
Towards Stronger Functional Signatures

Carlo Brunetta, Bei Liang and Aikaterini Mitrokotsa

Chalmers University of Technology, Gothenburg, Sweden

Manuscript

Paper E - Towards Stronger Functional Signatures 103

Abstract: Functional digital Signatures (FS) schemes introduced by Boyle, Gold-
wasser and Ivan (PKC 2014) provide a method to generate fine-grained digital signa-
tures in which a master key-pair (msk,mvk) is used to generate a signing secret-key
skf for a function f that allows to sign any message m into the message f(m) and sig-
nature σ. The verification algorithm takes the master verification-key mvk and checks
that the signature σ corresponding to f(m) is valid. In this paper, we enhance the
FS primitive by introducing a function public-key pkf that acts as a commitment for
the specific signing key skf . This public-key is used during the verification phase and
guarantees that the message-signature pair is indeed the result generated by employing
the specific key skf in the signature phase, a property not achieved by the original FS
scheme. This enhanced FS scheme is defined as Strong Functional Signatures (SFS) for
which we define the properties of unforgeability as well as the function hiding property.
Finally, we provide an unforgeable, function hiding SFS instance in the random or-
acle model based on Boneh-Lynn-Shacham signature scheme (ASIACRYPT 2001) and
Fiore-Gennaro’s publicly verifiable computation scheme (CCS 2012).

Keywords: Functional Signatures, Verifiable Computation, Function Pri-
vacy

104 Paper E - Towards Stronger Functional Signatures

1 Introduction

Digital signatures, introduced by Diffie and Hellman [DH76], is a valuable cryptographic
primitive that provides important integrity guarantees, i.e., a signed message allows the
receiver to verify that the message was indeed signed by the claimed signer. Functional
digital signatures (FS), introduced by Boyle, Goldwasser and Ivan [BGI14] as a general
extension of classic digital signatures [GMR88], allow generating signatures in a more
fine-grained manner ; thus, being very useful in multiple applications, e.g., scenarios
where the delegation of signing rights has to be considered. Functional digital signatures
require a trusted authority to hold a master secret key. Given a description of a function
f , the authority, using the master secret key, can generate a limited functional signing
key skf associated with the function f . Anyone that has access to the signing key skf
and a message m, can compute f(m) and the corresponding functional signature σ of
f(m).

Let us employ an example related to photo-processing given by Boyle et al. [BGI14]
to explain how FS works. When performing photo-processing, a digital camera is re-
quired to produce signed photos. One may want to allow photo-processing software to
perform minor touch-ups of the photos, such as changing the contrast, but not allow
more significant changes such as merging two photos or cropping a photo. Boyle et al.
argued that FS could be used in such a setting to provide the photo processing software
with a restricted key, which enables it to sign only specific modifications of an original
photo. Let us assume there are three different pictures partitioned into three areas and
coloured in red, blue and yellow but in different order, as represented in Figure 31.

Figure 31: An illustrated example of collisions from different messages and functions in
a functional signature scheme.

The functionality of f1 is to exchange the colour of areas 2 and 3, while f2 is used
to exchange the colour of areas 1 and 3, and f3 to exchange the colour of areas 1 and
2. Using the secret key skf1 to sign the photo φ1, we obtain the signed new photo y1.
With the restricted keys skf2 and skf3 , we can obtain two signed photos with the same
picture on it, namely y2 and y3. Using functional signatures, given y1, y2 and y3, the
appreciator (not the one who provides the original picture) only knows they are three
certified photos.

Generally, if we consider two functions f and g and two messages m, m′ such that
f(m) = g(m′) = y, then, given y and the corresponding functional signature σ, FS
cannot be used to certify that the function value y is indeed computed from the queried

1. INTRODUCTION 105

function f and m rather than from g and m′. The latter yields from the function privacy
property of FS [BGI14], namely given y and σ, any adversary is unable to tell which
function f or g was used to compute the value y even when given both functional signing
keys skf and skg.

What if we wish to make the appreciator classify that a signed photo y, is indeed the
outcome of applying an “allowed” function without revealing “which” one?

Our idea to allow an appreciator/verifier to distinguish between the usage of different
secret keys, e.g. skf and skg, we introduce a function public key, i.e. pkf and pkg, that is
just used in the verification phase. The public key pkf can be seen as a commitment for
the specific and related secret key skf allowing to distinguish between the evaluation
and signatures (f(m),σ1) and (g(m′),σ2) even in the case that f(m) = g(m′). This
“key-addition” directly affects the FS function privacy property that changes from “the
verifier cannot retrieve which function was computed” to the stronger concept of “the
verifier cannot retrieve which function was computed despite knowing the related public
key”. We capture this idea into the enhanced definition of Strong Functional Signature
(SFS), an Functional Signature (FS)-like scheme with function public keys that allows
the verification of function evaluations’ signatures and guarantees the correct function
evaluation while maintaining the function hidden.

Example - Computational Authorisation for Cloud Computing our SFS prim-
itive could be used in the example previously described, as well as in more general
applications related to the cloud-assisted setting which are alike to the certification
authorities’ infrastructure but for function application and not only for identity au-
thentication.

As depicted in Fig. 32, let us consider a cloud service T that offers to service pro-
viders Si the possibilities to register their functionalities fi in exchange of guaranteeing
function hiding and the correct authentication whenever a user Uj wants to verify the
authenticity and correctness of the output of such hidden functionalities. In other
words, Si will register the function fi, obtain skfi from T and, at the same time, T will
publish the public key pkf1 with some application label, e.g. it might be published into
an “Authorised” functionality list. Later on, the user Uj requires Si to process their
data, obtains the output y with signature σ and wants to verify that y is indeed correctly
computed by an authorised function. Therefore, Uj obtains the list of authorised public
keys pkfi and verifies that (y,σ) is valid by finding a public key pkf that pass the SFS
validation algorithm. Additionally, Uj is unable to infer the precise function f from the
public key pkf thus the cloud service T guarantees to the service provider S that the
function is kept private.

Observe that the cloud service T has the power to modify the status of the public
keys, e.g. a public key pkg might be completely “revoked” by removing it from all the
public key’s lists.

It is obvious that FS [BGI14, BF14, BMS16] does not have the features of checking
if the outcome is resulted from the authorised functions, neither achieves this concept
of “revocability”. In fact, in FS, since only mvk is required to verify the validity of
(y,σ), it is not possible to check if a specific function was applied to output y, while
our SFS make it possible by providing restricted public keys w.r.t. each function, which
are employed in the verification process.

Moreover, in traditional FS schemes, it is indeed impossible to “revoke” a specific
signing key, since the verification process would always work. However, in our intro-
duced SFS notion, by incorporating the public keys in the verification process, we are
able to revoke the signing capability for a restricted signing key thus allowing the trus-
ted third party that owns the master key pair, to create a more fine-grained control
over the generated function key pairs.

106 Paper E - Towards Stronger Functional Signatures

Service
Provider

Si

Auth.
Unauth.

TCloud
Service

?

User Uj

pkf1

pkf2

pkf3

f?

pkfi

fi

skfi

Com
pu

te
&

Sig
n

Figure 32: Strong functional signatures in the cloud computational authentication scen-
ario.

Our Results our results can be summarised as follows:
• we formally define the notion of SFS with unforgeability and function hiding

properties;

• we provide a variation of Boneh et al.’s BLS signature scheme [BLS04] and a vari-
ation of Fiore and Gennaro’s verifiable computation scheme [FG12]. We prove that
the Fiore and Gennaro’s VC scheme satisfies the Public Verifiable Computation
(PVC) privacy properties;

• based on our variations, we give an instantiation in the random oracle model of
an SFS scheme for the polynomial function family which is adaptively unforgeable
and satisfies the function hiding property.

The starting point of our instantiation of SFS is to use the BLS signature scheme [BLS04]
in combination with the Fiore-Gennaro’s publicly VC scheme [FG12] that is compatible
with the algebraic structure and assumptions of the BLS signatures. We denote with
BLS the variation of the BLS signature and with VC the variation of the Fiore-Gennaro’s
VC scheme, that we propose. The design-trick behind our instantiation is to create a
master key-pair as an algebraic one-way instance and use it as a “transposition” for the
secret key of the schemes, e.g. BLS.Setup(λ)→ (MSK,MPK) is equal to (β, e (g1, g2)

β)
for some β ∈ Zp and whenever we sample a fresh secret value α ∈ Zp in order to
compute the BLS and the VC keys, we just consider the new secret α + β obtained by
translating α by β. Thus, all the evaluation/secret-keys are computed as if α+β is the
randomness sampled while the verification/public-keys are published as “local keys”,
e.g. we publish e (g1, g2)

α and not e (g1, g2)
α+β . In this way, the two variated schemes

become “entangled” thus implying a stricter relation during execution and verification.
In a nutshell, the SFS instantiation combines the two schemes such that the verifiable
computation VC computes the secret function and provide the proof of correct compu-
tation while the signature scheme BLS is used to sign the result and forcedly relate it
to the VC results.
Related Work SFS are inspired by Boyle et al. [BGI14] FS construction and are closely
related to Signatures of Correct Computation (SCC) proposed by Papamanthou, Shi

1. INTRODUCTION 107

and Tamassia [PST13] as well as PVC proposed by Parno et al. [PRV12] and Fiore and
Gennaro [FG12].
Functional Signatures. This work is inspired by the notion of Functional Signatures
(FS) introduced by Boyle et al. [BGI14]. They firstly proposed the formal definition of
FS with unforgeability security as well as two additional desirable properties: function
privacy and succinctness. Boyle et al. defined FS and gave a construction for an FS
scheme, based on one-way functions and satisfying the unforgeability but not the
succinctness or function privacy properties. Furthermore, they showed how to convert
any FS without the function privacy or succinctness properties into an FS scheme that is
succinct and function-private by using a SNARK scheme [GW11, BCCT12, BCCT13].
They also showed how to use an FS scheme to construct a delegation scheme [GGP10],
i.e., non-interactive verifiable computation.
Signatures of Correct Computation. Papamanthou, Shi and Tamassia introduced
Signatures of Correct Computation (SCC) for verifying the correctness of a computation
outsourced in the cloud [PST13]. In the SCC model, an authority wishes to outsource
the execution of a function f to an untrusted server. It generates a pair of master
keys along with a verification key FK(f) for that function which will be used during
verification. Note that the existence of such a verification key for a function f and the
requirement of being used for verification are similar to our formulation of SFS. The
server can then return a signature σ on a value y, which certifies that the result y is
indeed the correct outcome of the function f evaluated on some input. In the syntax
of SCC [PST13], anyone with the public verification key can verify that an untrusted
server correctly computed a function f on a specific input m. However, the verification
algorithm requires the specific input m, used to compute f(m), to be taken as input,
which means that only the client or someone who knows the input m can verify the
correctness of the computation. Therefore, SCC would not achieve any privacy with
respect to the input m. In contrast, our SFS allows anyone to perform the verification
without knowledge of the specific input m.
Publicly Verifiable Computation. Parno et al. [PRV12] have proposed a publicly
verifiable computation (PVC) in which they consider a PVC scheme achieving two
desirable properties: public delegatability and public verifiability. Their definition of
PVC includes a ProbGen algorithm, which encodes a user’s inputs m to a server’s inputs
σm and simultaneously prepares an element ρm to be used for verification. Thus, ρm can
be used to publicly verify that the server returned a correct value. The public delegation
property refers to the existence of a public delegation key pkf for the function f , i.e.,
the key used in the ProbGen algorithm, and publicly available to anyone. Thus, anyone
can use the key and delegate the computation to the cloud.

Parno et al. [PRV12] also gave a construction of a VC scheme with public delegation
and public verifiability from any Attribute-Based Encryption (ABE), which is unfortu-
nately not appropriate to be employed in order to instantiate a SFS since additional
transformations are needed.

Another closely related work is the one by Fiore and Gennaro [FG12], who presented
a very efficient PVC scheme tailored for multivariate polynomials over a finite field based
on bilinear maps. We present a variation of their VC scheme by introducing a separate
Setup algorithm to generate a master key pair for the scheme so that the keys for
the evaluation of different functions could be executed multiple times using the same
parameters for the scheme, which allows the evaluation of multiple functions on the
same instance produced by ProbGen.

Paper organisation. In Sec. 2, we describe the notations and review the primitives
used in the paper. In Sec. 3, we propose two variances: one of Boneh et al.’s signature

108 Paper E - Towards Stronger Functional Signatures

scheme, denoted BLS, and one of the Fiore-Gennaro’s PVC scheme, denoted VC. In
Sec. 4, we provide the definition of SFS and its security properties and we instantiate
an unforgeable and function hiding SFS using the BLS and the VC schemes.

2 Preliminaries
In the following section, we define the notations used through out the paper. We also
provide the assumptions and the definitions of the building blocks that our constructions
rely on.

2.1 Notations and Assumptions
In the paper, we denote with x←RX the random uniform sampling in the set X, with λ
the security parameter. We denote with v a vector and with Zp the ring with p elements.
When not specified, p always represents either a prime or a power of it. Let Pr [E] denote
the probability that the event E occurs. Let G1,G2,GT be groups of the same order
with generators g1, g2, gT correspondingly and the bilinear map e : G1 × G2 → GT of
type-3, i.e. there does not exists an efficient homomorphism map ψ : G2 → G1.
Definition 24 (co-Computation Diffie Hellman [BLS04, FG12]). Let G1,G2,GT be
groups of prime order p. Let g1 ∈ G1,g2 ∈ G2 be generators and e : G1×G2 → GT bilinear
map of type-3, i.e. there does not exists an efficient homomorphism map ψ : G2 → G1.
We sample uniformly at random a, b←RZp and define the advantage of an adversary A
in solving the co-Computational Diffie Hellman (co-CDH) problem as

Advco-CDH
A (λ) = Pr

[
A(p, g1, g2, g

a
1 , g

b
2) = gab1

]

If for all adversaries A it exists a negligible ϵ such that Advco-CDH
A (λ) ≤ ϵ, then the

co-CDH Assumption ϵ-holds for the groups G1,G2.

2.2 Closed Form Efficient PRFs
A closed form efficient PRF (Closed Form Efficient (CFE)-Pseudo Random Function
(PRF)), defined by Fiore and Gennaro [FG12] consists of three algorithms CF.KGen,
CF.H and CF.Eval. CF.KGen takes as input a security parameter λ and outputs a secret
key K, from the key space K, and some public parameters pp that specify the domain
X and range Y of the function. For a fixed secret key K, CF.HK takes as input a value
x ∈ X and outputs a value y ∈ Y. It satisfies the pseudo-randomness property: for
every PPT adversary A, (K, pp)← CF.KGen(λ) and any random function ξ : X → Y:

ϵPRF =

∣∣∣∣∣∣

Pr
[
ACF.HK(·)(λ, pp) = 1

]
−

− Pr
[
Aξ(·)(λ, pp) = 1

]

∣∣∣∣∣∣
≤ negl(λ)

Additionally, the scheme is required to achieve closed form efficiency: consider a
generic computation φ that has as input l random values R1, ... , Rl ∈ Y and a vector
of m arbitrary values x = (x1, ... , xm). Assume that the fastest computation time
that takes to compute φ(R1, ... , Rl, x1, ... , xm) is T . Let z = (z1, ... , zl) be a l-tuple of
arbitrary values in the domain X . The CF.PRF is said to achieve closed form efficiency
for (φ, z) if the algorithm CF.Eval has running time o(T) and it holds

CF.Eval(φ,z)(K,x) = φ(CF.HK(z1), ... ,CF.HK(zl), x1, ... , xm)

Fiore and Gennaro [FG12] give constructions of closed form efficient PRFs for mul-
tivariate polynomials and matrix multiplication, based on the decision linear assump-
tion.

2. PRELIMINARIES 109

2.3 Functional Signatures
Boyle et al. [BGI14] introduced functional digital signatures (FS), a cryptographic prim-
itive that can be employed to achieve signing delegation.

Definition 25 (Functional Signature [BGI14]). A Functional Signature scheme for
a message space M and function family F = {f : Df → M} consists of the PPT
algorithms FS = (FS.Setup,FS.KGen,FS.Sign,FS.Ver) defined as:

• FS.Setup(λ) → (msk,mvk) : the setup algorithm takes as input the security para-
meter λ and outputs the master signing key msk and the master verification key
mvk.

• FS.KGen(msk, f) → skf : the key generation algorithm takes as input the master
signing key and a function f ∈ F and outputs a signing key skf .

• FS.Sign(f, skf ,m) → (f(m),σ) : the signing algorithm takes as input the signing
key for a function f and an input m ∈ Df , and outputs f(m) and a signature σ
of f(m).

• FS.Ver(mvk,m′,σ) → {0, 1} : the verification algorithm takes as input the master
verification key mvk, a message m′ and a signature σ, and outputs 1 if the signature
is valid.

The definition requires the following conditions to hold:

Correctness a Functional Signature (FS) scheme is correct if for all functions f ∈ F ,
messages m ∈ Df , (msk,mvk) obtained from FS.Setup(λ), skf obtained from FS.KGen(msk, f)
and (m′,σ) obtained from FS.Sign(f, skf ,m), it holds that FS.Ver(mvk,m′,σ) = 1.

Succinctness there exists a polynomial s(·) such that for every λ ∈ N, function f ∈ F ,
message m ∈ Df , master keys (msk,mvk) ← FS.Setup(λ), function key skf obtained
from FS.KGen(msk, f), and (f(m),σ) ← FS.Sign(skf ,m), it holds with probability 1
that |σ| ≤ s(λ, |f(m)|).

Unforgeability FS is unforgeable if the probability of any PPT algorithm A in the FS
unforgeability experiment ExpFS.UNF

FS (A), depicted in Figure 33, to output 1 is negligible.
Namely,

AdvFS.UNF
A,FS (λ) = Pr

[
ExpFS.UNF

FS (A) = 1
]
≤ negl(λ)

Function privacy FS is function private if the advantage of any PPT algorithm A in
the FS function privacy experiment ExpFS.FPriv

FS (A), depicted in Figure 33 is negligible.
Namely,

AdvFS.FPriv
A,FS (λ) =

∣∣∣∣Pr
[
ExpFS.FPriv

FS (A) = 1
]
− 1

2

∣∣∣∣ ≤ negl(λ)

2.4 The BLS Signature Scheme
In this section, we will report the Boneh et al.’s signature scheme [BLS04].

Let (p, g1, g2,G1,G2,GT , e) where e : G1×G2 → GT is a bilinear map in the security
parameter λ. Let H : {0, 1}∗ → G1 be a full-domain hash function. The BLS signature
scheme [BLS04] with the message space M = {0, 1}∗ comprises of the following three
algorithms:

• BLS.KGen(λ) → (PK, SK): given a security parameter λ, sample a secret value
SK←$ Zp and compute as the public key PK = gSK2 .

110 Paper E - Towards Stronger Functional Signatures

ExpFS.UNF
FS (A)

(msk, mvk)← FS.Setup(λ)
LF ,L∆ = ∅

(m⋆,σ⋆)← AOFS.key,OFS.sign (mvk)

if
(
∃(f, i, ·) ∈ LF : ∃m′ : m⋆ = f(m′)

)

∨
(
∃(f, i, m, ·) ∈ L∆ : m⋆ = f(m)

)

return ⊥
else

return FS.Ver(mvk, m⋆,σ⋆)

OFS.key(f ,i)
if (f, i, ·) in LF then

return skif

else skif ← FS.KGen(msk, f)

LF ← LF ∪ {(f, i, skif)}

return skif

ExpFS.FPriv
FS (A)

(msk, mvk)← FS.Setup(λ)
b←R{0, 1}

(f0, m0, f1, m1)← A(msk, mvk)

if
(
|f0| ̸= |f1| ∨ |m0| ̸= |m1|∨

∨ f0(m0) ̸= f1(m1)
)

return ⊥

else skfb ← FS.KGen(msk, fb)

(m⋆,σ⋆)← FS.Sign(fb, skfb , mb)

b⋆ ← A(msk, mvk, m⋆,σ⋆)

if b⋆ = b then return 1

else return 0

OFS.sign(f ,i,m)
skif ← OFS.key(f, i)

σ ← FS.Sign(f, skif , m)

L∆ ← L∆ ∪ {(f, i, m,σ)}
return σ

Figure 33: Functional signature unforgeability and function privacy experiments.

• BLS.Sign(SK,m) → σ̈: given a secret key SK and a message m ∈ M, compute
H(m) and output the signature σ̈ = H(m)SK.

• BLS.Ver(PK,m, σ̈)→ {0, 1}: given a public key PK, a message m and a signature
σ̈, check e (σ̈, g2)

?
= e (H(m),PK) and output 1 if it is true, otherwise output 0.

The BLS scheme is existentially unforgeable against chosen message attacks in the
random oracle model (ROM), assuming the co-CDH assumption of Def. 24 holds.

2.5 Verifiable Computation
A verifiable computation (VC) scheme allows a client to delegate the computation of a
function f to a server so that the client is able to verify the correctness of the result
returned by the server with less computation cost than evaluating the function directly.
We describe the definition of a verifiable computation (VC) scheme introduced by Parno
et al. [PRV12] and Fiore and Gennaro [FG12].

Definition 26 (Verifiable Computation [PRV12, FG12]). A verifiable computation
scheme VC is defined by the following algorithms:

• VC.KGen(λ, f) → (s̃kf , ṽkf , ẽkf) : the key generation algorithm takes as input a
security parameter λ and the description of a function f , and outputs a secret key
s̃kf that will be used for input delegation, a corresponding verification key ṽkf , and
an evaluation key ẽkf , which will be used for the evaluation of f .

• VC.ProbGen(s̃kf ,m)→ (σ̃m, ρ̃m) : the problem generation algorithm uses the secret
key s̃kf to encode the function input m as an encoded value σ̃m and a corresponding
decoding value ρ̃m.

2. PRELIMINARIES 111

• VC.Compute(ẽkf , σ̃m)→ σ̃y : the computing algorithm takes as input the evaluation
key ẽkf and the encoded input σ̃m and outputs σ̃y, an encoded version of the
function’s output y = f(m).

• VC.Ver(ṽkf , ρ̃m, σ̃y) → y or ⊥ : the verification algorithm takes as input the veri-
fication key ṽkf , the decoding value ρ̃m and the encoded output σ̃y. The algorithm
outputs y if and only if y = f(m) is correctly computed. Otherwise ⊥ is the output.

A publicly verifiable computation scheme is a VC scheme with an additional property
that the verification key ṽkf is published publicly such that anyone can check the
correctness of a performed computation.
Remark 10. The original VC [FG12] is with “secret-key” nature. In the earlier defin-
ition, KGen produces a secret key that was used as an input to ProbGen and, in turn,
ProbGen produces a secret verification value needed for Ver. Later, Parno et al. [PRV12]
introduced the “public-key” VC definition which has both the public delegation and pub-
lic verification properties. The delegation being public or private depends on whether
the evaluation key s̃k is published or kept secret. In our case, we consider the scen-
ario where the Public Verifiable Computation (PVC) scheme is publicly verifiable but
privately delegatable, i.e. the evaluation key ẽkf is secret while the verification key ṽkf is
public. In the paper, we abuse terminology and refer to a PVC scheme when discussing
about a Verifiable Computation (VC) scheme.

Correctness a verifiable computation scheme VC is correct for a class of functions
F if for any f ∈ F , for any tuple of keys (s̃kf , ṽkf , ẽkf) ← VC.KGen(λ, f), for any
m ∈ Df , for any (σ̃m, ρ̃m) ← VC.ProbGen(s̃kf ,m) and any computed σ̃y obtained from
VC.Compute(ẽkf , σ̃m), it holds that VC.Ver

(
ṽkf , ρ̃m, σ̃y

)
= y = f(m).

Security a VC scheme is secure w.r.t. a static attacker if the probability of any PPT
algorithm A in the VC static security experiment ExpVC.StaticVer

VC (A) of Figure 34, to
output 1 is negligible. Namely,

AdvVC.StaticVer
A,VC (λ) = Pr

[
ExpVC.StaticVer

VC (A) = 1
]
≤ negl(λ)

Privacy [FGP14] a VC scheme is said to be private w.r.t. a static attacker if the
advantage of any PPT algorithm A winning in the VC privacy experiment ExpVC.Priv

VC (A)
of Figure 34 is negligible. Namely,

AdvVC.Priv
A,VC (λ) =

∣∣∣∣Pr
[
ExpVC.Priv

VC (A) = 1
]
− 1

2

∣∣∣∣ ≤ negl(λ)

2.6 Fiore-Gennaro’s PVC Scheme
Fiore and Gennaro [FG12] propose a publicly VC scheme for the function family F
containing all multivariate polynomials f(x1, ... , xm) with coefficients in Zp for some
prime p, m variables and degree at most d in each variable. Let h : Zm

p → Zl
p which

expands the input x to the vector (h1(x), ... , hl(x)) of all the monomials as follows:
for all j ∈ {1, ... , l} where l = (d + 1)m, write j = (i1, ... , im) with ik ∈ {0, ... , d},
then hj(x) = (xi1

1 · · ·xim
m). Thus, by using this notation, it is possible to write the

polynomial as f(x) = ⟨f , h(x)⟩ =
∑l

j=1 fj · hj(x) where the fj ’s are its coefficients and
fj ∈ Zp. The construction works over the groups G1,G2,GT of the same prime order p,
equipped with a bilinear map e : G1×G2 → GT . Let us define Poly(R,x) =

∏l
j=1 R

hj(x)
j

where R is a random l-dimensional vector of Gl
1.

112 Paper E - Towards Stronger Functional Signatures

ExpVC.StaticVer
VC (A)

f ← A
(
1n
)

(s̃kf , ṽkf , ẽkf)← VC.KGen (λ, f)

(σ̃0, ρ̃0) = (∅, ∅)
for i ∈ {1, ... , t = poly(λ)} do

mi ← A
(

ẽkf , ρ̃1, ... , ρ̃i−1

ṽkf , σ̃1, ... , σ̃i−1

)

(σ̃i, ρ̃i)← VC.ProbGen(s̃kf , mi)

m⋆ ← A
(

ẽkf , ρ̃1, ... , ρ̃t
ṽkf , σ̃1, ... , σ̃t

)

(σ̃, ρ̃)← VC.ProbGen(s̃kf , m⋆)

σ̃⋆ ← A
(

ẽkf , ρ̃1, ... , ρ̃t, ρ̃

ṽkf , σ̃1, ... , σ̃t, σ̃

)

y⋆ ← VC.Ver(ṽkf , ρ̃, σ̃⋆)

if
(
y⋆ ̸= ⊥

)
∧
(
y⋆ ̸= f(m⋆)

)

then return 1

else return 0

ExpVC.Priv
VC (A)

(f0, f1, m0, m1)← A
(
1n
)

if f0(m0) ̸= f1(m1) then

return ⊥
b←R{0, 1}

(s̃kfb , ṽkfb , ẽkfb)← VC.KGen (λ, fb)

(σ̃b, ρ̃b)← VC.ProbGen(s̃kfb , mb)

σ̃yb ← VC.Compute(ẽkfb , σ̃b)

b⋆ ← A(ṽkfb , σ̃yb , ρ̃b, f0, f1, m0, m1)

if b⋆ = b then return 1

else return 0

Figure 34: VC static security and privacy experiments.

Let CF = (CF.KGen,CF.H,CF.Eval) be a CFE PRF defined in Section 2.2. Fiore-
Gennaro’s public verifiable computation scheme [FG12] VC is constructed as the follows:

• VC.KGen(λ, f) → (s̃kf , ṽkf , ẽkf) : Generate the description of a bilinear group
(p, g1, g2,G1,G2,GT , e) in the security parameter λ, a key of a PRF K with range in
G1 as K ← CF.KGen(λ, ⌈log d⌉ ,m). Randomly sample α←RZp and, for all the in-
dexes i ∈ {1, ... , l}, compute Wi = gα·fi1 CF.HK(i) and define W as (W1, ... ,Wl) ∈
Gl

1. Output the key tuple
(
s̃kf , ṽkf , ẽkf

)
as the values

(
K, e (g1, g2)

α , (f,W)
)
.

• VC.ProbGen(s̃kf ,m) → (σ̃m, ρ̃m) : Output the tuple
(
σ̃m, ρ̃m

)
where σ̃m = m and

ρ̃m = e (CF.EvalPoly(K,h(m)), g2).

• VC.Compute(ẽkf , σ̃m)→ σ̃y : Compute y by evaluating f(m) =
∑l

i=1 fihi(m) and
V =

∏l
i=1 W

hi(m)
i . Output σ̃y = (y, V).

• VC.Ver(ṽkf , ρ̃m, σ̃y) → {y,⊥} : output y if it holds that e (V, g2)
?
=
(
ṽkf
)y · ρ̃m.

Otherwise output ⊥.

Fiore and Gennaro [FG12] proved that the construction is secure if the co-CDH
assumption holds and CF.PRF is a close form efficient PRF. In Lemma 3, we prove that
Fiore-Gennaro PVC scheme satisfies privacy as defined in the experiment depicted in
Figure 34.

3 Construction Blocks: Variated Schemes
In this section, we provide our variations of the Boneh-Lynn-Shacham signature scheme [BLS04]
and Fiore-Gennaro publicly verifiable computation scheme [FG12].

In a nutshell, the variations add to the schemes a “setup algorithm” that outputs
a master key-pair used in the original key-generation algorithm and in the final veri-
fication algorithm while the accordingly modified security games reduce to the ones

3. CONSTRUCTION BLOCKS: VARIATED SCHEMES 113

of the original schemes. The final purpose of these modifications is to later allowing
the instantiation of both the two schemes with a single common master key-pair in a
stronger security setting, where the master secret-key is kept secure as in the act of
“merging” the schemes into a single one. Intuitively, with the shared schemes’ master
public-key, the final verification algorithm will compute the two schemes’ verification
algorithms independently and will verify that the schemes are indeed “merged” into a
single one.

3.1 A variation of the BLS signature
We introduce, in the BLS signature scheme, a Setup algorithm that outputs a master
key-pair (MPK,MSK) used in the KeyGen algorithm to produce a local signing key in
order to generate a signature for a message together with a local verification key. The
Verify algorithm will take both the master public key and the local verification key to
check the validity of a message-signature pair. We provide the unforgeability game for
our BLS variation in Figure 35 and prove the unforgeability of it in the random oracle
model.

Definition 27 (BLS Variation). Let (p, g1, g2,G1,G2,GT , e) where e : G1×G2 → GT is
a bilinear map in the security parameter λ. Let H : {0, 1}∗ → G1 be a full-domain hash
function and F : K × {0, 1}∗ → Zp a PRF. Let the additional information α ∈ Zp be
a field element known just to the signer. Our variation BLS scheme is defined as the
algorithms:

• BLS.Setup(λ) → (MPK,MSK): sample β←$ Zp and set MSK = β. Compute
MPK = e (g1, g2)

β and output (MPK,MSK) ∈ GT×Zp.

• BLS.KGen(MSK,α) → (PK, SK): given MSK ∈ Zp and α ∈ Zp, sample k←$ Zp,
r ∈ Zp and compute secret key as SK = (SK1, SK2) = (gMSK+α+r

1 , k
)

and the public
key as PK = (PK1,PK2) = (e (g1, g2)

α+r , gSK2
2).

• BLS.Sign(SK,m)→ σ̈: given a secret key SK = (SK1, SK2) and a message m ∈M,
compute and output the signature σ̈ = SK1 · H(m)SK2 .

• BLS.Ver(MPK,PK,m, σ̈)→ {0, 1}: given a public key PK = (PK1,PK2), a message
m, a signature σ̈ and a environmental public key MPK, verify and output the result
of the check e (σ̈, g2)

?
= MPK · PK1 · e (H(m),PK2).

ExpBLS.UNF
BLS (A)

(PK, SK)← BLS.KGen(λ)

(m⋆, σ̈⋆)← AOBLS.Sign(SK,·),OH(·)
(PK)

if (m⋆, σ̈⋆) ∈ L∆ then return ⊥

return BLS.Ver(PK, m⋆, σ̈⋆)

ExpBLS.UNF
BLS (A)

(MPK,MSK)← BLS.Setup(λ)
α⋆ ← A(MPK); L∆ = ∅

(PK, SK)← BLS.KGen(λ,MSK,α⋆)

(m⋆, σ̈⋆)← A
OBLS.Sign(SK,·),OH(·)

(MPK, PK)

if (m⋆, σ̈⋆) ∈ L∆ then return ⊥

return BLS.Ver(MPK, PK, m⋆, σ̈⋆)

Figure 35: BLS and BLS unforgeability experiments.

We present in Fig. 35 a modified unforgeability experiment for the BLS scheme
which, differently from the BLS standard unforgeability experiment, must consider the

114 Paper E - Towards Stronger Functional Signatures

generation of the master key pair and the value α⋆. We prove that, despite the modi-
fication, unforgeability is preserved.
Proposition 8. If the advantage for all PPT adversaries B for the unforgeability ex-
periment ExpBLS.UNF

BLS (B) is negligible, then all the PPT adversaries A for the experiment
ExpBLS.UNF

BLS (A) have a negligible advantage. Formally:

AdvBLS.UNF
A,BLS (λ) ≤ AdvBLS.UNF

B,BLS (λ) ≤ negl(λ)

Proof. assume that there exists a PPT adversary A for the experiment ExpBLS.UNF
BLS (A)

with non-negligible advantage ∆. The oracles OBLS.Sign(SK)(m) and OBLS.Sign(SK)(m) is to
respond with the signatures on the messages m submitted to each challenger and then
keep a track of the message-signature pair in its queried set L∆. Now we construct an
adversary R, running A as a subroutine, which attacks the underlying BLS scheme.
Receiving from BLS challenger the public key PK⋆, R sets it to be PK2. R runs
BLS.Setup(λ) → (MPK,MSK). It then outputs MPK to A. A will reply with ξ and
α. R fixes SK1 = gMSK+α+r

1 and computes PK1 = e
(
gMSK+α+r
1 , g2

)
and outputs PK =

(PK1,PK2) to A. After the key generation phase, for every signing query OBLS.Sign(m)
from A, the reduction R queries B’s oracle with OBLS.Sign(m) and obtains σ̈⋆. For any
hash query OH(m) from A, R queries B’s hash oracle with OH(m) and obtains H(m). R
computes σ̈ = SK1 · σ̈⋆ and returns it to A. When A outputs the forgery (m⋆, σ̈⋆), the
reduction R outputs (m⋆, σ̈⋆ · g−α−MSK−r

1).
It is direct to check that R output is a correct forgery for the BLS signature scheme

since:

BLS.Ver(PK⋆,m⋆, σ̈⋆ · g−α−MSK−r
1)⇔

e
(
σ̈⋆ · g−α−MSK−r

1 , g2
)

?
= e (H(m⋆),PK⋆)⇔

⇔ e (σ̈⋆, g1)
?
= e (g1, g2)

α+MSK+r · e (H(m⋆),PK⋆)

⇔ e (σ̈⋆, g1)
?
= MPK · PK1 · e (H(m⋆),PK2)

⇔ BLS.Ver(MPK,PK,m⋆, σ̈⋆)

therefore ∆ = AdvBLS.UNF
A,BLS (λ) ≤ AdvBLS.UNF

B,BLS (λ) which is a contradiction.

3.2 A variation of Fiore-Gennaro’s PVC
In our PVC variation, we introduce a master key-pair (m̃sk, m̃pk) that is generated in
the Setup phase and set as (β, e (g1, g2)

β), which adds additional randomness to the
evaluation key of function f such that Wi in Fiore-Gennaro’s PVC is rerandomized to
Wi ·gβ·fi1 . By forcing the master secret-key to be zero, i.e. β = 0, we obtain the original
Fiore-Gennaro’s scheme.
Definition 28 (Fiore-Gennaro PVC Variation). Let pp be the description of a bilin-
ear group (p, g1, g2,G1,G2,GT , e) in the security parameter λ. Our publicly verifiable
computation scheme VC is defined by the following algorithms:

• VC.Setup(λ) → (m̃sk, m̃pk) : the setup algorithm randomly sample β←RZp and
outputs

(
m̃sk, m̃pk

)
=
(
β, e (g1, g2)

β).

• VC.KGen(λ, m̃sk, f) → (s̃kf , ṽkf , ẽkf) : let m̃sk = β. The algorithm samples
α←$ Zp and generates a PRF key K ← CF.KGen(λ, ⌈log d⌉ ,m) with range in G1.
For all i ∈ {1, ... , l}, it computes Wi = g(α+β)·fi1 CF.HK(i) and let W be defined as
(W1, ... ,Wl) ∈ Gl

1. It outputs
(
s̃kf , ṽkf , ẽkf

)
as
(
(α, gα2 ,K), e (g1, g2)

α , (f,W)
)
.

3. CONSTRUCTION BLOCKS: VARIATED SCHEMES 115

• VC.ProbGen(s̃kf ,m) → (σ̃m, ρ̃m) : Output the tuple
(
σ̃m, ρ̃m

)
where σ̃m = m and

ρ̃m = e (CF.EvalPoly(K,h(m)), gα2).

• VC.Compute(ẽkf , σ̃m) → σ̃y : Compute y by evaluating f(m) =
∑l

i=1 fihi(m) and
V =

∏l
i=1 W

hi(m)
i . Output σ̃y = (y, V).

• VC.Ver(m̃pk, ṽkf , ρ̃m, σ̃y)→ {y,⊥}: the algorithm checks if it holds that e (V, g2) ?
=(

ṽkf · m̃pk
)y · ρ̃m. If it is true, then it outputs y. Otherwise it outputs ⊥.

Remark 11. It seems redundant to include α in s̃kf , since the component of (gα2 ,K)

suffices to obtain (σ̃m, ρ̃m). However, looking ahead, the component α of s̃kf plays the
role of building a bridge between VC and BLS in order to achieve an SFS.

We describe the security and privacy experiments in Fig. 36.

ExpVC.StaticVer
VC (A)

(m̃pk, m̃sk)← VC.Setup(λ)

f ← A
(

m̃pk

)

(s̃kf , ṽkf , ẽkf)← VC.KGen
(

λ, f

m̃sk

)

for i ∈ {1, ... , t = poly(λ)} do

mi ← A
(

ẽkf , ρ̃1, ... , ρ̃i−1

ṽkf , σ̃1, ... , σ̃i−1
, m̃pk

)

(σ̃i, ρ̃i)← VC.ProbGen(s̃kf , mi)

m⋆ ← A
(

ẽkf , ρ̃1, ... , ρ̃t
ṽkf , σ̃1, ... , σ̃t

, m̃pk

)

(σ̃, ρ̃)← VC.ProbGen(s̃kf , m⋆)

σ̃⋆ ← A
(

ẽkf , ρ̃1, ... , ρ̃t, ρ̃

ṽkf , σ̃1, ... , σ̃t, σ̃
, m̃pk

)

y⋆ ← VC.Ver(ṽkf , ρ̃, σ̃⋆)

if
(
y⋆ ̸= ⊥

)
∧
(
y⋆ ̸= f(m⋆)

)

then return 1

else return 0

ExpVC.Priv
VC (A)

(m̃pk, m̃sk)← VC.Setup(λ)

b←R{0, 1}

(f0, f1, m0, m1)← A
(

m̃pk

)

if f0(m0) ̸= f1(m1) then

return ⊥

(s̃kfb , ṽkfb , ẽkfb)← VC.KGen
(

λ, fb

m̃sk

)

(σ̃b, ρ̃b)← VC.ProbGen(s̃kfb , mb)

σ̃yb ← VC.Compute(ẽkfb , σ̃b)

b⋆ ← A(m̃pk , ṽkfb , σ̃yb , ρ̃b, f0, f1, m0, m1)

if b⋆ = b then return 1

else return 0

Figure 36: The static security and privacy experiments for VC scheme. In box are high-
lighted the variations introduced in the VC experiments in comparison to the original
Fiore-Gennaro VC scheme.

Proposition 9. If all PPT adversaries B for the experiment ExpVC.StaticVer
VC (B) have a

negligible advantage, then all the PPT adversaries A for the experiment ExpVC.StaticVer
VC (A)

have a negligible advantage. Formally:

AdvVC.StaticVer
A,VC (λ) ≤ AdvVC.StaticVer

B,VC (λ) ≤ negl(λ)

and, mutatis mutandis, it holds:

AdvVC.Priv
A,VC (λ) ≤ AdvVC.Priv

B,VC (λ)

116 Paper E - Towards Stronger Functional Signatures

Proof. let us assume by contradiction that there exists a PPT adversary A for the
experiment ExpVC.StaticVer

VC (A) with non-negligible advantage ∆. We build an adversary
R, running A as a subroutine, which attacks the security of the underlying VC scheme.
R runs VC.Setup(λ)→ (m̃pk, m̃sk) and then outputs m̃pk to A that will reply with the
challenging function f . The reduction R just forwards it to the challenger of VC scheme
and obtains (ṽkf , ẽkf) where ẽkf = (f,W⋆). R modifies W⋆ into W by computing, for
all i ∈ {1, ... , l}, the new values Wi = Wi⋆ · gm̃sk·fi

1 . It then returns (ṽkf , (f,W))
to A. All the ProbGen queries from A are just forwarded to the challenged of VC
scheme and are responded with the same response from VC challenger. When the
adversary A outputs the forgery (i⋆, σ̃⋆) where σ̃⋆ = (y⋆, V ⋆), the reduction R and
outputs (i⋆, (y⋆, V ⋆ · g−m̃sk·y

1)). It is straightforward to check that R output is a correct
tamper for the VC scheme since:

VC.Ver
(
ṽkf , ρ̃i⋆ ,

(
y⋆,V ⋆ · g−m̃sk·y

1

))
⇔

e
(
V ⋆ · g−m̃sk·y

1 , g2
)

?
= ṽk

y

f · ρ̃i⋆ ⇔

e (V ⋆, g2) e (g1, g2)
−m̃sk·y ?

= ṽk
y

f · ρ̃i⋆ ⇔

⇔ e (V ⋆, g2)
?
= e (g1, g2)

m̃sk·y · ṽk
y

f · ρ̃i⋆

⇔ e (V ⋆, g2)
?
=
(

m̃pk · ṽkf
)y

· ρ̃i⋆

⇔ VC.Ver(m̃pk, ṽkf , ρ̃
⋆
i , σ̃

⋆)

therefore ∆ = AdvVC.StaticVer
A,VC (λ) ≤ AdvVC.StaticVer

R,VC (λ) ≤ negl which is a contradiction.
Similarly, it is easy to define a reduction R for an adversary A for the VC privacy
experiments such that AdvVC.Priv

A,VC (λ) ≤ AdvVC.Priv
R,VC (λ).

We complement Fiore-Gennaro’s results by providing the proof that their original
VC scheme is indeed private, since this is needed to prove the function hiding property
of the SFS construction.
Lemma 3. If CF.PRF is a close form efficient PRF, then the Fiore-Gennaro PVC
scheme is private.

Proof. in order to prove the privacy of the Fiore-Gennaro scheme, we define a sequence
of games that has the random bit b as input.

• Game1(b, A): the experiment ExpVC.Priv
VC (A) is executed by using the original Fiore-

Gennaro scheme;

• Game2(b, A): in this game, the ρ̃mb value is computed as

ρ̃mb = e

(
l∏

i=1

CF.HK(i)hi(mb), g2

)
;

• Game3(b, A): we exchange all the PRF evaluations CF.HK(i) with random ele-
ments Ri;

• Game4(b, A): we split the definition of W into a left and a right component
W = {(WLi ,WRi)}li=1 = {(gαfbi1 , Ri)}li=1 and we substitute Wi with WLi ·WRi ;

• Game5(b, A): after the challenge, we compute y which is equal to f0(m0) =
f1(m1), define WL = gα·y1 and then substitute W with just the right component
W = {WRi}li=1. The game computes V as WL ·

∏l
i=1 Ri

hi(mb)

3. CONSTRUCTION BLOCKS: VARIATED SCHEMES 117

We highlight the difference between the games in Figure 37 in which we describe the
challenger computations made after the challenger bit b sampling and before the bit b′

guess. For compactness, we refer to CF.HK with just HK and the notation {·}i where
the index i is contained in the set {1, ... , l}.

Game1(b)

1 :
(
K, e (g1, g2)

α ,
(
fb,
{
g
α·fbi
1 HK(i)

}

i

))

2 :
(
mb, e

(
CF.EvalPoly(K,h(mb)), g2

))

3 :

(
y,

l∏

i=1

W
hi(mb)
i

)

Game2(b)

1 :
(
K, e (g1, g2)

α ,
(
fb,
{
g
α·fbi
1 HK(i)

}

i

))

2 :
(

mb, e
(∏l

i=1 HK(i)hi(mb) , g2
))

3 :

(
y,

l∏

i=1

W
hi(mb)
i

)

Game3(b)

1 :
(
e (g1, g2)

α ,
(
fb,
{
g
α·fbi
1 Ri

}

i

))

2 :

(
mb, e

(
l∏

i=1

Ri
hi(mb), g2

))

3 :

(
y,

l∏

i=1

W
hi(mb)
i

)

Game4(b)

1 :
(
e (g1, g2)

α , (fb,
{(

g
α·fbi
1 Ri

)}

i
)
)

2 :

(
mb, e

(
l∏

i=1

Ri
hi(mb), g2

))

3 :

(
y,

l∏

i=1

((
g
α·fbi
1

)
·Ri

)hi(mb)

)

Game5(b = 1)
1 : y = f1(m1)

2 :
(
e (g1, g2)

α , (fb,
{(

g
α·fbi
1 Ri

)}

i
)
)

3 :

(
m1, e

(
l∏

i=1

Ri
hi(m1), g2

))

4 :
(
y, gα·y1 ·

∏l
i=1 Ri

hi(m1)
)

Game5(b = 0)
1 : y = f0(m0)

2 :
(
e (g1, g2)

α , (fb,
{(

g
α·fbi
1 R′i

)}

i
)
)

3 :
(

m0, e
(∏l

i=1 R
′
i
hi(m0), g2

))

4 :
(
y, gα·y1 ·

∏l
i=1 R

′
i
hi(m0)

)

Figure 37: The games used for proving the privacy of Fiore-Gennaro PVC scheme.

Claim 1. Pr [Game1(b,A) = 1] = Pr [Game2(b,A) = 1]

Proof. The only difference is on “how to evaluate” the CF.EvalPoly and by its correctness,
the two are equivalent.

Claim 2. |Pr [Game2(b,A) = 1]− Pr [Game3(b,A) = 1]| ≤ ϵPRF

Proof. The difference between the games is that we replace the evaluation of the PRF
with random elements. It is easy to see that an adversary A able to distinguish between
the two games with non-negligible advantage can be used to define an adversary B able
to distinguish the security of the CF.PRF with non-negligible advantage.

Claim 3. Pr [Game3(b,A) = 1] = Pr [Game4(b,A) = 1]

Proof. The two games are equivalent since there is no difference between the two dis-
tributions.

Claim 4. Pr [Game4(b,A) = 1] = Pr [Game5(b,A) = 1]

118 Paper E - Towards Stronger Functional Signatures

Proof. The difference between the two games is merely a computational optimisation
since

∏l
i=1

(
g
α·fbi
1

)hi(mbi
)
= gα·y1 where y = f0(m0) = f1(m1). Thus, there is no

difference between the two games distributions.

Claim 5. Pr [Game5(1,A) = 1] = Pr [Game5(0,A) = 1]

Proof. in order to prove the equality between the two probabilities, it is important to
observe that, since the exponents hi(mb) and hi(m1−b) are fixed, the probability is
measured on the random values Ri and R′i. Fixed Ri, dually R′i, there exists random
values R′i, dually Ri, such that the product

∏l
i=1 Ri

hi(mb) is equal to
∏l

i=1 R
′
i
hi(m1−b).

Thus, by duality, the probabilities are the same.

Therefore, the advantage is

AdvVC.StaticVer
A,VC (λ) =

= |Pr [Game1(1,A) = 1]− Pr [Game1(0,A) = 1]|

≤ 2 ·
4∑

i=1

|Pr [Gamei(1,A) = 1]− Pr [Gamei+1(1,A) = 1]|+

+ |Pr [Game5(1,A) = 1]− Pr [Game5(0,A) = 1]|
≤ 2 · ϵPRF

4 Strong Functional Signatures
In this section, we define the Strong Functional Signature (SFS) primitive and the
related unforgeability and function hiding experiments. We provide a specific SFS
instantiation using the variated schemes introduced in Sec. 3 and prove it achieves
unforgeability and function hiding.

4.1 SFS Definition
Our definition of an SFS scheme can be seen as a combination of a PVC and a FS
scheme: similar to FS, an SFS scheme achieves delegation of the signing capability
w.r.t. the master key-pair and it also allows the verification of the correct computation
of the signing function f through an additional function public key pkf , as a PVC
scheme.

Definition 29 (Strong Functional Signature). A Strong Functional Signature (SFS)
scheme for a message space M and function family F consists of the PPT algorithms
SFS = (SFS.Setup, SFS.KGen, SFS.Sign, SFS.Ver) defined as:

• SFS.Setup(λ)→ (msk,mvk) : the setup algorithm takes as input the security para-
meter λ and outputs the master signing key and the master verification key.

• SFS.KGen(msk, f) → (pkf , skf) : the key generation algorithm takes as input the
master signing key and a function f ∈ F and outputs a secret signing key skf and
a public verification key pkf w.r.t. the function f .

• SFS.Sign(skf ,m)→ (y,σ) : the signing algorithm takes as input the secret signing
key for a function f ∈ F and a message in the function domain m ∈ Df , and
outputs a value y = f(m) and a signature of f(m).

4. STRONG FUNCTIONAL SIGNATURES 119

• SFS.Ver(mvk, pkf , y
′,σ) → {0, 1} : the verification algorithm takes as input the

master verification key mvk, the public verification key pkf for the function f , a
message y′ and a signature σ, and outputs 1 if the signature is valid and a correct
computation of f , 0 if it is not a correct computation of f or the signature is not
valid.

We require the following conditions to hold:

Correctness for any function f ∈ F , for any message m ∈ Df , master keys (msk,mvk)←
SFS.Setup(λ), function keys (pkf , skf) ← SFS.KGen(msk, f), and (y,σ) obtained from
SFS.Sign(skf ,m), it holds that SFS.Ver(mvk, pkf , y,σ) = 1.

Succinctness there exists a polynomial s(·) such that for every λ ∈ N, function f ∈ F ,
message m ∈ Df , master keys (msk,mvk)← SFS.Setup(λ), function keys (pkf , skf) ob-
tained from SFS.KGen(msk, f), and (f(m),σ) ← SFS.Sign(skf ,m), it holds with prob-
ability 1 that |σ| ≤ s(λ, |f(m)|).

ExpSFS.UNF
SFS. (A)

(msk, mvk)← SFS.Setup(λ); LF ,L∆ := ∅

(pk⋆, m⋆,σ⋆)← AOSFS.key,OSFS.sign (mvk)

if
(
(·, ·, (·, pk⋆), ·) /∈ LF ∨ (f, i, (skif , pk⋆), 1) ∈ LF)∨
(
(·, ·, pk⋆), m⋆, ·

)
∈ L∆ ∨

(
(·, ·, ·), m⋆,σ⋆) ∈ L∆

)

then return ⊥

else return SFS.Ver(mvk, pk⋆, m⋆,σ⋆)

OSFS.key(f, i, v)

if (f, i, ·, ·) /∈ LF then

(pkif , skif)← SFS.KGen(msk, f)

LF ← LF ∪ {(f, i, (skif , pkif), v)}

if v = 1 then return (pkif , skif)

else return pkif

if (f, i, (skif , pkif), v̂) ∈ LF then

if v̂ = 1 then return (pkif , skif)

else return pkif

ExpSFS.FHid
SFS. (A)

(msk, mvk)← SFS.Setup(λ)
b←R{0, 1}
(f0, m0, f1, m1)← A(mvk)

if
(
|f0| ̸= |f1| ∨ |m0| ≠ |m1|∨

∨ f0(m0) ̸= f1(m1)
)

return ⊥
else

(pkfb
, skfb)← SFS.KGen(msk, fb)

(y,σb)← SFS.Sign(skfb , mb)

b⋆ ← A(mvk, pkfb
, y,σb, f0, f1, m0, m1)

return b
?
= b⋆

OSFS.sign(f, i,m)

if (f, i, ·, ·) /∈ LF then OSFS.key(f, i, 0)

// Extract (f, i) from LF

(f, i, (skif , pkif), ·) ∈ LF

(f(m),σ)← SFS.Sign(skif , m)

L∆ ← L∆ ∪ {((f, i, pkif), f(m),σ)}

return (f(m),σ, pkif)

Figure 38: SFS unforgeability and function hiding experiments.

Unforgeability an SFS scheme is said to be unforgeable if the probability of any PPT
algorithm A in the SFS unforgeability experiment ExpSFS.UNF

SFS (A) depicted in Fig. 38 to
output 1 is negligible. Namely,

AdvSFS.UNF
A,SFS (λ) = Pr

[
ExpSFS.UNF

SFS (A) = 1
]
≤ negl(λ)

The main idea behind the unforgeability game is that an adversary A must present a
tamper (pk⋆,m⋆,σ⋆) for an existing honestly generated public key, whose corresponding
secret key is not revealed to A. We allow the adversary to arbitrarily request correct
signatures and new key pairs that can be corrupted depending on the value of v, i.e. if A

120 Paper E - Towards Stronger Functional Signatures

can obtain a corrupted key pair by querying OSFS.key(f, i, 1) where v = 1. We deliberately
do not allow A to corrupt already generated key since this would imply that the third
party that generates the function keys is able to identify whenever a specific public
key is compromised. Despite being possible in the ideal world, this property is hard to
realise in a realistic scenario thus we force A to declare at the generation, if a key pair
is compromised or not.
Function Hiding an SFS scheme is said to be function hiding if the advantage of any
PPT algorithm A in the SFS function hiding experiment ExpSFS.FHid

SFS (A), of Figure 38
to output 1 is negligible. Namely,

AdvSFS.FHid
A,SFS (λ) =

∣∣∣∣Pr
[
ExpSFS.FHid

SFS (A) = 1
]
− 1

2

∣∣∣∣ ≤ negl(λ)

Informally, it is impossible for an adversary to distinguish between two different
function evaluations and signatures, i.e., given the public verification key of a single
function, the adversary cannot infer information on “what function does the key verify”.
When comparing to the FS function privacy property, the SFS function hiding require-
ment might appear counter-intuitive since, in the verification phase, it is necessary to
use the public-key pkf , which is related to the function f that must be hidden. The SFS
function hiding property requires that “a public-key should just allow the verification
of the computation but must not provide any information of the function”. This means
that from a public-key pkf , it must be hard to retrieve the corresponding function f .

4.2 An SFS Instantiation
In this subsection, we provide the instantiation of SFS scheme which is a combination
of the Fiore-Gennaro’s PVC variation (as given in Def. 28) and the BLS variation (as
given in Def. 27).
Definition 30. Let BLS be the variated BLS signature scheme of Def. 27 and VC
the variated Fiore-Gennaro PVC scheme of Def. 28. Let the public parameter pp be
the description of a bilinear group (p, g1, g2,G1,G2,GT , e) shared between the BLS and
the VC schemes. Define the SFS scheme for the polynomial function family F , where
every function can be expressed in a binary string representation, with the following
algorithms:

• SFS.Setup(λ)→ pp, (msk,mvk) : on input the security parameter λ, the algorithm
runs BLS.Setup(λ) → (MSK,MPK), or equivalently VC.Setup, and outputs the
master key-pair (msk,mvk) = (MSK,MPK)

• SFS.KGen(msk, f) → (pkf , skf) : on input the master secret key msk and a poly-
nomial function f , execute (s̃kf , ṽkf , ẽkf)← VC.KGen(pp,msk, f), parse the secret
key s̃kf = (α, gα2 ,K) and run the algorithm (PKf , SKf) ← BLS.KGen(λ,msk,α).
Output (pkf , skf) defined as

((
PKf , ṽkf

)
,
(
SKf , (g

α
2 ,K), ẽkf

))

• SFS.Sign(skf ,m) → (y,σ) : given as input a secret key skf and a message m,
parse skf =

(
SKf , (g

α
2 ,K), ẽkf

)
and execute (σ̃m, ρ̃m) ← VC.ProbGen((gα2 ,K),m),

then σ̃y = (y, V)← VC.Compute(ẽkf , σ̃m) and consequently compute the signature
σ̈y ← BLS.Sign(SKf , (y, ρ̃m, V)). Output (y,σ) =

(
y, (ρ̃m, V, σ̈y)

)

• SFS.Ver(mvk, pkg, y
′,σ′) → {0, 1} : parse the inputs σ′ = (ρ̃m′ , V, σ̈y′) and pkg =

(PKg, ṽkg). Execute and output:
∧ VC.Ver(mvk, ṽkg, ρ̃m′ , (y′, V))

?
= y′

BLS.Ver
(
mvk,PKg, (y

′, ρ̃′m, V), σ̈y′
) ?
= 1

4. STRONG FUNCTIONAL SIGNATURES 121

Correctness for all SFS.Setup(λ)→ (msk,mvk), functions f ∈ F , SFS.KGen(msk, f)→
(pkf , skf) and messages m and SFS.Sign(skf ,m)→ (y,σ), it holds SFS.Ver(mvk, y,σ) =
1 which translates into

∧ VC.Ver(mvk, ṽkf , ρ̃m, (y, V))
?
= y

BLS.Ver
(
mvk,PKf , (y, ρ̃m, V), σ̈y

) ?
= 1

and by correctness of the underlying BLS and VC scheme, it is indeed correct.

Succinctness we observe that the SFS’s signature consists of three group elements
and it is of constant size, i.e. (ρ̃m, V, σ̈y) ∈ GT ×G1×G1, thereby trivially achieving the
succinctness property.

Unforgeability in order to prove our instantiation to be unforgeable, we will prove a
reduction from the BLS unforgeability experiment ExpBLS.UNF

BLS (B) to the SFS unforgeab-
ility experiment ExpSFS.UNF

SFS (A).

Theorem 6. If for all PPT adversaries B it holds that the advantage AdvBLS.UNF
B,BLS (λ) ≤

negl(λ), then for all PPT adversaries A it holds AdvSFS.UNF
A,SFS (λ) ≤ negl(λ).

Proof. assume that there exists a PPT adversary A such that AdvSFS.UNF
A,SFS (λ) = ∆ for

some non-negligible ∆ > 0. We construct an adversary R, running A as a subroutine,
to break the unforgeability of the underlying BLS scheme. R executes VC.Setup and
obtains the master keys (msk,mvk). R receives from the BLS challenger the public key
PK.

Whenever A queries a compromised key pair via OSFS.key(f, i, 1), R can generate the
keys using VC.KGen and BLS.KGen and therefore can generate keys and compute the
signing algorithm and answer to any adversarial signing query. On the other hand,
whenever A queries a uncompromised pair OSFS.key(g, i, 0), R executes VC.KGen and
generates the keys (s̃kg, ẽkg, ṽkg). R samples a random value z(g,i) sets the public key
PK2 = PK · gz(g,i)2 .

By considering MSK = msk, R samples α, r ∈ Zp, computes SK1 = gMSK+α+r
1

and PK1 = e
(
gMSK+α+r
1 , g2

)
and obtains PKg = (PK1,PK2). Finally, it sends pkg =

(PKg, ṽkg) to A.
In a nutshell, since the reduction R can create all the keys except the challenged

SK, R is always able to correctly execute the verifiable computation scheme but not to
sign the final output of a computation of any message m on the uncompromised func-
tions g. This means that, whenever A queries the signing oracle OSFS.sign(g, i,m) for an
uncompromised function (g, i), R will sequentially execute VC.ProbGen(s̃kg,m) and the
algorithm VC.Compute(s̃kg, σ̃m) to obtain σ̃y = (y, V) and ρ̃m. At this point, R queries
the BLS challenger on the message (y, ρ̃m, V) and obtains σ̈ which afterwards modifies
into the value σ̈y = SK1 · σ̈ · H

(
(y, ρ̃m, V)

)z(g,i) . R replies to A with (y, (ρ̃m, V, σ̈y)).
Whenever A outputs the forgery (pk⋆, y⋆,σ⋆), the reduction R parses the output

σ⋆ = (ρ̃⋆, V ⋆, σ̈⋆) and outputs the BLS forgery:
(
(y⋆, ρ̃⋆, V ⋆), σ̈⋆ · SK−1

1 · H
(
(y⋆, ρ̃⋆, V ⋆)

)−z(g,i)
)

Observe that A must output a forgery for an uncompromised function that, by con-
struction, is always based on the challenged BLS scheme. The SFS unforgeability ex-
periment’s requirements forces A to always tamper at least one between (y⋆,σ⋆) which
always translates into R creating a new tamper never queried before to BLS. Thus, we
can conclude that ∆ = AdvSFS.UNF

A,SFS (λ) ≤ AdvBLS.UNF
B,BLS (λ) which is a contradiction.

122 Paper E - Towards Stronger Functional Signatures

Remark 12. The unforgeability experiment ExpSFS.UNF
SFS. (A) requires the adversary A to

provide a tamper for a challenged public key pk⋆ of a function g which must exist and
be uncompromised. This means that A queried OSFS.key(g, ∗, 0) explicitly or implicitly
via the signing oracle, and only owns the public key pk⋆.

As a matter of curiosity, Thm. 6’s proof can be interpreted as the case where A
cannot forge even if the secret keys are partially compromised. In particular, consider
that the proof’s reduction R returns to A all the VC.KGen generated keys (s̃kg, ẽkg, ṽkg)
which would allow A to always pass the verification VC.Ver. Despite this additional
concession, the proof shows that A is still unable to provide a tamper for BLS. since
A does not hold the BLS. signing secret key, thus making it impossible to create a SFS
tamper.

Function Hiding in order to prove our instantiation to be function hiding, we will
show a reduction from the VC function privacy experiment ExpVC.Priv

VC (B) to the SFS
function hiding experiment ExpSFS.FHid

SFS (A).

Theorem 7. If for all PPT adversaries B it holds that the advantage AdvVC.Priv
B,VC (λ) ≤

negl(λ), then for all PPT adversaries A it holds AdvSFS.FHid
A,SFS (λ) ≤ negl(λ).

Proof. assume the existence of a PPT adversary A such that AdvSFS.FHid
A,SFS (λ) = ∆ for some

non-negligible ∆ > 0. We then construct an adversary B, running A as a subroutine,
to break the privacy security of the underlying VC scheme. Let R be the reduction
from the VC.Priv experiment to the SFS.FHid one and therefore B the final adversary
that uses R and A. R execute VC.Setup(λ)→ (m̃sk, m̃pk) and sends mvk = m̃pk to the
SFS adversary A. A replies with the challenge (f0,m0, f1,m1) which is forwarded to
the VC.Priv challenger by R. R receives (ṽkfb , σ̃yb , ρ̃b) where σ̃yb = (y, Vb) with y which
is equal to f0(m0) = f1(m1). R executes BLS.KGen(λ,msk,α) for some random α ∈ G
and obtain SK = (SK1, SK2) = (gmsk+α+r

1 , k) and PK = (PK1,PK2) = (e (g1, g2)
α , gk2),

then it signs BLS.Sign(SK, y) and obtains σ̈. The reduction R then replies to the A
with the tuple (ṽkfb , σ̃

⋆
yb , ρ̃b,PK, σ̈) where σ̃⋆yb = (y, Vb

⋆) which is equal to (y, Vb ·gmsk·y
1).

Finally, A’s guess is just forwarded to the challenger in VC’s privacy game.
By observing the SFS.Ver algorithm, we get

∧ VC.Ver(mvk, ṽkfb , ρ̃mb , (y, Vb
⋆))

?
= y

BLS.Ver(mvk,PK,BLS.Sign(SK, y)) ?
= 1

and since the right side is always true, the left side is equivalent to

VC.Ver(mvk, ṽkfb ,ρ̃mb , (y, Vb
⋆)) ⇐⇒

⇐⇒ e (Vb
⋆, g2)

?
= (mvk · ṽkfb)

y · ρ̃mb

⇐⇒ e
(
Vb · gmsk·y

1 , g2
)

?
= mvky · ṽk

y

fb · ρ̃mb

⇐⇒ mvky · e (Vb, g2)
?
= mvky · ṽk

y

fb · ρ̃mb

⇐⇒ e (Vb, g2)
?
= ṽk

y

fb · ρ̃mb

⇐⇒ VC.Ver(ṽkfb , ρ̃mb , (y, Vb))

Therefore, if the adversary A has an advantage ∆, the built adversary B for VC.Priv
that uses R has advantage ∆. In other word, we conclude that ∆ = AdvSFS.FHid

A,SFS (λ) ≤
AdvVC.Priv

B,VC (λ) which is a contradiction.

5. CONCLUSION 123

5 Conclusion
Verifying the correctness of computations is a very valuable property considering the
ever-increasing cloud-assisted computing paradigm. This paper defines Strong Func-
tional Signature (SFS) as an enhanced version of functional signatures with verifiable
computation properties. In a nutshell, SFS introduce a functional public key pkf that
works as a commitment for a function f . This public-key allows in verification to
guarantee the correct computation of the committed function without revealing any in-
formation on the function and to distinguish between different computed functions in
a privacy-preserving way. Furthermore, we provide a concrete instantiation of an SFS
scheme and prove that it satisfies the properties of unforgeability and function hiding.

5.1 Future Investigation (as of July 2021)
During the submission process, an anonymous reviewer brought to our attention a
realistic attack not handled by the unforgeability experiment. The attacker A obtains
a key pair

((
PKf , ṽkf

)
,
(
SKf , (g

α
2 ,K), ẽkf

))
for a function f . Given the knowledge of

K, A selects a different function g with decomposition (g1, ... , gl) and computes

W ′i =

(
Wi

CF.HK(i)

) gi
fi

· CF.HK(i) ∀ i ∈ {1, ... , l}

Observe that the W ′i are indeed the evaluation values that are used to evaluate the
function g, i.e. W ′i = g(α+β)·gi1 CF.HK(i). In this way, A creates a key pair for the
evaluation of g and allows him/her to correctly sign SFS.Sign(skg,m) and obtain a
correctly verifiable output (y,σ) such that g(m) = y ̸= f(m).

In other words, this attack allows an adversary that owns a secret key pair for
f to sign any function g evaluation, making it impossible to correctly identify the
computation correctness. Our unforgeability experiment of Fig. 38 does not incorporate
such type/kind of attack as a valid forgery, because we exclude the case of forgery for
any compromised secret key of function f . For this reason, we leave open for future
development an augmented notion of unforgeability as intuitively represented in Fig. 39
and that incorporates the hypothesis of the FS unforgeability experiment FS.UNF of
Fig. 33. The stronger unforgeability experiment would require the adversary to output
a tamper m⋆ that indeed is in the image of f . This implies that there exists a message
m′ such that m⋆ = f(m′). As future work, we will consider how to give an instantiation
that can achieve such an augmented security requirement.

ExpSFS.sUNF
SFS. (A)

(msk, mvk)← SFS.Setup(λ); LF ,L∆ := ∅

(pk⋆, m⋆,σ⋆)← AOSFS.key,OSFS.sign (mvk)

if
(
(·, ·, (·, pk⋆), ·) /∈ LF ∨ (f, i, (skif , pk⋆), 1) ∈ LF)∨
(
(·, ·, pk⋆), m⋆, ·

)
∈ L∆ ∨

(
(·, ·, ·), m⋆,σ⋆) ∈ L∆

)
∨

∨ (f, i, (skif , pk⋆), ·) ∈ LF , ∃m′ : m⋆ = fi(m′)

then return ⊥

else return SFS.Ver(mvk, pk⋆, m⋆,σ⋆)

Figure 39: SFS stronger unforgeability experiment.

124 Paper E - Towards Stronger Functional Signatures

Acknowledgment
We thank the anonymous reviewers for pointing out the security concern This work
was partially supported by the Swedish Research Council (Vetenskapsrådet) through
the grant PRECIS (621-2014-4845).

