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Abstract: The design of colormaps can help tomography operators obtain accurate visual compre-
hension, thereby assisting safety-critical decisions. The research presented here is about deploying
colormaps that promote the best affective responses for industrial microwave tomography (MWT).
To answer the two research questions related to our study, we firstly conducted a quantitative analysis
of 11 frequently-used colormaps on a segmentation task. Secondly, we presented the same colormaps
within a crowdsourced study comprising two parts to verify the quantitative outcomes. The first
part encoded affective responses from participants into a prevailing four-quadrant valence–arousal
grid; the second part recorded participant ratings towards the accuracy of each colormap on MWT
segmentation. We concluded that three colormaps are the best suited in the context of MWT tasks.
We also found that the colormaps triggering emotions in the positive–exciting quadrant can facili-
tate more accurate visual comprehension than other affect-related quadrants. A synthetic colormap
design guideline was consequently proposed.

Keywords: affective colormap design; human perception; visualization; crowdsourced study; mi-
crowave tomography

1. Introduction

Tomography is a widely-used imaging technique in medical and industrial contexts.
Microwave tomography (MWT), a breed of industrial tomography, is a specific and repre-
sentative tomographic technique with non-ionizing properties. MWT is commonly used
in industrial process applications [1]; it can significantly contribute to a more sustainable
process by reducing energy and material needs. A critical problem in ensuring such benefits
is an accurate control of the heating process. There is a specific application through MWT
called microwave drying [2] for porous foams [3]. The significant parameter, moisture
level, is deployed to characterize the success of the whole industrial process. In this context,
MWT images, offering information that can be visualized using colormaps, are central in
controlling the heating process. An operator’s visual comprehension of an MWT image is
key in recognizing the moisture levels on images. Figure 1 shows the set of eight MWT im-
age samples used in our study. Each sample was acquired from a confined microwave foam
drying process and reveals post-process moisture levels. Different colors represent different
moisture levels regarding the post-dried foam involved in this process. For example, blue
parts signify low moisture levels.

Appropriate color scheme usage in graphs, images and animations can enhance ex-
pressiveness and persuasiveness in visual representations. The goal of color-mapping is
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to effectively communicate these features from visual imagery to those data that are the
most prominent in hands-on tasks [4]. Color is a retinal variable which is convention-
ally determined by hue, saturation and brightness (HSB); all three being dimensions in
perception-based applications [5]. These three perceptual dimensions combined with differ-
ent choices and values, cause the diversification of colormaps. Information visualizations
aim to seek the most suitable representation using visual features to support cognitive data
interpretation [6]. Research has proven that using different colormaps can result in differing
interpretations, depending on how the visualization is perceived by the human eye [7],
that is, the selection of colormaps can significantly influence a user’s visual comprehension
of data.

Figure 1. The eight MWT image samples in our study [8]. Different colors represent different foam
moisture levels. Blue is the desired color, representing lower moisture levels.

In addition to the visual imagery, people also react emotionally to different colormaps.
Emotions can influence how the information presented to people will be interpreted
and how people will be affected in the visual environment [9]. The psychology of color has
demonstrated a tight correlation between specific colors and human affect, which could lead
to different applications in various fields. Affect plays a role in information visualization,
including communicative intention, engagement and storytelling [10,11]. A successful
deployment of colormaps can not only improve the objective performance of tasks but can
also arouse affective resonance, as well as raising visual immersion. For instance, an image
with a gloomy colormap may trigger a sense of depression while the one with a bright color
scheme may incite gladness. Since MWT is an image-driven methodology with the need
of human comprehension, the appropriate choice of colormaps sparking distinct affect is
considered in our research.

To measure the effect of different colormaps explored within our study, we firstly
propose a research question. RQ1: How can various colormaps affect domain related
task accuracy in the context of MWT so as to support accurate visual comprehension?
Besides, we note that research has shown how colors can be linked to affective expressions.
A commonly-used approach to determine affect is to encode it with the circumplex valence–
arousal emotional model [6,12–15] for further analysis. Emotions are characterized and
plotted as a 2D circumplex coordinate system graph (Figure 2) with the first dimension
being positive and negative (valence) and the second dimension being physically excit-
ing and calm (arousal) [13]. These psychological dimensions of affect are significantly
influenced by informative properties of colormaps, such as lightness and chroma. For ex-
ample, the calm affect can be triggered by using light, cool and pastel colormaps [6]. Some
design rules for colormaps have been developed for practical uses, suggesting that the
chromatic properties of colormaps are emphasized and increased in positive and exciting
status and are weakened and reduced in negative and calm status [14]. This leads to the
second research question. RQ2: Are colormaps triggering affect in the positive–exciting
quadrant of the valence–arousal grid able to facilitate more accurate visual comprehension
in terms of human perception towards MWT than those from the other three quadrants?
According to Bartram et al. [6], more strongly saturated colors can be used to characterize
the affect positive quadrant, while positive emphasizes higher chroma colors. Since the
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segmentation task, which is highly dependent on deeper colors is engaged in our study, we
hypothesize that the positive–exciting quadrant is more desirable than other quadrants.

Figure 2. The circumplex valence–arousal affective model used in our study [12]. We hypothesize
that the positive–exciting quadrant is more desirable than other quadrants.

In this paper, we concentrate on colormap design for visual comprehension of indus-
trial tomography, featuring MWT images based on a segmentation task. To balance energy
effectiveness, material flow and safety aspects, it is crucial that humans accurately interpret
such images. To resolve RQ1, we implemented a systematic quantitative study focusing on
an MWT image segmentation task to evaluate the colormaps. To tackle RQ2 and validate
our hypothesis, we formulated and conducted a crowdsourced study on the same task.
In our previous published work [8], we demonstrated how we conducted the quantitative
evaluation to evaluate the colormaps in the context of MWT. Thus, as the full extension of
that work [8], the main contributions of this paper are as follows:

• Investigating how different colormaps affect task accuracy in the context of MWT by
a quantitative evaluation and obtaining the colormaps yielding the best accuracy.

• Combining conventional design study with a crowdsourced study and validating that
colormaps triggering affect in the positive–exciting quadrant in the valence–arousal
model are able to facilitate more precise visual comprehension in MWT.

• Proposing a synthetic design guideline for relevant researchers and practitioners to
select colormaps boosting accurate visual comprehension in the context of MWT.

2. Related Work

In the following sub-sections, first, we focus on the state-of-the-art in colormap design,
then, on the relationship between color and affect (affective colormap). Finally, we draw
on these two related areas to establish the motivation of our research.
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2.1. Colormap Design

Colormap design and selection have received attention over recent decades. In the
early 1990s, Bergman et al. explored a rule-based tool to help choose the best colormap for
isomorphic, segmentation and highlighting tasks [16]. Schulze-Wollgast et al. exploited
an enhanced automatic color-coding framework by encapsulating metadata extraction,
colormap adaptation and color legend creation [5]. Tominski et al. developed a color-
coding function to choose color scales according to particular tasks [17]. Similarly, Mit-
telstädt et al. [18] proposed a guided tool for selecting suitable colormaps for combined
analysis tasks. It is noteworthy that Schloss et al. [7] associated colormaps with people’s
reasoning towards color-quantity mappings. For example, they report such inferred color-
mappings: dark-is-more and opaque-is-more biases. By conducting several hands-on
crowdsourcing experiments with appropriate participants, Reda et al. [19] designed a
guideline which indicates that the rainbow scheme or diverging colormaps afford superior
accuracy for tasks requiring gradient perception. Likewise, Turton et al. [20] also leveraged
a crowdsourced tool called Ware color key to assess various colormaps.

2.2. Affective Colormap

There is a body of research that has been focusing on the intersection between colors,
affect, cognition and behavior [21,22]. Wilms et al. [23] state that the effect of a certain
color on emotions depends not on only a single property but on a combination, such as
hue, saturation and brightness. In a similar fashion, Bartram et al. [6] concluded that
colormaps have affective expression. They inspected the relationship between affect and
color properties (hue, chroma and lightness) and confirmed the most advisable palette
composition design principles with regard to the corresponding emotions. Some affective
color-mapping rules were developed by Yang et al. [14] to encode visual properties of
colormaps with the valence–arousal model for re-rendering in animation. In practical
application settings, the valence–arousal emotion model is widely adopted due to its
functionality. Kragel et al. [24] utilized this model to embody complex affect on humans
and have constructed a comprehensive emotion-estimating framework in visual systems.

2.3. Motivation

Previous work has successfully proven that the usage of appropriate color coding plays
a critical role in related data or tasks. In numerous cases, researchers generate colormap
design principles for better data visualization by comparative studies through specific
tasks [5,16,25]. Furthermore, integrating color-mapping and affect has been a ubiquitous
research topic in the domain of affective color-coding. People combine empirical assessment
with miscellaneous user studies to examine the link between colormaps and human affect,
enhancing the information visualization [6,14,26]. In our research, we particularly deploy
a combined study consisting of an objective quantitative assessment with a subjective
crowdsourced study for the domain of industrial tomography. The novelty of our study is
that by applying the affective colormap design guidelines derived through an automatic
segmentation task, researchers and practitioners may obtain an up-to-date tool to support
both visualization and visual comprehension in the domain of industrial tomography.

3. Methodology
3.1. Overview

The MWT images included in this study were obtained from eight different and
independent industrial microwave foam drying processes, as shown in Figure 1. These
reconstructed images possess an intrinsic continuous colormap when being handled in
MATLAB, which is denoted as parula. Our objectives were to design desirable colormaps
yielding superior task accuracy for those MWT images and to test whether the colormaps
eliciting affect in the positive–exciting part of the valence–arousal model were able to boost
visual comprehension. Therefore, we adopted an image segmentation task to visualize
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the preferred blue parts (in colormap parula, as shown in Figure 1), corresponding to low
moisture levels of the used foam in original MWT images.

First, after conducting a literature review, we chose another 10 commonly-used con-
tinuous colormaps (listed and elaborated in Figure 3 (the order of the colormaps presented
keeps consistent through the paper)). To answer RQ1, we implemented a quantitative
evaluation to assess the performance of colormaps in MWT through the segmentation task
by deploying the same quantitative assessment as proposed in [8]. RQ2, as the main part
of this study, was explored by involving a systematic crowdsourced user study which is
detailed in Section 4.

Figure 3. The 11 colormaps we studied with their hues and lightness characteristics, followed by
each colormap’s underlying design strategy [8].

3.2. Colormaps

Our aim was to investigate whether the commonly adopted colormaps, which vary
in their degrees of lightness and hues and differ in their efficiency and effectiveness in
the same segmentation task. The following selection of colormaps is presented based on
recently published colormap design papers and follows five (4 + 1) design strategies [8].

– Sequential: Change in lightness and often incremental saturation of color, often using
a single hue, should be used for representing information that has hierarchy.

∗ Sequential 1: Perceptually uniform, with each new color equally perceptually
distinct from the previous and following colors.

∗ Sequential 2: Monotonical increase of lightness values.
∗ Sequential 3: In the lightness function space, there is a plateau, or the function

may go both up and down.
∗ Sequential 4: In the lightness function space, there are some kinks in the function.

– Diverging: Change in lightness and possibly saturation of two different colors that
meet in the middle at an unsaturated color; used in information being plotted that has
a critical middle value, such as topography or when data deviate around zero.
For each colormap, a specific design strategy is elaborated as follows.

∗ parula: The default colormap in MATLAB.
∗ viridis: The default blue-green-yellow colormap in Matplotlib (the plotting

library for the Python programming language); a popular sequential col-
ormap [25–27].

∗ magma: Another perceptually-uniform black-purple-pink colormap [25–27].
∗ greys: Simple grayscale color bar [7,26].
∗ blues: Simple blue color bar [7,19,26].
∗ cool: Cyan-magenta color map; based on a colormap of the same name in MAT-

LAB [16].
∗ autumn: Sequential increasing shades of red-orange-yellow [7].
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∗ hot: Sequential black-red-yellow-white, to emulate blackbody radiation from an
object at increasing temperatures [7].

∗ copper: Sequential increasing shades of black-copper [25].
∗ spectral: Diverging, multi-hue encompassing a subset of the rainbow with a

yellow middle [19].
∗ coolwarm: Diverging blue-gray-red, meant to avoid issues with 3D shading,

color blindness and ordering of colors [19,27].

3.3. Quantitative Evaluation for Colormaps

After selection, we converted our eight MWT images with the 11 chosen colormaps
(obtaining a total of 88 MWT images) by using OpenCV (Open Source Computer Vision
Library, referred as a library comprising various programming functions aiming for real-
time computer vision: https://opencv.org, accessed on 18 April 2020). Thus, we were able
to observe each colormap in segmenting the desired low moisture areas (blue parts on
the images in parula colormap). With this implementation, we established the underlying
quality of the selected 11 colormaps in the context of the MWT segmentation task. Due to
the limited space and for better interpretation, we randomly chose one image shown
in Figure 1 (the second image in the first row from left) for exemplification (Figure 4).
We then executed the same segmentation among all 88 MWT images. Different colormaps
with distinct color properties (hue, lightness, saturation, etc.) were liable to result in
divergent outcomes in segmentation tasks [16]. The segmentation of each image was
conducted by an automatic method MWTS-KM [28,29] containing three key steps: image
augmentation, grayscale conversion and k-means implementation. The automatic nature
of this method constructed the link between the colormaps and the segmentation task
we carried out. After initial observations (Figure 4), we first inferred that parula, viridis,
cool, hot and autumn schemes are capable of visualizing the blue parts on the source image
in segmentation. However, a systematic quantitative evaluation was then followed by
adopting a data-driven approach [8,29], where three indexes (Jaccard index, Dice coefficient
and false positive, as illustrated in Equations (1)–(3), with Source denoting the source MWT
image to be segmented while Segmentation represents the segmented image) were used to
compare segmented and corresponding ground-truth images presented in the respective
11 colormaps. The explanation of these three indicators is narrated as follows [29]:

Jaccard index =
|Source ∩ Segmentation|
|Source ∪ Segmentation| (1)

Dice coefficient = 2× |Source| ∩ |Segmentation|
|Source|+ |Segmentation| (2)

False positive =
|Segmentation| − |Source ∩ Segmentation|

|Source| (3)

• Jaccard index: The metric is used to characterize the similarity and diversity sample
sets. Here, it displays the pixel-level similarity of the original and the segmented
MWT images.

• Dice coefficient: This is another measure to obtain the similarity between two samples.
It differentiates from Jaccard index in that it only calculates true positives once.

• False positive: This index is the proportion between the number of negative objects
falsely classified as positive and the total number of negative objects. Lower value
corresponds to higher accuracy.

By following this procedure, we obtained the quantitative results as shown in Figure 5.
After combining our initial observations and the data-driven quantitative evaluation, we
concluded that autumn, viridis and parula schemes appear to be the most desirable choices,
yielding the best domain related task accuracy in MWT, while spectral, coolwarm and magma
schemes are much less preferable.

https://opencv.org
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Figure 4. Top-down image processing pipeline (arrow): Each of the 11 colormaps (1st row) is applied
to the same MWT image resulting in a new image (2nd row) and yielding corresponding segmented
images (3rd row). Due to limited space, we randomly chose one MWT image from our total of eight.
The goal of segmentation was to visualize the blue parts in the colormap parula [8].

Figure 5. The quantitative evaluation of the 11 colormaps over 8 samples [8]. The first subfig-
ure: Jaccard index (the higher value, the better performance); Middle subfigure: Dice coefficient
(the higher value, the better performance); Third subfigure: false positive (the lower value, the
better performance).
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4. Crowdsourced User Study
4.1. Experimental Design

According to our hypothesis and RQ2, we intended to test whether those colormaps
triggering affect in the positive–exciting quadrant can facilitate more accurate visual
comprehension towards MWT than that from the other three quadrants in valence–arousal
coordinate system. We designed a crowdsourced user study to verify our speculation.
This experiment had two goals, first to examine all the participants’ affective responses
to the 11 selected colormaps. The emotions from participants were encoded with this
circumplex model for further analysis. Second, the user study would test participants’
comprehension ability in comparing and rating the task accuracy of diverse colormaps
from the segmentation task in the prior quantitative evaluation. Hence, our study was
divided into two parts. The specification of the user study is shown in Table 1, containing
the stimuli presented to participants and the anticipated results from them.

The well-known valence–arousal model is an extensively used circumplex affective
model [12]. In this coordinate system, valence varies from positive (happiness, pleasure,
gladness) to negative (frustration, anger, distress, fear), while arousal ranges from exciting
(high arousal, excitement, astonishment) to calm (sleepiness, tiredness, boredom) [6,12].
As seen in Figure 2, the common emotions are encoded and mapped in this 2D space:
joy and happiness in the first quadrant (positive–exciting), anger and fear in the second
quadrant. Sadness and tenderness are placed in the third and fourth quadrants, respec-
tively [13].

Table 1. The specification of the user study carried out, including the stimuli and the anticipated results.

The Stimuli Presented to Participants The Anticipated Results from Participants

The user study
Part I The 11 colormaps used in the study Affective responses for each colormap
Part II The 11 colormaps used in the study Comprehension ability in rating

the task accuracy of each colormap

4.2. Participants

Following the procedure recommended by Bigham et al. [30], “crowdsourcing broad-
ens from amateur microtasks to goals involving groups of interdependent experts”,
we constructed a class of microtasks (MWT image segmentation) with the potential to
be solved by non-experts [31]. This aligns with the work of industrial process operators,
for instance, operators of microwave heated oven systems. Typically, such oven opera-
tors are non-experts ensuring that the process runs smoothly (personal communication,
April, 2018). Motivated by the effectiveness of crowdsourcing in scientific tomographic
image analysis [31], we designed a systematic crowdsourced user study to answer our
research questions. We recruited 73 participants (39 males, 53.4%; 34 females, 46.6%; mean
of age = 27.5; SD of age = 2.5) based on the authors’ academic and industrial networks.
From our investigation, none of these participants reported any form of color blindness so
as to provide convincing and reliable data in our cognitive study. We distinguished skilled
from non-experts by examining whether they had or had not been in contact with image
segmentation or computer vision in the past. The skilled (n = 39, 53.4%) and non-experts
(n = 34, 46.6%) were identified according to their prior experience in related realms.

4.3. Procedure: Parts I and II

We created an online questionnaire comprising two parts (I and II) to execute the
crowdsourced study via Google Forms. The participants were requested to complete the
study individually with no time limit. Answers were anynomized for privacy. With no
color-blind participants, all results were deemed valid.
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• Part I: Participants were requested to assess their emotional responses towards the
11 colormaps, with each colormap presented in eight images derived from the original
eight MWT images shown in Figure 1. We adopted the 9-point (1 to 9) Self-Assessment-
Manikin (SAM) scales developed by Lang [32] to encode the affective responses of
each participant. The SAM model has successfully proved its efficacy in emotional
analysis [33–35]. To better concretize the tiers of the affect, we used 9-point SAM scales
(Figure 6) for the measurement instead of invoking 5-point and 7-point scales [13].
The manikins represented different emotions as well as recording the corresponding
points. In our 9-point scaling structure, participants could choose from 1 to 9 by
assessing their own affect, where the point 5 was annotated as a watershed to encode
affective neutrality. In the valence dimension, participants indicated their responses
from negative to positive as they reacted from calm to exciting in the arousal dimen-
sion. The order of the 11 colormaps displayed in this study was randomized. Totally,
11 trials on affective assessment were conducted by each participant.

• Part II: 11 paired images were prepared, with each pair consisting of one MWT image
presented in a certain colormap and one segmented image derived from the corre-
sponding MWT image. The automatic MWTS-KM method was used for implementing
each segmentation task. Likewise, the presentation order of each pair of images as
well as the colormaps, were randomized to avoid order effects and enhance the con-
vincibility. There were both accurate and inaccurate segmentation results included
over these colormaps. Participants were guided to conduct the rating by comparing
the segmentation results of each colormap with the foremost ground-truth–the desired
low moisture areas which are the blue parts on the MWT images in parula colormap.
Hence, in this part, participants performed the perceptual estimation task by rating the
segmentation accuracy to evaluate the 11 test colormaps. Each of them followed the
Likert scale [36] from 1 to 5 (very low accuracy to very high accuracy) for quantifying
the rated accuracy. Throughout this procedure, participants were able to evaluate
those colormaps based on their own visual comprehension. Similarly, an overall of
11 ratings were accomplished by each participant in this part.

Figure 6. The manikins of the 9-point SAM scale used in our study.

5. Experimental Results

We now present the results from our crowdsourced study. We first share the results
from Part I, which are the affective responses to our tested colormaps. We then display the
synthetic accuracy of those colormaps rated in Part II. An additional validation analysis for
our hypothesis, formulated in the introduction, is then presented.

5.1. Part I: Results and Analysis

As mentioned before, this part of the experiment was to encode the affect caused by
the 11 chosen colormaps, both in valence and arousal dimensions. We determined that
none of the participants had any visual impairment so their answers could be accounted as
effective reference. Each affective response towards colormaps was mapped onto a numeral
value by the 9-point SAM scale, allowing us to visualize the emotional results by means
of the prevailing valence–arousal coordinate system. As Figure 7 shows, the 73 outcomes
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are characterized by each circle revealing the affect of one participant towards a certain
colormap. We mirror every subfigure visually by placing a vertical and a horizontal line in
the position of the value 5, which represents the neutral affect in both valence and arousal
dimensions. This intuitively compartmentalizes the model into four quadrants: positive–
exciting, negative-exciting, negative-calm and positive-calm. In addition, this partition
coincides with the model and concepts mentioned previously.

Figure 7. The overall result of the 11 colomaps regarding the affect evoked in the valence–arousal coordinate system.

Each colormap was assigned an exclusive color in this outcome visualization for better
visibility and interpretability. The circles with darker chromatic concentration represent
more than one answer in those positions: the darker the circle, the greater the number of the
same results. Using the data collected in valence and arousal dimensions, the individual
distribution of each colormap is depicted in Figures 8 and 9. From these figures, we can
derive a preliminary impression of which colormaps trigger affect in which quadrants
of the emotional coordinate system. Thus, we can plot the synthetic distribution of the
11 colomaps of the affect evoked according to the arithmetic mean values of the two
affective dimensions in one single plot (Figure 10). From our aggregated data acquired
from the results and the visualized plots, it is fair to conclude that colormaps parula,
viridis and autumn trigger emotions mostly in the positive–exciting quadrant. Conversely,
coolwarm, spectral, magma, greys, copper and cool incite the affect mainly in the negative-calm
quadrant. The remaining colormaps blues and hot are in the positive-calm and negative-
exciting quadrants respectively.
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Figure 8. The individual distribution of the affect for the 11 colormaps in the dimension of valence.

Figure 9. The individual distribution of the affect for the 11 colormaps in the dimension of arousal.

To examine the effects of all 11 colormaps upon the affective responses, a one-way
repeated-measures analysis of variance (rmANOVA) [37] was performed for the two dimen-
sions included in SAM. If any single colormap or combination had statistically significant
effects (p < 0.005), the Bonferroni-corrected post hoc tests were then performed to deter-
mine which pairs of means were significantly different. All of the analysis was performed
through IBM SPSS Statistics. Table 2, along with Figures 11 and 12, report the means as
well as the standard deviations (SD) of valence and arousal for each colormap along with
their 99.5% confidence intervals (CI). The results of the one-way rmANOVA measurement
showed a significant main effect of the colormap on the affect as participants proactively
reacted to the dimension of valence (F(10, 720) = 37.58, p < 0.005, η2

p = 0.34). Moreover,
the Bonferroni post hoc tests showed statistically significant effects between every pairwise
comparison of the colormaps. This indicates that the affective responses regarding each pair
of colormaps with which participants reacted are statistically significant. For example, they
felt a significantly more pleasant affect from the colormap autumn (mean = 6.36; SD = 1.78)
compared to the others. Similarly, the color scheme greys (mean = 2.84; SD = 1.80) had
the least pleasant affect in our study. Likewise, the one-way rmAVONA measurement
showed that the tested colormaps had a significant main effect (F(10, 720) = 34.21, p < 0.005,
η2

p = 0.32) in the dimension of arousal. It is noteworthy that each pairwise comparison
also revealed significant effect through the Bonferroni post hoc tests. For colormap hot
(mean = 5.93; SD = 2.12), participants reported significantly more excitement; while they
sensed more calm with respect to greys (mean = 2.29; SD = 1.44) compared to the remaining
colormaps. This evidence supports, with statistical significance, the conclusion that these
colormaps can affect participants’ emotional responses.
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Figure 10. The synthetic distribution of the 11 colomaps regarding the affect evoked in the valence–
arousal coordinate system. The white dots represent the exact locations of the colormaps.

Table 2. Summary of the mean values and standard deviations of the affective responses obtained in crowdsourced study
Part I with 99.5% CI.

Parula Viridis Magma Greys Blues Cool Hot Autumn Copper Spectral Coolwarm

Valence
Mean 5.92 5.85 3.81 2.84 6.12 4.56 4.32 6.36 3.15 4.56 4.86
SD 1.762 1.721 1.604 1.795 1.914 2.014 2.027 1.775 1.459 1.748 1.702

Arousal
Mean 5.37 5.48 4.62 2.29 4.25 4.70 5.93 5.67 3.33 4.15 4.19
SD 1.933 1.634 1.890 1.438 1.722 2.059 2.117 1.834 1.519 1.587 1.721
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Figure 11. Mean values with standard errors (99.5% CI) of the valence dimension.

Figure 12. Mean values with standard errors (99.5% CI) of the arousal dimension.

5.2. Part II: Results and Analysis

After giving the affective responses to each colormap, participants then rated the ac-
curacy of each colormap on the same segmentation task using their own comprehension.
The comprehensive statistics of the results are shown in Figure 13, which illustrates ratings of
each individual colormap by the 73 participants. By excluding the neutral rating (intermediate
accuracy), we intended to classify the desirable colormaps (very high accuracy and high
accuracy) and undesirable colormaps (very low accuracy and low accuracy) by observing
the results. Hence, it is fair to initially conclude that the colormaps autumn, viridis, parula, hot
and cool are favored over spectral, coolwarm, magma, copper and blues. The further exploration
of the results was conducted by a similar statistical analysis as used in Part I.

Table 3 and Figure 14 report the means as well as the SDs of the colormap accuracy
rated in crowdsourced study Part II, along with their 99.5% CIs. The results of the one-way
rmANOVA measurement showed a significant main effect of the colormap on the task
accuracy, which participants successfully rated (F(10, 720) = 69.62, p < 0.005, η2

p = 0.49).
In addition, the Bonferroni post hoc tests showed that every individual colormap had a
significant effect according to the pairwise comparison. For instance, participants perceived
autumn (mean = 3.86; SD = 0.99) as significantly more accurate whilst spectral (mean = 1.40;
SD = 0.83) had the least task accuracy. This shows that participants have the ability to rate
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the accuracy of the chosen colormaps. More specifically, these findings demonstrate that
the results obtained are statistically significant. Interestingly, our results indicate that parula,
viridis, cool, hot and autumn schemes possess superior accuracy based on participants’ visual
determination, which corresponds to the initial observation in Section 3.3. However, by fol-
lowing the quantitative evaluation, cool and hot colormaps are practically unfavourable
in our context and should be discarded. Therefore, we can confidently conclude that the
color schemes autumn, viridis and parula are the most desirable results from the judge-
ment by human visual comprehension. The holistic rankings of the colormaps over MWT
segmentation originating from our crowdsourced study are displayed in Table 4.

Table 3. Summary of the mean values and standard deviations of the colormap accuracy rated in crowdsourced study Part
II with 99.5% CI.

Parula Viridis Magma Greys Blues Cool Hot Autumn Copper Spectral Coolwarm

Accuracy
Mean 3.27 3.58 1.90 3.16 2.15 3.51 3.55 3.86 2.12 1.40 1.73
SD 0.961 1.105 0.988 0.913 1.076 0.899 0.867 0.990 0.816 0.829 1.205

Table 4. The holistic accuracy rankings (high to low) of the 11 colormaps obtained from study part 2.

Ranks 1 2 3 4 5 6 7 8 9 10 11

Colormaps autumn viridis parula hot cool greys blues copper magma coolwarm spectral

Figure 13. The overall accuracy rating results of the 11 colormaps by the 73 participants (rating scale:
very high accuracy, high accuracy, intermediate accuracy, low accuracy and very low accuracy).
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Figure 14. Mean values with standard errors (99.5% CI) of the colormap accuracy rated by participants.

5.3. Validation Analysis

From our crowdsourced study, it is noteworthy that the most accurate colormaps
are autumn, viridis and parula, a result which corresponds to the quantitative evaluation
previously made. Furthermore, these three colormaps all trigger affect in the positive–
exciting quadrant (Figures 10 and 11), which conforms to our hypothesis. Unexpectedly,
we observed that the three least preferred colormaps spectral, coolwarm and magma are
located in the negative-calm area. To make our findings more persuasive and robust,
we carried out an additional statistical hypothesis testing of the three most preferred
colormaps to verify our conclusions. We chose colormaps autumn, viridis and parula as
baselines. We divided the results into Right (the number of people who rated the baseline
colormaps as desirable in the crowdsourced study in Part II) and Wrong (the number of
people who rated the baseline colormaps as undesirable in the crowdsourced study in
Part II). Since we speculated that the colormaps distributed in positive–exciting quadrant
can facilitate more accurate visual comprehension, we distributed the four quadrants of
the valence–arousal coordinate into positive–exciting (P-E) and other quadrants (OTH)
to investigate how those participants possessing affect in P-E and OTH quadrants would
rate the colormaps. The overall results for these three baselines are illustrated in Figure 15.
After the hypothetical verification, we found the consequential effect on autumn to be
(χ2) = 12.01, α = 0.05, p < 0.005, viridis to be (χ2) = 26.42, α = 0.05, p < 0.005 and parula
to be (χ2) = 24.11, α = 0.05, p < 0.005. From the testing outcomes, we are able to verify
our hypothesis that colormaps triggering affect in the positive–exciting quadrant in the
valence–arousal grid are able to facilitate more accurate human visual comprehension
towards MWT.
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Figure 15. The analytic results for the three baseline colormaps autumn, viridis and parula. The X-axis represents the
positive–exciting (P-E) and other quadrants (OTH) from the valence–arousal model. The Y-axis shows the number of
participants who rated the designated colormap. Right: the number of people who rated the baseline colormap as desirable
in the crowdsourced study in Part II. Wrong: the number of people who rated the baseline colormap as undesirable in the
crowdsourced study in Part II.

6. Discussion
6.1. Insights

What do we obtain from all the results? Foremost, we proposed two core research
questions regarding our study. How can various colormaps affect domain related task
accuracy in the context of MWT so as to impart accurate visual comprehension? Are the col-
ormaps triggering human affect in the positive–exciting quadrant in the valence–arousal
grid able to facilitate more accurate visual comprehension in terms of human perception
towards MWT than those from the other three quadrants? To resolve our RQ1, we carried
out a metric-driven quantitative evaluation to judge the performance of individual col-
ormaps based on the same segmentation task, by following the recently published work [8].
After consulting relevant literature, we selected 10 prevalent continuous colormaps (plus
a default colormap, totalling 11 colormaps tested) which were capable of retaining the
needed information in MWT images. The selection criterion was on the basis of categories
(sequential and diverging) and color properties (single hue, binary hues and multiple
hues). By means of an automatic segmentation approach, we then obtained the easily-
distinguishable results which enabled us to determine the most appropriate colormaps.
We found that color schemes autumn, viridis and parula were considered the optimal options
in comprehension-based scientific analysis of MWT. In addition, we concluded that the
colormaps spectral, coolwarm and magma were undesirable in the same context.

More critically, inspired by well-proven research on colormaps-emotion, we designed
a comprehensive crowdsourced user study to address our RQ2, as well as to validate
our hypothesis. A 73-participant involved study was formalized to verify whether the
advisable colormaps concluded from the quantitative evaluation were encoded in the
positive–exciting quadrant in our built valence–arousal model. We divided the whole
study into two parts. Part I collected the affect of how participants reacted to the 11 dif-
ferent testing colormaps and recorded the outcomes. The SAM scale was used to encode
the participants’ perceptual reactions into a measurable format. The composite results
were presented in descriptive tables and figures, which showcase the entire displacement
of the 11 tested colormaps in the valence–arousal coordinate system. The rmANOVA
measurement tool solidly confirmed that the acquired results were statistically signifi-
cant. In Part II, our complementary study investigated the ratings by the participants of
the segmentation accuracy of each colormap. We used the well-known Likert scale to
record the data. From the outcome presentation, we demonstrated that our results had
a statistically significant effect. Through integrating the two parts, we expectedly found
that the most desirable colormaps autumn, viridis and parula indeed trigger the human
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affect in the positive–exciting quadrant which conforms with our hypothesis. To robustly
justify our findings, we set up an additional statistical hypothetical test that then effectively
further proved the correctness of our results. Moreover, by referring to the well-known
valence–arousal model, we have shown its accessibility and suitability in our affective
design study.

Why did we obtain such results? Colormaps can result in different domain related task
accuracy, especially in our comprehension oriented contexts. The answer of RQ1 was obtained
by an exhaustive quantitative evaluation across three renowned indexes, which led us to
find the objective color schemes. Moreover, why can we successfully verify our hypothesis
regarding RQ2? On one hand, the chosen three best colormaps are intrinsically suitable
in supporting task accuracy in industrial tomography. On the other hand, the human
operator is a critical component in the context. It is vital for domain related users to
understand the tomographic images by their visual comprehension. Human affect from
proper colormap selection has the capacity to influence the accuracy-critical decision-
making. In line with [14], the chromatic properties of colormaps are more intensive
in positive and exciting dimensions and are milder in negative and calm dimensions.
The three desirable colormaps intensively trigger energetic affect like joy and happiness,
which can effectively underpin human decision-making within cognitive tasks. On the
contrary, it is therefore reasonable to deduce that the three undesirable colormaps having
passive affect like sadness may negatively influence human cognitive abilities.

Beyond the fundamental research output, the design implications of our work has
high transferability. We chose the MWT as a representative object along with a specific
microwave foam drying process. However, our findings are equally applicable to other
modalities in industrial tomography due to the high interoperability, for example, indus-
trial batch crystallization using Electrical Resistance Tomography (ERT) or inline fluid
separation using Electrical Capacitance Tomography (ECT).

Our goal is to seek a breakthrough in affective colormap design research. Color coding
in various application settings and emotional color visualization have been well researched
over the past decades. The current work has investigated either benchmarking colormaps
by various tasks [18] or assessing the colormaps by hands-on user testing such as crowd-
soucing [20]. We, however, have especially incorporated the conventional task-based
design strategy along with the emerging crowdsourced user study to investigate the af-
fective colormap design in the domain of industrial tomography. In response to our two
research questions, including a preliminary hypothesis, a quantitative evaluation followed
by a thorough user study was established for exploration. After rigorous analysis in terms
of both results and statistics, we favorably validated our prior assumption.

6.2. Limitations

While these results show a satisfactory performance for using affective colormap
design to advance human visual comprehension in the domain of industrial tomography,
we acknowledge several existing limitations. First, we investigated 11 different colormaps
in terms of several selection strategies, in which categories (sequential and diverging) and
color properties (hues and lightness) were considered. However, the design strategy of
additional colormaps could be enriched by adding more classes of colormaps that might
then give similar or more outstanding performance in our context, for instance, other
breeds of colormaps like cyclic and qualitative colormaps. Furthermore, another important
property—color chroma—should be considered in choosing appropriate testing objects.

Second, we chose continuous colormaps simply because of their ability to retain com-
plete information of MWT as well as respecting the default setting in MATLAB. However,
the scope could be extended by inspecting discrete colormaps. Since we evaluated the
color schemes through an image segmentation task, it could be promising to introduce
a suitable number of discrete colormaps into our study. Thirdly, the number of tested
objects (both of the number of colormaps and the participants involved in the user study)
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is not considerably sufficient. Although we have gained new, conclusive insights, a larger
number of colormaps, as well as a larger scale of user study could be studied in the future.

Some factors influencing the crowdsourced study could not be controlled. For instance,
we recruited participants from a range of domains while the working environment of each
participant could not be controlled. Participants most likely were subject to different screen
resolution, lighting and other environmental factors. A unified and subjective working
environment could have ensured more robust results.

Finally, even though our result powerfully supports the potential to leverage affective
colormaps design in boosting visual comprehension in the domain of MWT, a representa-
tive type of industrial tomography, it cannot be firmly concluded that our results can be
generalized in the context of each breed of tomography. This is due to the sophisticated
categories of tomography. For example, computed tomography (CT), which is pervasively
used in medical scenarios, is completely different from industrial tomography. Whether
our conclusions could be used in CT needs to be investigated.

7. Conclusions

In this paper, we aimed to investigate how to support accurate visual comprehension
in industrial tomography. The non-destructive MWT was selected as the research context.
A quantitative evaluation of our work showed that different colormaps can influence the
task accuracy in MWT related analytics and that schemes autumn, virids and parula can
provide the best performance. In our systematic crowdsourced study, we verified our
hypothesis that the colormaps triggering affect in the positive–exciting quadrant in the
valence–arousal model are able to facilitate more precise visual comprehension in MWT
than the other three quadrants. Interestingly, we also discovered the converse-finding
that colormaps resulting in affect in the negative-calm quadrant are undesirable. There-
fore, we propose a synthetic design guideline for future practitioners to select colormaps
boosting accurate visual comprehension in the context of MWT.

• Guideline-1: For comprehension-based segmentation scientific analysis for MWT,
we recommend the colormaps autumn, viridis and parula as the most suitable color
schemes. For the same context of use, we advise against spectral, coolwarm and
magma schemes.

• Guideline-2: For comprehension-based segmentation scientific analysis for MWT,
we recommend the colormaps triggering affect in the positive–exciting quadrant in
the valence–arousal emotion model as the most suitable color schemes to facilitate
visual comprehension. Conversely, we advise against those color schemes which
incite affect in the negative-calm quadrant.

Our research is novel and has various possibilities in relevant future studies. We admit
that we have not yet tested a wider range of representative colormaps. We chose continuous
colormaps because they reveal the most useful information in MWT. We believe that
discrete colormaps should be examined in future work. In addition, other categories of
colormaps, like cyclic and qualitative colormaps, should also be investigated. A much
larger number of sample images (this study used eight) could make our study more
generic and persuasive. Moreover, there is room to improve our crowdsourced study,
for instance, by involving more participants from a wider range of backgrounds. Since
human perception differs individually [38] for colors and images, results acquired and
analyzed upon a more substantial number and range of participants would be more
reliable. Meanwhile, comparing and analyzing different results derived from different
groups (experts and non-experts) may lead to other interesting findings. Last but not
least, we have successfully proven that some designated colormaps are more suitable
than others in the domain of industrial tomography. However, it is critical to examine
our findings for other types of tomography in future work. Overall, the aim of our
research was to demonstrate the potential of colormap design to support novel industrial
tomography segmentation procedures. Our results have proven that this potential is
worthy of future investigation.



Sensors 2021, 21, 4766 19 of 20

Author Contributions: Conceptualization, Y.Z.; methodology, Y.Z.; design, Y.Z.; formal analysis,
Y.Z.; investigation, Y.Z.; writing—original draft preparation, Y.Z; writing—review and editing, Y.Z.,
M.F. (Morten Fjeld), M.F. (Marco Fratarcangeli), A.S., S.Z.; visualization, Y.Z.; supervision, M.F.
(Morten Fjeld); project administration, M.F. (Morten Fjeld); funding acquisition, M.F. (Morten Fjeld).
All authors have read and agreed to the published version of the manuscript.

Funding: This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under the Marie Sklodowska-Curie grant agreement No. 764902.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding authors.

Acknowledgments: We thank Heidrun Schumann, Christian Tominski and Alf Ove Braseth for
scientific feedback and advice. We thank David Gillblom for expert feedback. Finally, we thank
Barbara Stuckey and Philippa Beckman for editorial work and proofreading.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Wu, Z.; Wang, H. Microwave Tomography for Industrial Process Imaging: Example Applications and Experimental Results.

IEEE Antennas Propag. Mag. 2017, 59, 61–71. [CrossRef]
2. Sun, Y.; Kuehner, T.; Link, G.; Kayser, T.; Jelonnek, J.; Baake, E. A novel temperature control approach of distributed microwave

feeding systems. In Proceedings of the International Scientific Colloquium ‘Modeling for Electromagnetic Processing, Leibnitz
Univ, Hanover, Germany, 16–19 September 2014; pp. 155–161.

3. Zhang, Y.; Fjeld, M. Condition Monitoring for Confined Industrial Process Based on Infrared Images by Using Deep Neural
Network and Variants. In Proceedings of the 2020 2nd International Conference on Image, Video and Signal Processing, Singapore,
20–22 March 2020; pp. 99–106.

4. Nagoor, O.H.; Borgo, R.; Jones, M.W. Data painter: A tool for colormap interaction. In Proceedings of the Conference on Computer
Graphics & Visual Computing, Manchester, UK, 14–15 September 2017; pp. 69–76.

5. Schulze-Wollgast, P.; Tominski, C.; Schumann, H. Enhancing Visual Exploration by Appropriate Color Coding. In Proceedings of
the International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision 2005 (WSCG 2005),
Pilsen, Czech Republic, 31 January–4 February 2005; pp. 203–210.

6. Bartram, L.; Patra, A.; Stone, M. Affective color in visualization. In Proceedings of the 2017 CHI Conference on Human Factors in
Computing Systems, Denver, CO, USA, 6–11 May 2017; pp. 1364–1374.

7. Schloss, K.B.; Gramazio, C.C.; Silverman, A.T.; Parker, M.L.; Wang, A.S. Mapping color to meaning in colormap data visualizations.
IEEE Trans. Vis. Comput. Graph. 2018, 25, 810–819. [CrossRef] [PubMed]

8. Zhang, Y.; Fjeld, M.; Said, A.; Fratarcangeli, M. Task-based Colormap Design Supporting Visual Comprehension in Process
Tomography. In EuroVis 2020—Short Papers; Kerren, A., Garth, C., Marai, G.E., Eds.; The Eurographics Association: Norrköping,
Sweden, 2020; doi:10.2312/evs.20201049. [CrossRef]

9. Norman, D.A. Emotional Design: Why We Love (or Hate) Everyday Things; Basic Civitas Books: New York, NY, USA, 2004.
10. Cairo, A. The Truthful Art: Data, Charts and Maps for Communication; New Riders: San Francisco, CA, USA, 2016.
11. Hullman, J.; Diakopoulos, N. Visualization rhetoric: Framing effects in narrative visualization. IEEE Trans. Vis. Comput. Graph.

2011, 17, 2231–2240. [CrossRef] [PubMed]
12. Russell, J.A. A circumplex model of affect. J. Personal. Soc. Psychol. 1980, 39, 1161. [CrossRef]
13. Kirke, A.; Miranda, E. Emotional and multi-agent systems in computer-aided writing and poetry. In Proceedings of the Artificial

Intelligence and Poetry Symposium, Exeter, UK, 2–5 April 2013; pp. 17–22.
14. Yang, H.; Min, K. Color-Emotion Model for Re-rendering Visual Contents. Int. J. Softw. Eng. Its Appl. 2013, 7, 351–358. [CrossRef]
15. Tsonos, D.; Kouroupetroglou, G. A methodology for the extraction of reader’s emotional state triggered from text typography. In

Tools in Artificial Intelligence; IntechOpen: London, UK, 2008.
16. Bergman, L.D.; Rogowitz, B.E.; Treinish, L.A. A rule-based tool for assisting colormap selection. In Proceedings of the Visualiza-

tion’95, Atlanta, GA, USA, 29 October–3 November 1995; pp. 118–125.
17. Tominski, C.; Fuchs, G.; Schumann, H. Task-driven color coding. In Proceedings of the 2008 12th International Conference

Information Visualisation, London, UK, 9–11 July 2008; pp. 373–380.
18. Mittelstädt, S.; Jäckle, D.; Stoffel, F.; Keim, D.A. ColorCAT: Guided Design of Colormaps for Combined Analysis Tasks.

In Proceedings of the Conference on Visualization (EuroVis), Sardinia, Italy, 25–29 May 2015; pp. 115–119.
19. Reda, K.; Nalawade, P.; Ansah-Koi, K. Graphical perception of continuous quantitative maps: The effects of spatial frequency

and colormap design. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems; ACM: New York, NY,
USA, 2018; p. 272.

http://doi.org/10.1109/MAP.2017.2731201
http://dx.doi.org/10.1109/TVCG.2018.2865147
http://www.ncbi.nlm.nih.gov/pubmed/30188827
http://dx.doi.org/10.2312/evs.20201049
http://dx.doi.org/10.1109/TVCG.2011.255
http://www.ncbi.nlm.nih.gov/pubmed/22034342
http://dx.doi.org/10.1037/h0077714
http://dx.doi.org/10.14257/ijseia.2013.7.6.29


Sensors 2021, 21, 4766 20 of 20

20. Turton, T.L.; Ware, C.; Samsel, F.; Rogers, D.H. A crowdsourced approach to colormap assessment. In EuroVis Workshop on
Reproducibility, Verification and Validation in Visualization (EuroRV3); The Eurographics Association: Barcelona, Spain, 2017.

21. Cyr, D.; Head, M.; Larios, H. Colour appeal in website design within and across cultures: A multi-method evaluation. Int. J.
Hum. Comput. Stud. 2010, 68, 1–21. [CrossRef]

22. Madden, T.J.; Hewett, K.; Roth, M.S. Managing images in different cultures: A cross-national study of color meanings and
preferences. J. Int. Mark. 2000, 8, 90–107. [CrossRef]

23. Wilms, L.; Oberfeld, D. Color and emotion: Effects of hue, saturation and brightness. Psychol. Res. 2018, 82, 896–914. [CrossRef]
[PubMed]

24. Kragel, P.A.; Reddan, M.C.; LaBar, K.S.; Wager, T.D. Emotion schemas are embedded in the human visual system. Sci. Adv. 2019,
5, eaaw4358. [CrossRef] [PubMed]

25. Brewer, C.A. Color use guidelines for mapping. Vis. Mod. Cartogr. 1994, 1994, 123–148.
26. Liu, Y.; Heer, J. Somewhere over the rainbow: An empirical assessment of quantitative colormaps. In Proceedings of the 2018

CHI Conference on Human Factors in Computing Systems, Montreal, QC, Canada, 21–26 April 2018; pp. 1–12.
27. Moreland, K. Diverging color maps for scientific visualization. In International Symposium on Visual Computing; Springer:

Berlin/Heidelberg, Germany, 2009; pp. 92–103.
28. Zhang, Y.; Ma, Y.; Omrani, A.; Yadav, R.; Fjeld, M.; Fratarcangeli, M. Automatic image segmentation for microwave tomography

(mwt) from implementation to comparative evaluation. In Proceedings of the 12th International Symposium on Visual Information
Communication and Interaction, Shanghai, China, 20–22 September 2019; pp. 1–2.

29. Zhang, Y.; Ma, Y.; Omrani, A.; Yadav, R.; Fjeld, M.; Fratarcangeli, M. Automated Microwave Tomography (MWT) Image
Segmentation: State-of-the-Art Implementation and Evaluation. In Proceedings of the International Conference in Central
Europe on Computer Graphics, Visualization and Computer Vision 2020 (WSCG 2020), Pilsen, Czech Republic, 18–22 May 2020;
pp. 126–136. [CrossRef]

30. Bigham, J.P.; Bernstein, M.S.; Adar, E. Human-computer interaction and collective intelligence. In Handbook of Collective Intelligence;
MIT Press: Cambridge, MA, USA, 2015; Volume 57.
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