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Abstract— Hybrid dual clutch transmissions can reduce fuel 

consumption and CO2 emissions significantly at a low cost, but 

they will lead to torque interrupt shifts in electric vehicle mode. 

To improve the shift quality, the shift time should be minimized 

and the impacts between the sleeve teeth and the idler gear dog 

teeth after speed synchronization should also be minimized. 

Besides creating noise, these impacts are also responsible for 

delaying the completion of shift and contribute to wear in the 

dog teeth. This paper presents a time optimal control strategy 

for mechanical synchronizers in a hybrid dual clutch 

transmission, which includes constraints such that impacts 

between sleeve and gear dog teeth are minimized. It is 

demonstrated how a mechanical synchronizer can be modeled 

as a double integrator system and how the standard time-

optimal control solution of double integrator system must be 

modified such that it can be applied to mechanical 

synchronizers. The result is a feedback control strategy that 

guarantees minimum speed synchronization time and minimum 

noise/wear in transmission. The performance of the controller is 

verified by simulation. 

Keywords— Hybrid Powertrain, Dual Clutch Transmission, 

Mechanical Synchronizers, Optimal Control  

I. INTRODUCTION  

The transmission studied in this paper is a 7-speed hybrid 

dual clutch transmission (7DCTH). In electric vehicle mode 

(EV mode), when both clutches C1 and C2 are open and the 

combustion engine is off, is shown in the schematic diagram 

in Figure 1. The electric motor (EM) will be driving the 

vehicle via even gears as shown by the yellow line 

representing the power flow. So, in EV mode the rest of the 

system can be ignored. The important part of the driveline in 

EV mode is shown in  Figure 2, including the gear shift 

mechanism with synchronizers.  

Before gear shift, sleeve will be connected to offgoing 

idler shown in pink in Figure 2, so EM will drive the wheels 

via input shaft, offgoing idler, sleeve and output shaft. When 

the shift is ordered the sleeve must be disconnected from 

offgoing idler and connected to the oncoming idler shown in 

red in Figure 2. From  Figure 2 it can be seen that since both 

oncoming idler and offgoing idler are on the same shaft, the 

shift will always be a ‘‘Torque Interrupt shift’’. A torque 

interrupt shift can be defined as a shift where during shift the 

wheels are disconnected from torque source, i.e. the electric 

motor for a hybrid vehicle in EV mode.  Consequently, driver 

does not get the requested torque and unwanted changes in 

acceleration are felt. So, in order to maintain good drivability, 

the shift time of torque interrupt shifts must be minimized. A 

torque interrupt shift has the following five phases [1] and the 

total shift time is from the start of phase 1 until the end of 

phase 5 [2].  

1. Torque ramp down 

2. Sleeve to Neutral 

3. Speed Synchronization 

4. Sleeve to Gear Engagement 

5. Torque Ramp up 

At the beginning of the gear shifting, during torque ramp 

down phase, driving torque from traction EM is removed 

from off going idler gear. Once the driving torque is zero, 

sleeve to neutral phase begins, where sleeve is disengaged 

from offgoing idler and moved to the neutral position shown 

in Figure 2.  

 

 

Figure 1   Layout of 7DCTH and its EV mode 

 

Figure 2   Driveline in EV mode 

In speed synchronization phase the rotational velocity of 

oncoming idler is matched with that of sleeve. This can be 

achieved by different methods as shown in [1]. Once the 

speed difference between oncoming idler and sleeve is zero, 

sleeve to gear engagement phase starts where sleeve is 
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pushed to engage with oncoming idler. After sleeve has 

moved a certain distance on the oncoming idler driving 

torque from traction EM is resumed and shift is finished.  

Phase 3, the speed synchronization phase, takes the 

longest percentage of the complete shift time, and to reduce 

shift time significantly, synchronization time must be 

minimized.   

During Phase 4, the sleeve to gear engagement, there are 

often impacts between sleeve teeth and oncoming idler gear 

dog teeth [3]. These impacts are responsible for noise during 

gear shifts. Additionally, these impacts are also responsible 

for shortening the life span of transmission [3]. So, to 

minimize noise and wear in transmission during the gear 

shifting these impacts must be minimized. 

In the existing methods, only the time for speed 

synchronization phase is minimized, this paper deals with 

time optimal control to reduce both the speed synchronization 

time and the impacts between sleeve teeth and oncoming idler 

gear dog teeth. 
Section II describes the geometry of synchronizer and its 

modeling. The dog teeth position sensor explained in [4] is 
also introduced in this section. Section III describes the speed 
synchronization between sleeve and idler gear in detail. 
Section IV relates the conditions at the end of speed 
synchronization with the analysis in [4] to formulate the 
conditions necessary to avoid impacts between sleeve teeth 
and oncoming idler gear dog teeth. The Dog teeth position 
sensor presented in [4] is also discussed in the context of 
feedback control implemented in later sections. 

In Section V speed synchronization is formulated as a 
Time optimal control problem and is solved using the 
approach in  [5]. The resulting Time Optimal control 
sequences are studied in the context of synchronizers. 
Switching Curve necessary for application of time optimal 
feedback control is derived and simulation results shows a 
gear shift with this controller.  

II. MECHANICAL SYNCHRONIZER 

A side view of a mechanical synchronizer is shown in 

Figure 3. The components in speed synchronization are 

sleeve, blocker ring and oncoming idler gear as shown in the 

assembly view in Figure 3.  

Analysis of synchronizers becomes very convenient 

when each individual component is represented by its dog 

teeth as shown Figure 4. The dog teeth of sleeve, blocker ring 

and idler gear are shown when synchronizer is in neutral. 

The teeth geometry is also shown in Figure 4. The dog 

teeth width for all teeth is 𝑤𝑑𝑜𝑔 and the half angle of teeth tip 

is 𝛽. The sleeve tip position 𝑦𝑠 and idler gear tip position 𝑦𝑔 

can be measured by using the ‘‘Dog teeth position sensor’’ 

which is explained in detail in [4].   

The relative alignment between sleeve and idler gear dog 

teeth 𝑦𝑠𝑔𝑟  will be used as feedback signal for the control 

algorithm, so its bounds will affect the controller design. The 

bounds are discussed here and the effects on controller design 

are discussed in later sections of this paper. 

𝑦𝑠𝑔𝑟  at any time instance 𝑡𝑖 can then be calculated using 

 

  

𝑦𝑠𝑔𝑟(𝑡𝑖) =  

 {
𝑦𝑔(𝑡𝑖) − 𝑦𝑠(𝑡𝑖)                          if 𝑦𝑔(𝑡𝑖) > 𝑦𝑠(𝑡𝑖) 

𝑦𝑠𝑔𝑚𝑎𝑥 − 𝑦𝑠(𝑡𝑖) + 𝑦𝑔(𝑡𝑖)      if 𝑦𝑠(𝑡𝑖) > 𝑦𝑔(𝑡𝑖)
      (1) 

where 𝑦𝑠𝑔𝑚𝑎𝑥 is the distance between two consecutive tips 

of sleeve or gear as shown in Figure 4 and can be calculated 

by  

𝑦𝑠𝑔𝑚𝑎𝑥 = 2𝜋 × 𝑅/𝑛𝑑𝑜𝑔        (2) 

where 𝑅 is the sleeve or gear radius as shown in Figure 5 and 

𝑛𝑑𝑜𝑔 is the number of dog teeth. 

Teeth geometry parameters used in this paper are shown in 

Table 1. 

 

 

Figure 3   Mechanical Synchronizer  

 

Figure 4   Synchronizer teeth in neutral position 

 

Figure 5   Cone clutch parameters 

 

Figure 6   Sawtooth and Smoothened sensor signal 

Table 1 Teeth Geometry parameters 

Teeth Geometry Parameters 

𝑤𝑑𝑜𝑔  4 mm 

𝑦𝑠𝑔𝑚𝑎𝑥  8.5 mm 

𝑛𝑑𝑜𝑔  45 
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It can be seen from [4] that 𝑦𝑠 and 𝑦𝑔 signals from sensor are 

sawtooth waves and ∈ [0, 𝑦𝑠𝑔𝑚𝑎𝑥], so the resulting 𝑦𝑠𝑔𝑟  will 

also be a sawtooth wave as shown in Figure 6 in red  and 

𝑦𝑠𝑔𝑟(𝑡𝑖) ∈ [0, 𝑦𝑠𝑔𝑚𝑎𝑥]         (3) 

Since the signal 𝑦𝑠𝑔𝑟(𝑡𝑖) is used to calculate feedback 

signal, a smooth signal is preferred over a sawtooth signal. 

The smoothed signal is shown in magenta in Figure 6. 

Feedback signal for the relative angle between sleeve and 

gear 𝜃𝑠𝑔𝑟  can then be calculated by 

𝜃𝑠𝑔𝑟 = 𝑦𝑠𝑔𝑟𝑠𝑚𝑜𝑜𝑡ℎ/𝑅                            (4) 

III. SPEED SYNCHRONIZATION 

Sleeve movement is in the shift direction in Figure 3. In 

Figure 2, it can be seen that synchronizer hub is connected to 

the wheels. Since sleeve is connected with synchronizer hub 

using spline coupling the sleeve speed 𝜔𝑠 can be calculated 

from drive shaft speed 𝜔𝑑𝑟𝑖𝑣𝑒 𝑠ℎ𝑎𝑓𝑡 as  

𝜔𝑠 = 𝜔𝑑𝑟𝑖𝑣𝑒 𝑠ℎ𝑎𝑓𝑡 × 𝐹𝑖𝑛𝑎𝑙 𝐷𝑟𝑖𝑣𝑒 𝑅𝑎𝑡𝑖𝑜       (5) 

where 𝜔𝑑𝑟𝑖𝑣𝑒 𝑠ℎ𝑎𝑓𝑡 can be calculated using velocity of 

vehicle 𝑣𝑣𝑒ℎ by 

𝜔𝑑𝑟𝑖𝑣𝑒 𝑠ℎ𝑎𝑓𝑡 = 𝑣𝑣𝑒ℎ/𝑅𝑤         (6) 

where 𝑅𝑤 is the radius of wheels and shift velocity 𝑣𝑣𝑒ℎ for 

every gear shift is defined by ‘‘Gear shift schedule’’ as 

explained in [6].  

In this paper it is assumed that 𝑣𝑣𝑒ℎ  remains constant 

during shift, which is a valid assumption since the vehicle 

does not have much time to decelerate if the shift is fast 

enough. So angular acceleration of sleeve 𝛼𝑠 would be  

𝛼𝑠 = 0          (7) 

The synchronizer hub is connected with the blocker ring 

with rotary bump stops. So, blocker ring is mechanically 

connected to sleeve with a certain tangential clearance. The 

blocker ring is connected to idler gear by cone clutch. Before 

synchronization the speed of oncoming idler gear 𝜔𝑔, hence 

forth referred to simply as idler gear, can be calculated as 

seen in Figure 2. 

𝜔𝑔(𝑡 ≤ 𝑡0) = 𝜔𝑠 × (𝑘1/𝑘2)                 (8) 

where 𝑘1 and 𝑘2 are initial and target gear ratios respectively 

as shown in Figure 2. 

When an axial force 𝐹𝑎𝑥 is applied on sleeve in the shift 

direction, the sleeve moves forward and makes contact with 

blocker ring teeth as shown in Figure 7. The time instance 

when sleeve teeth is in full contact with blocker ring teeth 

referred to as ‘‘Blocking Position’’ in [7] and is here denoted 

by time 𝑡0. When sleeve is at blocking position the axial force 

𝐹𝑎𝑥 applied on sleeve is transferred to the cone clutch speed 

and speed synchronization will start. 

 

 

Figure 7   Sleeve at Blocking Position 

If an upshift is considered then idler gear speed at the 

beginning of speed synchronization, 𝜔𝑔(𝑡0) from (8) will be 

larger than sleeve speed 𝜔𝑠 from (5) as shown in Figure 7. 

The relation will be reversed for a downshift. Downshift is 

not considered in this paper, but the mathematical relations 

will be same and can be derived similarly. Additionally, for 

sake of simplicity, in this paper it is assumed that speed 

synchronization is done with cone clutch entirely. If the 

synchronization is done with either electric motor or with 

electric motor and cone clutch sequentially as shown in [1], 

the subsequent mathematical relations still hold but will need 

to include the synchronization torque from electric motor. 

When the cone clutch is closed with a clamping force 

equal to axial force 𝐹𝑎𝑥, a friction torque 𝑇𝑐𝑜𝑛𝑒  is generated 

as shown in Figure 7. 𝑇𝑐𝑜𝑛𝑒  can be calculated by 

𝑇𝑐𝑜𝑛𝑒 = 𝐹𝑎𝑥 × 𝜇𝑐𝑜𝑛𝑒 × 𝑅𝑐/ sin 𝛼        (9) 

where 𝜇𝑐𝑜𝑛𝑒  is the friction coefficient of cone clutch, 𝑅𝑐  is 

effective radius of cone and 𝛼 is the cone angle as shown in 

Figure 5. In this paper 𝐹𝑎𝑥, is considered to be constant and is 

the maximum axial force provided by the gear actuator. 

The friction torque in a clutch will be in such a way that 

it will try to reduce the velocity difference between the plates. 

So, for an upshift, 𝑇𝑐𝑜𝑛𝑒  will try to reduce the speed of idler 

gear 𝜔𝑔 and increase 𝜔𝑠 since 𝜔𝑔(𝑡0) > 𝜔𝑠. Sleeve speed 𝜔𝑠 

will not change since sleeve and blocker ring is connected to 

hub as shown in Figure 3 and hub is connected to wheels as 

shown in Figure 2, and thus the whole vehicle mass will act 

as a very large inertia on the sleeve. The idler has a smaller 

inertia stemming from its own mass, the input shaft and the 

electric motor. So, the idler gear velocity 𝜔𝑔  will decrease 

due to application of torque 𝑇𝑐𝑜𝑛𝑒  while the sleeve speed is 

constant. 

For an upshift, the resulting angular acceleration of idler 

gear 𝛼𝑔 can be calculated by 

𝛼𝑔 = (−𝑇𝑐𝑜𝑛𝑒 − 𝑇𝑑)/𝐽𝑔       (10) 

where 𝐽𝑔  is reflected moment of inertia of oncoming idler, 

input shaft [8] and electric motor [1]. 𝑇𝑑  is drag torque on 

oncoming idler its value can be calculated by methods shown 

in [9]. In this paper drag torque is assumed to be a constant 

term so (10) can be re written as  

𝛼𝑔 = −(𝑇𝑠𝑦𝑛𝑐ℎ)/𝐽𝑔 (11)  

Since 𝑇𝑐𝑜𝑛𝑒  and 𝑇𝑑  in (10) are constants, 𝑇𝑠𝑦𝑛𝑐ℎ  in (11) is 

also a constant. 

Idler velocity 𝜔𝑔, after a time 𝑡𝑠𝑦𝑛𝑐ℎ, 𝜔𝑔 becomes equal 

to 𝜔𝑠. So 

𝜔𝑔(𝑡𝑠𝑦𝑛𝑐ℎ) − 𝜔𝑠 = 0                (12) 

Relative velocity between sleeve and gear during speed 

synchronization 𝑡 ∈ [𝑡0, 𝑡𝑠𝑦𝑛𝑐ℎ] is defined by 𝜔𝑠𝑔(𝑡) where 

𝜔𝑠𝑔(𝑡) = 𝜔𝑔(𝑡) − 𝜔𝑠       (13) 

As it can be seen in Figure 7,that the sleeve is trying to 

push blocker ring from its path towards and go towards gear 

engagement by applying indexation torque 𝑇𝐼  but cone torque 

𝑇𝑐𝑜𝑛𝑒  is acting on the blocker ring in the opposite direction. 

The expression of 𝑇𝐼  from [10] is 

𝑇𝐼 = 𝐹𝑎𝑥 × 𝑅 × (1 − 𝜇𝑠 tan 𝛽)/(𝜇𝑠 +tan𝛽) (14) 
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where 𝜇𝑠 is the friction coefficient of teeth surface and 𝛽 is 

the half angle of teeth as shown in Figure 4. 𝑅 is the sleeve 

or gear radius as shown in Figure 5. 

To keep the sleeve stuck at blocking position until the 

condition in (12) is fulfilled,  𝑇𝑐𝑜𝑛𝑒  is always designed to be 

larger than 𝑇𝐼  as mentioned in [10] so  

𝑇𝑐𝑜𝑛𝑒 > 𝑇𝐼          (15) 

This design feature in (15) is very important as its 

fulfillment avoids clash and grating noise [10] .Normally 

𝑇𝑐𝑜𝑛𝑒  is kept 3 times larger than 𝑇𝐼 . 
Since 𝑇𝑐𝑜𝑛𝑒  is a friction torque, when speed difference 

 𝜔𝑠𝑔
𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ𝑒𝑠
→        0

𝑖𝑚𝑝𝑙𝑖𝑒𝑠
⇒    𝑇𝑐𝑜𝑛𝑒

𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ𝑒𝑠
→        0     (16)  

Implication (16) is based on [11], which demonstrates 

the fact by calculating friction force against different slip 

velocities using various friction models. 

Combining (16) with (12) and (13), it can be seen that 

relationship in  (15) will only be reversed when 𝜔𝑠𝑔 is nearly 

equal to zero at time 𝑡𝑠𝑦𝑛𝑐ℎ , hence sleeve will be stuck at 

blocking position until 𝜔𝑠𝑔 ≅ 0.  

IV.  SLEEVE TO GEAR ENGAGEMENT 

Once speed synchronization is done at time 𝑡𝑠𝑦𝑛𝑐ℎ, the sleeve 

moves towards idler gear as shown in Figure 8. When sleeve 

has moved a certain displacement 𝑥𝑒𝑛𝑑, the ramp up torque 

starts at time 𝑡𝑒𝑛𝑑 as shown in Figure 8. 

Relative alignment between sleeve and idler gear at 

synchronization time 𝑦𝑠𝑔(𝑡𝑠𝑦𝑛𝑐ℎ)  determines the trajectory 

of sleeve tip point during gear engagement as shown by 

purple and magenta curves in Figure 8. From Figure 8, it can 

be seen that if 𝑦𝑠𝑔(𝑡𝑠𝑦𝑛𝑐ℎ)  is equal to a particular value 

𝑦𝑠𝑔
∗ (𝑡𝑠𝑦𝑛𝑐ℎ),  the sleeve teeth do not hit the idler gear dog 

teeth hence guarantying fastest gear engagement and least 

noise and wear. If, however gear engagement starts at another 

value as shown by the purple curve, the sleeve teeth will 

make a ‘‘frontal contact’’ which delays gear engagement and 

makes clonk noise and wear in the transmission. 

So, it can be concluded that gear engagement must be 

started if and only if 

𝑦𝑠𝑔(𝑡𝑠𝑦𝑛𝑐ℎ) = 𝑦𝑠𝑔
∗ (𝑡𝑠𝑦𝑛𝑐ℎ)      (17) 

[4] shows detailed calculation of 𝑦𝑠𝑔
∗ (𝑡𝑠𝑦𝑛𝑐ℎ) and includes 

simulation results for verification. 

 

 

Figure 8   Sleeve to Gear engagement 

 

V. CONTROL PROBLEM 

The control problem can be formulated as  

‘‘Design a feedback controller that minimizes the time 

duration 𝑡𝑠𝑦𝑛𝑐ℎ − 𝑡0, subject to 𝑦𝑠𝑔(𝑡𝑠𝑦𝑛𝑐ℎ) = 𝑦𝑠𝑔
∗ (𝑡𝑠𝑦𝑛𝑐ℎ)’’ 

To use the existing approach to the solution of time 

optimal control problems as shown in [5], the problem should 

be expressed as a state-space model. So, two states 𝑥1 and 𝑥2 

are introduced, for speed synchronization phase  

𝑥1 = 𝜃𝑠𝑔;  𝑥2 = 𝜔𝑠𝑔       (18) 

where 𝜃𝑠𝑔 is the relative angle between sleeve and gear teeth. 

From (18) it can be seen that  

𝑥1̇ = 𝑥2        (19) 

Based on (13)  

𝜔𝑠𝑔̇ = 𝛼𝑠𝑔 = 𝛼𝑔 − 𝛼𝑠       (20) 

Taking 𝛼𝑔  and 𝛼𝑠  from (11) and (7) , putting them in 

(20) and then using (18) 

𝑥2̇ = 𝛼𝑠𝑔 = −(𝑇𝑠𝑦𝑛𝑐ℎ)/𝐽𝑔      (21) 

The state space model can then be written in matrix form 

using (18), (19) and (20) as 

[
𝑥1̇
𝑥2̇
] = [

0 1
0 0

]
𝑥1
𝑥2
+ [
0
1
] 𝛼𝑠𝑔      (22) 

where 𝛼𝑠𝑔 is the input and it is constrained. 

A. Constraints on Input 

For speed synchronization during an upshift, done purely 

by cone clutch, the constraints on 𝛼𝑠𝑔 will be such that 

−(𝑇𝑠𝑦𝑛𝑐ℎ)/𝐽𝑔 ≤ 𝛼𝑠𝑔 ≤ 0      (23)     

The upper limit of zero in (23) reflects the fact that a cone 

clutch can only decrease the speed difference 𝜔𝑠𝑔  towards 

zero.  

Since electric motor shown in Figure 2 can provide both 

a positive and a negative torque it can be used to increase the 

speed difference. If motor can provide a certain torque 𝑇𝑒𝑚 at 

cone clutch in the direction opposite to 𝑇𝑐𝑜𝑛𝑒  as shown in 

Figure 7, 𝜔𝑠𝑔 can be increased. So, (23) can be rewritten as  

−(𝑇𝑠𝑦𝑛𝑐ℎ)/𝐽𝑔 ≤ 𝛼𝑠𝑔 ≤ 𝑇𝑒𝑚  /𝐽𝑔      (24) 

where 𝑇𝑒𝑚 and 𝑇𝑠𝑦𝑛𝑐ℎ are not necessarily equal. It should be 

noted that 𝑇𝑒𝑚 does not represent the motor torque used for 

synchronization as explained in [2]. 𝑇𝑒𝑚  for the context of 

this paper is used to throw sleeve and gear out of 

synchronization by increasing  𝜔𝑠𝑔. 

B. Boundary conditions on states 

For state 𝑥2 the boundary condition at time 𝑡0  can be 

derived from subtracting (5) from (8) and the result will be a 

known constant denoted by 𝜔𝑠𝑔0. The boundary condition on 

𝑥2 at time 𝑡𝑠𝑦𝑛𝑐ℎ is 0 as shown in (12). 

𝑥1 at time 𝑡0, denoted by 𝜃𝑠𝑔𝑟0 can be calculated using 

the measurement from the ‘‘Dog teeth position sensor’’ 

explained in [4]. If the relative alignment between sleeve and 

gear at time 𝑡0  is 𝑦𝑠𝑔𝑟(𝑡0) then 𝜃𝑠𝑔𝑟0  can be calculated by 

evaluating (4) at time 𝑡0. Since 𝑦𝑠𝑔𝑟(𝑡0) is bounded as shown 

by (3), 𝑦𝑠𝑔𝑟𝑠𝑚𝑜𝑜𝑡ℎ(𝑡0) will have same bounds because it 

can be seen from Figure 6 that both sawtooth and smooth 

signals have same value at time 𝑡0. Consequently 𝜃𝑠𝑔𝑟0 will 

also be bounded. 
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For control system design 𝜃𝑠𝑔𝑟0  will be treated as an 

arbitrary but known bounded constant.  

For state 𝑥1  the boundary condition at time 𝑡𝑠𝑦𝑛𝑐ℎ 

denoted by 𝜃𝑠𝑔𝑓 can be calculated using (17). So, boundary 

conditions can be summarized as  

𝑥1(𝑡0) = 𝜃𝑠𝑔𝑟0 =
𝑦𝑠𝑔𝑟(𝑡0)

𝑅
∈ [0,

𝑦𝑠𝑔𝑚𝑎𝑥

𝑅
]  

𝑥1(𝑡𝑠𝑦𝑛𝑐ℎ) = 𝜃𝑠𝑔𝑓 = 𝑦𝑠𝑔
∗ (𝑡𝑠𝑦𝑛𝑐ℎ)/𝑅       

𝑥2(𝑡0) = 𝜔𝑠𝑔0  

𝑥2(𝑡𝑠𝑦𝑛𝑐ℎ) = 0             (25) 

C. Defintion of control problem 

Since the aim of feedback control is to minimize the time 

duration 𝑡𝑠𝑦𝑛𝑐ℎ − 𝑡0, the performance index 𝐽 can be defined 

as  

𝐽 = 𝑡𝑠𝑦𝑛𝑐ℎ − 𝑡0           (26) 

given  

 state space model from (22) 

 constraints on input 𝛼𝑠𝑔 from (24) 

 boundary conditions on state variables in (25) 

The Time optimal control problem solved in [5] has the 

same above-mentioned state space model, constraints, 

boundary conditions and performance index. 

D. Optimal control sequences 

By formulating the Hamiltonian as shown in [5] and then 

minimizing Hamiltonian according to Pontryagin Principle it 

follows that the time optimal control for this type of system 

must be of ‘‘Bang Bang type’’. 

The four optimal control sequences according to [5] will 

be  

{⌊𝛼𝑠𝑔⌋} 𝑂𝑅  {⌈𝛼𝑠𝑔⌉} 𝑂𝑅 {⌈𝛼𝑠𝑔⌉, ⌊𝛼𝑠𝑔⌋} 𝑂𝑅  

{⌊𝛼𝑠𝑔⌋, ⌈𝛼𝑠𝑔⌉}                              (27) 

where floor and ceiling functions in sequences shown in 

(27) correspond to limits of 𝛼𝑠𝑔 in (24). Since the state 

space in (22) is of 2nd order according to Theorem 7.3 in [5], 

the maximum number of switches in optimal control 

sequence is 1 as shown in (27). 

It should be noted that the sequences in (27), correspond 

to both upshifts and downshifts. The reason is the state space 

in (22) and performance index (26) will be same for both 

upshifts and downshifts. Since Hamiltonian is derived from 

state space equations and performance index the optimal 

control sequences shown in (27) cover both cases. 

The difference between an upshift and a down shift is 

then only in the constraints on input 𝛼𝑠𝑔  and boundary 

conditions. Since this paper only deals with upshifts the 

corresponding sequences will be 

{⌊𝛼𝑠𝑔⌋} 𝑂𝑅 {⌈𝛼𝑠𝑔⌉, ⌊𝛼𝑠𝑔⌋}      (28)  

The choice of these particular sequences becomes 

obvious, realizing that ⌊𝛼𝑠𝑔⌋  in (28) corresponds to  

−(𝑇𝑠𝑦𝑛𝑐ℎ)/𝐽𝑔in (24) and since for an upshift 𝜔𝑔(𝑡0) > 𝜔𝑠 , 

implying that a negative acceleration must be applied to 

fulfill the corresponding boundary condition in (25). The 

sequence {⌈𝛼𝑠𝑔⌉, ⌊𝛼𝑠𝑔⌋} , means that first a positive 

acceleration ⌈𝛼𝑠𝑔⌉  is applied which will increase 𝜔𝑠𝑔  as 

explained earlier. ⌈𝛼𝑠𝑔⌉ is applied until a certain time and 

afterwards negative acceleration ⌊𝛼𝑠𝑔⌋ is applied make 𝜔𝑠𝑔 

decrease to 0. 

Similar conclusion can be drawn when dealing with 

downshifts that the optimal control sequences will be either 

{⌈𝛼𝑠𝑔⌉} or {⌊𝛼𝑠𝑔⌋, ⌈𝛼𝑠𝑔⌉} with input constraints in (24) and 

boundary conditions in (25) updated to correspond with 

downshifts.   

E. Switching Curve for ⌊𝛼𝑠𝑔⌋ 

The switching curve as defined by [5] is the phase plane 

trajectory which transfers any initial state to a particular final 

state. According to boundary conditions in (25), final state is 

(𝜃𝑠𝑔𝑓 , 0). 

According to the control sequences in (28), ⌊𝛼𝑠𝑔⌋ is the 

control signal that is connected to final state. The equation for 

the phase plane trajectory can be derived as follows.  

Integrating both sides of (21) 

𝑥2 = −
𝑇𝑠𝑦𝑛𝑐ℎ

𝐽𝑔
× 𝑡 + 𝑐2        (29) 

where 𝑐2 is constant of integration. 

In the following calculations constants are kept symbolic. 

Their exact values based on physical parameters are defined 

at the end of derivations. 

From (29) value of integration time 𝑡, can be calculated 

as  

𝑡 = (𝑐2 − 𝑥2) × 𝐽𝑔/𝑇𝑠𝑦𝑛𝑐ℎ      (30)  

Putting value of 𝑥2  from (29) in (19) and integrating both 

sides gives 

𝑥1 = −
1

2
×
𝑇𝑠𝑦𝑛𝑐ℎ

𝐽𝑔
× 𝑡2 + 𝑐2 × 𝑡 + 𝑐1     (31) 

Putting value of 𝑡 from (30) in (31), state 𝑥1 can be written as 

function of state 𝑥2 

𝑥1 = −
𝐽𝑔

2×𝑇𝑠𝑦𝑛𝑐ℎ
𝑥2
2 +

𝐽𝑔

2×𝑇𝑠𝑦𝑛𝑐ℎ
𝑐2
2 + 𝑐1     (32) 

Rewriting (32) by combining last two constants in a new 

constant 𝑐3  

𝑥1 = −
𝐽𝑔

2×𝑇𝑠𝑦𝑛𝑐ℎ
𝑥2
2 + 𝑐3       (33) 

Equation (33) represents a family of trajectories in the 

phase plane with an offset depending on 𝑐3. The switching 

curve that is the trajectory connected to final state can be 

calculated by solving (33) for 𝑐3, by putting 𝑥1 = 𝜃𝑠𝑔𝑓 and 

𝑥2 = 0 which yields 

𝑐3 = 𝜃𝑠𝑔𝑓         (34) 

If boundary conditions are such that  

𝑦𝑠𝑔
∗ (𝑡𝑠𝑦𝑛𝑐ℎ) = 4.245 𝑚𝑚      (35) 

𝜔𝑠𝑔0 = 100 𝑟𝑎𝑑/𝑠𝑒𝑐          (36) 

and if 𝑇𝑠𝑦𝑛𝑐ℎ is such that  

– (𝑇𝑠𝑦𝑛𝑐ℎ)/𝐽𝑔 = −1250 𝑟𝑎𝑑/𝑠𝑒𝑐
2     (37) 

the switching curve is shown by dotted blue curve in Figure 

9. 

By the dotted blue curve Figure 9  it can be seen that if 

𝜃𝑠𝑔𝑟0 is = −239.3 ÷ 𝑅 𝑟𝑎𝑑𝑖𝑎𝑛𝑠  then the optimal control 

sequence will be ⌊αsg⌋. If 𝜃𝑠𝑔𝑟0  is < −239.3 ÷ 𝑅 𝑟𝑎𝑑𝑖𝑎𝑛𝑠 

then the control sequence will be {⌈𝛼𝑠𝑔⌉, ⌊𝛼𝑠𝑔⌋}. The offset 
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switching curve shown by solid blue curve in Figure 9, will 

be explained in the next section V.F.  
 

 

Figure 9   Switching Curve and offset switching curve for Upshift with 

⌊αsg⌋ 

F. Offsetting the switching curve 

As 𝜃𝑠𝑔𝑟0 is lower bounded by zero as can be concluded 

from (3) and (4), it will lead to feedback signal at time 𝑡0 
being on the right side of the dotted switching curve shown 

in Figure 9. This situation must be avoided, and the reasoning 

is explained in subsequent section V.I. So, the switching 

curve must be offset with a constant 𝑐4 such that  

𝑅 × 𝜃𝑠𝑔𝑟0  + 𝑐4 > 0          (38) 

where 𝑐4 can be calculated by 

𝑐4 = 𝑛 × 𝑦𝑠𝑔𝑚𝑎𝑥/𝑅       (39) 

where 𝑛 is a positive integer. 

So, (33) for switching curve for ⌊𝛼𝑠𝑔⌋  updated with new 

offset 𝑐4 will be  

𝑥1 = −
𝐽𝑔

2×𝑇𝑠𝑦𝑛𝑐ℎ
𝑥2
2 + 𝑐3 + 𝑐4     (40) 

The switching curve with offset is shown by solid blue 

curve in Figure 9. Constants 𝑐3 and 𝑐4 can be collected as a 

new constant 𝑐5 such that  

𝑐5 = 𝑐3 + 𝑐4        (41) 

So, switching curve (40) can be updated as  

𝑥1 = −
𝐽𝑔

2×𝑇𝑠𝑦𝑛𝑐ℎ
𝑥2
2 + 𝑐5          (42) 

Since 𝑛 is an integer in (39), it can be verified that both  

4.245 𝑚𝑚  and 250.745 𝑚𝑚  represent the same relative 

alignment between sleeve teeth and idler gear teeth with 𝑛 =
29 . Also, it can be seen from Figure 9, that 𝑐5  is 

250.745 𝑚𝑚 ÷ 𝑅 𝑟𝑎𝑑𝑖𝑎𝑛𝑠.  
Relative alignment at 𝜔𝑠𝑔0  is denoted by 𝑦𝑠𝑔1  and can be 

calculated by solving (42) at 𝑥2 = 𝜔𝑠𝑔0. So 

𝑦𝑠𝑔1 = 𝑅 × [−
𝐽𝑔

2×𝑇𝑠𝑦𝑛𝑐ℎ
𝜔𝑠𝑔0
2 + 𝑐5]      (43) 

Solving (43) results in 𝑦𝑠𝑔1 = 7.2379 𝑚𝑚 which is marked 

by red rectangle in Figure 9. 

G. Switching Curve ⌈𝛼𝑠𝑔⌉ 

The switching curve for ⌈αsg⌉ is the curve that reaches 

final state of offset curve in Figure 9 i.e. (𝑐5, 0) by applying 

a positive acceleration on the gear. The positive acceleration 

is 𝑇𝑒𝑚  /𝐽𝑔  according to (24). The equation of curve 

calculated by using the procedure from section V.D will then 

be  

𝑥1 =
𝐽𝑔

2×𝑇𝑒𝑚
𝑥2
2 + 𝑐5        (44) 

The complete switching curve is shown in Figure 10. The 

blue curve is for ⌊𝛼𝑠𝑔⌋  from (42) and red curve is for ⌈αsg⌉ 

from (44). The difference in curvature is due to 𝑇𝑠𝑦𝑛𝑐ℎ and 

𝑇𝑒𝑚 not being equal. 
 

 

Figure 10    Complete switching curve 

H. Feedback control  

Using the switching curve in Figure 10, feedback 

controller can be designed that takes system from any initial 

state to the final state (𝑐5, 0)  by following the switching 

curve. The measurement for 𝑥1 is 𝜃𝑠𝑔𝑟  as mentioned earlier 

and measurement for 𝑥2 is 𝜔𝑠𝑔𝑟  and is from already existing 

speed sensors in the transmission. So 

𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑥1 = 𝜃𝑠𝑔𝑟         

𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑥2 = 𝜔𝑠𝑔𝑟           (45) 

Combining state measurements in (45) with switching 

curve (42) and (44), feedback law for time optimal control 

can be derived. 

It can be seen for instance if 𝜔𝑠𝑔𝑟 > 0 and (𝜃𝑠𝑔𝑟 , 𝜔𝑠𝑔𝑟) 

are such that they lie on the left blue curve in Figure 10, then 

𝛼𝑠𝑔  must be = ⌈𝛼𝑠𝑔⌉  as explained in [5]. To check if 

(𝜃𝑠𝑔𝑟 , 𝜔𝑠𝑔𝑟) lie on the left of blue curve then the equation of 

the curve from (42) must be evaluated for (𝜃𝑠𝑔𝑟 , 𝜔𝑠𝑔𝑟). The 

condition can be formulated as 

𝜃𝑠𝑔𝑟 +
𝐽𝑔

2×𝑇𝑠𝑦𝑛𝑐ℎ
𝜔𝑠𝑔𝑟
2 − 𝑐5 < 0      (46) 

which if 𝑇𝑟𝑢𝑒
𝑖𝑚𝑝𝑙𝑖𝑒𝑠
⇒    (𝜃𝑠𝑔𝑟 , 𝜔𝑠𝑔𝑟) lies on the left of blue 

curve. So,  

if 𝜃𝑠𝑔𝑟 +
𝐽𝑔

2×𝑇𝑠𝑦𝑛𝑐ℎ
𝜔𝑠𝑔𝑟
2 − 𝑐5 < 0 𝐴𝑁𝐷 𝜔𝑠𝑔𝑟 > 0             

then 𝛼𝑠𝑔 = ⌈𝛼𝑠𝑔⌉    (47)  

By formulating different conditions such as condition 

(47) for different  (𝜃𝑠𝑔𝑟 , 𝜔𝑠𝑔𝑟) for both curves in  Figure 10 

and then formulating the resulting optimal value for 𝛼𝑠𝑔, the 

complete feedback control law for time optimal control is 

given by 

if 𝜃𝑠𝑔𝑟 +
𝐽𝑔

2×𝑇𝑠𝑦𝑛𝑐ℎ
𝜔𝑠𝑔𝑟
2 − 𝑐5 > 0  𝐴𝑁𝐷 𝜔𝑠𝑔𝑟 > 0  𝑂𝑅 …  

if 𝜃𝑠𝑔𝑟 −
𝐽𝑔

2×𝑇𝑒𝑚
𝜔𝑠𝑔𝑟
2 − 𝑐5 > 0      𝐴𝑁𝐷 𝜔𝑠𝑔𝑟 < 0  𝑂𝑅…   

if 𝜃𝑠𝑔𝑟 − 𝑐5 ≥ 0 𝐴𝑁𝐷 𝜔𝑠𝑔𝑟 == 0  

𝐭𝐡𝐞𝐧 𝛼𝑠𝑔 = ⌊𝛼𝑠𝑔⌋ 

𝑒𝑙𝑠𝑒 

if 𝜃𝑠𝑔𝑟 +
𝐽𝑔

2×𝑇𝑠𝑦𝑛𝑐ℎ
𝜔𝑠𝑔𝑟
2 − 𝑐5 < 0  𝐴𝑁𝐷 𝜔𝑠𝑔𝑟 > 0  𝑂𝑅 …  

if 𝜃𝑠𝑔𝑟 −
𝐽𝑔

2×𝑇𝑒𝑚
𝜔𝑠𝑔𝑟
2 − 𝑐5 < 0      𝐴𝑁𝐷 𝜔𝑠𝑔𝑟 < 0  𝑂𝑅…  

if 𝜃𝑠𝑔𝑟 − 𝑐5 ≥ 0 𝐴𝑁𝐷 𝜔𝑠𝑔𝑟 == 0        

𝐭𝐡𝐞𝐧 𝛼𝑠𝑔 = ⌈𝛼𝑠𝑔⌉         (48) 

The top-level implementation of feedback control law in 

(48) is shown in Figure 11. It can be seen from control law in 

7.2379 𝑚𝑚 

578

Authorized licensed use limited to: CEVT (China Euro Vehicle Technology AB). Downloaded on December 01,2021 at 12:40:44 UTC from IEEE Xplore.  Restrictions apply. 



7 

 

(48), that 𝛼𝑠𝑔 = 0 is not a solution as state space model in 22 

is controllable as explained by Theorem 7.2 in [5]. 
 

 

Figure 11   Implementation of feedback control law 

Simulation results of the controller with 𝑦𝑠𝑔𝑟0 =
[0, 2, 4,6] 𝑚𝑚 are shown in Figure 12. Figure 12a, shows the  

zoomed in view around 𝜔𝑠𝑔 = 𝜔𝑠𝑔0, marked by red rectangle 

in Figure 10. Figure 12b, is the zoomed in view around 𝜔𝑠𝑔 =

0, marked by green rectangle in Figure 10.  

From Figure 12a, it can be seen that first ⌈αsg⌉ is applied 

which increases the relative velocity between sleeve and gear 

𝑥2 to a certain level and then ⌊αsg⌋ is applied until  

the end. It can be seen in Figure 12b that all the curves reach 

final state (𝑐5, 0). 
 

 

Figure 12   Time optimal control with 𝑦𝑠𝑔𝑟(𝑡0) = 0; 2; 4; 6 𝑚𝑚 

I. Offsetting the switching curve based on initial conditions 

If 𝑦𝑠𝑔𝑟0 is at its upper bound i.e. at 𝑦𝑠𝑔𝑚𝑎𝑥 according to 

(3), the simulation result is shown in Figure 13. 
 

 

Figure 13   Time optimal control with 𝑦𝑠𝑔𝑟(𝑡0) = 8.5 𝑚𝑚 

 Figure 13a, shows the  zoomed in view around 𝜔𝑠𝑔 =

𝜔𝑠𝑔0 and Figure 13b, is the zoomed in view around 𝜔𝑠𝑔 = 0, 

marked by red and green rectangles in Figure 10 respectively. 

 From Figure 13b it can be seen that the optimal control 

sequence in this case will be {⌊αsg⌋, ⌈αsg⌉}, which is a part of 

optimal control sequences in (27) but not part of the optimal 

control sequence for an upshift in (28). It can be seen in 

Figure 13b that the final state (𝑐5, 0)  is reached in the 

simulation. But for synchronizer systems as explained earlier 

the implication in (16), will be fulfilled when 𝑥2 approaches 

0  as highlighted by orange square in in Figure 13b. 

Consequently, the torque relation in (15) will reverse and 

sleeve will leave the blocking position before ⌈αsg⌉  is 

applied. The resulting final condition of 𝑥2  will then be 

252 𝑚𝑚 ÷ 𝑅 𝑟𝑎𝑑𝑖𝑎𝑛𝑠  as shown in Figure 13b. The 

resulting 𝑦𝑠𝑔(𝑡𝑠𝑦𝑛𝑐ℎ)  can be calculated to be 5.44 𝑚𝑚 

according to [4], which is not equal to 𝑦𝑠𝑔
∗ (𝑡𝑠𝑦𝑛𝑐ℎ) in (35). 

The consequence of 𝑦𝑠𝑔(𝑡𝑠𝑦𝑛𝑐ℎ)  not being equal to 

𝑦𝑠𝑔
∗ (𝑡𝑠𝑦𝑛𝑐ℎ) according to [4] will be impacts between sleeve 

teeth and idler gear dog teeth and hence it is undesirable. To 

avoid this situation, the complete switching curve in Figure 

10 must be offset such that  

𝑦𝑠𝑔1 ≥ 𝑦𝑠𝑔𝑚𝑎𝑥        (49) 

where 𝑦𝑠𝑔1 is defined by (43). 

In order to fulfill the condition in (49), (43) must be updated 

with new offset 𝑐6 so  

𝑦𝑠𝑔1 = 𝑅 × [−
𝐽𝑔

2×𝑇𝑠𝑦𝑛𝑐ℎ
𝜔𝑠𝑔0
2 + 𝑐6]     (50)  

where 

𝑐6 = 𝑐5 + 𝑛1 × 𝑦𝑠𝑔𝑚𝑎𝑥/𝑅                    (51) 

where 𝑛1 is a positive integer. (𝑐6, 0) will then be the new 

final state and the new offsetting can be summarized as 

if 𝑦𝑠𝑔𝑟0 > 𝑦𝑠𝑔1 

then 𝑐5
𝑖𝑠 𝑟𝑒𝑝𝑙𝑎𝑐𝑒𝑑 𝑏𝑦
→          𝑐6  𝑖𝑛 

𝐶𝑢𝑟𝑣𝑒 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠 42 𝑎𝑛𝑑 43  
𝑎𝑛𝑑 𝐹𝑒𝑒𝑑𝑏𝑎𝑐𝑘 𝑙𝑎𝑤 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 𝑠𝑒𝑡 48           (52) 

The simulation result with new switching curves and 

new feedback law from condition in (52) is shown for 

𝑦𝑠𝑔𝑟0 = 𝑦𝑠𝑔𝑚𝑎𝑥 in Figure 14. 

From Figure 14a it can be seen that updated 𝑦𝑠𝑔1 =

15.738 𝑚𝑚  from (50), as opposed to 𝑦𝑠𝑔1 = 7.238 𝑚𝑚 

from (43). From Figure 14a, it can be seen that the control 

sequence is same as that in Figure 12 and is {⌈αsg⌉, ⌊αsg⌋}. 

From Figure 14c, it can be seen that 𝑐6  is 259.245 𝑚𝑚 ÷
𝑅 𝑟𝑎𝑑𝑖𝑎𝑛𝑠. 𝑛1 in (51) will then be in this particular case =
1. Also it can be verified that 259.245 𝑚𝑚 represents the 

same relative alignment between gear and sleeve teeth as 

𝑦𝑠𝑔
∗ (𝑡𝑠𝑦𝑛𝑐ℎ) = 4.245 𝑚𝑚. 

J. Chatter in Time optimal Control 

According to [12] time optimal controllers of the type 

designed in this paper chatter i.e. the optimal control signal 

jumps between ⌈αsg⌉ and ⌊αsg⌋ rapidly near final state. The 

reason is when  (𝜃𝑠𝑔𝑟 , 𝜔𝑠𝑔𝑟) → (𝑐5, 0)  or (𝑐6, 0) , the 
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relational conditions in the feedback control law (48), change 

signs rapidly.  

For synchronizer systems, this behavior can be 

eliminated for an upshift by turning the time optimal 

controller off and latching 𝛼𝑠𝑔 to a ⌊𝛼𝑠𝑔⌋, when 𝜔𝑠𝑔 ≅ 0. 
 

 

Figure 14   Time optimal control with 𝑦𝑠𝑔𝑟(𝑡0) = 8.5 𝑚𝑚 with updated 

offset 𝑐6  

VI. CONCLUSIONS 

In this paper a time optimal feedback control for 

synchronizer systems is designed and implemented in 

Simulink. The speed synchronization time and noise/wear 

during gear shifting are minimized. Speed synchronization 

can be done slightly faster if minimization of noise/wear is 

ignored. But the control algorithm given in this paper 

guarantees the fastest speed synchronization while fulfilling 

the criteria of reducing noise and wear. The results of the 

control algorithm are shown by simulations. 

Although synchronizers can be modeled as double 

integrators, optimal control methods for double integrators 

cannot be applied to synchronizers straight away. The 

algorithms need modifications to be applicable on 

synchronizer systems. Several modifications have been 

derived and their inclusion in the algorithm has been 

demonstrated. 

In this paper, the drag torque and synchronization torque 

are assumed to be constant during the gear shift. 

Development of time optimal control algorithms for variable 

torques will be a topic of future research. 

The control method described in this paper is applicable 

to hybrid DCT and can be extended to dog clutch systems in 

general. The control method however is not applicable to 

conventional DCT because in conventional DCT the relative 

speeds can only be decreased. 
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