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Abstract: In this work, we investigated two issues: (1) How the fusion of lidar and camera data
can improve semantic segmentation performance compared with the individual sensor modalities
in a supervised learning context; and (2) How fusion can also be leveraged for semi-supervised
learning in order to further improve performance and to adapt to new domains without requiring
any additional labelled data. A comparative study was carried out by providing an experimental
evaluation on networks trained in different setups using various scenarios from sunny days to
rainy night scenes. The networks were tested for challenging, and less common, scenarios where
cameras or lidars individually would not provide a reliable prediction. Our results suggest that
semi-supervised learning and fusion techniques increase the overall performance of the network in
challenging scenarios using less data annotations.

Keywords: sensor fusion; semi-supervised learning; deep learning; semantic segmentation

1. Introduction

Nowadays, data are considered a valuable asset generating massive investments.
However, how much data should autonomous vehicles collect to generate a reasonable
driving model? Currently, Waymo has a fleet composed of around 55 vehicles driving over
1 million kilometres per year, roughly corresponding to 30,000 h. This number roughly
corresponds to the driving hours of one taxi driver in their entire work life. The collected
data cover most of the common scenarios, different illumination conditions, and weather,
but still not enough to allow completely safe driving [1]. An autonomous road vehicle is
expected to encounter a large variety of environmental conditions which might be difficult
to take into account fully during the development of its perception modules. Furthermore,
the occurrence of specific situations may be rare, and for this reason, hard to grab in a
dataset. Increasing the size of the dataset, increases, in turn, the probability of encountering
rare events; however, it does not guarantee to assign their proper relevance. Single events
may be considered as outliers, and, for this reason, the overall network may perform poorly
in such situations.

In this paper, we differentiated the datasets for testing and training our networks
by illumination condition (day and night), and by weather conditions (sunny and rain),
demonstrating that data fusion techniques and semi-supervised learning may help in
segmenting objects in such conditions, showing how the availability of big quantities of
data, including non-annotated scenes, can improve the performance of AI-based algorithms.
Specifically, it is important to point out that these classes may be strongly unbalanced
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as sunny days may be better represented in the dataset than rainy nights. For instance,
the task of segmenting vehicles or people presents intrinsic difficulties, because all classes
of objects during the day, are very well represented in the dataset, whereas some classes,
such as people in rainy nights, are more rare (for obvious reasons), but remain important
to detect with high confidence.

Our paper thus contributes to the body of knowledge in this field, investigating how
sensor fusion and semi-supervised learning can be used to increase the overall performance
of the network with a particular emphasis on uncommon events and challenging scenarios.
The objective was to carry out a fair evaluation, also using cross validation, of the techniques
and how they can be used to improve machine learning in autonomous driving. The
study investigated and integrated two lines of research: the use of an individual sensor
setup versus sensor fusion, and how to use semi-supervised learning to improve overall
network performance using unlabelled data coming from one of the sensors—in this
case, the RGB camera or the lidar. It is not in the scope of the present paper to beat the
current benchmarking in object segmentation, but to show readers how fusion and semi-
supervised learning can be used to improve performance in AI algorithms. However,
the results suggest significant segmentation capability improvement in night and in rainy
conditions, ranging from 10 to 30 percentage points.

To achieve this goal, we trained different models in a supervised fashion, with data
fusion and semi-supervised learning. The supervised learning technique was used to
train a baseline model and an upperbound model was used for comparison. The expected
result is that the upperbound model would be the best performing one, benefiting from the
full knowledge of the full dataset with data annotation. However, acquiring real-world
scenarios with full data annotation is not always achievable, especially in tasks such as
autonomous driving. Thus, this paper shows that semi-supervised learning and co-training
achieve comparable performance (about 2–3 percent points difference) using less data
annotations. An additional point of discussion is the cross-validation on different data
splits. In this study, we trained 10 different models for each train–validation–test to show
the variance in the test results.

This paper is organized as follows: Section 2 introduces the reader to the topic,
offering a review of the state of the art, including recent studies about sensor fusion and
semi-supervised learning. The materials and datasets used for this study are thoroughly
explained in Section 3, including the Waymo dataset used for this research. Section 4
addresses our method for building the neural networks, training, validation and testing
modalities. Finally, our results are reported in Section 5 including a comparison with our
previous method, and a discussion of our main findings.

2. Related Work

Most of the state-of-the art methods for autonomous driving involve data-driven
techniques at various levels, among which deep neural networks are shown to be promising
in solving scene interpretation problems. Working on improving scene interpretation, this
paper is focused on the intersection of two problems: sensor fusion and semi-supervised
learning. Both topics have been extensively explored in the literature.

Semi-supervised learning is a widely explored idea for exploiting the availability of
big unlabelled datasets to train various types of neural networks. In a recent review [2],
Van Engelen et al. explored the topic from a broad non-task-specific perspective. Despite
the fact that the idea of semi-supervised learning is applicable in different ways, and for
several sources of information, images classification and semantic segmentation are the
most historically used. Ouali et al. [3] used labelled data to train the main encoder–
decoder-based network for semantic segmentation using the PASCAL VOC dataset [4]. The
unlabelled data were used in a second stage to train the same network with the addition of
auxiliary decoders, and perform a consistency check between the main decoder and the
auxiliary decoders. The potential of semi-supervised learning was also used in [5] to build
a network for semantic segmentation where strong pixel-level annotation is only available
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for part of the dataset, and weak annotation (image-level) is available for the remaining
part of the dataset. The semantic segmentation generated on the weakly annotated images
was used to train the overall network. Also in this case, the examples were taken from the
PASCAL VOC dataset. The main driver for semi-supervised learning was to reduce the
cost of labelling [6], which is time-consuming and intensive work.

Focusing on the task of autonomous driving, [7] offered a review of methods and
datasets, indicating the increment in labelling efficiency, transfer learning, semi-supervised
learning, etc., as open questions for research to leverage lifelong learning by updating
networks with continual data collection instead of re-training from scratch. One example of
application is provided in [8], where a semi-supervised learning method that uses labelled
and unlabelled camera images to improve traffic sign recognition is proposed. The semi-
supervised learning is also used in [9], where Zhu et al. define a teacher model which is
trained in a supervised manner using labelled camera images. Then, the teacher was used
to generate labels on an unlabelled dataset which was used to train a student model. The
authors show that the student model outperformed the teacher model using the data from
the Cityscapes [10], CamVid [11] and KITTI [12] datasets.

As autonomous vehicles nowadays are integrated with different sensors, 3D lidar data
are also used for semantic segmentation. A review work explores the available datasets
and emphasises the importance of the availability of big quantities of labelled data coming
from 3D lidar that are expensive to label manually, though strongly needed for autonomous
driving [13]. A method to achieve the task of semi-supervised learning using 3D lidar data
is described in [14], in which a set of manually labelled data and pairwise constraints are
used to achieve an improvement in performance.

In addition to many techniques for extracting relevant information from camera
or lidar data individually, data fusion is a growing trend to integrate the information
coming from both sensors to improve each other in segmentation performance. In [15],
the authors offer a review of different methods for sensor fusion perception in autonomous
driving using deep learning techniques, focusing on fusion as a means for solving visual
odometry, segmentation, detection and mapping issues, pointing out in their conclusion
of how adverse weather can affect overall performance. A focused review on sensors’
performance under adverse weather conditions can be found in [16], in which the authors
better describe the individual strengths and limitations of sensors in the automotive field,
providing a comprehensive list of data-driven methods and an open dataset. However,
the literature is rich in approaches to sensor fusion that use classical stochastic inference
instead of neural networks. For instance, in [17], the author generalizes the approach in [18]
with the objective to obtain quality-fused values from multiple sources of probabilistic
distributions in which quality is related to the lack of uncertainty in the fused value and
the use of credible sources. On a different research line, the authors in [19] addressed the
problem of sensor fusion and data analysis integration with emerging technologies and
described several classic methods for sensor fusion, such as Kalman filtering and Bayesian
inference. The strengths of these methods reside in their simplicity and the high level
of control they offer over the design process, with the drawback of low flexibility and
adaptability. On the contrary, convolutional neural networks have demonstrated high
flexibility and adaptability to input variations, with the drawback of losing control over
the design process—as CNNs are, essentially, black boxes.

Among many dedicated techniques of lidar camera fusion that can be found in the
literature, a relevant example is described in [20], where Li et al. defined the so-called
“BiFNet” as a bidirectional network for road segmentation that uses camera image and
lidar eye-bird view. In [21], a lidar–camera cross fusion technique was presented, showing
an increment in performance using the fusion technique over an individual sensor on the
KITTI dataset, and later extended using the co-training method that included labelled and
unlabelled examples [22].
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3. Materials

In this work, we used the Waymo open dataset [23]. This section first presents a
general overview of the dataset. Afterwards, we describe the procedure that was used for
converting unordered point clouds into images, and for generating semantic masks from
3D bounding boxes.

3.1. Waymo Dataset

The Waymo open dataset includes 1110 driving sequences recorded with multiple
cameras and lidars across a large variety of locations, road types and weather and lighting
conditions. Each driving sequence consists of a 20-s-long recording sampled at 10 Hz.
Both 2D and 3D bounding boxes were manually generated for all frames and considering
the following four categories of objects: vehicles; pedestrians; cyclists; and traffic signs.
Additionally, the driving sequences were partitioned into four broad subsets, namely
day–fair; night–fair; day–rain; night–rain (see Table 1 for further details). The labels day
and night indicate whether a sequence was collected during the day under good lighting
conditions, or late in the day or at night under poor external illumination. The labels fair
and rain instead refer to the weather conditions, with fair denoting good weather, and rain
denoting active raining or wet environment following recent precipitation.

Table 1. Number of 20-s-long driving sequences belonging to the four main categories considered in
this work (10 Hz sample frequency).

Day–Fair Day–Rain Night–Fair Night–Rain

747 226 82 45

3.2. Point Cloud Projection

The literature is rich in approaches to process point clouds with deep neural networks,
see for example [24,25]. In this work, the lidar point cloud is simply projected into the
camera plane in order to generate a three-channel tensor with the same width and height of
the RGB image, and such that each channel encodes one of the 3D spatial coordinates [21].
By doing so, it is straightforward to establish a one-to-one correspondence between the
colour information, contained in the RGB image, and the spatial information, contained
in the point cloud. A point cloud acquired with a Velodyne HDL-64E consists of approxi-
mately 100,000 points where each point p is specified by its spatial coordinates in the lidar
coordinate system, that is p = [x, y, z, 1]T. Given the lidar–camera transformation matrix T,
the rectification matrix R, and the camera projection matrix P, it is possible to calculate the
column position u, the row position v, and the scaling factor α, where the projection of p
intersects the camera plane, by solving the following expression α [u, v, 1]T = P R T p.This
procedure is applied to every point in the point cloud, while discarding points such that
α < 0 or when [u, v] falls outside the image. By using the above procedure, three images
denoted as X, Y and Z are generated where each pixel contains the x, y, and z coordinates
of the 3D point that was projected into it.

3.3. Sparse Semantic Masks from 3D Bounding Boxes

As mentioned in Section 3.1, the annotations provided for the Waymo dataset are
2D and 3D bounding boxes. Here, however, we are interested in carrying out semantic
segmentation; for this reason, the 3D bounding boxes are converted into semantic masks.
This can be easily achieved by using a procedure analogous to the point cloud projection
mentioned in Section 3.2. More specifically, given a 3D bounding box, we collect all the
lidar points that fall within it, and then project them into the image plane. Each projected
point is drawn in the semantic mask as a disk with the same class as the bounding box. This
procedure is repeated for all the 3D bounding boxes found in a given frame. In this work,
only the vehicle class is considered which is most represented and evenly distributed across
the coarse categories described in Section 3.1. Some examples of semantic masks obtained
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using this method are shown in Figure 1. A limitation of this procedure is that only regions
of an image where there are lidar detections can be assigned to a valid class. All remaining
pixels are assigned to a do-not-care class that is ignored during training. As illustrated in the
bottom three rows of Figure 1, poor illumination and rainy weather might affect the quality
of the sensor data which could have detrimental effects for downstream applications.

Figure 1. Some examples of driving scenes from the Waymo dataset. The left column shows four
RGB images captured under various lighting and weather conditions, whereas the right column
contains the corresponding semantic masks obtained using the procedure described in Section 3.3.
Red pixels denote the vehicle class, while grey pixels denote the background (i.e., negative class). All
other pixels in the semantic mask are ignored during training.
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4. Method

This section describes the methodology proposed to provide a quantitative evaluation
and a comparison of semi-supervised learning techniques against a baseline network and
sensor fusion methodologies, including the models’ design, data splits used for the cross
validation and the training procedures used in this paper.

4.1. Model

The base network architecture used in this work is the well-known FCN-ResNet50 [26].
This CNN contains five stages, denoted as S1–S5, where each stage consists of several
layers (e.g., convolutional, batch normalization, max-pooling, etc.). The proposed model
contains three subnetworks, namely RGB, Lidar and Fusion, and it is shown in Figure 2.
The RGB and Lidar subnetworks have the same structure as the base FCN-ResNet50 and
as described by their names, receive as input camera images and lidar images, respectively.
The fusion subnetwork instead processes the concatenated features of the single modality
branches after stage 4. This can be described as a late fusion strategy [21]. As illustrated in
Figure 2, the fusion subnetwork shares some of its stages (S1–S4) with the single modality
subnetworks. All networks’ weights were initialized with an FCN-ResNet50 pretrained on
a subset of COCO train2017.

RGB

Lidar

S1-S4
RGB

S1-S4
Lidar

RGB
features

Lidar
features

Output
fusion

S5 RGB Output
RGB

S5 Fusion

S5 Lidar Output
Lidar

Lidar subnetwork

RGB subnetwork

Fusion subnetwork

Concatenated
RGB-Lidar

features

Figure 2. Illustration of the model used in this work. The model can be decomposed into three
subnetworks: RGB; lidar; and fusion. The fusion subnetwork receives as input the concatenated
features generated by stages S1–S4 of the single modality subnetworks. This corresponds to a late
fusion strategy. During a supervised learning step, the output of each subnetwork is used to compute
a loss term with respect to a manually generated ground truth. During a semi-supervised step,
the fusion subnetwork acts as teacher for the single modality ones. That is, the fusion subnetwork’s
output is used as ground truth for computing the losses of the RGB and lidar subnetworks. For
co-training, only the single modality subnetworks are considered. In this case, the output relative to
one sensor is used as ground truth for the other.

4.2. Dataset Splits

As mentioned in Section 3.1, in this work, we used the Waymo dataset which consists
of 1110 driving sequences collected under various weather and lighting conditions. Each
sequence originally contains approximately 200 frames (i.e., 20 s sampled at 10 Hz) of
which we kept every 10th frame. Out of the full dataset, for the experiments described in
the following sections, we generated N = 10 random dataset splits Si = {Ti,Vi,Ui,Ki},
where i = 1, . . . , N. The randomization was carried out by considering driving sequences
instead of individual frames in order to avoid any overlap between the subsets in any
given Si. Subset Ti denotes a training set, which is a collection of annotated examples used
for computing the loss function and updating the model parameters. Subset Vi denotes a
validation set which is used to carry out early stopping and hyper-parameter tuning. Subset
Ui denotes a collection of examples for semi-supervised learning. That is, examples that are
assumed to be unlabelled and for which the models should generate proxy labels. Lastly,
each Ki denotes a test set used for evaluating the generalization performance of the model
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for unseen data. With the exception of the training sets T , which only contain examples
belonging to the coarse category day–fair, all other sets include examples belonging to
all coarse categories. By only considering training data belonging to one category, it is
possible to investigate the effectiveness of the proposed approach for carrying out domain
adaptation. Table 2 provides more details regarding the dataset splits S .

Table 2. Number of sequences assigned to training, validation, unlabelled, and test subsets for each
dataset split Si according to the four main categories considered in this work.

Set Day-Fair Day-Rain Night-Fair Night-Rain

Training (T ) 100 0 0 0
Validation (V) 10 10 10 5
Unlabeled (U ) 40 40 36 20

Test (K) 40 40 36 20

4.3. Training

The training procedure was designed to iterate two phases for any given dataset split Si.
Phase 1: The model is trained in a purely supervised fashion with training set Ti and

validation set Vi. The intersection over union (IoU) is computed on the validation set at the
end of each epoch for all the subnetworks. If any of the subnetworks’ IoU has improved,
a copy of the complete model is stored. The IoU index is commonly used for segmentation
tasks in deep learning [27], and it is calculated as follows:

IoU =
AT ∩ AP
AT ∪ AP

, (1)

where AT is the ground truth semantic area of a specific object, and AP is the area of the
object predicted by the network. This index is maximized when the union is equal to
the intersection.

Phase 2: The model containing the best performing fusion subnetwork, denoted as ψi,
is used as starting point for training four different models:

1. A supervised-learning baseline model;
2. A model trained using a semi-supervised approach called co-training [22];
3. A model trained using a newly introduced sensor fusion-based semi-supervised approach;
4. A supervised-learning upperbound model.

For both phases, we used the cross-entropy loss function and Adam optimization [28].
The batch size was set to 32. The learning rate was decayed using the poly-learning
policy [29] implemented as

η(i) = η0

(
1− j

N

)α
, (2)

where j denotes the current epoch number, η0 is the starting learning rate, N represents
the total number of the training epoch and α = 0.9. In the first phase, we set η0 = 0.0003
and N = 50, whereas in the second phase, we set η0 = 0.0001 and N = 100. The values
indicated above were empirically determined after a hyper-parameter search and fixed for
all the trainings, though the perfect optimization of these parameters is beyond the scope
of the paper. The images were first downsampled from 1920× 1280 to 480× 320 pixels.
Afterwards, the top half region, usually containing buildings, vegetation and the sky was
discarded. The input images thus had a size of 240 × 320 pixels. Data augmentation
consisted of three operations, specifically random square cropping, random rotations in the
range [−20◦, 20◦] about the centre of the images, and random colour jittering (brightness,
contrast, saturation and hue) applied to the RGB images.

4.4. Supervised Learning Baseline

Given a model ψ, the three subnetworks are denoted as ψβ ≡ ψβ(θβ), where β ∈
{rgb, lid, fus} and θβ represent the subnetwork’s weights. For ease of notation, in the following
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discussion, we omit the weight vector from the equations. As mentioned in Section 4.1, some of
weights are shared between the subnetworks, therefore θlid,rgb ∩ θfus 6= ∅. An input example
has two views, lidar and camera, and is denoted as x = {xrgb, xlid}. The corresponding ground
truth semantic mask is denoted as y. The cross entropy between a subnetwork’s prediction
and the ground truth is represented as H(ψβ(x), y). In the previous expression, we assumed
that each subnetwork extracts the appropriate input view, that is, ψβ(x) ≡ ψβ(xβ). The total
loss function used for supervised learning is then given by the following expression:

Lsup = ∑
β∈{rgb,lid,fus}

E(x,y)∈T [H(ψβ(x), y)]. (3)

As indicated in Phase 1 of Section 4.3, the baseline model is trained in a supervised
fashion using the loss function indicated in Equation (3). The backbone of our networks is
always a pretrained FCN-ResNet50.

4.5. Co-Training

Co-training is a semi-supervised learning algorithm that can be applied to problems
where the instance space can be partitioned into two independent views. The instance space
is an abstraction of the input space associated with a classification problem, whereas the
views contain the actual data that will be consumed by the classifiers. The predictions
obtained in one view can be employed as labels in the other view with the final goal of
leverage for boosting performance. This approach has two strengths: (1) reduced effort in
manual annotation; and (2) increased knowledge learning from the independent views.
In this work, following a previous line of research described in [22], the instance space
consists of urban driving scenes, and the views are provided in the form of RGB images
and lidar point clouds. The predictions of a lidar-based semantic segmentation network,
which is generally less affected by environment illumination (day/night light), could be
exploited by a camera-based network in order to learn more discriminative features in
challenging conditions such as rainy days or night light.

Let us consider a teacher network ψt and a student network ψs, parametrized by
weights θt and θt, respectively, and their relative views (xt, xs, y) ∈ Ti that correspond to
the teacher view xt, the student view xs, the ground truth labels y and the training set for
any given data split Ti. The fundamental building block for the loss function is the well-
known cross-entropy loss, denoted as H, between the student prediction and the ground
truth label. The student loss is calculated using the supervised loss in Equation (3) for each
data view (RGB, lidar). For an unlabelled example in Ui, the student’s prediction and the
teacher’s prediction represent probability distributions over possible classes, though the
teacher’s is considered as the ground truth to train the student model. By considering that
the Kullback–Leibler divergence [30], denoted as DKL is a measure of difference between
probability distributions, the co-training loss is implemented as follows:

Lcot = Lsup +E(x,y)∈U [DKL(ψ
rgb(x)||ψlid(x)) + DKL(ψ

lid(x)||ψrgb(x))]. (4)

4.6. Fusion Proxy Labels

Typically, in co-training, the proxy labels are obtained using the single modality
subnetworks. However, it has been shown that a model generated using data fusion
typically achieves higher performance [21]. For this reason, it is expected that the proxy
labels obtained by the fusion subnetwork will be more reliable. The agreement between
fusion network and lidar/camera subnetworks is performed for each subnetwork using
the DKL as follows:

Lfus = Lsup +E(x,y)∈U [DKL(ψ
fus(x)||ψlid(x)) + DKL(ψ

fus(x)||ψrgb(x))]. (5)
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5. Results and Discussion

The model detailed in Section 4.1 was trained on the 10 random dataset splits Si,
described in Section 4.2, and extracted from the Waymo dataset (see Section 3.1 for more
details). The full training procedure is outlined in Section 4.

Furthermore, training the model more times provides a reliable result in terms of
repeatability, as individual training bouts may perform differently according to different
conditions in data-loading randomization, dropout layers and weights initialization. The
results on the test sets are summarized in Table 3 and in Figure 3.
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Figure 3. Performance distribution over the networks’ cross-validation on data splits; a detailed description can be seen in
Section 5.4.
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Table 3. Main results showing the vehicle class average IoU in percentage, and standard deviation on the test sets (see
Section 4.2). The numbers within parentheses denote the average improvement with respect to the supervised baseline.

Category Modality Baseline (%) Co-Training (%) Fusion-Semi (%) Upperbound (%)

Day–fair
camera 84.89± 1.56 85.99± 1.31 (1.10) 86.09± 1.24 (1.20) 86.01± 1.42 (1.11)

lidar 83.84± 1.86 84.39± 1.79 (0.56) 85.31± 1.85 (1.47) 85.24± 1.71 (1.41)
fusion 88.14± 1.09 88.65± 1.14 (0.52) 88.71± 1.27 (0.57) 88.93± 1.22 (0.79)

Day–rain
camera 82.87± 0.85 85.62± 0.74 (2.75) 85.62± 0.99 (2.76) 86.18± 1.05 (3.31)

lidar 77.91± 2.21 83.38± 1.34 (5.47) 83.90± 1.91 (5.99) 85.11± 1.24 (7.20)
fusion 87.52± 1.33 88.77± 1.01 (1.25) 88.76± 1.08 (1.23) 89.66± 0.92 (2.13)

Night–fair
camera 64.25± 7.32 80.43± 0.98 (16.18) 80.53± 1.05 (16.29) 81.36± 1.02 (17.11)

lidar 83.28± 1.43 83.96± 1.29 (0.68) 84.90± 0.72 (1.62) 84.86± 1.00 (1.58)
fusion 82.27± 2.22 86.23± 0.81 (3.96) 86.26± 0.67 (3.99) 86.96± 0.76 (4.69)

Night–rain
camera 39.61± 5.87 67.99± 3.47 (28.38) 68.54± 3.80 (28.93) 71.02± 3.82 (31.41)

lidar 75.78± 1.93 80.81± 1.28 (5.02) 81.42± 1.23 (5.63) 82.98± 0.74 (7.20)
fusion 70.88± 1.33 81.13± 1.01 (10.25) 81.46± 1.08 (10.58) 83.29± 0.92 (12.41)

5.1. Supervised Baseline

The supervised baseline models were trained as described in Section 4.4 using only
sequences collected in day-time and fair weather conditions. As can be seen in Table 3,
the fusion subnetwork performs significantly better than the single modality subnetworks
in both the day–fair and day–rain categories. However, the lidar subnetwork performs
best in the night-time categories where the performance of the camera subnetwork drops
significantly. The fact that the lidar subnetwork performs better than the camera one
at night-time is not surprising considering that the lidar is an active sensor. The fusion
subnetwork also has access to the lidar input, so its poor performance in night-time
sequences is an indication that, during training, it has learned to rely too strongly on the
camera-based features. Another interesting result is that the lidar subnetwork performance
is negatively affected by rainy weather. As shown in two examples in Figure 1, the water
covering the surrounding surfaces degrades the density, and possibly the quality, of the
point clouds captured with the lidar.

5.2. Co-Training

Co-training shows slight improvements for day–fair weather data, which is expected
as full information content already provides reliable results for the supervised baseline.
The improvement using the co-training approach with respect to the baseline is higher in
case of night–fair data than day–light data. Here, the performance is over 80% accuracy in
almost all generated models, showing an improvement in the camera-based network case
of about 15 percent points. The only case in which the performance is lower, but still a big
improvement with respect to camera data baseline, is the night–rain scenario, in which the
performance against the baseline increases in all cases ranging between 5 percent points,
in the lidar case, to almost 30 points, in the camera case.

5.3. Fusion-Based Semi-Supervised Learning

Result from Table 3 for semi-supervised fusion and co-training are fully comparable,
with only little difference in all scenarios. In most of the cases, fusion seems to outperform
the co-training on average, with some cases in which the opposite happens. The variance,
however, shows that co-training seems to be more stable, showing lower variance in many
cases. In all cases, there is an improvement that is more significant in the case of night and
rainy weather and even comparable to the upperbound.

An important observation is that the upperbound model clearly shows the best
performance in all cases, which is not a surprise. It is well known that the availability of
large quantities of well-annotated data is a fundamental issue, and the best performance is
achieved with increased information availability. However, real-world cases show that this
is not always possible, achievable or cost-effective. This result shows that co-training and
semi-supervised learning can help to fill this gap, and in some cases even over-performing
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on the upperbound model, for example, in the case of night–fair lidar data. It is reasonable
to expected that semi-supervised learning and co-training would surpass the upperbound
model if more data were available.

5.4. Cross-Validation

The results in Table 3 also show the variance across several models trained under
the same conditions but on different data splits (as described in Section 4.1). Using cross-
validation, these results confirm that fusion and co-training have similar performance im-
proving the baseline performance, reaching the upperbound-level performance. Figure 3b
shows the performance for each subnetwork (RGB, lidar and fusion) of each data split,
the average accuracy and the variance. From Figure 3a, one can observe that in the day–fair
case, the camera performances are comparable in all cases (baseline, co-training, fusion and
upperboud), while fusion and co-training clearly help in rain and night for all data splits.
The same behaviour can be seen in Figure 3b for the lidar sub-network, though showing (as
expected) better performance during night-time. Finally, Figure 3c shows the performance
distribution over all the data splits for the fusion sub-network.

5.5. Discussion

The purpose of the experiments proposed in Section 5 is three-fold: (1) to evaluate the
potential benefits of using a multi-sensor system over single modality approaches; (2) to
investigate the model generalization capabilities to more challenging domains; and (3) to
evaluate whether co-training and our newly introduced fusion-based strategy could be
useful for domain adaptation.

According to the results shown in Section 5, several potential benefits support the use
of semi-supervised learning, sensor fusion and co-training strategies. First, a multi-sensor
system is shown to provide high reliability and redundancy, for all the cases reported
in Table 3 in which sensor-fusion outperforms the single-sensor approach (RGB camera
or lidar). Second, Table 3 also shows that co-training and semi-supervised learning help
the model to generalize better to more challenging domains. The best improvement in
the semi-supervised learning techniques is shown in the night–rain case with an over
10 percent points IoU performance increase, starting from 70% IoU accuracy of the fusion
baseline, and reaching 81% in the fusion-semi case.

The use of non-annotated data has clearly been shown to improve the overall perfor-
mance, resulting in big savings in practical applications where data annotation is a heavy
and complex task. However, data annotation cannot be neglected, the upperbound model
is shown to be the best performing one, and hence full data annotation is still the best way
to achieve high reliability and stability in neural networks.

6. Conclusions and Future Work

In conclusion, this paper offered a comparative study that analysed two semi-supervised
methods of sensor fusion techniques for lidar–camera data in deep learning, showing a
comparison among different networks’ performance, the baseline model and a supervised
upperbound model. Our results confirm the overall trend that the semi-supervised method
could boost performance, taking advantage of the availability of a big un-annotated dataset.
The paper shows that the upperbound model performance level can be reached using other
methods such as semi-supervised learning and co-training, resulting in a cost-effective
method that uses less data annotation. This result is supported by a cross-validation us-
ing 10 different data splits. Furthermore, the statistical analysis on single model training
shows how benchmarking in autonomous driving could be affected by randomization in
individual training.

Future work could extend the analysis over different conditions including additional
subcategories in which deep learning in autonomous driving performance still suffers from
the availability of data such as adverse weather-related data.



Sensors 2021, 21, 4813 12 of 13

Author Contributions: Software, L.C. and M.B.; Supervision, L.S., M.W. and R.S.; Writing—original
draft, L.C., M.B., L.S., M.W. and R.S.; Writing—review and editing, L.C., M.B., L.S., M.W. and R.S. All
authors have read and agreed to the published version of the manuscript.

Funding: The research is supported by the EC H2020 project Finest Twins (grant No. 856602).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data used in this research is available on github at https://github.
com/bellonemauro/LCSSLSS-DataSplits (accessed on 14 July 2021).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Kalra, N.; Paddock, S.M. Driving to safety: How many miles of driving would it take to demonstrate autonomous vehicle

reliability? Transp. Res. Part A Policy Pract. 2016, 94, 182–193. [CrossRef]
2. Van Engelen, J.E.; Hoos, H.H. A survey on semi-supervised learning. Mach. Learn. 2020, 109, 373–440. [CrossRef]
3. Ouali, Y.; Hudelot, C.; Tami, M. Semi-Supervised Semantic Segmentation with Cross-Consistency Training. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 12674–12684.
4. Everingham, M.; Van Gool, L.; Williams, C.K.; Winn, J.; Zisserman, A. The pascal visual object classes (voc) challenge. Int. J.

Comput. Vis. 2010, 88, 303–338. [CrossRef]
5. Xiao, H.; Wei, Y.; Liu, Y.; Zhang, M.; Feng, J. Transferable semi-supervised semantic segmentation. In Proceedings of the

Thirty-Second AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018.
6. Chen, Z.; Zhang, R.; Zhang, G.; Ma, Z.; Lei, T. Digging Into Pseudo Label: A Low-Budget Approach for Semi-Supervised

Semantic Segmentation. IEEE Access 2020, 8, 41830–41837. [CrossRef]
7. Feng, D.; Haase-Schütz, C.; Rosenbaum, L.; Hertlein, H.; Glaeser, C.; Timm, F.; Wiesbeck, W.; Dietmayer, K. Deep multi-modal

object detection and semantic segmentation for autonomous driving: Datasets, methods, and challenges. IEEE Trans. Intell.
Transp. Syst. 2020, 22, 1341–1360. [CrossRef]

8. Nartey, O.T.; Yang, G.; Asare, S.K.; Wu, J.; Frempong, L.N. Robust semi-supervised traffic sign recognition via self-training and
weakly-supervised learning. Sensors 2020, 20, 2684. [CrossRef] [PubMed]

9. Zhu, Y.; Zhang, Z.; Wu, C.; Zhang, Z.; He, T.; Zhang, H.; Manmatha, R.; Li, M.; Smola, A. Improving Semantic Segmentation via
Self-Training. arXiv 2020, arXiv:2004.14960.

10. Cordts, M.; Omran, M.; Ramos, S.; Rehfeld, T.; Enzweiler, M.; Benenson, R.; Franke, U.; Roth, S.; Schiele, B. The cityscapes dataset
for semantic urban scene understanding. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
Las Vegas, NV, USA, 27–30 June 2016; pp. 3213–3223.

11. Brostow, G.J.; Fauqueur, J.; Cipolla, R. Semantic object classes in video: A high-definition ground truth database. Pattern Recognit.
Lett. 2009, 30, 88–97. [CrossRef]

12. Geiger, A.; Lenz, P.; Stiller, C.; Urtasun, R. Vision meets robotics: The kitti dataset. Int. J. Robot. Res. 2013, 32, 1231–1237.
[CrossRef]

13. Gao, B.; Pan, Y.; Li, C.; Geng, S.; Zhao, H. Are We Hungry for 3D LiDAR Data for Semantic Segmentation? arXiv 2020,
arXiv:2006.04307.

14. Mei, J.; Gao, B.; Xu, D.; Yao, W.; Zhao, X.; Zhao, H. Semantic segmentation of 3d lidar data in dynamic scene using semi-supervised
learning. IEEE Trans. Intell. Transp. Syst. 2019, 21, 2496–2509. [CrossRef]

15. Fayyad, J.; Jaradat, M.A.; Gruyer, D.; Najjaran, H. Deep learning sensor fusion for autonomous vehicle perception and localization:
A review. Sensors 2020, 20, 4220. [CrossRef] [PubMed]

16. Bellone, M.; Ismailogullari, A.; Müür, J.; Nissin, O.; Sell, R.; Soe, R.M. Autonomous driving in the real-world: The weather
challenge in the Sohjoa Baltic project. In Towards Connected and Autonomous Vehicle Highway; Springer: Cham, Switzerland, 2021.

17. Xiao, F. GIQ: A generalized intelligent quality-based approach for fusing multi-source information. IEEE Trans. Fuzzy Syst. 2020.
[CrossRef]

18. Yager, R.R.; Petry, F. An intelligent quality-based approach to fusing multi-source probabilistic information. Inf. Fusion 2016,
31, 127–136. [CrossRef]

19. Krishnamurthi, R.; Kumar, A.; Gopinathan, D.; Nayyar, A.; Qureshi, B. An Overview of IoT Sensor Data Processing, Fusion, and
Analysis Techniques. Sensors 2020, 20, 6076. [CrossRef]

20. Li, H.; Chen, Y.; Zhang, Q.; Zhao, D. BiFNet: Bidirectional Fusion Network for Road Segmentation. arXiv 2020, arXiv:2004.08582.
21. Caltagirone, L.; Bellone, M.; Svensson, L.; Wahde, M. LIDAR–camera fusion for road detection using fully convolutional neural

networks. Robot. Auton. Syst. 2019, 111, 125–131. [CrossRef]
22. Caltagirone, L.; Svensson, L.; Wahde, M.; Sanfridson, M. Lidar-Camera Co-Training for Semi-Supervised Road Detection. arXiv

2019, arXiv:1911.12597.

https://github.com/bellonemauro/LCSSLSS-DataSplits
https://github.com/bellonemauro/LCSSLSS-DataSplits
http://doi.org/10.1016/j.tra.2016.09.010
http://dx.doi.org/10.1007/s10994-019-05855-6
http://dx.doi.org/10.1007/s11263-009-0275-4
http://dx.doi.org/10.1109/ACCESS.2020.2975022
http://dx.doi.org/10.1109/TITS.2020.2972974
http://dx.doi.org/10.3390/s20092684
http://www.ncbi.nlm.nih.gov/pubmed/32397197
http://dx.doi.org/10.1016/j.patrec.2008.04.005
http://dx.doi.org/10.1177/0278364913491297
http://dx.doi.org/10.1109/TITS.2019.2919741
http://dx.doi.org/10.3390/s20154220
http://www.ncbi.nlm.nih.gov/pubmed/32751275
http://dx.doi.org/10.1109/TFUZZ.2020.2991296
http://dx.doi.org/10.1016/j.inffus.2016.02.005
http://dx.doi.org/10.3390/s20216076
http://dx.doi.org/10.1016/j.robot.2018.11.002


Sensors 2021, 21, 4813 13 of 13

23. Sun, P.; Kretzschmar, H.; Dotiwalla, X.; Chouard, A.; Patnaik, V.; Tsui, P.; Guo, J.; Zhou, Y.; Chai, Y.; Caine, B.; et al. Scalability in
Perception for Autonomous Driving: Waymo Open Dataset. arXiv 2019, arXiv:cs.CV/1912.04838.

24. Caltagirone, L.; Scheidegger, S.; Svensson, L.; Wahde, M. Fast LIDAR-based road detection using fully convolutional neural
networks. In Proceedings of the 2017 Ieee Intelligent Vehicles Symposium (iv), Los Angeles, CA, USA, 11–14 June 2017;
pp. 1019–1024.

25. Zhou, Y.; Tuzel, O. Voxelnet: End-to-end learning for point cloud based 3d object detection. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 4490–4499.

26. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

27. van Beers, F.; Lindström, A.; Okafor, E.; Wiering, M.A. Deep Neural Networks with Intersection over Union Loss for Binary
Image Segmentation. Available online: https://www.scitepress.org/Papers/2019/73475/73475.pdf (accessed on 29 June 2021).

28. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
29. Oliveira, G.L.; Burgard, W.; Brox, T. Efficient deep models for monocular road segmentation. In Proceedings of the 2016 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS), Daejeon, Korea, 9–14 October 2016; pp. 4885–4891.
30. Kullback, S.; Leibler, R.A. On information and sufficiency. Ann. Math. Stat. 1951, 22, 79–86. [CrossRef]

https://www.scitepress.org/Papers/2019/73475/73475.pdf
http://dx.doi.org/10.1214/aoms/1177729694

	Introduction
	Related Work
	Materials
	Waymo Dataset
	Point Cloud Projection
	Sparse Semantic Masks from 3D Bounding Boxes

	Method
	Model
	Dataset Splits
	Training
	Supervised Learning Baseline
	Co-Training
	Fusion Proxy Labels

	Results and Discussion
	Supervised Baseline
	Co-Training
	Fusion-Based Semi-Supervised Learning
	Cross-Validation
	Discussion

	Conclusions and Future Work
	References

