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Abstract Three novel analytical models derived using logarithmic perturbation are presented. The best
proposed model achieves a gain of 1.5 dB when comparing its normalised square deviation with other
models in a passive optical network.

Introduction

Perturbation models have been proposed in the
literature to approximate the optical fibre prop-
agation, which is governed by the nonlinear
Schrödinger equation (NLSE)[1],[2]. The NLSE can
be described by attenuation, chromatic dispersion
and the Kerr effect[3]. The Kerr effect is charac-
terised by a nonlinear coefficient, while the chro-
matic dispersion by the group-velocity dispersion
(GVD) parameter. Perturbative models based on
the nonlinear coefficient have been widely used in
the literature to predict system performance[4],[5]

or design low-complexity receivers[6], for exam-
ple. Recently, we proposed a perturbative model
on the GVD parameter[7],[8].

The most studied perturbative methods in op-
tical fibre communications are the regular per-
turbation (RP) and the logarithmic perturbation
(LP)[1],[9]. RP has been presented in the liter-
ature for the nonlinear coefficient γ[2] and the
GVD parameter β2[7], while LP has only been per-
formed for γ[1],[10]. Therefore, in this paper, we
present for the first time the LP on β2 model. The
performance of this model, however, can be im-
proved by performing LP in the frequency domain,
which is a new approach that we call frequency
logarithmic perturbation (FLP). FLP should not
be confused with the frequency resolved log-
arithmic perturbation (FRLP) proposed in[11],[12].
FRLP still applies the LP method in the time do-
main, whereas FLP applies this method in the fre-
quency domain. To the best of our knowledge,
this is the first time that FLP models are presented
in the literature.

In total, six models arise from the mentioned
perturbations. Three of them were already known
in the literature: RP on γ, RP on β2, and LP on
γ. In this paper, we present three new other mod-
els: LP on β2, FLP on γ, and FLP on β2. We

compare these six models in terms of normalised
square deviation (NSD) in a passive optical net-
work (PON). This system presents low accumu-
lated dispersion due to its short distance, which
makes it more suitable for perturbations on the
GVD parameter. In addition, the system can op-
erate in the highly nonlinear regime due to high
input powers. The results show that FLP on β2
yields the best performance in the highly nonlin-
ear regime.

Channel Model and Performance Metric
The normalised NLSE for noiseless propagation
of an optical field E for a retarded time frame t

and distance z is[2]

∂zA(t, z) =− (jβ2/2)∂ttA(t, z)

+ jγe−αz|A(t, z)|2A(t, z), (1)

where α is the attenuation coefficient. The first
term on the right-hand side of (1) represents the
chromatic dispersion and the last term represents
the Kerr nonlinearity.

A numerically very accurate solution of (1) is
obtained by the SSFM and denoted by A. We de-
note the output of a modelM byAM and compare
it with A in the time domain. The metric used for
this comparison is the NSD, defined as[2]

NSD ,

∫∞
−∞|AM (t, z)−A(t, z)|2dt∫∞

−∞ |A(t, z)|2dt
. (2)

The NSD integrates the absolute error squared
over the entire propagated time, and normalises
it with the power of the signal A. The lower the
NSD, the more accurate is the analytical model.

Regular Perturbation
The RP method consists of representing a signal
by a power series of a certain coefficient. For the



first order RP on γ, this series is truncated after
the first two terms. The resulting first order RP on
γ model is then given by

A(t, z) ≈ A(γ)
RP (t, z) = A

(γ)
0 (t, z) + γA

(γ)
1 (t, z), (3)

where A(γ)
0 and A(γ)

1 represent the zeroth and first
order RP on γ terms[1],[2]. Analogously, the first or-
der RP on β2 is obtained by truncating the power
series of the linear coefficient β2 after the first two
terms. The first order RP on β2 is written as

A(t, z) ≈ A(β2)
RP (t, z) = A

(β2)
0 (t, z) + β2A

(β2)
1 (t, z),

(4)
where A

(β2)
0 and A

(β2)
1 represent the zeroth and

first order RP on β2 terms[7].

Logarithmic Perturbation

LP is a mathematical technique similar to RP. LP
on γ was first presented in[1],[10] and can be shown
to have a higher convergence ratio than RP on γ.
LP functions can be obtained directly by the RP
functions A

(γ)
k or A(β2)

k . Following an approach
similar to[1], the first order LP on γ is written as

A
(γ)
LP (t, z) = A

(γ)
0 (t, z) exp

(
γ
A

(γ)
1 (t, z)

A
(γ)
0 (t, z)

)
, (5)

where the terms A(γ)
0 and A(γ)

1 are the RP terms
in (3). Since the LP only depends on the RP
terms, LP on β2 can also be derived following the
steps in[1], resulting in

A
(β2)
LP (t, z) = A

(β2)
0 (t, z) exp

(
β2
A

(β2)
1 (t, z)

A
(β2)
0 (t, z)

)
,

(6)
where A(β2)

0 and A(β2)
1 are the RP terms in (4).

Frequency Logarithmic Perturbation

The linearity of (3) and (4) with respect to the
functions A

(γ)
k and A

(β2)
k , respectively, suggests

another approach to obtain a different LP solu-
tion. The new approach consists on performing
the same steps on the LP derivation presented
in[1] in the frequency domain, which we refer to
as FLP. By using this approach, we can obtain
two new models not yet presented in the litera-
ture, namely FLP on γ and FLP on β2. The first
order FLP on γ is given by

Ã
(γ)
FLP(ω, z) = Ã

(γ)
0 (ω, z) exp

(
γ
Ã

(γ)
1 (ω, z)

Ã
(γ)
0 (ω, z)

)
, (7)
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Fig. 1: System setup based on PONs. Due to the short
transmission distance, the system has low accumulated

dispersion. The range of input powers allow the system to
operate in a highly nonlinear regime.

where Ã(γ)
0 and Ã(γ)

1 are the Fourier transforms of
A

(γ)
0 and A

(γ)
1 in (3), respectively. The first order

FLP on β2 is given by

Ã
(β2)
FLP (ω, z) = Ã

(β2)
0 (ω, z) exp

(
β2
Ã

(β2)
1 (ω, z)

Ã
(β2)
0 (ω, z)

)
,

(8)
where Ã(β2)

0 and Ã(β2)
1 are the Fourier transforms

of A(β2)
0 and A(β2)

1 in (4), respectively.

Numerical Results
Fig. 1 shows the PON system setup under con-
sideration. As depicted in the figure, we consider
a standard single mode fibre (SSMF) of 20 km,
followed by a splitter of ratio 1:64 and a final fibre
segment of 1 km. With this split ratio, the power
budget is 22.2 dB. The fibre input power PTx varies
from 0 to 20 dBm, which leads to a received power
PRx between −22.2 and −2.2 dBm. The range
of powers was chosen to cover launch powers
for PON systems according to[13],[14]. The SSFM
has α = 0.2 dB·km−1, β2 = −21.67 ps2km−1,
γ = 1.2 W−1km−1, and operates at a wavelength
of 1550 nm (C-band). The symbol rate for the sin-
gle transmitted channel was 10 Gbaud and the
modulation format quadrature phase shift keying
(QPSK). The considered pulse shape was root-
raised cosine (RRC), with a roll-off factor of 0.1.
We do not specify any particular receiver, since
the study compares the waveforms at the output
of the fibre.

To evaluate the impact of the nonlinearities, the
NSD was calculated for the powers in the highly
nonlinear regime specified in Fig. 1. Fig. 2 shows
the NSD versus PTx for the six analytical models
analysed in this paper. As shown in Fig. 2, both
LP and FLP on γ outperform RP on γ. The NSD
of FLP on γ crosses the 0.1% NSD threshold at
a PTx 1.1 dB higher than RP on γ. Analogously,
both LP and FLP on β2 outperform RP on β2.
These results support that, either in the time or
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Fig. 2: NSD versus input power PTx for the six analytical
models presented in this paper. The transmission is

performed in C-band. A schematic of the system is shown in
Fig. 1.

in the frequency domain, an (F)LP approach con-
verges faster to the true solution of (1) than the
standard RP approach.

The results in Fig. 2 also show that LP on γ is
more accurate than FLP on γ, while FLP on β2 is
more accurate than LP on β2. For example, the
NSD of LP on γ crosses the 0.1% NSD thresh-
old at a PTx 3.6 dB higher than FLP on γ, while
that of FLP on β2 crosses the same threshold at a
PTx 1.2 dB higher than LP on β2. We believe that
the difference between β2 and γ when comparing
LP and FLP could be explained by the solution
of (1) for only the chromatic dispersion effect or
only the Kerr effect[3]. The solution for the chro-
matic dispersion effect only is an exponential in
the frequency domain, which resembles the FLP
approach. Similarly, the solution for the Kerr effect
only is an exponential in the time domain, which
resembles the LP approach.

From the six models, FLP on β2 is the one that
presents best performance for PTx higher or equal
8 dBm. This result suggests that FLP on β2 is
more accurate for weak dispersion and high non-
linearity. For a constant NSD of 0.1 %, FLP on
β2 shows a gain of 1.5 dB in terms of input power
when compared to LP on γ. Larger gains are ob-
served at lower NSDs.

The effects of the dispersion on the models’
performance was also investigated. When reduc-
ing the accumulated dispersion, the models LP on
γ, RP on β2, LP on β2, and FLP on β2 converge
to the true solution of (1). This convergence can
be analytically proved by letting β2 → 0 in (4), (5),
(6), and (8). However, their rate of convergence
is different. Fig. 3 shows the NSD versus |β2| for
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Fig. 3: NSD versus |β2| for the six analytical models
presented in this paper. The input power is fixed at 10 dBm
for the system shown in Fig. 1 with negative β2. The models
present different rates of convergence when β2 approachs to

zero.

the six analysed models at PTx = 10 dBm and
negative β2. As depicted in Fig. 3, RP on β2, LP
on β2, and FLP on β2 present a rate of conver-
gence higher than LP on γ. While the NSD of the
three former models increases by approximately
104 per decade, that of NSD for LP on γ increases
by only 102 per decade. The NSD for FLP on β2
is approximately 42 times lower than for RP on β2
(see also Fig. 2). This gain is kept approximately
constant for other values of β2. Only FLP on γ

and RP on γ have approximately constant NSD
over the shown range of β2. The NSD for FLP on
γ was roughly 3 times lower than the NSD for RP
on γ.

Conclusions
Three novel models based on logarithmic pertur-
bation theory were presented. The validity of the
models was investigated in the C-band for a pas-
sive optical network. The frequency logarithmic
perturbation on β2 model demonstrated higher
accuracy in the highly nonlinear regime than the
other models analysed in the paper. Building a
receiver based on the proposed model and find-
ing higher order perturbations are possible exten-
sions of this work.
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