of simulating different scenarios in realistic environments in order to identify
weak points and to highlight strengths. Ultimately, however, for the discussion that
follows, we must always be aware that the application benchmark will never be a perfect
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representation of real workloads. Trace-based workloads (Bermbach et al., 2017) can help
to introduce more realism.

Considering only function calls is imperfect but sufficient: Our approach relies on
identifying the coverage of nodes in call graphs and thus on the coverage of function calls.
Additional criteria such as path coverage, block coverage, line coverage, or the frequency of
function executions are not considered and subject to future research. We deliberately
chose this simple yet effective method of coverage measurement: (1) Applying detailed
coverage metrics such as line coverage would deepen the analysis and check that every
code line called by the application benchmark is at least once called by a microbenchmark.
However, if the different paths in a function source code are relevant for production and
do not only catch corner cases, they should be also considered in the application
benchmark and microbenchmark workload (e.g., if the internal function calls in the
Medical Monitoring scenario would differ for female and male patients, the respective
benchmark workload should represent female and male patients with the same frequency
as in production). (2) As our current implementation relies on sampling, the probability
that a function that is called only once or twice during the entire application benchmark or
microbenchmark is called at the exact time a sample is taken is extremely low. Thus, the
respective call graphs will usually only include practically relevant functions. (3) We
assume that all benchmarks adhere to benchmarking best practices. This includes both the
application benchmark which covers all relevant aspects and the individual
microbenchmarks which each focus on individual aspects. This implies that if there is an
important function, this function will usually be covered by multiple microbenchmarks
which each generate a unique call graph with individual function calls and which therefore
will all be included into the optimized microbenchmark suite. Thus, there will still usually
be multiple microbenchmarks which evaluate important functions. (4) Both base
algorithms (Chen & Lau, 1998; Rothermel et al., 1999) are standard algorithms and have
recently been shown to work well with modern software systems (e.g., Luo et al., 2018). We
therefore assume that a relevant benchmark workload will generate a representative call
graph and argue that a more detailed analysis of the call graph would not improve our
approach significantly. The same applies to the microbenchmarks and their coverage sets
with the application benchmark where our approach will only work if the
microbenchmark suite generates representative function invocations. Overall, the
optimized suite serves as simple and fast heuristic for detecting performance issues in a
pre-production stage but it is—by definition—not capable of detecting all problems: there
will be false positives and negatives. In practice, we would therefore suggest to use the
microbenchmark-based heuristic with every commit whereas the application benchmark
will be run periodically; how often is subject to future research.

The sampling rate affects the accuracy of the call graphs: The generation of the call
graphs in our evaluation is based on statistical sampling of stack frames at specified
intervals. Afterwards, the collected data is combined into the call graph. However, this
carries the risk that, if the experiment is not run long enough, important calls might not be
registered and thus will not appear in the call graph. The required duration depends on the
software project and on the sampling rate, i.e., at which frequency samples are taken. To
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account for this, we chose frequent sampling combined with a long benchmark duration in
our experiments which makes it unlikely that we have missed relevant function calls.

Our approach is transferable to other applications and domains: We have evaluated
our approach with two TSDBs written in the Go programming language, but we see no
major barriers to implementing our approach for applications written in other
programming languages. There are several profiling tools for other programming
languages, e.g., for Java or Python, so this approach is not limited to the Go programming
language and is applicable to almost all software projects. Moreover, there are various
other application domains where benchmarking can be applied which we also discuss in
“RelatedWork”. In this work, we primarily intend to present the approach and its resulting
opportunities, e.g., for CI/CD pipelines. The transfer to other application domains and
programming languages is subject to future research.

The practical relevance of a microbenchmark suite can be quantified quickly and
accurately: Our approach can be used to determine and quantify the practical relevance of
a microbenchmark suite based on a large baseline call graph (e.g., an application
benchmark) and many smaller call graphs from the execution of the microbenchmark
suite. On one hand, this allows us to determine and quantify the practical relevance of the
current microbenchmark suite with respect to the actual usage: in our evaluation of two
different TSDBs, we found that this is 40% for both databases. On the other hand, this
means that 60% of the required code parts for the daily business are not covered by any
microbenchmark, which highlights the need for additional microbenchmarks to detect and
ultimately prevent performance problems in both study objects. It is important to note that
the algorithm only includes identical nodes in the respective graphs; edges, i.e., which
function calls which other function, are not considered here. This might lead to an
effectively lower coverage if our algorithms selects a microbenchmark that only measures
corner cases. To address this, it may be necessary to manually remove all
microbenchmarks that do not adhere to benchmarking best practices before running our
algorithm. In summary, we offer a quick way to approximate coverage and practical
relevance of a microbenchmark suite in and for realistic scenarios.

A minimal microbenchmark suite with reduced redundancies can be used as
performance smoke test: Our first optimization to an existing microbenchmark suite,
Algorithm 1, aims to find a minimal set of microbenchmarks which already cover a large
part of an application benchmark, again based on the nodes in existing call graphs.
Our evaluation has shown that a very small number of microbenchmarks is sufficient to
cover a large part of the potential maximum coverage for both study objects. Furthermore,
it has also shown that the number of microbenchmarks in a suite can still be significantly
reduced, even if we want to achieve the maximum possible coverage. Translated into
execution time, this removal of redundancies corresponds to savings of up to 90% in our
scenarios, which offers a number of benefits for benchmarking in CI/CD pipelines.
A minimal microbenchmark suite could show developers a rough performance impact of
their current changes. This enables developers to run a quick performance test on each
commit, or to quickly evaluate a new version before starting a more complex and cost-
intensive application benchmark. In this setup, the application benchmark remains the
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gold standard to detect all performance problems while the less accurate optimized
microbenchmark suite is a fast and easy-to-use performance check. Finally, it is
important to note that the intention of our approach is not to remove “unnecessary”
microbenchmarks entirely but rather to define a new microbenchmark suite as a subset of
the existing one which serves as a proxy to benchmarking the performance of the SUT.
Although our evaluation also revealed that many microbenchmarks benchmark the same
code and are therefore redundant, this redundancy is frequently desirable in other contexts
(e.g., for detailed error analysis).

The recommendations can not always be directly used: Our second optimization,
Algorithm 2, recommends functions which should be microbenchmarked in order to cover
a large additional part of realistic application flow in the SUT. Our evaluation with two
open-source TSDBs has shown that this is indeed possible and that already with a small
number of additional microbenchmarks a large part of the application benchmark call
graph could be covered. However, our evaluation also suggests that
these microbenchmarks are not always easy to implement, as the recommended functions
are often very generic and abstract. Our recommendation should therefore mostly be seen
as an initial point for further manual investigation by expert application developers.
Using their domain knowledge, they can estimate which (sub)functions are called and
what their distribution/ratio actually is. Furthermore, the application benchmark’s call
graph can also support this analysis as it offers insights into the frequency of invocation for
all covered functions.

RELATED WORK
Software performance engineering traditionally revolves around two general flavors:
model-based and measurement-based. The context of our study falls into measurement-
based software performance engineering, which deals with measuring certain performance
metrics, e.g., latency, throughput, memory, or I/O, over time. Research on application
benchmarking and microbenchmarking topics are related to our study, in particular for
reducing their execution frequency or generating new microbenchmarks.

Application benchmarking
Related work in this area deals with the requirements for benchmarks in general,
application-specific characteristics, and more effective benchmark execution.
Furthermore, contributors expand on the analysis of problems and examine the influence
of environmental factors on the benchmark run in more detail.

One of the earliest publications addressed general challenges such as testing objectives,
workload characterization, and requirements (Weyuker & Vokolos, 2000). These aspects
were then refined and adapted to present needs and conditions in an ongoing process (e.g.,
Huppler, 2009; Bermbach et al., 2017; Bermbach, Wittern & Tai, 2017; Folkerts et al., 2013).

Current work focuses on application-specific benchmarks. To name a few, there are
benchmarks which evaluate database or storage systems (e.g., Bermbach et al., 2014;
Cooper et al., 2010; Bermbach et al., 2017; Kuhlenkamp, Klems & Röss, 2014; Müller et al.,
2014; Pallas et al., 2017; Pallas, Günther & Bermbach, 2017; Pelkonen et al., 2015; Difallah
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et al., 2013), benchmark microservices (Villamizar et al., 2015; Grambow et al., 2020;
Grambow, Wittern & Bermbach, 2020; Ueda, Nakaike & Ohara, 2016; Do et al., 2017),
determine the quality of web APIs (Bermbach & Wittern, 2016, 2020), specifically tackle
web sites (Menascé, 2002), or evaluate other large-scale software systems (e.g., Jiang &
Hassan, 2015; Hasenburg et al., 2020; Hasenburg & Bermbach, 2020). Our approach can
use all of these application benchmarks as a baseline. As long as a call graph can be
generated from respective SUT during the benchmark run, this graph can serve as input
for our approach.

Other approaches aim to reduce the execution time for application benchmarks:
AlGhamdi et al. (2016, 2020) proposed to stop the benchmark run when the system reaches
a repetitive performance state, and He et al. (2019) devised a statistical approach based on
kernel density estimation to stop once a benchmark is unlikely to produce a different
result with more repetitions. Such approaches can only be combined with our analysis and
optimization under certain conditions. The main aspect here are rarely called functions
which might never be called if the benchmark run is terminated early. If the determination
of the call graph is based on sampling, as in our evaluation, the results could be incomplete
because relevant calls were not detected.

Many studies and approaches address the factors and conditions in cloud environments
during benchmarks (Binnig et al., 2009; Difallah et al., 2013; Folkerts et al., 2013;
Kuhlenkamp, Klems & Röss, 2014; Silva et al., 2013; Rabl et al., 2010; Schad, Dittrich &
Quiané-Ruiz, 2010; Iosup, Yigitbasi & Epema, 2011; Leitner & Cito, 2016; Laaber, Scheuner
& Leitner, 2019; Uta et al., 2020; Abedi & Brecht, 2017; Bermbach, 2017). These studies and
approaches are relevant for the application of our approach. If the variance in the test
environment is known and can be reduced to a minimum, this supports the application
engineers in deciding at what time and to which extent which benchmark type should be
executed.

Finally, there are several studies that aim to identify (the root cause of) performance
regressions (Nguyen et al., 2014; Foo et al., 2015; Daly et al., 2020; Grambow, Lehmann &
Bermbach, 2019; Waller, Ehmke & Hasselbring, 2015) or examine the influence of
environment factors on the system under test, such as the usage of Docker (Grambow
et al., 2019). Here, the first mentioned approaches can be combined with our approach
very well. If a performance problem is not detected although the microbenchmark suite
is optimized, the mentioned approaches can be used in the secondary application
benchmark to support developers. Regarding the environmental parameters, these must be
taken into account to achieve a reliable and relevant result. If the execution of functions
depends on specific environmental factors which differ between test and production
environment, this can falsify the outcome.

Microbenchmarking
The second form of benchmarking that is subject of this study is microbenchmarking,
which has only recently gained more traction from research. Leitner & Bezemer (2017)
and Stefan et al. (2017) empirically studied how microbenchmarks—sometimes also
referred to as performance unit tests – are used in open-source Java projects and found that
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adoption is still limited. Others focused on creating performance-awareness through
documentation (Horký et al., 2015) and removing the need for statistical knowledge
through simple hypothesis-style, logical annotations (Bulej et al., 2012, 2017). Chen &
Shang (2017) characterize code changes that introduce performance regressions and show
that microbenchmarks are sensitive to performance changes. Damasceno Costa et al.
(2019) study bad practices and anti-patterns in microbenchmark implementations.
All these studies are complementary to ours as they focus on different aspects of
microbenchmarking that is neither related to time reduction nor recommending functions
as benchmark targets.

Laaber & Leitner (2018) are the first to study microbenchmarks written in Go and apply
a mutation-testing-inspired technique to dynamically assess redundant benchmarks.
Their idea is similar to ours: we use static call graphs to compute the microbenchmark
coverage of application benchmark calls, whereas they compute redundancies between
microbenchmarks of the same suite. Ding, Chen & Shang (2020) study the usability of
functional unit tests for performance testing and build a machine learning model to
classify whether a unit test lends itself to performance testing. Our redundancy removal
approach could augment their approach by filtering out unit tests (for performance) that
lie on the hot path of an application benchmark.

To reduce the overall microbenchmark suite execution time, one might execute the
microbenchmarks in parallel on cloud infrastructure. Recent work studied how and to
which degree such an unreliable environment can be used (Laaber, Scheuner & Leitner,
2019; Bulej et al., 2020). Similar to He et al. (2019) but for microbenchmarks, Laaber et al.
(2020) introduced dynamic reconfiguration to stop the execution when their result is stable
in order to reduce execution time. Our approach to remove redundancies is an alternative
approach to reduce microbenchmark suite execution time.

Another large body of research is performance regression testing, which utilizes
microbenchmarks between two commits to decide whether and what to test for
performance. Huang et al. (2014) and Sandoval Alcocer, Bergel & Valente (2016, 2020)
utilize models to assess whether a code commit introduces a regression to select versions
that should be tested for performance. de Oliveira et al. (2017) and Alshoaibi et al. (2019)
decide based on source code indicators which microbenchmarks to execute on every
commit. Mostafa, Wang & Xie (2017) rearrange microbenchmarks to execute the ones
earlier that are more likely to expose performance changes. These studies focus on
reducing the time of performance testing or focusing on the relevant microbenchmarks/
commits, which is similar in concept to our motivation. Our study, however, utilizes
different granularity levels of performance tests, i.e., application benchmarks and
microbenchmarks, to inform which microbenchmarks are more or less relevant.

Finally, synthesizing microbenchmarks could be a way to increase coverage of
important parts of an application. These could, for instance, be identified by an application
benchmark. SpeedGun generates microbenchmarks for concurrent classes to expose
concurrency-related performance bugs (Pradel, Huggler & Gross, 2014); and AutoJMH
randomly generates microbenchmark workloads based on forward slicing and control flow
graphs (Rodriguez-Cancio, Combemale & Baudry, 2016). Both approaches are highly
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related to our paper as they propose solutions for not yet existing benchmarks. However,
both require as input a class or a segment that shall be performance tested. Our
recommendation algorithm could provide this input.

CONCLUSION
Performance problems of an application should ideally be detected as soon as they occur.
Unfortunately, it is often not possible to verify the performance of every source code
modification by a complete application benchmark for time and cost reasons. Alternatively,
much faster and less complex microbenchmarks of individual functions can be used to
evaluate the performance of an application. However, their results are often less meaningful
because they do not cover all parts of the source code that are relevant in production.

In this paper, we determine, quantify, and improve this practical relevance of
microbenchmark suites based on the call graphs generated in the application during the
two benchmark types and suggest how the microbenchmark suite can be designed and
used more effectively and efficiently. The central idea of our approach is that all functions
of the source code that are called during an application benchmark are relevant for
production use and should therefore be covered by the faster and more lightweight
microbenchmarks as well. To this end, we determine and quantify the coverage of
common function calls between both benchmark types, suggest two methods of
optimization, and illustrate how these can be leveraged to improve build pipelines: (1) by
removing redundancies in the microbenchmark suite, which reduces the total runtime
of the suite significantly; and (2) by recommending relevant target functions which are not
covered by microbenchmarks yet to increase the practical relevance.

Our evaluation on two time series database systems shows that the number of
microbenchmarks can be significantly reduced (up to 90%) while maintaining the same
coverage level and that the practical relevance of a microbenchmark suite can be increased
from around 40% to 100% with only a few additional microbenchmarks for both
investigated software projects. This opens up a variety of application scenarios for CI/CD
pipelines, e.g., the optimized microbenchmark suite might scan the application for
performance problems after every code modification or commit while running the more
complex application benchmark only for major releases.

In future work, we plan to investigate whether such a build pipeline is capable of
detecting and catching performance problems at an early stage. Furthermore, we want to
examine if a more detailed analysis of our coverage criteria on path or line level of the
source code is feasible and beneficial. Even though there are still some limitations, we think
that our automated approach is very useful to support larger software projects in detecting
performance problems effectively, in a cost-efficient way, and at an early stage.
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