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“Breathe, breathe in the air...
...don’t be afraid to care...”

“Breathe” - Pink Floyd





Abstract
Data permeates every aspect of our daily life and it is the backbone of our digitalized
society. Smartphones, smartwatches and many more smart devices measure, collect,
modify and share data in what is known as the Internet of Things.

Often, these devices don’t have enough computation power/storage space thus out-
sourcing some aspects of the data management to the Cloud. Outsourcing computa-
tion/storage to a third party poses natural questions regarding the security and privacy
of the shared sensitive data.

Intuitively, Cryptography is a toolset of primitives/protocols of which security prop-
erties are formally proven while Privacy typically captures additional social/legislative
requirements that relate more to the concept of “trust” between people, “how” data is
used and/or “who” has access to data. This thesis separates the concepts by introdu-
cing an abstract model that classifies data leaks into different types of breaches. Each
class represents a specific requirement/goal related to cryptography, e.g. confidentiality
or integrity, or related to privacy, e.g. liability, sensitive data management and more.

The thesis contains cryptographic tools designed to provide privacy guarantees for
different application scenarios. In more details, the thesis:

(a) defines new encryption schemes that provide formal privacy guarantees such as
theoretical privacy definitions like Differential Privacy (DP), or concrete privacy-
oriented applications covered by existing regulations such as the European General
Data Protection Regulation (GDPR);

(b) proposes new tools and procedures for providing verifiable computation’s guar-
antees in concrete scenarios for post-quantum cryptography or generalisation of
signature schemes;

(c) proposes a methodology for utilising Machine Learning (ML) for analysing the
effective security and privacy of a crypto-tool and, dually, proposes a secure prim-
itive that allows computing specific ML algorithm in a privacy-preserving way;

(d) provides an alternative protocol for secure communication between two parties,
based on the idea of communicating in a periodically timed fashion.
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Introduction

Every single day
Every word you say
Every game you play
Every night you stay
I’ll be watching you

Every Breath You Take - The Police

Our society lives in an era where every device, electronic or not, is becoming “smart”.
Smartphones, smartwatches, smart glasses are examples of many new devices that are
continuously being constructed and introduced in our daily life. All these smart devices
are designed to improve productivity, automatise tasks and track complex procedures.
This is possible by providing the devices with the ability to manage data by providing
them with computational power and the ability to communicate with each other.

More precisely, the adjective “smart” relates to the device’s ability to handle “data
management” which can be classified into the actions of (i) generating; (ii) commu-
nicating; (iii) storing; and (iv) computing/manipulating data. In other terms, a
smart device is a “standard” device that incorporates a computer-like microcontroller
able to capture the device status, manipulate the information and communicate it to
other smart devices.

This simple concept allows the consideration of hyperconnected networks of (often
low) computational devices, better known as the Internet of Things (IoT). The IoT
principle is based on the ubiquitous presence of cheap and low-computational devices
that constantly generate, collect, manipulate and share data locally between themselves
or with a “higher entity” called the Cloud.

For example, consider the thesis’ writer, Carlo, that lives in a smart home, i.e. a
home where lights, smart electro-domestic and more sensors/actuators are interconnec-
ted on the same home-local network. All the data collected throughout the house is,
often, centrally collected on a house-router that later uploads part of the data to an
external service “on the Cloud”. Abstractly, the Cloud is an interface of data manage-
ment services that any authorised smart device contacts via the Internet and utilises
to “simplify” the data processing. Despite the Orwellian feeling of massively collecting
data and centralising it into a single external entity, the Cloud provides useful analysis
to the router and allows Carlo to better control every measurable aspect of the home.

For example, Carlo might be highly interested in maintaining high-quality air in his
home. To do so, Carlo’s house is filled with air-quality sensors that collect pollution
data, send it to the central router which later “ask the Cloud” for an analysis. Since
this collecting-analysis is continuously executed, Carlo has the power to check the air-
pollution in his house at every moment. This means that Carlo can voice-activate its
home-assistant device and ask “which room has the cleanest air?”, the device will record
Carlo’s command and upload the recording to some voice-recognition service “on the
Cloud” that will transliterate the command’s request.

1



2 Introduction

Whenever the home assistant receives the request transcription, it will ask the home-
router an answer which will, most probably, “contact the Cloud” that will analyse the
request and reply to the router with the answer. After all this back and forth, the router
will provide the assistant with the answer that can effectively be announced verbally to
Carlo after just a couple of seconds.

The careful reader might notice the writer’s highlight of actions referred to “into/to
the Cloud”. The reason for such pedant highlight is the necessity to take a step back and
precisely delineate the concrete reality of the Cloud’s “composition”. Similarly to the
atmospheric homonymous and depicted in Fig. 1, the Cloud is a network conglomeration
of smaller networks of computers, all interconnected and orchestrated to appear as a
“hyper-computer”, i.e. a computer with incredible computational power, unimaginable
storage capacity, extremely efficient communication bandwidth and always available.
The quintessential aspect is that “to use the Cloud”, the user does not need to know
where these computers are, their characteristics, how they operate or how they are
organised. The writer’s highlight wants to point out that “uploading to the Cloud” is,
fundamentally, semantic sugar for “uploading to some unknown-but-retrievable computer
on the Internet”.

x

f

f(x)

Database 1

Database 2

x
f

f(x)

x

Cloud
Figure 1: Picturesque representation of the Cloud’s composition.

Data is the fundamental element of our digital society and imposes a remarkable
role on our digital identity. Generated data can either be public or sensitive/private de-
pending on the data owner thus requiring different confidentiality guarantees whenever
handled. The IoT paradigm is based on having the smart devices execute part of the
data management via cloud computing which, concretely, can be seen as simply requir-
ing the devices to outsource computation to a more powerful computer. In other words,
all the devices’ data is handled by unknown computers on the Internet.

How is it possible to trust the Cloud to properly handle user’s sensitive data?
What does it mean “to trust someone” and “properly handle data”?

Throughout history, humans evolved their secrecy’s needs into the cryptography
discipline. Figuratively, cryptography is the toolset of algorithms and protocols that
allows the user to provide confidentiality, integrity, authenticity and many other prop-
erties that handle sensitive data. As in any proper toolset, there are several tools from
must-have screwdrivers, such as the Diffie-Hellman’s key-agreement protocol, to multi-
purpose Swiss Army-knifes, such as the Fully Homomorphic Encryption (FHE) schemes.
The main objective for all cryptographic tools is to avoid any data leaks, i.e. each one of
these tools is designed to provide precise security guarantees which are formally defined
and mathematically proven, e.g. confidentiality, integrity, authentication, anonymity
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and many more. The use of formal modelling is fundamental to unequivocally describe
how a cryptographic tool must be used to achieve the security guarantees when it can
be used and all the limitation that it might have. The usage of mathematics for de-
scribing the cryptographic elements allows us to firmly state that a provably secure
crypto-tool can not be the cause of a data leak, i.e. the scenario in which a malicious
entity can disrupt/break the provided tool’s security guarantees. On the contrary, if an
adversary can “break the crypto-tool”, then either the cryptographic primitive/protocol
or the security model used is not secure thus it is impossible to formally prove the tool’s
security or model’s usefulness.

Often used in daily conversations, a different concept to consider is privacy. The
main goal for privacy is complex and it is highly related to how data is used and how
to prevent data to be harmful which require an extensive analysis of the application
that requests privacy guarantees. Each privacy guarantee is an “interdimensional” re-
quirement that spans from cryptographic security requirements to real juridical liability,
business’ responsibility or human necessities. In a nutshell, the concept of privacy is
“the framework” that provides real/legal guarantees to people that their data is not
misused in a harmful way.

Privacy and cryptography define a spectrum of requirements that describes the trade-
off between security and usefulness and can be associated with the concept of trust.
On one side of the spectrum, we have the “no-trust” scenario where the user’s data is
required to be secret, where no one else than the data owner can access the data. On the
other side, the “only-trust” scenario where the same user’s data might be communicated
unencrypted with the only requirement of “not misusing this information”.

Hidden in the scenario’s description, the spectrum naturally introduces the concept
of shared data between users, i.e. someone else’s private data which shouldn’t be mis-
used. Any privacy guarantees require shared data to be protected because it requires
the data owner to trust the receiver not to misuse such sensitive information. At a first
glance, protecting shared data might appear as a different way to name private/secret
data but it is essential to understand that it is possible to lose all the privacy guarantees
without breaking any used cryptographic tool. Consider a user that securely uploads to
the Cloud a private photo of him/her and let the user fully trust the Cloud to maintain
the necessary secrecy. Despite the cryptographic guarantees that the communication is
secure, the photo is most probably unencrypted for the Cloud which utilises the photo
for improving its services, e.g. trains classifiers for better face recognition. Without
breaking any crypto tool, the Cloud can break the user’s trust and publicly release the
private photo thus breaking the trust agreement between itself and the user.

This discrepancy between cryptographic and privacy requirements is described in
several legal regulations such as the California Consumer Privacy Act (CCPA) of
2018 [Par18] or the European General Data Protection Regulation (GDPR) [Cou16].
These regulations, and many more, provide a legal foundation that precisely state which
user’s data is sensitive thus requiring the Cloud’s special care while handling the data.
The regulations further describe precise liability penalties whenever a user’s data is mis-
used. For example, the user’s IP address is sensitive information that can be maliciously
used to approximately geo-localise the user or track him/her throughout the web. It is
fundamentally impossible to navigate the web without revealing the personal IP address
thus the servers must correctly handle this, and other, sensitive data. Otherwise, the
users can bring the server’s owner to court for misusing sensitive data.

To understand the differences between cryptographic and privacy guarantees and
further provide future research directions in the intersection area of cryptography and
privacy, it is mandatory to provide an abstract analysis of all the possible data leakage
that might occur between any interaction of two entities.
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1 Abstract Model for Data Leaks
People own collections of personal data and each one of them partitions the collection
based on the specific data’s sensitivity. More formally each person PA classifies data
into the collections of:

• private data C that contains any information that PA is not willing to share
with anyone else. These are highly sensitive data that a malicious entity can use
to seriously harm PA thus must be carefully handled;

• shared data S that contains PA’s private data that is consensually shared
with a different person PB . Because such data is technically private, PA must
trust PB to not misuse/publish the shared data. On the other hand, PB uses the
data to provide some form of benefit to PA, e.g. a personalised service. This data
collection is strictly connected to trust and the concept of privacy;

• public data P that contains PA’s public data that is freely shared with anyone.
Ownership of such data cannot be used to harm PA and are therefore easily
retrievable.

For example, Carlo considers the data x = “work email address” to be public
while ξ = “personal email address” is more sensitive so it is only shared with selec-
ted other people and web services. Consider the last example where Carlo considers
ξ = “personal email address” ∈ S and uses ξ to register to a generic social network N .
A (quite typical) scenario is that the social network N will publicly display ξ by default
because N considers ξ ∈ P. This notion is condensed into the following axiom:

Informal Axiom 1. Data partitioning is subjective, i.e. every person P has his/her
way of partition data into (CP ,SP ,PP ).

Sadly, Informal Axiom 1 implies that deciding the sensitivity of a specific data is
ill-defined, i.e. it is not possible to uniquely identify the correct partition to which
data belongs, as previously described.

Additionally, data appears to be “naturally entangled” with other data, as if it is
semantically interconnected. Intuitively, from big sets of information, it is possible to
infer new information, maybe without absolute certainty thus requiring some prob-
abilistic discussion. For example, if Carlo would present itself with a wet umbrella,
the reader can deduce that it is raining outside. Or, by observing Carlo’s smartphone
screen, the reader can infer his usage pattern by analysing the “oily” residues left on
the screen. Furthermore, Sherlock Holmes might be able to deduce the pin-code digits’
used to unlock the phone by analysing the shape of the oily fingerprints. By carefully
reading the examples, observe that Carlo might be unaware of how his data can be
maliciously used when combined with “advanced detective’s knowledge”.

Informal Axiom 2. Data is always dependent on other data: for every information
z, there always exists a set {xi}i∈I that infers about z, i.e. {xi}i∈I → z.

Informal Axiom 2 describes two negative corollaries which state, from some known
information x, the impossibility to compute (i) all the inferable data z, i.e. all the z
such that x→ z; and (ii) all the data-sets {zi}i∈I that infers about x, i.e. {zi}i∈I → x.

The axioms allow the analysis of all the possible inference between the different
sensitivity partitions, e.g. the inferences that take private data {si}i∈I ⊆ C and infers a
public information y ∈ P. By conceptually reasoning on the empirical meaning of such
deductions, the final result is an abstract model that describes a classification of any
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data leak into four semantically different breaches, represented in Fig. 2 and named:
(i) security breach; (ii) direct breach; (iii) coercion breach; (iv) indirect breach.

Before moving to a precise analysis of each breach, it is important to remark on
an indirect consequence of Informal Axiom 1. As in any good model, the data leak
classification into breaches is relative to the observer, i.e. the leak might hurt PA but
benefit PB and it is caused by their different data sensitivity partitioning.

Private Shared Public

Private Shared Public

Security
Breach

Direct Breach

Indirect
Breach

Coercion
Breach

Figure 2: Data leak’s model from the cowgirl’s point of view. The black arrows indicate
the communication between the parties. The red arrows indicate all the possible data
leaks.

1.1 Security Breach

Security breaches are defined whenever an adversary A can “break” the cryptographic
primitives/protocols used and the security properties requested, e.g. A decrypts an
encrypted database of private data or can compromise the integrity of a secure commu-
nication channel.

A historical and didactical example is the cryptanalysis advances that, during the
Second World War, allowed the Allied powers to break the encrypting machine En-
igma used by the Axis powers. Preceding and motivating the development of the first
computers, Enigma is an electro-mechanical encrypting device that appears to have a
physical typewriter-like keyboard and display of light-emitting characters representing
the keyboard. To encrypt, the operator presses a single character key which closes an
internal electrical circuit that lights up a precise character in the display. Internally,
the machine is composed of rotors that rotate at every typed character, modifying the
circuit and the highlighted encrypted output, as represented in Fig. 3. The security
of the device is due to the immense amount of possible starting combinations of the
rotors and other external additional modifications of the circuit made via a plugboard.
Enigma was considered unbreakable.

During the war, the Allied power developed the theoretical foundations of Inform-



6 Introduction
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Figure 3: Conceptual illustration of the Enigma machine’s encryption principle.

ation Theory [Sha48] and Cryptanalysis. Briefly speaking, together with practical ex-
amples of correct decryption, code-books and capturing some Enigma machines, this
new knowledge allowed a refinement on the brute-forced decryption attacks which al-
lowed to decrypt the secret communication and provide useful intelligence on the field.
In other words, Enigma was broken.

In the same spirit, security breaches happen because either the cryptographical
knowledge evolves and new successful attacks are being developed or, more simply,
the wrong crypto-tool is used. The state-of-the-art primitives/protocols are secure up
until the hypothesis used to formally prove the tools’ security guarantees holds. This
requires researchers to constantly check that new attacks don’t break such hypothesis
and promptly report to the community whenever a crypto-tool is broken.

1.2 Direct Breach
Direct breaches are defined whenever it is possible to deduce private/shared data from
public ones. Despite the simple definition, these breaches are intrinsically sneaky to
identify and prevent.

In October 2006, the on-demand streaming service Netflix released a dataset contain-
ing hundreds of millions of private movie ratings generated by half a million subscribers.
The release’s purpose was to allow the development of an improved movie recommend-
ation system. To guarantee privacy, the dataset was anonymised, i.e. the subscriber’s
sensitive data such as user id, email addresses and even the timestamp of the rating
submission was removed. In principle, only public data was released.

A couple of years later, Narayanan and Shmatikov [NS08] were able to de-anonymise
the identity of known subscribers from Netflix’s dataset and obtain his/her movie rat-
ings, thus discovering unexpected sensitive information such as political preferences.
Such a surprising result was possible by considering additional information such as the
one retrievable by personally asking naive questions like “what do you think about this
movie genre?” or, more systematically, utilise the public movie ratings provided by the
Internet Movie DataBase (IMDB). The reader might argue that “de-anonymising movie
ratings don’t sound harmful” but consider the scenario where a malicious adversary A
can de-anonymise the identity of the ratings. Only because A can de-anonymise people
from their “movie tastes”, A can profile the unlucky subscriber and increase the ability
to track him/her throughout the Internet.

Direct breaches are caused by the Informal Axiom 2 and the impossibility to con-
ceive all the possible deductions that public information can provide. Conceptually,
note that it is not obvious how cryptographic tools can protect from such breaches. For
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this reason, the state-of-the-art solution is found in the concept of Differential Pri-
vacy [DMNS06] (DP) which provides a formal framework to measure the privacy loss
of publishing specific data related to a dataset. To understand how DP works, consider
a private dataset of values {xi}ni=1 on which it is required to compute the known func-
tion f . The computed output µ = f(x1, · · · , xn) is publicly released thus meaning that
{xi}ni=1 → µ. Without loss of generality, by cleverly modifying the function’s input, it
might be possible to obtain the public value µ′ = f(x2, · · · , xn) in which the private
data x1 is not used. The direct breach, as represented in Fig. 4, is caused by con-
sidering the function f and the public outputs µ, µ′ and observing that any difference
between outputs must relate with x1, i.e. the breach tries to deduce {µ, µ′, f}→ x1.

µ

µ′

Inference

Figure 4: Depiction of the problem solved by the differential privacy framework.

DP provides a methodology to measure the privacy loss caused by releasing f ’s
outputs and, to avoid the breach, a DP mechanism adds noise which is sampled by
a cleverly selected distribution based on the previous measurements. The key concept
of adding cleverly selected noise might sound counterproductive but finds roots in the
idea of “degrading the information accuracy”. For example, by publishing Carlo’s birth
season instead of the month, the probability of guessing his birthdate is degraded thus
a loss inaccuracy.

1.3 Coercion Breach
To understand what coercion breaches are, consider public information x related to
some private data of the person PA. Since x is public, a malicious adversary A might
voluntarily advertise a false-statement x′ that hurts PA’s image/reputation. The “co-
ercion” adjective appears whenever considering that, to clarify that x′ is false and x is
true, PA must provide private data y so to allow the inference y → x thus the adversarial
coercion.

A real example of such malicious persuasion can be found in the widespread phe-
nomenon of media distortion in which fake news are most probably the easier attack
vector. Without entering the immense domain of human psychology, it is well-known
that people can easily be influenced by only providing modified photos or provide emo-
tionally intense messages. These cheap modifications are repeatedly shown to allow
people to unconsciously change their mind regarding, e.g. political beliefs [AG17] or
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memories of well-known historical events [SAL07]. The social damaging impact of me-
dia distortion through fake news is massive and must be prevented.

Coercion breaches are an undesired consequence of Informal Axiom 2 and the fact
that often private data is necessary to understand how public data is deduced. Avoiding
these breaches is a tricky problem that requires taking into consideration the social
aspects of human psychology and it seems counter-intuitive that a cryptographic tool
might help.

A possible solution would require appropriate experts to educate people on digital
etiquette and critical thinking, e.g. by teaching the importance of source verification and
awareness of possible media distortion practices. Observe that the appropriate usage of
crypto-tools can help to discover data misuse by providing specific security guarantees
or, naively, people might be aware of the meaning of the tools guarantees.

1.4 Indirect Breach
The last class in our model are the indirect breaches which are a negative consequence
of sharing private data x to some other person P which is trusted to not misuse x.
Whenever P misuses x, the assumed trust is lost and there is a data leak and the
indirect breach. Whenever reading, in our daily life, news about data leaks and related
privacy loss, often the news describes an indirect breach.

Purely for explanatory reasons, consider a run tracking application, i.e. web applica-
tion that allows users to collect data, such as their heartbeat, pace and much more, from
their running activities with the benefit of providing statistics, professional training ad-
vices and more user control on their activities. One such application is Strava [Str18]
which allows users to provide precise geo-localisation data, i.e. GPS-data. Later on, the
users visualise the GPS-data on a map thus allowing each user to correlate, e.g., their
pace with the topological morphology of the terrain. Strava, like all the others, is often
trusted by its users to securely handle the sensitive data, e.g. GPS-data is commonly
accepted and shown to be incredibly sensitive data [SSM14].

Having a lot of data allows providing interesting features to the users. One of them
is Strava’s “popular routes” which collects the users’ GPS-data, finds highly popular
routes and provides a popularity list where users now can find each other and share a
training session. The feature has the noble motivation of creating a healthy community
and increasing the social interaction between the users.

At the beginning of 2018, the noble feature showcased as a popular route a too-
regularly shaped one in a scarcely populated, almost desertic, part of Afghanistan. By
carefully checking the satellite image of the route, it was possible to discover a secret
military base [Her28]. An unaware American soldier was periodically training inside
the military base, running around an aircraft’s runway thus creating a regularly shaped
route. Strava’s popular route algorithm worked as intended: the soldier was one of
the few people in the whole area using the app which implied that his periodically
tracked route was the most popular. The indirect breach, consequent trust-loss and
legal cost for the data leak’s harmful potential were caused by the soldiers’ unawareness
of Strava’s feature and Strava’s misjudgement on the sensitivity of using the soldier’s
GPS-data.

In general terms, it is easy to see that indirect breaches are caused by Informal
Axiom 1 and the fact that different people have a different opinion regarding data
sensitivity. Trust is a difficult concept to generally formalise thus, to avoid such costly
damages, many state-of-the-art cryptographic protocols provide some specific privacy
guarantees that allow preventing the leak.
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A noticeable mention, of a whole research field that tries to avoid indirect breaches,
is the research in Information Flow Control (IFC). IFC is based on the simple principle
that whenever computing an algorithm on data, the algorithm must not be able to
output private data given in input, depicted in Fig. 5. In other words, whenever the
input is private, specific computational operations are “prohibited” because they might
be reverted to get the input. By studying the “allowed” operations, it is possible
to check which algorithms are immune to indirect breaches and are therefore safely
executable.

Private Input

Public Input

Private Output

Public Output

Secure Program

Figure 5: Conceptual representation of the Information Flow Control principle: a secure
program does not manipulate the private input and reveals it into the public output.
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Gentlemen. Your communication lines are vulnerable,
your fire exits need to be monitored, your rent-a-cops are
a tad under-trained...
Outside of that, everything seems to be just fine. You’ll
be getting our full report and analysis in a few days, but
first, who’s got my check?

Sneakers (1992) - Martin Bishop (Robert Redford)

As previously stated, it is the research community goal to provide solutions that
allow to “trust the Cloud” or to avoid any possible data leaks.

The quintessential research goal for any cryptographic solution that handles
people’s data is to avoid data leakages, of any form.

In other words, ideal cryptographic privacy-preserving tools must guarantee (1) a
tamper-proof data generation; (2) secure data communication; (3) confidential and
privacy-oriented data storage; and (4) data computation with measurable privacy guar-
antees, i.e. the computed outputs must not reveal “too much”.

A key concept that allows reducing the gap between ideal and real solutions is veri-
fiability, i.e. the property of providing a tangible value used as “proof” of either the
knowledge of specific information or certification of approval. Many existing crypto-
graphic tools already provide verifiability-like guarantees such as:

• signature schemes allow a signer to attach a signature to the outgoing messages
which can be seen as proof that “the signer notarises the message content”. The
message-signature pair verification strictly relates to some form of liability that
the signer obtains in the act of signing;

• authenticated communication channels, e.g. TLS, allow the communicating parties
to securely communicate and provide the guarantees that only the intended/au-
thorised parties participate in the communication. This is possible by the com-
bination of several different cryptographic tools that are singularly correct and
verifiable and that guarantees the confidentiality of the communication and the
authenticity of the parties identities;

• in applications, zero-knowledge proofs allow a prover to prove a public statement
without revealing the knowledge of a secret witness that easily proves the state-
ment. Being able to provide such verification has profound application scenarios
connected to privacy, liability, anonymity and more.

All the described examples provide verifiability for what the user sees or knows and can
easily provide verifiability guarantees to data generation, storage and communication.
“Securing data computation” and providing “measurable privacy guarantees” are the
missing requirements to tackle.

11
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Data manipulation transforms potentially sensitive information into new data that
might get published thus having the potential of creating privacy concerns. Quantifying
the privacy loss from publishing a computational output is generally hard to compute
and/or to correctly and practically handle. For this reason and by observing the problem
from a different perspective, it is easier to request proofs of correct computation
on the data and control which computation is performed. It is trivial to see that
providing a refined control on the computable functions allows to bound the complexity
of computing the privacy loss. Indeed, a trade-off between functionalities and privacy
must be considered whenever effectively implementing the system.

Verifying the correct computation of a function allows the verifier to check that the
results are indeed correct and the correct function was computed. In other words, if
something went wrong and the verification fails, the verifier can identify the problem,
e.g. the verifier can precisely shift the data-misuse liability to some entity that later
must defend against accusations in the court and not in the cryptographic domain.

To guarantee any form of privacy, it is fundamental to identify any data misuse
which is only possible if every step of the data management is verified. Ideally, providing
(formally provable) verification to every cryptographic tool allows to prevent any data
leak:

• any direct breach is caused by a careless release of outputs which allows inferring
sensitive data. Requiring the verifiability of the output computation does not
directly avoid such privacy loss but it limits the available computable functions,
thus limiting the possible malicious inferences, and completely shifts the liability
to the publisher. In a sense, these data leaks are solved with the mantra: “Be
aware of what they publish” ;

• verifiability completely solves any coercion breaches since it allows to correctly
pinpoint the trustworthiness of the provided data. It must be said that it is
always important to provide a proof for the computed results and, respectively,
to always request proofs of the content authenticity;

• security breaches are directly related to the formal security properties that the
cryptographic primitives/protocols should achieve. Technically, verifiability is of-
ten an additional security property with a really specific description. In other
words, the motto is “always use proven secure and verifiable cryptographic tools”;

• indirect breaches are always caused by breaking the data owner’s trust. Verifi-
ability can prevent these breaches whenever privacy is considered such as design
principles for new cryptographic tools by providing certainty that the tools are
correctly used.

The reality is that to avoid unexpected data leaks, cryptographic tools must be
correctly implemented and used as theoretically intended, i.e. the purpose they are
designed for. The purpose is important: there might exist a cryptographic tool that is
considered highly secure by the research community, but it is not designed for privacy-
oriented applications.

This thesis’ goal is to investigate and design new cryptographic primitives/protocols
that consider privacy as a fundamental design requirement. By increasing the crypto-
toolset with new privacy-preserving crypto-tools, it is possible to choose the appropri-
ate primitive/protocol for real applications thus guaranteeing privacy and security for
everyone.
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2 Thesis Contributions

This thesis considers several privacy-oriented problems and proposes solutions that
formally provide security and privacy-preservation guarantees.

2.1 Differential Privacy and Cryptography
A fundamental principle in Cryptography is that an encryption scheme has to be correct
and confidential, i.e. the ciphertext’s decryption must be the original message and
the message cannot be inferred by the ciphertext. Differently, a differentially private
(DP) mechanism allows data to maintain privacy when revealed and this is done by
introducing a cleverly sampled random noise. Observe that a DP mechanism does not
require any confidentiality requirement. This observation brings up the question of
combining the two feature:

Question A: A Differentially Private Encryption Scheme

Is there a way to define/construct a differentially private encryption
scheme that guarantees confidentiality while data is encrypted and

afterwards provides a measurable privacy guarantee?

Paper A consider an encryption scheme and a DP mechanism as a framework and it
studies the relation between them to merge them into a single cryptographic primitive.

Contribution: we relax the encryption scheme’s correctness property. Intuitively,
the encryption scheme has to “wrongly decrypt” with some bounded and predefined
probability, i.e. the ciphertext’s decryption can return a wrong message m′ with some
probability αm,m′ that depends on the original message m and the final wrong message
m′. The knowledge of such probabilities allows us to prove that the “faulty” encryption
scheme indeed achieves differential privacy. Additionally, an implementation is provided
as a proof-of-concept.

To complete the study, we prove that using such “faulty” encryption schemes is
equivalent to sequentially using a correct encryption scheme and a DP mechanism as
two separate frameworks, as depicted in Fig. 6.

mi
Generating
DP-noise ri Encryption ci = Enc(mi + ri)

Encrypted
and
Differentially Private
Data

mi
α-correct
Encryption ci = Enc′(mi)

Figure 6: Paper A: The difference between the DP-then-Encrypt (on the top) and our
solution (at the bottom).

This means that if we want to introduce differential privacy to already existing
products/protocols, it is not required to change the already existing cryptographic
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primitives but it is only necessary to introduce a DP mechanism in the system and
correctly compose it with the encryption scheme.

2.2 Real Privacy Guarantees by Design
The main goal of Paper B is to provide a model/scheme with an implementation de-
signed to provide privacy guarantees concerning privacy policies/regulations, such as
the GDPR, that are not always described in mathematical formalism. By considering
the scenario of a user uploading data to a trusted database that can be queried by third
parties, the paper answers the following question:

Question B: HIKE: Walking the Privacy Trail

Is it possible to design privacy-preserving protocols that comply with
some privacy policies, such as the European GDPR?

We start by selecting some specific articles contained in the GDPR and describe
them as formal cryptographic properties:

(a) data has to be encrypted when stored;

(b) the user decides to selectively allow third parties to access his/her data; and

(c) the user can always delete his/her data from the database (right to be forgotten).

Contribution: to describe the “client, cloud and service provider” model, we use
the concept of a labelled encryption scheme [BCF17] in which every message, or cipher-
text, has a label that can be seen as a unique public identifier for that message. With
these labels and the associativity and commutativity of the underlying group, we can
define decryption tokens that can be generated by the client. This allows the user to
create decryption tokens for specific label-ciphertexts and provide them to a service
provider.

We exploit the additive homomorphic property of the encryption scheme to allow
homomorphic evaluations on the client’s ciphertexts. In this context, the client can
generate decryption tokens for labelled-programs, i.e. the token necessary to decrypt a
specific homomorphic evaluation and defined by the list of inputs, related labels and
function to be computed. Since the function must be known to produce the decryption
token, the clients can refuse to provide the token and therefore not disclose their data.

More concretely, we start from the ElGamal encryption scheme [ElG85], we describe
the scheme as a labelled encryption scheme called LEEG, expand it with some specific
features regarding the decryption token into FEET and finally obtaining the HIKE pro-
tocol, depicted in Fig. 7, that is then proven secure in the GDPR-oriented security
model we defined.

As a final contribution, all our ideas are implemented and our code for the HIKE
protocol is publicly available.

2.3 Post-Quantum Verifiable Pseudorandomness
Quantum computers are the currently accepted future of computation. Despite the
engineering challenges of constructing such a revolutionary machine, the cryptographic
research community is interested in providing new primitives that are guaranteed to be
secure even against adversaries that use a quantum computer.
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Figure 7: From Paper B: The HIKE protocol.

In particular, we focus on verifiable random functions (VRFs) and in particular on
simulatable VRFs (sVRFs). In a nutshell, sVRFs are a family of VRFs in a public
parameter security model, such as the common reference string.

Question C: Lattice sVRF: Challenges and Future Directions

Is it possible to define a post-quantum sVRF, based on lattice as-
sumptions?

Contribution: Paper C proposes the possibility of defining a lattice-based mem-
bership hard with efficient sampling language which can be used to define a
lattice-based dual-mode commitment scheme. We partially conjecture the possibility
to combine the dual-mode commitment scheme with Libert et al.’s protocol [LLNW17]
and Lindell’s transformation [Lin15] and obtain an sVRF under post-quantum assump-
tions, as represented in Fig. 8. Given the non-triviality of the task, we raise and identify
different open challenges in lattice-based cryptography and possible future directions
for achieving a post-quantum sVRF.

Libert’s ZK

Lattice ZK Lattice NIZK Lattice sVRF

Transf.

Transf. Chase et. al [CL07]

Figure 8: Paper C: A roadmap to lattice-based sVRF.

On a similar note, we ask ourselves:

Question D: Code-Based Zero Knowledge PRF Arguments

Is it possible to utilize a similar methodology as for Question C to
define a code-based post-quantum zero-knowledge argument protocol?

Contribution: Paper D utilizes the idea underlying Paper C by transforming a
code-based PRG into a PRF for then introducing a methodology to effectively provide
a zero knowledge argument for the code-based PRF evaluation. We propose a concrete
construction and theoretically estimate the communication cost of our construction.
Additionally, we introduce the whistle-blower notary problem, represented in Fig. 9, of
which Paper C and D’s results are possible solutions.
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Figure 9: Paper D: The whistle-blower notary problem.

2.4 Verifying Functional Signature Evaluation
Signature schemes are a fundamental tool in today’s application. They allow using a
signing secret key to compute a signature from any message which later can be publicly
verified with a public verification key and prove the authenticity of the content and
the signer identity. A generalization of signature schemes is proposed by Functional
Signatures (FS) in which the signer owns a functional signing key that allows signing a
specific function evaluation. In other words, a functional signature allows authenticating
the output of the function evaluation, therefore, hiding the original input.

An additional property provided by FS is function hiding in which it is impossible
to infer which function got evaluated during the signature phase. In this way, verifying
the signature correctness has two meanings: (a) the signature somehow verifies the
correct evaluation of a function; and (b) the signature does not reveal which function
got evaluated.

In a real application, often the signing key must be revoked which introduces a
fundamental problem for FS: the function hiding property makes it impossible to know
which signing key was used which means that the verification algorithm cannot effect-
ively alert that a specific signature is generated from a revoked key.

Question E: Towards Stronger Functional Signatures

Is it possible to design a functional signature-like scheme that allows
a more refined function evaluation verification but preserves function
privacy?

Contribution: Paper E introduces the concept of Strong Functional Signatures
(SFS), an FS-like scheme that introduces a public functional verification key that is
publicly available and used during the verification phase. In a realistic application,
such as the one represented in Fig. 10, all such public keys can be collected and pub-
licly maintained by a trusted curator and allow key revocation by simply removing (or
similar) the specific public key. SFS provides function hiding by requiring that both the
signature and any functional verification public key hides which function is evaluated
during the signing phase.

Our instantiation merges the Boneh-Lynn-Shacham’s signature (BLS) scheme [BLS04]
and Fiore-Gennaro’s publicly verifiable computation (VC) scheme [FG12] under a shared
master key pair used for the functional key generation and the final verification. Whenever
generating the functional key pair, our instantiation first generates the VC’s keys for the
requested function and obtains the secret, evaluation and verification keys. Afterwards,
the BLS’s signing keys are generated with the addition of including additional inform-
ation regarding the function and the VC’s secret key. In this way, all the generated
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Figure 10: Paper E: Strong functional signatures in the cloud computational authen-
tication scenario.

function’s VC and BLS keys are related to each other.
The SFS’s signing algorithm computes the VC evaluation and computes the BLS

signature of the result which is later verified during the final verification. Our instanti-
ation provides unforgeability by exploiting a design trick: a tamper must be a “wrong
evaluation” which is signed with a BLS’s key. Since the keys are all related, signing the
wrong result will always create a wrong signature and if the BLS signature has correctly
tampered with, then the tampered result must be the correct function evaluation which
is not a tamper.

2.5 Machine Learning as a Tool for Cryptanalysis
Security is a complicated matter that can often be abstracted into “hiding data’s pat-
terns” while preserving some “recovery” property. Cryptanalysis is the research branch
that applies several statistical, algorithmic and/or mathematical methodologies to find
patterns in data to weaken or even destroy any security claim. The simplest form of
such a methodology is based on solving a distinguishing problem in which an algorithm
can classify the inputs between two (or more) different classes. The classical example is
the ciphersuite distinguishing problem in which an algorithm takes in input a ciphertext
and must output “which is the encryption scheme used”.

Machine Learning (ML) is a growing research area that provides a framework for
investigating statistical correlations on specific datasets, often to extrapolate a classifier
later used for analysing a new dataset.

Question F: Modelling Cryptographic Distinguishers Using Machine
Learning

Can machine learning be used to automatize cryptanalysis?

Contribution: Paper F proposes an abstract methodology that allows to effectively
use of ML for creating cryptographic distinguishers and provides some simple technique
to improve the efficiency of such ML classifiers. Our methodology is depicted in Fig. 11.
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Figure 11: Paper F: Abstract representation of our methodology.

We implement our methodology in an expandable framework and create a simple
proof-of-concept experiment in which we study the possibility of utilizing an ML gen-
erated distinguisher for distinguishing between several National Institute of Standard
and Technology (NIST) Deterministic Random Bit Generators.

2.6 Secure Aggregation for Federated Learning
Federated Learning (FL) is a novel paradigm oriented to allow the aggregation of ML
classifiers between several users with special consideration in achieving high privacy
guarantees. The first privacy-preserving design concept is that each user pre-computes
its ML model locally and it is not required to provide the raw data to the aggregating
server. Only the computed model is used in the aggregation, therefore requiring the
aggregation protocol to protect the user’s model privacy.

Current solutions are focused on providing an interactive protocol between the users
and a single central server that facilitates communication coordination. The interactiv-
ity of the protocol handles users that drop out from the protocol execution because
either they lose their connection or they are maliciously trying to deny the service exe-
cution. Furthermore, the aggregating server is a single-point-of-failure. In an extreme
scenario, an adversary might crash the central server and the protocol will abort without
any recovery possibility.

Our specific interest is to additionally require the aggregating server to provide a
proof that allows the users to verify the correctness of the servers computation.

Question G: Non-Interactive Secure Verifiable Aggregation for Decentral-
ized, Privacy-Preserving Learning

Is it possible to distribute the secure aggregation between several serv-
ers and remove the necessity of the user’s interaction and provide
verification of the server evaluation correctness?

Paper G proposes NIVA, a non-interactive primitive inspired by Shamir’s secret
sharing scheme that allows users to distribute the aggregation between several servers
of which a threshold amount is needed to correctly reconstruct the final output, as
depicted in Fig. 12 We implement NIVA and compare the communicational costs against
some state-of-the-art protocol.

Contribution: our construction extends the standard additive homomorphic secret
sharing scheme by introducing a “verification token” that the user computes and which
is related to the secret input and the servers. During the aggregation phase, the servers
compute and release the secret-sharing partial aggregation value and a proof of correct



Thesis Contributions 19

Nurse

P
ub

lis
h

User Verification Value

Publish

y1

y2

y3

y1

y2

y3

y1

y2

y3

y1

y2

y3

y1

y2

y3

Is the
Result

Correct?
???

Figure 12: Paper G: Several users delegate the secure aggregation of their inputs to
independent servers. A threshold amount of server’s outputs is necessary to publicly
reconstruct and verify the resulting aggregated value.

computation. The verification algorithm requires at least a threshold amount of server
to be used to reconstruct the final aggregation and verify the computation correctness.

The confidentiality of the secret inputs is guaranteed by the underlying secret sharing
scheme and the computational assumption used by the verification token. Differently,
the scheme is proved to never be tamperable, i.e. any adversary is unable to provide
a verifying wrong final aggregation result. The verification algorithm design allows to
easily prove such a strong statement which boils down to an algebraic “trick” : the
existence of an adversarial tamper depends on a pre-defined linear system which is easy
to prove to never have a solution.

2.7 Alternative Communication Channels
The fundamental medium required for communicating is the communication channel.
Different applications might require different features, e.g. we are interested in consistent
channels. This means that the communication transcript is constantly verified during
communication to prevent any future tampering of the past exchanged messages.

Blockchain is a novel technology that allows the creation of such a consistent channel.
The only requirements are the “complex” assumptions necessary to create and use
such a channel. Many blockchains require extensive use of signature schemes, public-
key cryptography, hash functions and a consensus mechanism, often based on game-
theoretic assumptions based on economical strategies.

Question H: Turn Based Communication Channel

Is it possible to create a consistent communication channel based on
a minimal set of assumptions?

Paper H assumes the existence of a timed hash function, i.e. a hash function that is
computable always in the same amount of time ∆. With such a primitive, we describe
a turn-based communication channel (TBCC), depicted in Fig. 13
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Figure 13: Paper H: A continuous and TBCC channel, the messages are gathered in
“blocks”, and each block, and its set of messages, is confirmed only at the end of each
turn.

Contribution: we base our TBCC protocol on the idea of creating a verifiable
“commitment” that can be verified only after solving a puzzle that requires a designed
amount of time to be solved. Both the parties set up the communication by committing
to a list of sequential puzzles which can only be solved in sequence. In this way, the
parties start communicating committed messages that can only be periodically verified
thus emulating a real turned communication where all the messages are exchanged
periodically.

We provide a construction of the TBCC channel and prove that it provides commu-
nication consistency. This is possible because each exchanged message contains a digest
of the previous communication thus making it impossible to tamper the communication
without being noticed by the other party.

3 Summary and Future Directions

The papers contained in this thesis are testimony of the possibility of improving the
crypto-toolset to incorporate privacy preservation and further allowing more secure
solutions for real applications that requires to carefully handle people’s sensitive data.
Each one of the papers provides a novel cryptographic tool’s instantiation that tackles
a specific data leak, as summarised in Fig. 14.

Inevitably, data will increasingly be consumed by our evolving digital society and
human understanding of data sensitivity will evolve accordingly, posing new security
and privacy challenges to solve. For this reason, the research community must continue
to develop new verifiable cryptographic tools that empower people and protect them
from any harm caused by such a strong data centricity. Security and privacy are long-
term requirements that must be incorporated in all the aspect of our society. More
modest, shorter-term research directions would consider improvements such as:

• Paper A describes the possibility of easily introducing differential privacy in any
cryptographic encryption scheme. On the other hand, it is left open the possibility
to design different crypto-primitives that provides DP by design, e.g. would it be
possible to create a DP signature scheme and which practical opportunities would
it provide?

• Paper B provides a tailored GDPR-oriented solution called HIKE for a specific
realistic application of outsourcing of both storage and computation. A direct
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Figure 14: Paper’s contributions and the correspondent data leak considered.

improvement would consist in either (i) further increasing HIKE’s privacy require-
ments to cover more GDPR principles; (ii) simplifying the construction to im-
prove efficiency; or (iii) introduce precise computation’s verification requirements
to guarantee security and privacy against stronger adversaries.

• Paper C and Paper D focus on the same goal of instantiating a simulatable
verifiable random function. For both the papers, more research is necessary to al-
low them to be efficiently usable in practice. Additionally, different post-quantum
cryptographic assumptions, e.g. isogenies, might be considered with the purpose of
increasing the number of choices and allow the application to select the best-fitting
primitive.

• Paper E provides the concept of strong functional signatures (SFS) and intro-
duces an instantiation of SFS. A possible future direction would be to simplify the
current instantiation, provide an efficient implementation and further investigate
the possibility to define a general transformation that allows the instantiation of
SFS from well-known cryptographic primitives.

• Paper F describes a methodology that enables the creation of crypto-distinguishers
by utilising machine learning. It further provides an experimental analysis and an
implementation. This paper’s next step would be to improve the implementation
by supporting additional machine learning algorithms and design a more practical
and automatised framework. Of different motivation, it is of major interest the
possibility to apply our methodology and check the concrete security of a real
cryptographic system.

• Paper G introduces NIVA which is designed for federated learning’s applications.
Future directions would be focused on improving the primitive’s efficiency and
lowering the application requirements for secure usage of NIVA. From the practical
side, NIVA should be implemented to be usable by the popular machine learning
framework used by developers, e.g. TensorFlow.

• Paper H instantiates the concept of turn based communication channel (TBCC)
and proves that the TBCC protocol achieves communication consistency. The
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next step for TBCC would be to understand if it formally provides any crypto-
graphic fairness property. Furthermore, a major investigation should be conduc-
ted to incorporate into the protocol more realistic assumptions, e.g. unpredictable
communication delays.
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