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Figure 1. Examples of Möbius transformations (original on left), resulting in variations in perspective, orientation, and scale,
while still preserving local angles and anharmonic ratios.

We define a class ofM-admissible Möbius transformations that preserves image-level labels by
minimizing local distortions in an image. We show empirically that the inclusion ofM-admissible Möbius
transformations can improve performance on the CIFAR-10, CIFAR-100, and Tiny ImageNet benchmarks
over prior sample-level data augmentation techniques, such as cutout [2] and standard crop-and-flip
baselines. We additionally show that Möbius transformations successfully complement other
transformations.

Our key contributions can be summarized as follows.

• Method:We introduce a class ofM-admissible Möbius transformations for data augmentation in training
neural networks. This Möbius class allows for a wide range of sample-level mappings that preserve local
angles and can be found in the anatomy of animals.

• Performance: Empirically, the inclusion ofMöbius data augmentation improves model generalization over
prior methods that use sample-level augmentation techniques, such as cutout [2] and standard crop-and-
flip transformations. We also show that Möbius transformations, which have been studied and examined
in the anatomy and biology of animals, consistently improves on animate classes over inanimate classes.

• Low data: Möbius is especially effective in low data settings, where the data quantity is on the order of
hundreds of samples per class.

2. Möbius transformations

Möbius transformations are bijective conformal mappings that operate over complex inversion and preserve
local angles. They are also known as bilinear or linear fractional transformations. We discuss their biological
and perceptual underpinnings, and follow with a formal definition. Finally, we describe their application to
data augmentation to improve generalization of convolutional neural networks on image classification tasks.

2.1. Motivation
Möbius transformations have been studied in biology as 2D projections of specimens—such as humans,
fungi, and fish—from their 3D configurations [13–15]. Mathematically, most of these examples leverage
Liouville’s theorem [16], which states that smooth conformal mappings are Möbius transformations on a
domain of Rn where n> 2. These biological patterns motivate our application of Möbius transformations to
natural images, particularly those that include the relevant species.

Beyond biological underpinnings, Möbius transformations preserve the anharmonic ratio [17, 18], or the
extent to which four collinear points on a projective line deviate from the harmonic ratio3. This invariance is
a property that Möbius transformations share with projective transformations, which are used widely in
metrology [19]. In the context of transforming natural images, such a transformation can be particularly
useful for perspective projection. That is, an image can be transformed to an alternate perceived distance.
This effect is visually apparent across examples in figure 1.

2.2. Definition
Existing data augmentation techniques for image data belong to the class of affine mappings, i.e. the group of
translation, scaling, and rotation, which can be generally described using a complex function z→ az+ b,
where the variable z and the two parameters a and b are complex numbers. Möbius transformations

3 The anharmonic ratio, also denoted cross-ratio, stems from projective geometry and has been studied in biology with respect to Möbius
transformations [14, 15].
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represent the next level of abstraction by introducing division to the operation [14, 20]. The group of
Möbius transformations can be described as all functions f from C→ C with the form

f(z) =
az+ b

cz+ d
, (1)

where a,b, c,d ∈ C such that ad− bd ̸= 0. As a result, the set of all Möbius transformations is a superset of
several basic transformations, including translation, rotation, inversion, and an even number of reflections
over lines.

One method for programatically implementing such a transformation with complex values a, b, c, d in
equation (1) is to use the fact that there exists a unique Möbius transformation sending any three points to
any three other points in the extended complex plane [18, p 150]. That is, equivalent to specifying a, b, c and
d directly in (1), we can define three separate points z1,z2,z3 ∈ C in the image and then select three separate
target points w1,w2,w3 ∈ C, to which those initial points will be mapped in the resulting transformation.
From these two sets of points, we can then compute the values of the transformation using the knowledge
that anharmonic ratios—adding the points zi and wi where i= {1, 2, 3} completes the two quartets—are
Möbius invariant [18, p 154], resulting in the following equality:

(w−w1)(w2 −w3)

(w−w3)(w2 −w1)
=

(z− z1)(z2 − z3)

(z− z3)(z2 − z1)
. (2)

We can rearrange this expression by solving for w:

w−w1

w−w3
=

(z− z1)(z2 − z3)(w2 −w1)

(z− z3)(z2 − z1)(w2 −w3)

w=
Aw3 −w1

A− 1

where A= (z−z1)(z2−z3)(w2−w1)
(z−z3)(z2−z1)(w2−w3)

. This final expression for w is in the form of equation (1):

f(z) = w=
Aw3 −w1

A− 1
=

az+ b

cz+ d
,

from which we can compute the following values for a, b, c, and d using basic algebraic operations:

a= w1w2z1 −w1w3z1 −w1w2z2 +w2w3z2 +w1w3z3 −w2w3z3,

b= w1w3z1z2 −w2w3z1z2 −w1w2z1z3 +w2w3z1z3 +w1w2z2z3 −w1w3z2z3,

c= w2z1 −w3z1 −w1z2 +w3z2 +w1z3 −w2z3,

d= w1z1z2 −w2z1z2 −w1z1z3 +w3z1z3 +w2z2z3 −w3z2z3.

Alternatively, by solving equation (2) using linear algebra, i.e. evaluating a determinant from this
construction using the Laplace expansion, one can elegantly express these algebraic expressions above as
determinants:

a=

∣∣∣∣∣∣
z1w1 w1 1
z2w2 w2 1
z3w3 w3 1

∣∣∣∣∣∣ , b=

∣∣∣∣∣∣
z1w1 z1 w1

z2w2 z2 w2

z3w3 z3 w3

∣∣∣∣∣∣ , c=

∣∣∣∣∣∣
z1 w1 1
z2 w2 1
z3 w3 1

∣∣∣∣∣∣ , d=

∣∣∣∣∣∣
z1w1 z1 1
z2w2 z2 1
z3w3 z3 1

∣∣∣∣∣∣ .
This pointwise method is used in our work to construct valid image augmentations using Möbius

transformations. Ultimately, this method can be leveraged to define specific types of Möbius transformations
programmatically for needs within and beyond data augmentation.

3



Mach. Learn.: Sci. Technol. 2 (2021) 025016 S Zhou et al

2.2.1. Equivalent framing: circle reflection
We introduce an equivalent formulation of Möbius transformations on images in R2. The goal of this section
is to lend intuition on constraints that we apply to Möbius data augmentation in section 3 that follows.

Möbius mappings in the plane can also be defined as the set of transformations with an even number of
reflections over circles and lines (i.e. circles with infinite radii) on the plane. A reflection, or inversion, in the
unit circle is the complex transformation [18, p 124]:

z ∈ C→ z

|z|2
.

Thus, a Möbius transformation on an image is simply a reflection over the unit circle, with pixels inside
of the circle projected outwards and pixels on the outside projected inwards. As such, Möbius
transformations often reflect a different amount of pixels inwards as opposed to outwards, and this
imbalance enables the scale distortions seen in figure 1. Note that a circular shape can be left as an artifact
after the transformation, if the reflection occurs at an edge without any pixels to project inwards.

3. Class ofM-admissible Möbius transformations

In order to use Möbius transformations for data augmentation, we need to constrain the set of possible
transformations. When taken to the limit, Möbius transformations do not necessarily preserve the image
label. This is similar to constraining translation in order to ensure that pixels remain afterwards, or to
keeping cutout to lengths judiciously less than the size of the image so that it is not fully occluded. Because
Möbius transformations inherently reflect more pixels in one direction (into or out of the circle), we will
often see two main effects: (1) incongruent sizes of the output from the initial input and (2) gaps between
pixels in the result transformation, sometimes significant depending on the location of the circle. For
example, if the circle is placed at the edge of the image, there is little to project from the edge inwards. To
address both of these effects, we enforce equal sizing after the transformation and cubic spline interpolation
during reflection to fill gaps.

In tandem, we introduce a class ofM-admissible Möbius transformations that control the local
distortion in an image, in order to avoid explosive and implosive mappings, by bounding the modulus of the
derivative above and below. If we view each pixel as a circle to be mapped at another circle (pixel) and use the
analogue of the f #-function, as defined in an authoritative text on Möbius [21], to the modulus of the
derivative of the Möbius transformation, | f ′|, we can bound it above and below by two constants, or for
simplicity, one real constantM> 1 such that

1

M
< | f ′|<M. (3)

As an approximation, we will only check this condition for only five points on an image of size [0, p]×[0, pi]:
the four inverse images of the corner points in the square [0, p]×[0, pi] and the center point: 1

2p(1+ i).
Furthermore, in order to only consider transformations that will keep enough information from the original
picture, we add the condition that the pre-image of the center point, f−1( 12p(1+ i)), should be inside the
centered circle half-way to the sides, i.e.

| f−1

(
1

2
p(1+ i)

)
− 1

2
p(1+ i)|< p

4
]. (4)

To give more concrete and computable conditions (3) and (4), we start with a general Möbius
transformation from definition (1) with the condition that ad ̸= bc to obtain the inverse f−1 as

f−1(z) =−dz− b

cz− a
, (5)

For the condition in (4), we compute (5)

f−1

(
1

2
p(1+ i)

)
=

1
2p(1+ i)d− b

a− 1
2p(1+ i)c

.

For the condition (3), we compute the derivative f ′ :

f ′(z) =
a

cz+ d
− c(az+ b)

(cz+ d)2
. (6)
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Combining (5) and (6) and simplifying, we obtain the following simple expression:

f ′( f−1(z)) =
(a− cz)2

ad− bc
. (7)

By using (7) and (5), we can give a reformulation of the conditions in (3) and (4) to define a subclass of
all Möbius transformations,

f(z) =
az+ b

cz+ d
, where ad− bc ̸= 0,

which we call the class ofM-admissible Möbius transformations as long as the function f fulfills the
following list of inequalities by checking the points 0,p,pi,p(1+ i), 12p(1+ i):

1

M
<

|a|2

|ad− bc|
<M,

1

M
<

|a− pc|2

|ad− bc|
<M,

1

M
<
|pc+ ai|2

|ad− bc|
<M,

1

M
<

|a− p(1+ i)c|2

|ad− bc|
<M,

1

M
<
|a− 1

2p(1+ i)c|2

|ad− bc|
<M,

∣∣ 1
2p(1+ i)d− b

a− 1
2p(1+ i)c

− 1

2
p(1+ i)

∣∣< p

4
.

Sampling from theM-admissible class, we can incorporate label-preserving Möbius transformations
into classical data augmentation methods of the form (x, y)= (f (x), y), where f here is a Möbius
transformation on an image x, preserving label y.

4. Related work

A large number of data augmentation techniques have recently emerged for effectively regularizing neural
networks, including both sample-level augmentations, such as ours, as well as multi-sample augmentations
that mix multiple images. We discuss these, as well as data augmentation algorithms that leverage multiple
augmentations. Finally, we examine ways in which Möbius transformations have been applied to deep
learning. To our knowledge, this is the first work using Möbius transformations for data augmentation in
deep neural networks.

4.1. Data augmentation
4.1.1. Sample-level augmentation
Möbius transformations generalize standard translation to include inversion as an operation under
conformity, demonstrating outputs that appear to have gone through crop, rotation, and/or scaling, while
preserving local angles from the original image. We recognize that the list of image transformations is
extensive: crop, rotation, warp, skew, shear, distortion, Gaussian noise, among many others. Additional
sample-level data augmentation methods use occlusion such as cutout [2] and random erasing [3], which
apply random binary masks across image regions. Finally, there is adjacent work that follows the aim of data
augmentation methods to learn invariant representations, and directly learns network architectures that are
invariant to select transformations, such as rotation invariance [22, 23].

4.1.2. Multi-sample augmentation
Data augmentation on images also consists of operations applied to multiple input images. In such cases,
original labels are often mixed. For example, MixUp [8] performs a weighted average of two images (over
pixels) and their corresponding labels in varying proportions to perform soft multi-label classification.
Between-class learning [24] and SamplePairing [25] are similar techniques, though the latter differs in using
a single label. Comparably, RICAP [26], VH-Mixup and VH-BC+ [27] form composites of several images
into one. While these methods have performed well, we focus this paper on comparisons to sample-level
augmentations that preserve original labels and that can be more readily incorporated into data
augmentation policies.
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4.1.3. Algorithms and policies for data augmentation
Various strategies have emerged to incorporate multiple data augmentation techniques for improved
performance. AutoAugment [9], Adatransform [28], RandAugment [10], and Population Based
Augmentation [29] offer ways to select optimal transformations (and their intensities) during training. In
semi-supervised learning, unsupervised data augmentation [11], MixMatch [12], and FixMatch [30] have
shown to effectively incorporate unlabeled data by exploiting label preservation and consistency training.
Tanda [31] composes sequences of augmentation methods, such as crop followed by cutout then flip, that are
tuned to a certain domain. DADA [7] frames data augmentation as an adversarial learning problem and
applies this method in low data settings. We do not test all of these augmentation schemes: our results
suggest that Möbius could add value as an addition to the search space of possible augmentations, e.g. in
AutoAugment, or as a transformation that helps enforce consistency between original and augmented data,
e.g. in unsupervised data augmentation.

4.2. Möbius transformations in deep learning
Möbius transformations have been previously studied across a handful of topics in deep learning.
Specifically, they have been used as building blocks in new activation functions [32] and as operations in
hidden layers [33]. Coupled with the theory of gyrovector spaces, Möbius transformations have inspired
hyperbolic neural networks [34]. They also play an important component in deep fuzzy neural networks for
approximating the Choquet integral [35]. Finally, model activations and input–output relationships have
been theoretically related to Möbius transformations [36]. While prior work has primarily leveraged them
for architectural contributions, our work is the first to our knowledge to introduce Möbius transformations
for data augmentation and their empirical success on image classification benchmarks.

5. Experiments

We experiment on CIFAR-10, CIFAR-100, and Tiny ImageNet. The CIFAR-10 and CIFAR-100 image
classification benchmarks use standard data splits of 50k training and 10k test [37]. CIFAR-10 has 10 classes
with 10k images per class, while CIFAR-100 has 100 classes with 500 images per class, in their training sets.
Finally, we experiment on Tiny ImageNet [38], a subset of ImageNet that still includes ImageNet’s variability
and higher resolution imagery, while needing fewer resources and infrastructure than running the full
ImageNet dataset. The training set constitutes 100k images across 200 classes, and the test set contains 10k
images.

Thus, we explore three dataset settings: (1) CIFAR-10, (2) CIFAR-100, and (3) Tiny ImageNet. The goal
of these experiments is to assess the fundamental concept of including Möbius data augmentation across
data settings.

5.1. Evaluation of benchmarks
Following prior work on introducing novel data augmentation methods [2, 9], we use standard
crop-and-flip transformations as the baseline across all experimental conditions. We design our experiments
to both compare to, and complement, cutout [2], the previous state-of-the-art image transformation that
operates on the sample level, preserves labels, and thus has been easy to incorporate into data augmentation
policies. Cutout and standard crop-and-flip also remain the default augmentation choices in recent work [9].
Thus, we compare the following conditions: (1) baseline with only crop and flip, (2) cutout, (3) Möbius, and
(4) Möbius with cutout. Note that all conditions incorporate crop and flip transformations, following the
original cutout paper [2]. Because all augmentation techniques are sample-level and preserve labels, they are
complementary and can be layered on each other. We further explore these effects by combining Möbius
with cutout in our experiments.

We draw from prior work on cutout [2] to set the training procedure across all experiments. Specifically,
we use 0.1 learning rate, cosine annealing learning rate scheduler, stochastic gradient descent for
optimization, 200 epochs and a standard wide residual network [39] on CIFAR, and 100 epochs and a
standard residual network on Tiny ImageNet. For cutout, we tune hyperparameter values for each dataset
based on prior work [2]. Note that we select this setup to optimize for cutout and compare directly to their
work; it is possible that better hyperparameters exist for Möbius. We incorporate Möbius augmentation 20%
of the time in all experiments, and show further improvements varying its inclusion on different data settings
in the appendix. On the Tiny ImageNet dataset, for which cutout did not present a baseline, we use a
standard residual network, average across three runs, and train on two NVIDIA Tesla V100 GPUs. Training
time is 9.565 GPU hours. Finally, we compute significance using independent t-tests between sample
performances of pairwise conditions across runs.

As shown in table 1, these experiments highlight several key observations.
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Appendix A. UnconstrainedMöbius

Table A1. Juxtaposition of model performance using randomly parameterized Möbius transformations with those using defined ones.
Möbius transformations with random parameters suffers in performance, though still better than the crop-and-flip baseline.

Augmentation method Dataset Accuracy

Crop-and-flip C10 96.47%± 0.04
Möbius C10 96.72%± 0.06
RandomMöbius C10 96.54%± 0.06
Crop-and-flip C100 81.91%± 0.20
Möbius C100 82.85%± 0.31
RandomMöbius C100 82.30%± 0.11
Crop-and-flip R C10 83.98%± 0.16
Möbius R C10 86.07%± 0.24
RandomMöbius R C10 85.54%± 0.26

Möbius data augmentation operates by constraining the group of Möbius transformations that preserve
image labels to the class ofM-admissible Möbius transformations, discussed in greater detail in section 3.
We run experiments comparing the performance of unconstrained Möbius transformations in R2 against
our method on all dataset settings. Figure E2 displays a visual comparison.

As shown in table A1 below, we observe that unconstrained Möbius still outperforms the baseline of
crop-and-flip transformations, even though it performs worse than our proposed method. Recall that the
goal of theM-admissible class is to prevent disruptive transformations, for example, that would cause only a
single pixel to remain (similar to allowing ‘crop’ to crop the image down to 1 pixel).

Our speculation is that most of the time, randomly parameterized Möbius transformations are relevant
to the image’s invariance, which would improve the model’s ability to generalize. Under fully unconstrained
Möbius, we would expect such transformations, that would unlikely improve regularization and may even
hurt generalization, to occur more frequently.

Appendix B. Modulating the inclusion of Möbius

Given the inherent complexity of Möbius transformations, we additionally explore the effects of
incorporating an increasing amount of Möbius transformations into the data augmentation process. We
evaluate Möbius representations of 10%–50%, at increments of 10% in between, on CIFAR-10 and
CIFAR-100. The goal of this experiment is to examine the effects of modulating Möbius representation
during the training process. Note that the experiments in section 5.1 only focused on a stationary amount
(20%) of Möbius.

We compare these increments of Möbius both with and without cutout. We then juxtapose these results
with the baseline of cutout alone and that of standard crop-and-flip. We again report average performance
and standard deviations across five runs on all experimental conditions. The results presented in figure B1
emphasize the following findings.

• Too much Möbius data augmentation can result in disruptive training and poorer generalization.
• Möbius augmentation nevertheless outperforms both cutout and standard crop-and-flip baselines, across
several values of representation particularly at 10% and 20% representation.

• Möbius augmentation alone experiences a local optimum at 40% inclusion on CIFAR-10 and 20% on
CIFAR-100.

• Möbius with cutout performs best with a verymodest amount (10%) ofMöbius. This is expected, as cutout
provides additional regularization.

Though not shown in the graph, we also experiment with an even lower representation (5%) of Möbius
in the Möbius with cutout condition, in order to observe local optima and a bottoming out effect. We find
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Figure B1. Results from increasing Möbius representation in data augmentation from 10% to 50% in 10% increments, across five
runs. (a) On CIFAR-10, Möbius at only 10% with cutout demonstrates empirically best results. Möbius on its own performs best
at 40%, though it still performs under cutout alone. (b) On CIFAR-100, Möbius reaches best performance at 20% on its own and
at 10% with cutout. On both datasets, Möbius boosts the performance of cutout when applied together, particularly in small
quantities of 10%–30%.

that 10% still shows superior performance to 5% representation on both datasets. Specifically, Möbius at 5%
with cutout performs 97.18%± 0.14 on CIFAR-10 and 82.97%± 0.17 on CIFAR-100.

Appendix C. DefinedMöbius parameters

Given the inherent variability of Möbius transformations, we additionally explore the effects of predefining a
set of fixed Möbius transformations as a way of decreasing variation and constraining the transformations to
be human interpretable. Specifically, we define eight highly variable parameterizations that we visually verify
to maintain their respective class labels. Based on their appearance, we describe them each as follows: (1)
clockwise twist, (2) clockwise half-twist, (3) spread, (4) spread twist, (5) counter clockwise twist, (6) counter
clockwise half-twist, (7) inverse, and (8) inverse spread. Concretely, these parameters are presented below,
where ℜ(p) and ℑ(p) denote the respective real and imaginary components of a point p, and height x and
width y are dimensions of the original image.

Across all data settings, we found that the defined set of parameterizations performed better on average
in experiments than our proposed class ofM-admissible Möbius transformations, though the difference was
not significant. This suggests that restraining variability to human interpretable transformations could
improve model regularization and lead to improved generalization, though the difference is not significant.
This is not extremely surprising, because Möbius transformations can take on highly variable forms, for
which some we may not expect or desire invariance. Nevertheless, this fixed method trades off the method’s
generalizability and ease of implementation.

Here is the precise parameterization:

(a) Clockwise twist:

ℜ(z) = {1,0.5x,0.6x},
ℑ(z) = {0.5y,0.8y,0.5y},
ℜ(w) = {.5x,0.5x+ 0.3sin(0.4π)y,0.5x+ 0.1cos(0.1π)y},
ℑ(w) = {y− 1,0.5y+ 0.3cos(0.4π)y,0.5y− 0.1sin(0.1π)x}.

(b) Clockwise half-twist:

ℜ(z) = {1,0.5x,0.6x},
ℑ(z) = {0.5y,0.8y,0.5y},
ℜ(w) = {.5x,0.5x+ 0.4y,0.5x},
ℑ(w) = {y− 1,0.5y,0.5y− 0.1x}.

(c) Spread:

ℜ(z) = {.3x,0.5x,0.7x},
ℑ(z) = {0.5y,0.7y,0.5y},

10



Mach. Learn.: Sci. Technol. 2 (2021) 025016 S Zhou et al

ℜ(w) = {0.2x,0.5x,0.8x},
ℑ(w) = {0.5y,0.8y,0.5y}.

(d) Spread twist:

ℜ(z) = {.3x,0.6x,0.7x},
ℑ(z) = {0.3y,0.8y,0.3y},
ℜ(w) = {0.2x,0.6x,0.8x},
ℑ(w) = {0.3y,0.9y,0.2y}.

(e) Counter clockwise twist:

ℜ(z) = {1,0.5x,0.6x},
ℑ(z) = {0.5y,0.8y,0.5y},
ℜ(w) = {0.5x,0.5x+ 0.4y,0.5x},
ℑ(w) = {y− 1,0.5y,0.5y− 0.1x}.

(f) Counter clockwise half-twist:

ℜ(z) = {1,0.5x,0.6x},
ℑ(z) = {0.5y,0.8y,0.5y},
ℜ(w) = {0.5x,0.5x+ 0.3sin(.4π)y,0.5x+ 0.1cos(.1π)x},
ℑ(w) = {y− 1,0.5y+ 0.3cos(.4π)y,0.5y− 0.1sin(.1π)x}.

(g) Inverse:

ℜ(z) = {1,0.5x,x− 1},
ℑ(z) = {0.5y,0.9y,0.5y},
ℜ(w) = {x− 1,0.5x,1},
ℑ(w) = {0.5y,0.1y,0.5y}.

(h) Inverse spread:

ℜ(z) = {0.1x,0.5x,0.9x},
ℑ(z) = {0.5y,0.8y,0.5y},
ℜ(w) = {x− 1,0.5x,1},
ℑ(w) = {0.5y,0.1y,0.5y}.

Appendix D. Möbius points mapping with and without interpolation

We include visual representations of mapping Möbius transformations from three points {w1,w2,w3} on the
original image to three separate target points {z1,z2,z3} on the plane. In each example, the red, green, and
blue points demonstrate various mappings between the two sets of three corresponding points. We also
illustrate the effects of interpolation in filling in the gaps created by the Möbius transformations.

Note that there is increased scatter of points when the mapped points are closer to the edge of the image
and pixels are lost in the transformation, similar to scaling and cropping.
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Appendix E. Training logs for different settings

As data augmentation is largely used for regularization and invariance, we also examine training accuracy
against test accuracy to gain some indication of overfitting on different settings: Baseline crop-and-flip in
figure E2, Cutout in figure E3, Möbius in figure E4, and Möbius with Cutout in figure E5. With Möbius, we
find some empirical evidence that we are able to reduce overfitting, while slightly improving the test
accuracy. All figures below were trained on Tiny ImageNet.

12
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Figure E2. Accuracy curves on Tiny Imagenet under the baseline crop-and-flip setting.

Figure E3. Accuracy curves on Tiny Imagenet under Cutout.

Figure E4. Accuracy curves on Tiny Imagenet under Möbius.

Figure E5. Accuracy curves on Tiny Imagenet under Möbius+ Cutout.
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